1 /**
2  * \file psa/crypto_se_driver.h
3  * \brief PSA external cryptoprocessor driver module
4  *
5  * This header declares types and function signatures for cryptography
6  * drivers that access key material via opaque references.
7  * This is meant for cryptoprocessors that have a separate key storage from the
8  * space in which the PSA Crypto implementation runs, typically secure
9  * elements (SEs).
10  *
11  * This file is part of the PSA Crypto Driver HAL (hardware abstraction layer),
12  * containing functions for driver developers to implement to enable hardware
13  * to be called in a standardized way by a PSA Cryptography API
14  * implementation. The functions comprising the driver HAL, which driver
15  * authors implement, are not intended to be called by application developers.
16  */
17 
18 /*
19  *  Copyright The Mbed TLS Contributors
20  *  SPDX-License-Identifier: Apache-2.0
21  *
22  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
23  *  not use this file except in compliance with the License.
24  *  You may obtain a copy of the License at
25  *
26  *  http://www.apache.org/licenses/LICENSE-2.0
27  *
28  *  Unless required by applicable law or agreed to in writing, software
29  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
30  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
31  *  See the License for the specific language governing permissions and
32  *  limitations under the License.
33  */
34 #ifndef PSA_CRYPTO_SE_DRIVER_H
35 #define PSA_CRYPTO_SE_DRIVER_H
36 #include "mbedtls/private_access.h"
37 
38 #include "crypto_driver_common.h"
39 
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43 
44 /** \defgroup se_init Secure element driver initialization
45  */
46 /**@{*/
47 
48 /** \brief Driver context structure
49  *
50  * Driver functions receive a pointer to this structure.
51  * Each registered driver has one instance of this structure.
52  *
53  * Implementations must include the fields specified here and
54  * may include other fields.
55  */
56 typedef struct {
57     /** A read-only pointer to the driver's persistent data.
58      *
59      * Drivers typically use this persistent data to keep track of
60      * which slot numbers are available. This is only a guideline:
61      * drivers may use the persistent data for any purpose, keeping
62      * in mind the restrictions on when the persistent data is saved
63      * to storage: the persistent data is only saved after calling
64      * certain functions that receive a writable pointer to the
65      * persistent data.
66      *
67      * The core allocates a memory buffer for the persistent data.
68      * The pointer is guaranteed to be suitably aligned for any data type,
69      * like a pointer returned by `malloc` (but the core can use any
70      * method to allocate the buffer, not necessarily `malloc`).
71      *
72      * The size of this buffer is in the \c persistent_data_size field of
73      * this structure.
74      *
75      * Before the driver is initialized for the first time, the content of
76      * the persistent data is all-bits-zero. After a driver upgrade, if the
77      * size of the persistent data has increased, the original data is padded
78      * on the right with zeros; if the size has decreased, the original data
79      * is truncated to the new size.
80      *
81      * This pointer is to read-only data. Only a few driver functions are
82      * allowed to modify the persistent data. These functions receive a
83      * writable pointer. These functions are:
84      * - psa_drv_se_t::p_init
85      * - psa_drv_se_key_management_t::p_allocate
86      * - psa_drv_se_key_management_t::p_destroy
87      *
88      * The PSA Cryptography core saves the persistent data from one
89      * session to the next. It does this before returning from API functions
90      * that call a driver method that is allowed to modify the persistent
91      * data, specifically:
92      * - psa_crypto_init() causes a call to psa_drv_se_t::p_init, and may call
93      *   psa_drv_se_key_management_t::p_destroy to complete an action
94      *   that was interrupted by a power failure.
95      * - Key creation functions cause a call to
96      *   psa_drv_se_key_management_t::p_allocate, and may cause a call to
97      *   psa_drv_se_key_management_t::p_destroy in case an error occurs.
98      * - psa_destroy_key() causes a call to
99      *   psa_drv_se_key_management_t::p_destroy.
100      */
101     const void *const MBEDTLS_PRIVATE(persistent_data);
102 
103     /** The size of \c persistent_data in bytes.
104      *
105      * This is always equal to the value of the `persistent_data_size` field
106      * of the ::psa_drv_se_t structure when the driver is registered.
107      */
108     const size_t MBEDTLS_PRIVATE(persistent_data_size);
109 
110     /** Driver transient data.
111      *
112      * The core initializes this value to 0 and does not read or modify it
113      * afterwards. The driver may store whatever it wants in this field.
114      */
115     uintptr_t MBEDTLS_PRIVATE(transient_data);
116 } psa_drv_se_context_t;
117 
118 /** \brief A driver initialization function.
119  *
120  * \param[in,out] drv_context       The driver context structure.
121  * \param[in,out] persistent_data   A pointer to the persistent data
122  *                                  that allows writing.
123  * \param location                  The location value for which this driver
124  *                                  is registered. The driver will be invoked
125  *                                  for all keys whose lifetime is in this
126  *                                  location.
127  *
128  * \retval #PSA_SUCCESS
129  *         The driver is operational.
130  *         The core will update the persistent data in storage.
131  * \return
132  *         Any other return value prevents the driver from being used in
133  *         this session.
134  *         The core will NOT update the persistent data in storage.
135  */
136 typedef psa_status_t (*psa_drv_se_init_t)(psa_drv_se_context_t *drv_context,
137                                           void *persistent_data,
138                                           psa_key_location_t location);
139 
140 #if defined(__DOXYGEN_ONLY__) || !defined(MBEDTLS_PSA_CRYPTO_SE_C)
141 /* Mbed Crypto with secure element support enabled defines this type in
142  * crypto_types.h because it is also visible to applications through an
143  * implementation-specific extension.
144  * For the PSA Cryptography specification, this type is only visible
145  * via crypto_se_driver.h. */
146 /** An internal designation of a key slot between the core part of the
147  * PSA Crypto implementation and the driver. The meaning of this value
148  * is driver-dependent. */
149 typedef uint64_t psa_key_slot_number_t;
150 #endif /* __DOXYGEN_ONLY__ || !MBEDTLS_PSA_CRYPTO_SE_C */
151 
152 /**@}*/
153 
154 /** \defgroup se_mac Secure Element Message Authentication Codes
155  * Generation and authentication of Message Authentication Codes (MACs) using
156  * a secure element can be done either as a single function call (via the
157  * `psa_drv_se_mac_generate_t` or `psa_drv_se_mac_verify_t` functions), or in
158  * parts using the following sequence:
159  * - `psa_drv_se_mac_setup_t`
160  * - `psa_drv_se_mac_update_t`
161  * - `psa_drv_se_mac_update_t`
162  * - ...
163  * - `psa_drv_se_mac_finish_t` or `psa_drv_se_mac_finish_verify_t`
164  *
165  * If a previously started secure element MAC operation needs to be terminated,
166  * it should be done so by the `psa_drv_se_mac_abort_t`. Failure to do so may
167  * result in allocated resources not being freed or in other undefined
168  * behavior.
169  */
170 /**@{*/
171 /** \brief A function that starts a secure element  MAC operation for a PSA
172  * Crypto Driver implementation
173  *
174  * \param[in,out] drv_context   The driver context structure.
175  * \param[in,out] op_context    A structure that will contain the
176  *                              hardware-specific MAC context
177  * \param[in] key_slot          The slot of the key to be used for the
178  *                              operation
179  * \param[in] algorithm         The algorithm to be used to underly the MAC
180  *                              operation
181  *
182  * \retval  #PSA_SUCCESS
183  *          Success.
