1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic waiting primitives.
4 *
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 */
7
__init_waitqueue_head(struct wait_queue_head * wq_head,const char * name,struct lock_class_key * key)8 void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
9 {
10 spin_lock_init(&wq_head->lock);
11 lockdep_set_class_and_name(&wq_head->lock, key, name);
12 INIT_LIST_HEAD(&wq_head->head);
13 }
14
15 EXPORT_SYMBOL(__init_waitqueue_head);
16
add_wait_queue(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)17 void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
18 {
19 unsigned long flags;
20
21 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
22 spin_lock_irqsave(&wq_head->lock, flags);
23 __add_wait_queue(wq_head, wq_entry);
24 spin_unlock_irqrestore(&wq_head->lock, flags);
25 }
26 EXPORT_SYMBOL(add_wait_queue);
27
add_wait_queue_exclusive(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)28 void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
29 {
30 unsigned long flags;
31
32 wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
33 spin_lock_irqsave(&wq_head->lock, flags);
34 __add_wait_queue_entry_tail(wq_head, wq_entry);
35 spin_unlock_irqrestore(&wq_head->lock, flags);
36 }
37 EXPORT_SYMBOL(add_wait_queue_exclusive);
38
add_wait_queue_priority(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)39 void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
40 {
41 unsigned long flags;
42
43 wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
44 spin_lock_irqsave(&wq_head->lock, flags);
45 __add_wait_queue(wq_head, wq_entry);
46 spin_unlock_irqrestore(&wq_head->lock, flags);
47 }
48 EXPORT_SYMBOL_GPL(add_wait_queue_priority);
49
remove_wait_queue(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)50 void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&wq_head->lock, flags);
55 __remove_wait_queue(wq_head, wq_entry);
56 spin_unlock_irqrestore(&wq_head->lock, flags);
57 }
58 EXPORT_SYMBOL(remove_wait_queue);
59
60 /*
61 * Scan threshold to break wait queue walk.
62 * This allows a waker to take a break from holding the
63 * wait queue lock during the wait queue walk.
64 */
65 #define WAITQUEUE_WALK_BREAK_CNT 64
66
67 /*
68 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
69 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
70 * number) then we wake that number of exclusive tasks, and potentially all
71 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
72 * the list and any non-exclusive tasks will be woken first. A priority task
73 * may be at the head of the list, and can consume the event without any other
74 * tasks being woken.
75 *
76 * There are circumstances in which we can try to wake a task which has already
77 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
78 * zero in this (rare) case, and we handle it by continuing to scan the queue.
79 */
__wake_up_common(struct wait_queue_head * wq_head,unsigned int mode,int nr_exclusive,int wake_flags,void * key,wait_queue_entry_t * bookmark)80 static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
81 int nr_exclusive, int wake_flags, void *key,
82 wait_queue_entry_t *bookmark)
83 {
84 wait_queue_entry_t *curr, *next;
85 int cnt = 0;
86
87 lockdep_assert_held(&wq_head->lock);
88
89 if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) {
90 curr = list_next_entry(bookmark, entry);
91
92 list_del(&bookmark->entry);
93 bookmark->flags = 0;
94 } else
95 curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
96
97 if (&curr->entry == &wq_head->head)
98 return nr_exclusive;
99
100 list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
101 unsigned flags = curr->flags;
102 int ret;
103
104 if (flags & WQ_FLAG_BOOKMARK)
105 continue;
106
107 ret = curr->func(curr, mode, wake_flags, key);
108 if (ret < 0)
109 break;
110 if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
111 break;
112
113 if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) &&
114 (&next->entry != &wq_head->head)) {
115 bookmark->flags = WQ_FLAG_BOOKMARK;
116 list_add_tail(&bookmark->entry, &next->entry);
117 break;
118 }
119 }
120
121 return nr_exclusive;
122 }
123
__wake_up_common_lock(struct wait_queue_head * wq_head,unsigned int mode,int nr_exclusive,int wake_flags,void * key)124 static int __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
125 int nr_exclusive, int wake_flags, void *key)
126 {
127 unsigned long flags;
128 wait_queue_entry_t bookmark;
129 int remaining = nr_exclusive;
130
131 bookmark.flags = 0;
132 bookmark.private = NULL;
133 bookmark.func = NULL;
134 INIT_LIST_HEAD(&bookmark.entry);
135
136 do {
137 spin_lock_irqsave(&wq_head->lock, flags);
138 remaining = __wake_up_common(wq_head, mode, remaining,
139 wake_flags, key, &bookmark);
140 spin_unlock_irqrestore(&wq_head->lock, flags);
141 } while (bookmark.flags & WQ_FLAG_BOOKMARK);
142
143 return nr_exclusive - remaining;
144 }
145
146 /**
147 * __wake_up - wake up threads blocked on a waitqueue.