184  */
185 typedef psa_status_t (*psa_drv_se_mac_setup_t)(psa_drv_se_context_t *drv_context,
186                                                void *op_context,
187                                                psa_key_slot_number_t key_slot,
188                                                psa_algorithm_t algorithm);
189 
190 /** \brief A function that continues a previously started secure element MAC
191  * operation
192  *
193  * \param[in,out] op_context    A hardware-specific structure for the
194  *                              previously-established MAC operation to be
195  *                              updated
196  * \param[in] p_input           A buffer containing the message to be appended
197  *                              to the MAC operation
198  * \param[in] input_length      The size in bytes of the input message buffer
199  */
200 typedef psa_status_t (*psa_drv_se_mac_update_t)(void *op_context,
201                                                 const uint8_t *p_input,
202                                                 size_t input_length);
203 
204 /** \brief a function that completes a previously started secure element MAC
205  * operation by returning the resulting MAC.
206  *
207  * \param[in,out] op_context    A hardware-specific structure for the
208  *                              previously started MAC operation to be
209  *                              finished
210  * \param[out] p_mac            A buffer where the generated MAC will be
211  *                              placed
212  * \param[in] mac_size          The size in bytes of the buffer that has been
213  *                              allocated for the `output` buffer
214  * \param[out] p_mac_length     After completion, will contain the number of
215  *                              bytes placed in the `p_mac` buffer
216  *
217  * \retval  #PSA_SUCCESS
218  *          Success.
219  */
220 typedef psa_status_t (*psa_drv_se_mac_finish_t)(void *op_context,
221                                                 uint8_t *p_mac,
222                                                 size_t mac_size,
223                                                 size_t *p_mac_length);
224 
225 /** \brief A function that completes a previously started secure element MAC
226  * operation by comparing the resulting MAC against a provided value
227  *
228  * \param[in,out] op_context    A hardware-specific structure for the previously
229  *                              started MAC operation to be fiinished
230  * \param[in] p_mac             The MAC value against which the resulting MAC
231  *                              will be compared against
232  * \param[in] mac_length        The size in bytes of the value stored in `p_mac`
233  *
234  * \retval #PSA_SUCCESS
235  *         The operation completed successfully and the MACs matched each
236  *         other
237  * \retval #PSA_ERROR_INVALID_SIGNATURE
238  *         The operation completed successfully, but the calculated MAC did
239  *         not match the provided MAC
240  */
241 typedef psa_status_t (*psa_drv_se_mac_finish_verify_t)(void *op_context,
242                                                        const uint8_t *p_mac,
243                                                        size_t mac_length);
244 
245 /** \brief A function that aborts a previous started secure element MAC
246  * operation
247  *
248  * \param[in,out] op_context    A hardware-specific structure for the previously
249  *                              started MAC operation to be aborted
250  */
251 typedef psa_status_t (*psa_drv_se_mac_abort_t)(void *op_context);
252 
253 /** \brief A function that performs a secure element MAC operation in one
254  * command and returns the calculated MAC
255  *
256  * \param[in,out] drv_context   The driver context structure.
257  * \param[in] p_input           A buffer containing the message to be MACed
258  * \param[in] input_length      The size in bytes of `p_input`
259  * \param[in] key_slot          The slot of the key to be used
260  * \param[in] alg               The algorithm to be used to underlie the MAC
261  *                              operation
262  * \param[out] p_mac            A buffer where the generated MAC will be
263  *                              placed
264  * \param[in] mac_size          The size in bytes of the `p_mac` buffer
265  * \param[out] p_mac_length     After completion, will contain the number of
266  *                              bytes placed in the `output` buffer
267  *
268  * \retval #PSA_SUCCESS
269  *         Success.
270  */
271 typedef psa_status_t (*psa_drv_se_mac_generate_t)(psa_drv_se_context_t *drv_context,
272                                                   const uint8_t *p_input,
273                                                   size_t input_length,
274                                                   psa_key_slot_number_t key_slot,
275                                                   psa_algorithm_t alg,
276                                                   uint8_t *p_mac,
277                                                   size_t mac_size,
278                                                   size_t *p_mac_length);
279 
280 /** \brief A function that performs a secure element MAC operation in one
281  * command and compares the resulting MAC against a provided value
282  *
283  * \param[in,out] drv_context       The driver context structure.
284  * \param[in] p_input       A buffer containing the message to be MACed
285  * \param[in] input_length  The size in bytes of `input`
286  * \param[in] key_slot      The slot of the key to be used
287  * \param[in] alg           The algorithm to be used to underlie the MAC
288  *                          operation
289  * \param[in] p_mac         The MAC value against which the resulting MAC will
290  *                          be compared against
291  * \param[in] mac_length   The size in bytes of `mac`
292  *
293  * \retval #PSA_SUCCESS
294  *         The operation completed successfully and the MACs matched each
295  *         other
296  * \retval #PSA_ERROR_INVALID_SIGNATURE
297  *         The operation completed successfully, but the calculated MAC did
298  *         not match the provided MAC
299  */
300 typedef psa_status_t (*psa_drv_se_mac_verify_t)(psa_drv_se_context_t *drv_context,
301                                                 const uint8_t *p_input,
302                                                 size_t input_length,
303                                                 psa_key_slot_number_t key_slot,
304                                                 psa_algorithm_t alg,
305                                                 const uint8_t *p_mac,
306                                                 size_t mac_length);
307 
308 /** \brief A struct containing all of the function pointers needed to
309  * perform secure element MAC operations
310  *
311  * PSA Crypto API implementations should populate the table as appropriate
312  * upon startup.
313  *
314  * If one of the functions is not implemented (such as
315  * `psa_drv_se_mac_generate_t`), it should be set to NULL.
316  *
317  * Driver implementers should ensure that they implement all of the functions
318  * that make sense for their hardware, and that they provide a full solution
319  * (for example, if they support `p_setup`, they should also support
320  * `p_update` and at least one of `p_finish` or `p_finish_verify`).
321  *
322  */
323 typedef struct {
324     /**The size in bytes of the hardware-specific secure element MAC context
325      * structure
326     */
327     size_t                    MBEDTLS_PRIVATE(context_size);
328     /** Function that performs a MAC setup operation
329      */
330     psa_drv_se_mac_setup_t          MBEDTLS_PRIVATE(p_setup);
331     /** Function that performs a MAC update operation
332      */
333     psa_drv_se_mac_update_t         MBEDTLS_PRIVATE(p_update);
334     /** Function that completes a MAC operation
335      */
336     psa_drv_se_mac_finish_t         MBEDTLS_PRIVATE(p_finish);
337     /** Function that completes a MAC operation with a verify check
338      */
339     psa_drv_se_mac_finish_verify_t  MBEDTLS_PRIVATE(p_finish_verify);
340     /** Function that aborts a previoustly started MAC operation
341      */
342     psa_drv_se_mac_abort_t          MBEDTLS_PRIVATE(p_abort);
343     /** Function that performs a MAC operation in one call
344      */
345     psa_drv_se_mac_generate_t       MBEDTLS_PRIVATE(p_mac);
346     /** Function that performs a MAC and verify operation in one call
347      */
348     psa_drv_se_mac_verify_t         MBEDTLS_PRIVATE(p_mac_verify);
349 } psa_drv_se_mac_t;
350 /**@}*/
351 
352 /** \defgroup se_cipher Secure Element Symmetric Ciphers
353  *
354  * Encryption and Decryption using secure element keys in block modes other
355  * than ECB must be done in multiple parts, using the following flow:
356  * - `psa_drv_se_cipher_setup_t`
357  * - `psa_drv_se_cipher_set_iv_t` (optional depending upon block mode)
358  * - `psa_drv_se_cipher_update_t`
359  * - `psa_drv_se_cipher_update_t`
360  * - ...
361  * - `psa_drv_se_cipher_finish_t`
362  *
363  * If a previously started secure element Cipher operation needs to be
364  * terminated, it should be done so by the `psa_drv_se_cipher_abort_t`. Failure
365  * to do so may result in allocated resources not being freed or in other
366  * undefined behavior.
367  *
368  * In situations where a PSA Cryptographic API implementation is using a block
369  * mode not-supported by the underlying hardware or driver, it can construct
370  * the block mode itself, while calling the `psa_drv_se_cipher_ecb_t` function
371  * for the cipher operations.
372  */
373 /**@{*/
374 
375 /** \brief A function that provides the cipher setup function for a
376  * secure element driver
377  *
378  * \param[in,out] drv_context   The driver context structure.
379  * \param[in,out] op_context    A structure that will contain the
380  *                              hardware-specific cipher context.
381  * \param[in] key_slot          The slot of the key to be used for the
382  *                              operation
383  * \param[in] algorithm         The algorithm to be used in the cipher
384  *                              operation
385  * \param[in] direction         Indicates whether the operation is an encrypt
386  *                              or decrypt
387  *
388  * \retval #PSA_SUCCESS
389  * \retval #PSA_ERROR_NOT_SUPPORTED
390  */
391 typedef psa_status_t (*psa_drv_se_cipher_setup_t)(psa_drv_se_context_t *drv_context,
392                                                   void *op_context,
393                                                   psa_key_slot_number_t key_slot,
394                                                   psa_algorithm_t algorithm,
395                                                   psa_encrypt_or_decrypt_t direction);
396 
397 /** \brief A function that sets the initialization vector (if
398  * necessary) for an secure element cipher operation
399  *
400  * Rationale: The `psa_se_cipher_*` operation in the PSA Cryptographic API has
401  * two IV functions: one to set the IV, and one to generate it internally. The
402  * generate function is not necessary for the drivers to implement as the PSA
403  * Crypto implementation can do the generation using its RNG features.
404  *
405  * \param[in,out] op_context    A structure that contains the previously set up
406  *                              hardware-specific cipher context
407  * \param[in] p_iv              A buffer containing the initialization vector
408  * \param[in] iv_length         The size (in bytes) of the `p_iv` buffer
409  *
410  * \retval #PSA_SUCCESS
411  */
412 typedef psa_status_t (*psa_drv_se_cipher_set_iv_t)(void *op_context,
413                                                    const uint8_t *p_iv,
414                                                    size_t iv_length);
415 
416 /** \brief A function that continues a previously started secure element cipher
417  * operation
418  *
419  * \param[in,out] op_context        A hardware-specific structure for the
420  *                                  previously started cipher operation
421  * \param[in] p_input               A buffer containing the data to be
422  *                                  encrypted/decrypted
423  * \param[in] input_size            The size in bytes of the buffer pointed to
424  *                                  by `p_input`
425  * \param[out] p_output             The caller-allocated buffer where the
426  *                                  output will be placed
427  * \param[in] output_size           The allocated size in bytes of the
428  *                                  `p_output` buffer
429  * \param[out] p_output_length      After completion, will contain the number
430  *                                  of bytes placed in the `p_output` buffer
431  *
432  * \retval #PSA_SUCCESS
433  */
434 typedef psa_status_t (*psa_drv_se_cipher_update_t)(void *op_context,
435                                                    const uint8_t *p_input,
436                                                    size_t input_size,
437                                                    uint8_t *p_output,
438                                                    size_t output_size,
439                                                    size_t *p_output_length);
440 
441 /** \brief A function that completes a previously started secure element cipher
442  * operation
443  *
444  * \param[in,out] op_context    A hardware-specific structure for the
445  *                              previously started cipher operation
446  * \param[out] p_output         The caller-allocated buffer where the output
447  *                              will be placed
448  * \param[in] output_size       The allocated size in bytes of the `p_output`
449  *                              buffer
450  * \param[out] p_output_length  After completion, will contain the number of
451  *                              bytes placed in the `p_output` buffer
452  *
453  * \retval #PSA_SUCCESS
454  */
455 typedef psa_status_t (*psa_drv_se_cipher_finish_t)(void *op_context,
456                                                    uint8_t *p_output,
457                                                    size_t output_size,
458                                                    size_t *p_output_length);
459 
460 /** \brief A function that aborts a previously started secure element cipher
461  * operation
462  *
463  * \param[in,out] op_context    A hardware-specific structure for the
464  *                              previously started cipher operation
465  */
466 typedef psa_status_t (*psa_drv_se_cipher_abort_t)(void *op_context);
467 
468 /** \brief A function that performs the ECB block mode for secure element
469  * cipher operations
470  *
471  * Note: this function should only be used with implementations that do not
472  * provide a needed higher-level operation.
473  *
474  * \param[in,out] drv_context   The driver context structure.
475  * \param[in] key_slot          The slot of the key to be used for the operation
476  * \param[in] algorithm         The algorithm to be used in the cipher operation
477  * \param[in] direction         Indicates whether the operation is an encrypt or
478  *                              decrypt
479  * \param[in] p_input           A buffer containing the data to be
480  *                              encrypted/decrypted
481  * \param[in] input_size        The size in bytes of the buffer pointed to by
482  *                              `p_input`
483  * \param[out] p_output         The caller-allocated buffer where the output
484  *                              will be placed
485  * \param[in] output_size       The allocated size in bytes of the `p_output`
486  *                              buffer
487  *
488  * \retval #PSA_SUCCESS
489  * \retval #PSA_ERROR_NOT_SUPPORTED
490  */
491 typedef psa_status_t (*psa_drv_se_cipher_ecb_t)(psa_drv_se_context_t *drv_context,
492                                                 psa_key_slot_number_t key_slot,
493                                                 psa_algorithm_t algorithm,
494                                                 psa_encrypt_or_decrypt_t direction,
495                                                 const uint8_t *p_input,
496                                                 size_t input_size,
497                                                 uint8_t *p_output,
498                                                 size_t output_size);
499 
500 /**
501  * \brief A struct containing all of the function pointers needed to implement
502  * cipher operations using secure elements.
503  *
504  * PSA Crypto API implementations should populate instances of the table as
505  * appropriate upon startup or at build time.
506  *
507  * If one of the functions is not implemented (such as
508  * `psa_drv_se_cipher_ecb_t`), it should be set to NULL.
509  */
510 typedef struct {
511     /** The size in bytes of the hardware-specific secure element cipher
512      * context structure
513      */
514     size_t               MBEDTLS_PRIVATE(context_size);
515     /** Function that performs a cipher setup operation */
516     psa_drv_se_cipher_setup_t  MBEDTLS_PRIVATE(p_setup);
517     /** Function that sets a cipher IV (if necessary) */
518     psa_drv_se_cipher_set_iv_t MBEDTLS_PRIVATE(p_set_iv);
519     /** Function that performs a cipher update operation */
520     psa_drv_se_cipher_update_t MBEDTLS_PRIVATE(p_update);
521     /** Function that completes a cipher operation */
522     psa_drv_se_cipher_finish_t MBEDTLS_PRIVATE(p_finish);
523     /** Function that aborts a cipher operation */
524     psa_drv_se_cipher_abort_t  MBEDTLS_PRIVATE(p_abort);
525     /** Function that performs ECB mode for a cipher operation
526      * (Danger: ECB mode should not be used directly by clients of the PSA
527      * Crypto Client API)
528      */
529     psa_drv_se_cipher_ecb_t    MBEDTLS_PRIVATE(p_ecb);
530 } psa_drv_se_cipher_t;
531 
532 /**@}*/
533 
534 /** \defgroup se_asymmetric Secure Element Asymmetric Cryptography
535  *
536  * Since the amount of data that can (or should) be encrypted or signed using
537  * asymmetric keys is limited by the key size, asymmetric key operations using
538  * keys in a secure element must be done in single function calls.
539  */
540 /**@{*/
541 
542 /**
543  * \brief A function that signs a hash or short message with a private key in
544  * a secure element
545  *
546  * \param[in,out] drv_context       The driver context structure.