148 * @wq_head: the waitqueue
149 * @mode: which threads
150 * @nr_exclusive: how many wake-one or wake-many threads to wake up
151 * @key: is directly passed to the wakeup function
152 *
153 * If this function wakes up a task, it executes a full memory barrier
154 * before accessing the task state. Returns the number of exclusive
155 * tasks that were awaken.
156 */
__wake_up(struct wait_queue_head * wq_head,unsigned int mode,int nr_exclusive,void * key)157 int __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
158 int nr_exclusive, void *key)
159 {
160 return __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
161 }
162 EXPORT_SYMBOL(__wake_up);
163
164 /*
165 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
166 */
__wake_up_locked(struct wait_queue_head * wq_head,unsigned int mode,int nr)167 void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
168 {
169 __wake_up_common(wq_head, mode, nr, 0, NULL, NULL);
170 }
171 EXPORT_SYMBOL_GPL(__wake_up_locked);
172
__wake_up_locked_key(struct wait_queue_head * wq_head,unsigned int mode,void * key)173 void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
174 {
175 __wake_up_common(wq_head, mode, 1, 0, key, NULL);
176 }
177 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
178
__wake_up_locked_key_bookmark(struct wait_queue_head * wq_head,unsigned int mode,void * key,wait_queue_entry_t * bookmark)179 void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head,
180 unsigned int mode, void *key, wait_queue_entry_t *bookmark)
181 {
182 __wake_up_common(wq_head, mode, 1, 0, key, bookmark);
183 }
184 EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark);
185
186 /**
187 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
188 * @wq_head: the waitqueue
189 * @mode: which threads
190 * @key: opaque value to be passed to wakeup targets
191 *
192 * The sync wakeup differs that the waker knows that it will schedule
193 * away soon, so while the target thread will be woken up, it will not
194 * be migrated to another CPU - ie. the two threads are 'synchronized'
195 * with each other. This can prevent needless bouncing between CPUs.
196 *
197 * On UP it can prevent extra preemption.
198 *
199 * If this function wakes up a task, it executes a full memory barrier before
200 * accessing the task state.
201 */
__wake_up_sync_key(struct wait_queue_head * wq_head,unsigned int mode,void * key)202 void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
203 void *key)
204 {
205 if (unlikely(!wq_head))
206 return;
207
208 __wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key);
209 }
210 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
211
212 /**
213 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue.
214 * @wq_head: the waitqueue
215 * @mode: which threads
216 * @key: opaque value to be passed to wakeup targets
217 *
218 * The sync wakeup differs in that the waker knows that it will schedule
219 * away soon, so while the target thread will be woken up, it will not
220 * be migrated to another CPU - ie. the two threads are 'synchronized'
221 * with each other. This can prevent needless bouncing between CPUs.
222 *
223 * On UP it can prevent extra preemption.
224 *
225 * If this function wakes up a task, it executes a full memory barrier before
226 * accessing the task state.
227 */
__wake_up_locked_sync_key(struct wait_queue_head * wq_head,unsigned int mode,void * key)228 void __wake_up_locked_sync_key(struct wait_queue_head *wq_head,
229 unsigned int mode, void *key)
230 {
231 __wake_up_common(wq_head, mode, 1, WF_SYNC, key, NULL);
232 }
233 EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key);
234
235 /*
236 * __wake_up_sync - see __wake_up_sync_key()
237 */
__wake_up_sync(struct wait_queue_head * wq_head,unsigned int mode)238 void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode)
239 {
240 __wake_up_sync_key(wq_head, mode, NULL);
241 }
242 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
243
__wake_up_pollfree(struct wait_queue_head * wq_head)244 void __wake_up_pollfree(struct wait_queue_head *wq_head)
245 {
246 __wake_up(wq_head, TASK_NORMAL, 0, poll_to_key(EPOLLHUP | POLLFREE));
247 /* POLLFREE must have cleared the queue. */
248 WARN_ON_ONCE(waitqueue_active(wq_head));
249 }
250
251 /*
252 * Note: we use "set_current_state()" _after_ the wait-queue add,
253 * because we need a memory barrier there on SMP, so that any
254 * wake-function that tests for the wait-queue being active
255 * will be guaranteed to see waitqueue addition _or_ subsequent
256 * tests in this thread will see the wakeup having taken place.