547  * \param[in] key_slot              Key slot of an asymmetric key pair
548  * \param[in] alg                   A signature algorithm that is compatible
549  *                                  with the type of `key`
550  * \param[in] p_hash                The hash to sign
551  * \param[in] hash_length           Size of the `p_hash` buffer in bytes
552  * \param[out] p_signature          Buffer where the signature is to be written
553  * \param[in] signature_size        Size of the `p_signature` buffer in bytes
554  * \param[out] p_signature_length   On success, the number of bytes
555  *                                  that make up the returned signature value
556  *
557  * \retval #PSA_SUCCESS
558  */
559 typedef psa_status_t (*psa_drv_se_asymmetric_sign_t)(psa_drv_se_context_t *drv_context,
560                                                      psa_key_slot_number_t key_slot,
561                                                      psa_algorithm_t alg,
562                                                      const uint8_t *p_hash,
563                                                      size_t hash_length,
564                                                      uint8_t *p_signature,
565                                                      size_t signature_size,
566                                                      size_t *p_signature_length);
567 
568 /**
569  * \brief A function that verifies the signature a hash or short message using
570  * an asymmetric public key in a secure element
571  *
572  * \param[in,out] drv_context   The driver context structure.
573  * \param[in] key_slot          Key slot of a public key or an asymmetric key
574  *                              pair
575  * \param[in] alg               A signature algorithm that is compatible with
576  *                              the type of `key`
577  * \param[in] p_hash            The hash whose signature is to be verified
578  * \param[in] hash_length       Size of the `p_hash` buffer in bytes
579  * \param[in] p_signature       Buffer containing the signature to verify
580  * \param[in] signature_length  Size of the `p_signature` buffer in bytes
581  *
582  * \retval #PSA_SUCCESS
583  *         The signature is valid.
584  */
585 typedef psa_status_t (*psa_drv_se_asymmetric_verify_t)(psa_drv_se_context_t *drv_context,
586                                                        psa_key_slot_number_t key_slot,
587                                                        psa_algorithm_t alg,
588                                                        const uint8_t *p_hash,
589                                                        size_t hash_length,
590                                                        const uint8_t *p_signature,
591                                                        size_t signature_length);
592 
593 /**
594  * \brief A function that encrypts a short message with an asymmetric public
595  * key in a secure element
596  *
597  * \param[in,out] drv_context   The driver context structure.
598  * \param[in] key_slot          Key slot of a public key or an asymmetric key
599  *                              pair
600  * \param[in] alg               An asymmetric encryption algorithm that is
601  *                              compatible with the type of `key`
602  * \param[in] p_input           The message to encrypt
603  * \param[in] input_length      Size of the `p_input` buffer in bytes
604  * \param[in] p_salt            A salt or label, if supported by the
605  *                              encryption algorithm
606  *                              If the algorithm does not support a
607  *                              salt, pass `NULL`.
608  *                              If the algorithm supports an optional
609  *                              salt and you do not want to pass a salt,
610  *                              pass `NULL`.
611  *                              For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
612  *                              supported.
613  * \param[in] salt_length       Size of the `p_salt` buffer in bytes
614  *                              If `p_salt` is `NULL`, pass 0.
615  * \param[out] p_output         Buffer where the encrypted message is to
616  *                              be written
617  * \param[in] output_size       Size of the `p_output` buffer in bytes
618  * \param[out] p_output_length  On success, the number of bytes that make up
619  *                              the returned output
620  *
621  * \retval #PSA_SUCCESS
622  */
623 typedef psa_status_t (*psa_drv_se_asymmetric_encrypt_t)(psa_drv_se_context_t *drv_context,
624                                                         psa_key_slot_number_t key_slot,
625                                                         psa_algorithm_t alg,
626                                                         const uint8_t *p_input,
627                                                         size_t input_length,
628                                                         const uint8_t *p_salt,
629                                                         size_t salt_length,
630                                                         uint8_t *p_output,
631                                                         size_t output_size,
632                                                         size_t *p_output_length);
633 
634 /**
635  * \brief A function that decrypts a short message with an asymmetric private
636  * key in a secure element.
637  *
638  * \param[in,out] drv_context   The driver context structure.
639  * \param[in] key_slot          Key slot of an asymmetric key pair
640  * \param[in] alg               An asymmetric encryption algorithm that is
641  *                              compatible with the type of `key`
642  * \param[in] p_input           The message to decrypt
643  * \param[in] input_length      Size of the `p_input` buffer in bytes
644  * \param[in] p_salt            A salt or label, if supported by the
645  *                              encryption algorithm
646  *                              If the algorithm does not support a
647  *                              salt, pass `NULL`.
648  *                              If the algorithm supports an optional
649  *                              salt and you do not want to pass a salt,
650  *                              pass `NULL`.
651  *                              For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
652  *                              supported.
653  * \param[in] salt_length       Size of the `p_salt` buffer in bytes
654  *                              If `p_salt` is `NULL`, pass 0.
655  * \param[out] p_output         Buffer where the decrypted message is to
656  *                              be written
657  * \param[in] output_size       Size of the `p_output` buffer in bytes
658  * \param[out] p_output_length  On success, the number of bytes
659  *                              that make up the returned output
660  *
661  * \retval #PSA_SUCCESS
662  */
663 typedef psa_status_t (*psa_drv_se_asymmetric_decrypt_t)(psa_drv_se_context_t *drv_context,
664                                                         psa_key_slot_number_t key_slot,
665                                                         psa_algorithm_t alg,
666                                                         const uint8_t *p_input,
667                                                         size_t input_length,
668                                                         const uint8_t *p_salt,
669                                                         size_t salt_length,
670                                                         uint8_t *p_output,
671                                                         size_t output_size,
672                                                         size_t *p_output_length);
673 
674 /**
675  * \brief A struct containing all of the function pointers needed to implement
676  * asymmetric cryptographic operations using secure elements.
677  *
678  * PSA Crypto API implementations should populate instances of the table as
679  * appropriate upon startup or at build time.
680  *
681  * If one of the functions is not implemented, it should be set to NULL.
682  */
683 typedef struct {
684     /** Function that performs an asymmetric sign operation */
685     psa_drv_se_asymmetric_sign_t    MBEDTLS_PRIVATE(p_sign);
686     /** Function that performs an asymmetric verify operation */
687     psa_drv_se_asymmetric_verify_t  MBEDTLS_PRIVATE(p_verify);
688     /** Function that performs an asymmetric encrypt operation */
689     psa_drv_se_asymmetric_encrypt_t MBEDTLS_PRIVATE(p_encrypt);
690     /** Function that performs an asymmetric decrypt operation */
691     psa_drv_se_asymmetric_decrypt_t MBEDTLS_PRIVATE(p_decrypt);
692 } psa_drv_se_asymmetric_t;
693 
694 /**@}*/
695 
696 /** \defgroup se_aead Secure Element Authenticated Encryption with Additional Data
697  * Authenticated Encryption with Additional Data (AEAD) operations with secure
698  * elements must be done in one function call. While this creates a burden for
699  * implementers as there must be sufficient space in memory for the entire
700  * message, it prevents decrypted data from being made available before the
701  * authentication operation is complete and the data is known to be authentic.
702  */
703 /**@{*/
704 
705 /** \brief A function that performs a secure element authenticated encryption
706  * operation
707  *
708  * \param[in,out] drv_context           The driver context structure.
709  * \param[in] key_slot                  Slot containing the key to use.
710  * \param[in] algorithm                 The AEAD algorithm to compute
711  *                                      (\c PSA_ALG_XXX value such that
712  *                                      #PSA_ALG_IS_AEAD(`alg`) is true)
713  * \param[in] p_nonce                   Nonce or IV to use
714  * \param[in] nonce_length              Size of the `p_nonce` buffer in bytes
715  * \param[in] p_additional_data         Additional data that will be
716  *                                      authenticated but not encrypted
717  * \param[in] additional_data_length    Size of `p_additional_data` in bytes
718  * \param[in] p_plaintext               Data that will be authenticated and
719  *                                      encrypted
720  * \param[in] plaintext_length          Size of `p_plaintext` in bytes
721  * \param[out] p_ciphertext             Output buffer for the authenticated and
722  *                                      encrypted data. The additional data is
723  *                                      not part of this output. For algorithms
724  *                                      where the encrypted data and the
725  *                                      authentication tag are defined as
726  *                                      separate outputs, the authentication
727  *                                      tag is appended to the encrypted data.
728  * \param[in] ciphertext_size           Size of the `p_ciphertext` buffer in
729  *                                      bytes
730  * \param[out] p_ciphertext_length      On success, the size of the output in
731  *                                      the `p_ciphertext` buffer
732  *
733  * \retval #PSA_SUCCESS
734  *         Success.
735  */
736 typedef psa_status_t (*psa_drv_se_aead_encrypt_t)(psa_drv_se_context_t *drv_context,
737                                                   psa_key_slot_number_t key_slot,
738                                                   psa_algorithm_t algorithm,
739                                                   const uint8_t *p_nonce,
740                                                   size_t nonce_length,
741                                                   const uint8_t *p_additional_data,
742                                                   size_t additional_data_length,
743                                                   const uint8_t *p_plaintext,
744                                                   size_t plaintext_length,
745                                                   uint8_t *p_ciphertext,
746                                                   size_t ciphertext_size,
747                                                   size_t *p_ciphertext_length);
748 
749 /** A function that peforms a secure element authenticated decryption operation
750  *
751  * \param[in,out] drv_context           The driver context structure.
752  * \param[in] key_slot                  Slot containing the key to use
753  * \param[in] algorithm                 The AEAD algorithm to compute
754  *                                      (\c PSA_ALG_XXX value such that
755  *                                      #PSA_ALG_IS_AEAD(`alg`) is true)
756  * \param[in] p_nonce                   Nonce or IV to use
757  * \param[in] nonce_length              Size of the `p_nonce` buffer in bytes
758  * \param[in] p_additional_data         Additional data that has been
759  *                                      authenticated but not encrypted
760  * \param[in] additional_data_length    Size of `p_additional_data` in bytes
761  * \param[in] p_ciphertext              Data that has been authenticated and
762  *                                      encrypted.
763  *                                      For algorithms where the encrypted data
764  *                                      and the authentication tag are defined
765  *                                      as separate inputs, the buffer must
766  *                                      contain the encrypted data followed by
767  *                                      the authentication tag.
768  * \param[in] ciphertext_length         Size of `p_ciphertext` in bytes
769  * \param[out] p_plaintext              Output buffer for the decrypted data
770  * \param[in] plaintext_size            Size of the `p_plaintext` buffer in
771  *                                      bytes
772  * \param[out] p_plaintext_length       On success, the size of the output in
773  *                                      the `p_plaintext` buffer
774  *
775  * \retval #PSA_SUCCESS
776  *         Success.
777  */
778 typedef psa_status_t (*psa_drv_se_aead_decrypt_t)(psa_drv_se_context_t *drv_context,
779                                                   psa_key_slot_number_t key_slot,
780                                                   psa_algorithm_t algorithm,
781                                                   const uint8_t *p_nonce,
782                                                   size_t nonce_length,
783                                                   const uint8_t *p_additional_data,
784                                                   size_t additional_data_length,
785                                                   const uint8_t *p_ciphertext,
786                                                   size_t ciphertext_length,
787                                                   uint8_t *p_plaintext,
788                                                   size_t plaintext_size,
789                                                   size_t *p_plaintext_length);
790 
791 /**
792  * \brief A struct containing all of the function pointers needed to implement
793  * secure element Authenticated Encryption with Additional Data operations
794  *
795  * PSA Crypto API implementations should populate instances of the table as
796  * appropriate upon startup.
797  *
798  * If one of the functions is not implemented, it should be set to NULL.
799  */
800 typedef struct {
801     /** Function that performs the AEAD encrypt operation */
802     psa_drv_se_aead_encrypt_t MBEDTLS_PRIVATE(p_encrypt);
803     /** Function that performs the AEAD decrypt operation */
804     psa_drv_se_aead_decrypt_t MBEDTLS_PRIVATE(p_decrypt);
805 } psa_drv_se_aead_t;
806 /**@}*/
807 
808 /** \defgroup se_key_management Secure Element Key Management
809  * Currently, key management is limited to importing keys in the clear,
810  * destroying keys, and exporting keys in the clear.
811  * Whether a key may be exported is determined by the key policies in place
812  * on the key slot.
813  */
814 /**@{*/
815 
816 /** An enumeration indicating how a key is created.
817  */
818 typedef enum
819 {
820     PSA_KEY_CREATION_IMPORT, /**< During psa_import_key() */
821     PSA_KEY_CREATION_GENERATE, /**< During psa_generate_key() */
822     PSA_KEY_CREATION_DERIVE, /**< During psa_key_derivation_output_key() */
823     PSA_KEY_CREATION_COPY, /**< During psa_copy_key() */
824 
825 #ifndef __DOXYGEN_ONLY__
826     /** A key is being registered with mbedtls_psa_register_se_key().
827      *
828      * The core only passes this value to
829      * psa_drv_se_key_management_t::p_validate_slot_number, not to
830      * psa_drv_se_key_management_t::p_allocate. The call to
831      * `p_validate_slot_number` is not followed by any other call to the
832      * driver: the key is considered successfully registered if the call to
833      * `p_validate_slot_number` succeeds, or if `p_validate_slot_number` is
834      * null.
835      *
836      * With this creation method, the driver must return #PSA_SUCCESS if
837      * the given attributes are compatible with the existing key in the slot,
838      * and #PSA_ERROR_DOES_NOT_EXIST if the driver can determine that there
839      * is no key with the specified slot number.
840      *
841      * This is an Mbed Crypto extension.
842      */
843     PSA_KEY_CREATION_REGISTER,
844 #endif
845 } psa_key_creation_method_t;
846 
847 /** \brief A function that allocates a slot for a key.
848  *
849  * To create a key in a specific slot in a secure element, the core
850  * first calls this function to determine a valid slot number,
851  * then calls a function to create the key material in that slot.
852  * In nominal conditions (that is, if no error occurs),
853  * the effect of a call to a key creation function in the PSA Cryptography
854  * API with a lifetime that places the key in a secure element is the
855  * following:
856  * -# The core calls psa_drv_se_key_management_t::p_allocate
857  *    (or in some implementations
858  *    psa_drv_se_key_management_t::p_validate_slot_number). The driver
859  *    selects (or validates) a suitable slot number given the key attributes
860  *    and the state of the secure element.
861  * -# The core calls a key creation function in the driver.
862  *
863  * The key creation functions in the PSA Cryptography API are:
864  * - psa_import_key(), which causes
865  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_IMPORT
866  *   then a call to psa_drv_se_key_management_t::p_import.
867  * - psa_generate_key(), which causes
868  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_GENERATE
869  *   then a call to psa_drv_se_key_management_t::p_import.
870  * - psa_key_derivation_output_key(), which causes
871  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_DERIVE
872  *   then a call to psa_drv_se_key_derivation_t::p_derive.
873  * - psa_copy_key(), which causes
874  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_COPY
875  *   then a call to psa_drv_se_key_management_t::p_export.
876  *
877  * In case of errors, other behaviors are possible.
878  * - If the PSA Cryptography subsystem dies after the first step,
879  *   for example because the device has lost power abruptly,
880  *   the second step may never happen, or may happen after a reset
881  *   and re-initialization. Alternatively, after a reset and
882  *   re-initialization, the core may call
883  *   psa_drv_se_key_management_t::p_destroy on the slot number that
884  *   was allocated (or validated) instead of calling a key creation function.
885  * - If an error occurs, the core may call
886  *   psa_drv_se_key_management_t::p_destroy on the slot number that
887  *   was allocated (or validated) instead of calling a key creation function.