257 *
258 * The spin_unlock() itself is semi-permeable and only protects
259 * one way (it only protects stuff inside the critical region and
260 * stops them from bleeding out - it would still allow subsequent
261 * loads to move into the critical region).
262 */
263 void
prepare_to_wait(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry,int state)264 prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
265 {
266 unsigned long flags;
267
268 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
269 spin_lock_irqsave(&wq_head->lock, flags);
270 if (list_empty(&wq_entry->entry))
271 __add_wait_queue(wq_head, wq_entry);
272 set_current_state(state);
273 spin_unlock_irqrestore(&wq_head->lock, flags);
274 }
275 EXPORT_SYMBOL(prepare_to_wait);
276
277 /* Returns true if we are the first waiter in the queue, false otherwise. */
278 bool
prepare_to_wait_exclusive(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry,int state)279 prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
280 {
281 unsigned long flags;
282 bool was_empty = false;
283
284 wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
285 spin_lock_irqsave(&wq_head->lock, flags);
286 if (list_empty(&wq_entry->entry)) {
287 was_empty = list_empty(&wq_head->head);
288 __add_wait_queue_entry_tail(wq_head, wq_entry);
289 }
290 set_current_state(state);
291 spin_unlock_irqrestore(&wq_head->lock, flags);
292 return was_empty;
293 }
294 EXPORT_SYMBOL(prepare_to_wait_exclusive);
295
init_wait_entry(struct wait_queue_entry * wq_entry,int flags)296 void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
297 {
298 wq_entry->flags = flags;
299 wq_entry->private = current;
300 wq_entry->func = autoremove_wake_function;
301 INIT_LIST_HEAD(&wq_entry->entry);
302 }
303 EXPORT_SYMBOL(init_wait_entry);
304
prepare_to_wait_event(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry,int state)305 long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
306 {
307 unsigned long flags;
308 long ret = 0;
309
310 spin_lock_irqsave(&wq_head->lock, flags);
311 if (signal_pending_state(state, current)) {
312 /*
313 * Exclusive waiter must not fail if it was selected by wakeup,
314 * it should "consume" the condition we were waiting for.
315 *
316 * The caller will recheck the condition and return success if
317 * we were already woken up, we can not miss the event because
318 * wakeup locks/unlocks the same wq_head->lock.
319 *
320 * But we need to ensure that set-condition + wakeup after that
321 * can't see us, it should wake up another exclusive waiter if
322 * we fail.
323 */
324 list_del_init(&wq_entry->entry);
325 ret = -ERESTARTSYS;
326 } else {
327 if (list_empty(&wq_entry->entry)) {
328 if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
329 __add_wait_queue_entry_tail(wq_head, wq_entry);
330 else
331 __add_wait_queue(wq_head, wq_entry);
332 }
333 set_current_state(state);
334 }
335 spin_unlock_irqrestore(&wq_head->lock, flags);
336
337 return ret;
338 }
339 EXPORT_SYMBOL(prepare_to_wait_event);
340
341 /*
342 * Note! These two wait functions are entered with the
343 * wait-queue lock held (and interrupts off in the _irq
344 * case), so there is no race with testing the wakeup
345 * condition in the caller before they add the wait
346 * entry to the wake queue.
347 */
do_wait_intr(wait_queue_head_t * wq,wait_queue_entry_t * wait)348 int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
349 {
350 if (likely(list_empty(&wait->entry)))
351 __add_wait_queue_entry_tail(wq, wait);
352
353 set_current_state(TASK_INTERRUPTIBLE);
354 if (signal_pending(current))
355 return -ERESTARTSYS;
356
357 spin_unlock(&wq->lock);
358 schedule();
359 spin_lock(&wq->lock);
360
361 return 0;
362 }
363 EXPORT_SYMBOL(do_wait_intr);
364
do_wait_intr_irq(wait_queue_head_t * wq,wait_queue_entry_t * wait)365 int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
366 {
367 if (likely(list_empty(&wait->entry)))
368 __add_wait_queue_entry_tail(wq, wait);
369
370 set_current_state(TASK_INTERRUPTIBLE);
371 if (signal_pending(current))
372 return -ERESTARTSYS;
373
374 spin_unlock_irq(&wq->lock);
375 schedule();
376 spin_lock_irq(&wq->lock);
377
378 return 0;
379 }
380 EXPORT_SYMBOL(do_wait_intr_irq);
381
382 /**
383 * finish_wait - clean up after waiting in a queue
384 * @wq_head: waitqueue waited on
385 * @wq_entry: wait descriptor
386 *
387 * Sets current thread back to running state and removes
388 * the wait descriptor from the given waitqueue if still
389 * queued.