888  *
889  * Errors and system resets also have an impact on the driver's persistent
890  * data. If a reset happens before the overall key creation process is
891  * completed (before or after the second step above), it is unspecified
892  * whether the persistent data after the reset is identical to what it
893  * was before or after the call to `p_allocate` (or `p_validate_slot_number`).
894  *
895  * \param[in,out] drv_context       The driver context structure.
896  * \param[in,out] persistent_data   A pointer to the persistent data
897  *                                  that allows writing.
898  * \param[in] attributes            Attributes of the key.
899  * \param method                    The way in which the key is being created.
900  * \param[out] key_slot             Slot where the key will be stored.
901  *                                  This must be a valid slot for a key of the
902  *                                  chosen type. It must be unoccupied.
903  *
904  * \retval #PSA_SUCCESS
905  *         Success.
906  *         The core will record \c *key_slot as the key slot where the key
907  *         is stored and will update the persistent data in storage.
908  * \retval #PSA_ERROR_NOT_SUPPORTED
909  * \retval #PSA_ERROR_INSUFFICIENT_STORAGE
910  */
911 typedef psa_status_t (*psa_drv_se_allocate_key_t)(
912     psa_drv_se_context_t *drv_context,
913     void *persistent_data,
914     const psa_key_attributes_t *attributes,
915     psa_key_creation_method_t method,
916     psa_key_slot_number_t *key_slot);
917 
918 /** \brief A function that determines whether a slot number is valid
919  * for a key.
920  *
921  * To create a key in a specific slot in a secure element, the core
922  * first calls this function to validate the choice of slot number,
923  * then calls a function to create the key material in that slot.
924  * See the documentation of #psa_drv_se_allocate_key_t for more details.
925  *
926  * As of the PSA Cryptography API specification version 1.0, there is no way
927  * for applications to trigger a call to this function. However some
928  * implementations offer the capability to create or declare a key in
929  * a specific slot via implementation-specific means, generally for the
930  * sake of initial device provisioning or onboarding. Such a mechanism may
931  * be added to a future version of the PSA Cryptography API specification.
932  *
933  * This function may update the driver's persistent data through
934  * \p persistent_data. The core will save the updated persistent data at the
935  * end of the key creation process. See the description of
936  * ::psa_drv_se_allocate_key_t for more information.
937  *
938  * \param[in,out] drv_context   The driver context structure.
939  * \param[in,out] persistent_data   A pointer to the persistent data
940  *                                  that allows writing.
941  * \param[in] attributes        Attributes of the key.
942  * \param method                The way in which the key is being created.
943  * \param[in] key_slot          Slot where the key is to be stored.
944  *
945  * \retval #PSA_SUCCESS
946  *         The given slot number is valid for a key with the given
947  *         attributes.
948  * \retval #PSA_ERROR_INVALID_ARGUMENT
949  *         The given slot number is not valid for a key with the
950  *         given attributes. This includes the case where the slot
951  *         number is not valid at all.
952  * \retval #PSA_ERROR_ALREADY_EXISTS
953  *         There is already a key with the specified slot number.
954  *         Drivers may choose to return this error from the key
955  *         creation function instead.
956  */
957 typedef psa_status_t (*psa_drv_se_validate_slot_number_t)(
958     psa_drv_se_context_t *drv_context,
959     void *persistent_data,
960     const psa_key_attributes_t *attributes,
961     psa_key_creation_method_t method,
962     psa_key_slot_number_t key_slot);
963 
964 /** \brief A function that imports a key into a secure element in binary format
965  *
966  * This function can support any output from psa_export_key(). Refer to the
967  * documentation of psa_export_key() for the format for each key type.
968  *
969  * \param[in,out] drv_context   The driver context structure.
970  * \param key_slot              Slot where the key will be stored.
971  *                              This must be a valid slot for a key of the
972  *                              chosen type. It must be unoccupied.
973  * \param[in] attributes        The key attributes, including the lifetime,
974  *                              the key type and the usage policy.
975  *                              Drivers should not access the key size stored
976  *                              in the attributes: it may not match the
977  *                              data passed in \p data.
978  *                              Drivers can call psa_get_key_lifetime(),
979  *                              psa_get_key_type(),
980  *                              psa_get_key_usage_flags() and
981  *                              psa_get_key_algorithm() to access this
982  *                              information.
983  * \param[in] data              Buffer containing the key data.
984  * \param[in] data_length       Size of the \p data buffer in bytes.
985  * \param[out] bits             On success, the key size in bits. The driver
986  *                              must determine this value after parsing the
987  *                              key according to the key type.
988  *                              This value is not used if the function fails.
989  *
990  * \retval #PSA_SUCCESS
991  *         Success.
992  */
993 typedef psa_status_t (*psa_drv_se_import_key_t)(
994     psa_drv_se_context_t *drv_context,
995     psa_key_slot_number_t key_slot,
996     const psa_key_attributes_t *attributes,
997     const uint8_t *data,
998     size_t data_length,
999     size_t *bits);
1000 
1001 /**
1002  * \brief A function that destroys a secure element key and restore the slot to
1003  * its default state
1004  *
1005  * This function destroys the content of the key from a secure element.
1006  * Implementations shall make a best effort to ensure that any previous content
1007  * of the slot is unrecoverable.
1008  *
1009  * This function returns the specified slot to its default state.
1010  *
1011  * \param[in,out] drv_context       The driver context structure.
1012  * \param[in,out] persistent_data   A pointer to the persistent data
1013  *                                  that allows writing.
1014  * \param key_slot                  The key slot to erase.
1015  *
1016  * \retval #PSA_SUCCESS
1017  *         The slot's content, if any, has been erased.
1018  */
1019 typedef psa_status_t (*psa_drv_se_destroy_key_t)(
1020     psa_drv_se_context_t *drv_context,
1021     void *persistent_data,
1022     psa_key_slot_number_t key_slot);
1023 
1024 /**
1025  * \brief A function that exports a secure element key in binary format
1026  *
1027  * The output of this function can be passed to psa_import_key() to
1028  * create an equivalent object.
1029  *
1030  * If a key is created with `psa_import_key()` and then exported with
1031  * this function, it is not guaranteed that the resulting data is
1032  * identical: the implementation may choose a different representation
1033  * of the same key if the format permits it.
1034  *
1035  * This function should generate output in the same format that
1036  * `psa_export_key()` does. Refer to the
1037  * documentation of `psa_export_key()` for the format for each key type.
1038  *
1039  * \param[in,out] drv_context   The driver context structure.
1040  * \param[in] key               Slot whose content is to be exported. This must
1041  *                              be an occupied key slot.
1042  * \param[out] p_data           Buffer where the key data is to be written.
1043  * \param[in] data_size         Size of the `p_data` buffer in bytes.
1044  * \param[out] p_data_length    On success, the number of bytes
1045  *                              that make up the key data.
1046  *
1047  * \retval #PSA_SUCCESS
1048  * \retval #PSA_ERROR_DOES_NOT_EXIST
1049  * \retval #PSA_ERROR_NOT_PERMITTED
1050  * \retval #PSA_ERROR_NOT_SUPPORTED
1051  * \retval #PSA_ERROR_COMMUNICATION_FAILURE
1052  * \retval #PSA_ERROR_HARDWARE_FAILURE
1053  * \retval #PSA_ERROR_CORRUPTION_DETECTED
1054  */
1055 typedef psa_status_t (*psa_drv_se_export_key_t)(psa_drv_se_context_t *drv_context,
1056                                                 psa_key_slot_number_t key,
1057                                                 uint8_t *p_data,
1058                                                 size_t data_size,
1059                                                 size_t *p_data_length);
1060 
1061 /**
1062  * \brief A function that generates a symmetric or asymmetric key on a secure
1063  * element
1064  *
1065  * If the key type \c type recorded in \p attributes
1066  * is asymmetric (#PSA_KEY_TYPE_IS_ASYMMETRIC(\c type) = 1),
1067  * the driver may export the public key at the time of generation,
1068  * in the format documented for psa_export_public_key() by writing it
1069  * to the \p pubkey buffer.