390 */
finish_wait(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)391 void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
392 {
393 unsigned long flags;
394
395 __set_current_state(TASK_RUNNING);
396 /*
397 * We can check for list emptiness outside the lock
398 * IFF:
399 * - we use the "careful" check that verifies both
400 * the next and prev pointers, so that there cannot
401 * be any half-pending updates in progress on other
402 * CPU's that we haven't seen yet (and that might
403 * still change the stack area.
404 * and
405 * - all other users take the lock (ie we can only
406 * have _one_ other CPU that looks at or modifies
407 * the list).
408 */
409 if (!list_empty_careful(&wq_entry->entry)) {
410 spin_lock_irqsave(&wq_head->lock, flags);
411 list_del_init(&wq_entry->entry);
412 spin_unlock_irqrestore(&wq_head->lock, flags);
413 }
414 }
415 EXPORT_SYMBOL(finish_wait);
416
autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned mode,int sync,void * key)417 int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
418 {
419 int ret = default_wake_function(wq_entry, mode, sync, key);
420
421 if (ret)
422 list_del_init_careful(&wq_entry->entry);
423
424 return ret;
425 }
426 EXPORT_SYMBOL(autoremove_wake_function);
427
is_kthread_should_stop(void)428 static inline bool is_kthread_should_stop(void)
429 {
430 return (current->flags & PF_KTHREAD) && kthread_should_stop();
431 }
432
433 /*
434 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
435 *
436 * add_wait_queue(&wq_head, &wait);
437 * for (;;) {
438 * if (condition)
439 * break;
440 *
441 * // in wait_woken() // in woken_wake_function()
442 *
443 * p->state = mode; wq_entry->flags |= WQ_FLAG_WOKEN;
444 * smp_mb(); // A try_to_wake_up():
445 * if (!(wq_entry->flags & WQ_FLAG_WOKEN)) <full barrier>
446 * schedule() if (p->state & mode)
447 * p->state = TASK_RUNNING; p->state = TASK_RUNNING;
448 * wq_entry->flags &= ~WQ_FLAG_WOKEN; ~~~~~~~~~~~~~~~~~~
449 * smp_mb(); // B condition = true;
450 * } smp_mb(); // C
451 * remove_wait_queue(&wq_head, &wait); wq_entry->flags |= WQ_FLAG_WOKEN;
452 */
wait_woken(struct wait_queue_entry * wq_entry,unsigned mode,long timeout)453 long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
454 {
455 /*
456 * The below executes an smp_mb(), which matches with the full barrier
457 * executed by the try_to_wake_up() in woken_wake_function() such that
458 * either we see the store to wq_entry->flags in woken_wake_function()
459 * or woken_wake_function() sees our store to current->state.
460 */
461 set_current_state(mode); /* A */
462 if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
463 timeout = schedule_timeout(timeout);
464 __set_current_state(TASK_RUNNING);
465
466 /*
467 * The below executes an smp_mb(), which matches with the smp_mb() (C)
468 * in woken_wake_function() such that either we see the wait condition
469 * being true or the store to wq_entry->flags in woken_wake_function()
470 * follows ours in the coherence order.
471 */
472 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
473
474 return timeout;
475 }
476 EXPORT_SYMBOL(wait_woken);
477
woken_wake_function(struct wait_queue_entry * wq_entry,unsigned mode,int sync,void * key)478 int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
479 {
480 /* Pairs with the smp_store_mb() in wait_woken(). */
481 smp_mb(); /* C */
482 wq_entry->flags |= WQ_FLAG_WOKEN;
483
484 return default_wake_function(wq_entry, mode, sync, key);
485 }
486 EXPORT_SYMBOL(woken_wake_function);
487