1070  * This is optional, intended for secure elements that output the
1071  * public key at generation time and that cannot export the public key
1072  * later. Drivers that do not need this feature should leave
1073  * \p *pubkey_length set to 0 and should
1074  * implement the psa_drv_key_management_t::p_export_public function.
1075  * Some implementations do not support this feature, in which case
1076  * \p pubkey is \c NULL and \p pubkey_size is 0.
1077  *
1078  * \param[in,out] drv_context   The driver context structure.
1079  * \param key_slot              Slot where the key will be stored.
1080  *                              This must be a valid slot for a key of the
1081  *                              chosen type. It must be unoccupied.
1082  * \param[in] attributes        The key attributes, including the lifetime,
1083  *                              the key type and size, and the usage policy.
1084  *                              Drivers can call psa_get_key_lifetime(),
1085  *                              psa_get_key_type(), psa_get_key_bits(),
1086  *                              psa_get_key_usage_flags() and
1087  *                              psa_get_key_algorithm() to access this
1088  *                              information.
1089  * \param[out] pubkey           A buffer where the driver can write the
1090  *                              public key, when generating an asymmetric
1091  *                              key pair.
1092  *                              This is \c NULL when generating a symmetric
1093  *                              key or if the core does not support
1094  *                              exporting the public key at generation time.
1095  * \param pubkey_size           The size of the `pubkey` buffer in bytes.
1096  *                              This is 0 when generating a symmetric
1097  *                              key or if the core does not support
1098  *                              exporting the public key at generation time.
1099  * \param[out] pubkey_length    On entry, this is always 0.
1100  *                              On success, the number of bytes written to
1101  *                              \p pubkey. If this is 0 or unchanged on return,
1102  *                              the core will not read the \p pubkey buffer,
1103  *                              and will instead call the driver's
1104  *                              psa_drv_key_management_t::p_export_public
1105  *                              function to export the public key when needed.
1106  */
1107 typedef psa_status_t (*psa_drv_se_generate_key_t)(
1108     psa_drv_se_context_t *drv_context,
1109     psa_key_slot_number_t key_slot,
1110     const psa_key_attributes_t *attributes,
1111     uint8_t *pubkey, size_t pubkey_size, size_t *pubkey_length);
1112 
1113 /**
1114  * \brief A struct containing all of the function pointers needed to for secure
1115  * element key management
1116  *
1117  * PSA Crypto API implementations should populate instances of the table as
1118  * appropriate upon startup or at build time.
1119  *
1120  * If one of the functions is not implemented, it should be set to NULL.
1121  */
1122 typedef struct {
1123     /** Function that allocates a slot for a key. */
1124     psa_drv_se_allocate_key_t   MBEDTLS_PRIVATE(p_allocate);
1125     /** Function that checks the validity of a slot for a key. */
1126     psa_drv_se_validate_slot_number_t MBEDTLS_PRIVATE(p_validate_slot_number);
1127     /** Function that performs a key import operation */
1128     psa_drv_se_import_key_t     MBEDTLS_PRIVATE(p_import);
1129     /** Function that performs a generation */
1130     psa_drv_se_generate_key_t   MBEDTLS_PRIVATE(p_generate);
1131     /** Function that performs a key destroy operation */
1132     psa_drv_se_destroy_key_t    MBEDTLS_PRIVATE(p_destroy);
1133     /** Function that performs a key export operation */
1134     psa_drv_se_export_key_t     MBEDTLS_PRIVATE(p_export);
1135     /** Function that performs a public key export operation */
1136     psa_drv_se_export_key_t     MBEDTLS_PRIVATE(p_export_public);
1137 } psa_drv_se_key_management_t;
1138 
1139 /**@}*/
1140 
1141 /** \defgroup driver_derivation Secure Element Key Derivation and Agreement
1142  * Key derivation is the process of generating new key material using an
1143  * existing key and additional parameters, iterating through a basic
1144  * cryptographic function, such as a hash.
1145  * Key agreement is a part of cryptographic protocols that allows two parties
1146  * to agree on the same key value, but starting from different original key
1147  * material.
1148  * The flows are similar, and the PSA Crypto Driver Model uses the same functions
1149  * for both of the flows.
1150  *
1151  * There are two different final functions for the flows,
1152  * `psa_drv_se_key_derivation_derive` and `psa_drv_se_key_derivation_export`.
1153  * `psa_drv_se_key_derivation_derive` is used when the key material should be
1154  * placed in a slot on the hardware and not exposed to the caller.
1155  * `psa_drv_se_key_derivation_export` is used when the key material should be
1156  * returned to the PSA Cryptographic API implementation.
1157  *
1158  * Different key derivation algorithms require a different number of inputs.
1159  * Instead of having an API that takes as input variable length arrays, which
1160  * can be problemmatic to manage on embedded platforms, the inputs are passed
1161  * to the driver via a function, `psa_drv_se_key_derivation_collateral`, that
1162  * is called multiple times with different `collateral_id`s. Thus, for a key
1163  * derivation algorithm that required 3 parameter inputs, the flow would look
1164  * something like:
1165  * ~~~~~~~~~~~~~{.c}
1166  * psa_drv_se_key_derivation_setup(kdf_algorithm, source_key, dest_key_size_bytes);
1167  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_0,
1168  *                                      p_collateral_0,
1169  *                                      collateral_0_size);
1170  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_1,
1171  *                                      p_collateral_1,
1172  *                                      collateral_1_size);
1173  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_2,
1174  *                                      p_collateral_2,
1175  *                                      collateral_2_size);
1176  * psa_drv_se_key_derivation_derive();
1177  * ~~~~~~~~~~~~~
1178  *
1179  * key agreement example:
1180  * ~~~~~~~~~~~~~{.c}
1181  * psa_drv_se_key_derivation_setup(alg, source_key. dest_key_size_bytes);
1182  * psa_drv_se_key_derivation_collateral(DHE_PUBKEY, p_pubkey, pubkey_size);
1183  * psa_drv_se_key_derivation_export(p_session_key,
1184  *                                  session_key_size,
1185  *                                  &session_key_length);
1186  * ~~~~~~~~~~~~~
1187  */
1188 /**@{*/
1189 
1190 /** \brief A function that Sets up a secure element key derivation operation by
1191  * specifying the algorithm and the source key sot
1192  *
1193  * \param[in,out] drv_context   The driver context structure.
1194  * \param[in,out] op_context    A hardware-specific structure containing any
1195  *                              context information for the implementation
1196  * \param[in] kdf_alg           The algorithm to be used for the key derivation
1197  * \param[in] source_key        The key to be used as the source material for
1198  *                              the key derivation
1199  *
1200  * \retval #PSA_SUCCESS
1201  */
1202 typedef psa_status_t (*psa_drv_se_key_derivation_setup_t)(psa_drv_se_context_t *drv_context,
1203                                                           void *op_context,
1204                                                           psa_algorithm_t kdf_alg,
1205                                                           psa_key_slot_number_t source_key);
1206 
1207 /** \brief A function that provides collateral (parameters) needed for a secure
1208  * element key derivation or key agreement operation
1209  *
1210  * Since many key derivation algorithms require multiple parameters, it is
1211  * expected that this function may be called multiple times for the same
1212  * operation, each with a different algorithm-specific `collateral_id`
1213  *
1214  * \param[in,out] op_context    A hardware-specific structure containing any
1215  *                              context information for the implementation
1216  * \param[in] collateral_id     An ID for the collateral being provided
1217  * \param[in] p_collateral      A buffer containing the collateral data
1218  * \param[in] collateral_size   The size in bytes of the collateral
1219  *
1220  * \retval #PSA_SUCCESS
1221  */
1222 typedef psa_status_t (*psa_drv_se_key_derivation_collateral_t)(void *op_context,
1223                                                                uint32_t collateral_id,
1224                                                                const uint8_t *p_collateral,
1225                                                                size_t collateral_size);
1226 
1227 /** \brief A function that performs the final secure element key derivation
1228  * step and place the generated key material in a slot
1229  *
1230  * \param[in,out] op_context    A hardware-specific structure containing any
1231  *                              context information for the implementation
1232  * \param[in] dest_key          The slot where the generated key material
1233  *                              should be placed
1234  *
1235  * \retval #PSA_SUCCESS
1236  */
1237 typedef psa_status_t (*psa_drv_se_key_derivation_derive_t)(void *op_context,
1238                                                           psa_key_slot_number_t dest_key);
1239 
1240 /** \brief A function that performs the final step of a secure element key
1241  * agreement and place the generated key material in a buffer
1242  *
1243  * \param[out] p_output         Buffer in which to place the generated key
1244  *                              material
1245  * \param[in] output_size       The size in bytes of `p_output`
1246  * \param[out] p_output_length  Upon success, contains the number of bytes of
1247  *                              key material placed in `p_output`
1248  *
1249  * \retval #PSA_SUCCESS
1250  */
1251 typedef psa_status_t (*psa_drv_se_key_derivation_export_t)(void *op_context,
1252                                                            uint8_t *p_output,
1253                                                            size_t output_size,
1254                                                            size_t *p_output_length);
1255 
1256 /**
1257  * \brief A struct containing all of the function pointers needed to for secure
1258  * element key derivation and agreement
1259  *
1260  * PSA Crypto API implementations should populate instances of the table as
1261  * appropriate upon startup.
1262  *
1263  * If one of the functions is not implemented, it should be set to NULL.
1264  */
1265 typedef struct {
1266     /** The driver-specific size of the key derivation context */
1267     size_t                           MBEDTLS_PRIVATE(context_size);
1268     /** Function that performs a key derivation setup */
1269     psa_drv_se_key_derivation_setup_t      MBEDTLS_PRIVATE(p_setup);
1270     /** Function that sets key derivation collateral */
1271     psa_drv_se_key_derivation_collateral_t MBEDTLS_PRIVATE(p_collateral);
1272     /** Function that performs a final key derivation step */
1273     psa_drv_se_key_derivation_derive_t     MBEDTLS_PRIVATE(p_derive);
1274     /** Function that perforsm a final key derivation or agreement and
1275      * exports the key */
1276     psa_drv_se_key_derivation_export_t     MBEDTLS_PRIVATE(p_export);
1277 } psa_drv_se_key_derivation_t;
1278 
1279 /**@}*/
1280 
1281 /** \defgroup se_registration Secure element driver registration
1282  */
1283 /**@{*/
1284 
1285 /** A structure containing pointers to all the entry points of a
1286  * secure element driver.
1287  *
1288  * Future versions of this specification may add extra substructures at
1289  * the end of this structure.
1290  */
1291 typedef struct {
1292     /** The version of the driver HAL that this driver implements.
1293      * This is a protection against loading driver binaries built against
1294      * a different version of this specification.
1295      * Use #PSA_DRV_SE_HAL_VERSION.
1296      */
1297     uint32_t MBEDTLS_PRIVATE(hal_version);
1298 
1299     /** The size of the driver's persistent data in bytes.
1300      *
1301      * This can be 0 if the driver does not need persistent data.
1302      *
1303      * See the documentation of psa_drv_se_context_t::persistent_data
1304      * for more information about why and how a driver can use
1305      * persistent data.
1306      */
1307     size_t MBEDTLS_PRIVATE(persistent_data_size);
1308 
1309     /** The driver initialization function.
1310      *
1311      * This function is called once during the initialization of the
1312      * PSA Cryptography subsystem, before any other function of the
1313      * driver is called. If this function returns a failure status,
1314      * the driver will be unusable, at least until the next system reset.
1315      *
1316      * If this field is \c NULL, it is equivalent to a function that does
1317      * nothing and returns #PSA_SUCCESS.
1318      */
1319     psa_drv_se_init_t MBEDTLS_PRIVATE(p_init);
1320 
1321     const psa_drv_se_key_management_t *MBEDTLS_PRIVATE(key_management);
1322     const psa_drv_se_mac_t *MBEDTLS_PRIVATE(mac);
1323     const psa_drv_se_cipher_t *MBEDTLS_PRIVATE(cipher);
1324     const psa_drv_se_aead_t *MBEDTLS_PRIVATE(aead);
1325     const psa_drv_se_asymmetric_t *MBEDTLS_PRIVATE(asymmetric);
1326     const psa_drv_se_key_derivation_t *MBEDTLS_PRIVATE(derivation);
1327 } psa_drv_se_t;
1328 
1329 /** The current version of the secure element driver HAL.
1330  */
1331 /* 0.0.0 patchlevel 5 */
1332 #define PSA_DRV_SE_HAL_VERSION 0x00000005
1333 
1334 /** Register an external cryptoprocessor (secure element) driver.
1335  *
1336  * This function is only intended to be used by driver code, not by
1337  * application code. In implementations with separation between the
1338  * PSA cryptography module and applications, this function should
1339  * only be available to callers that run in the same memory space as
1340  * the cryptography module, and should not be exposed to applications
1341  * running in a different memory space.
1342  *
1343  * This function may be called before psa_crypto_init(). It is
1344  * implementation-defined whether this function may be called
1345  * after psa_crypto_init().
1346  *
1347  * \note Implementations store metadata about keys including the lifetime
1348  *       value, which contains the driver's location indicator. Therefore,
1349  *       from one instantiation of the PSA Cryptography
1350  *       library to the next one, if there is a key in storage with a certain
1351  *       lifetime value, you must always register the same driver (or an
1352  *       updated version that communicates with the same secure element)
1353  *       with the same location value.
1354  *
1355  * \param location      The location value through which this driver will
1356  *                      be exposed to applications.
1357  *                      This driver will be used for all keys such that
1358  *                      `location == #PSA_KEY_LIFETIME_GET_LOCATION( lifetime )`.
1359  *                      The value #PSA_KEY_LOCATION_LOCAL_STORAGE is reserved
1360  *                      and may not be used for drivers. Implementations
1361  *                      may reserve other values.
1362  * \param[in] methods   The method table of the driver. This structure must
1363  *                      remain valid for as long as the cryptography
1364  *                      module keeps running. It is typically a global
1365  *                      constant.
1366  *
1367  * \return #PSA_SUCCESS
1368  *         The driver was successfully registered. Applications can now
1369  *         use \p location to access keys through the methods passed to
1370  *         this function.
1371  * \return #PSA_ERROR_BAD_STATE
1372  *         This function was called after the initialization of the
1373  *         cryptography module, and this implementation does not support
1374  *         driver registration at this stage.
1375  * \return #PSA_ERROR_ALREADY_EXISTS
1376  *         There is already a registered driver for this value of \p location.
1377  * \return #PSA_ERROR_INVALID_ARGUMENT
1378  *         \p location is a reserved value.
1379  * \return #PSA_ERROR_NOT_SUPPORTED
1380  *         `methods->hal_version` is not supported by this implementation.
1381  * \return #PSA_ERROR_INSUFFICIENT_MEMORY
1382  * \return #PSA_ERROR_NOT_PERMITTED
1383  * \return #PSA_ERROR_STORAGE_FAILURE
1384  * \return #PSA_ERROR_DATA_CORRUPT
1385  */
1386 psa_status_t psa_register_se_driver(
1387     psa_key_location_t location,
1388     const psa_drv_se_t *methods);
1389 
1390 /**@}*/
1391 
1392 #ifdef __cplusplus
1393 }
1394 #endif
1395 
1396 #endif /* PSA_CRYPTO_SE_DRIVER_H */
1397