1 /*
2  * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <common/debug.h>
14 #include <context.h>
15 #include <drivers/delay_timer.h>
16 #include <lib/el3_runtime/context_mgmt.h>
17 #include <lib/utils.h>
18 #include <plat/common/platform.h>
19 
20 #include "psci_private.h"
21 
22 /*
23  * SPD power management operations, expected to be supplied by the registered
24  * SPD on successful SP initialization
25  */
26 const spd_pm_ops_t *psci_spd_pm;
27 
28 /*
29  * PSCI requested local power state map. This array is used to store the local
30  * power states requested by a CPU for power levels from level 1 to
31  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
32  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
33  * CPU are the same.
34  *
35  * During state coordination, the platform is passed an array containing the
36  * local states requested for a particular non cpu power domain by each cpu
37  * within the domain.
38  *
39  * TODO: Dense packing of the requested states will cause cache thrashing
40  * when multiple power domains write to it. If we allocate the requested
41  * states at each power level in a cache-line aligned per-domain memory,
42  * the cache thrashing can be avoided.
43  */
44 static plat_local_state_t
45 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
46 
47 unsigned int psci_plat_core_count;
48 
49 /*******************************************************************************
50  * Arrays that hold the platform's power domain tree information for state
51  * management of power domains.
52  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
53  * which is an ancestor of a CPU power domain.
54  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
55  ******************************************************************************/
56 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
57 #if USE_COHERENT_MEM
58 __section("tzfw_coherent_mem")
59 #endif
60 ;
61 
62 /* Lock for PSCI state coordination */
63 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
64 
65 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
66 
67 /*******************************************************************************
68  * Pointer to functions exported by the platform to complete power mgmt. ops
69  ******************************************************************************/
70 const plat_psci_ops_t *psci_plat_pm_ops;
71 
72 /******************************************************************************
73  * Check that the maximum power level supported by the platform makes sense
74  *****************************************************************************/
75 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
76 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
77 	assert_platform_max_pwrlvl_check);
78 
79 /*
80  * The plat_local_state used by the platform is one of these types: RUN,
81  * RETENTION and OFF. The platform can define further sub-states for each type
82  * apart from RUN. This categorization is done to verify the sanity of the
83  * psci_power_state passed by the platform and to print debug information. The
84  * categorization is done on the basis of the following conditions:
85  *
86  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
87  *
88  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
89  *    STATE_TYPE_RETN.
90  *
91  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
92  *    STATE_TYPE_OFF.
93  */
94 typedef enum plat_local_state_type {
95 	STATE_TYPE_RUN = 0,
96 	STATE_TYPE_RETN,
97 	STATE_TYPE_OFF
98 } plat_local_state_type_t;
99 
100 /* Function used to categorize plat_local_state. */
find_local_state_type(plat_local_state_t state)101 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
102 {
103 	if (state != 0U) {
104 		if (state > PLAT_MAX_RET_STATE) {
105 			return STATE_TYPE_OFF;
106 		} else {
107 			return STATE_TYPE_RETN;
108 		}
109 	} else {
110 		return STATE_TYPE_RUN;
111 	}
112 }
113 
114 /******************************************************************************
115  * Check that the maximum retention level supported by the platform is less
116  * than the maximum off level.
117  *****************************************************************************/
118 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
119 		assert_platform_max_off_and_retn_state_check);
120 
121 /******************************************************************************
122  * This function ensures that the power state parameter in a CPU_SUSPEND request
123  * is valid. If so, it returns the requested states for each power level.
124  *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)125 int psci_validate_power_state(unsigned int power_state,
126 			      psci_power_state_t *state_info)
127 {
128 	/* Check SBZ bits in power state are zero */
129 	if (psci_check_power_state(power_state) != 0U)
130 		return PSCI_E_INVALID_PARAMS;
131 
132 	assert(psci_plat_pm_ops->validate_power_state != NULL);
133 
134 	/* Validate the power_state using platform pm_ops */
135 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
136 }
137 
138 /******************************************************************************
139  * This function retrieves the `psci_power_state_t` for system suspend from
140  * the platform.
141  *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)142 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
143 {
144 	/*
145 	 * Assert that the required pm_ops hook is implemented to ensure that
146 	 * the capability detected during psci_setup() is valid.
147 	 */
148 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
149 
150 	/*
151 	 * Query the platform for the power_state required for system suspend
152 	 */
153 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
154 }
155 
156 /*******************************************************************************
157  * This function verifies that the all the other cores in the system have been
158  * turned OFF and the current CPU is the last running CPU in the system.
159  * Returns true, if the current CPU is the last ON CPU or false otherwise.
160  ******************************************************************************/
psci_is_last_on_cpu(void)161 bool psci_is_last_on_cpu(void)
162 {
163 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
164 
165 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
166 		if (cpu_idx == my_idx) {
167 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
168 			continue;
169 		}
170 
171 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
172 			VERBOSE("core=%u other than current core=%u %s\n",
173 				cpu_idx, my_idx, "running in the system");
174 			return false;
175 		}
176 	}
177 
178 	return true;
179 }
180 
181 /*******************************************************************************
182  * Routine to return the maximum power level to traverse to after a cpu has
183  * been physically powered up. It is expected to be called immediately after
184  * reset from assembler code.
185  ******************************************************************************/
get_power_on_target_pwrlvl(void)186 static unsigned int get_power_on_target_pwrlvl(void)
187 {
188 	unsigned int pwrlvl;
189 
190 	/*
191 	 * Assume that this cpu was suspended and retrieve its target power
192 	 * level. If it is invalid then it could only have been turned off
193 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
194 	 * cpu can be turned off to.
195 	 */
196 	pwrlvl = psci_get_suspend_pwrlvl();
197 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
198 		pwrlvl = PLAT_MAX_PWR_LVL;
199 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
200 	return pwrlvl;
201 }
202 
203 /******************************************************************************
204  * Helper function to update the requested local power state array. This array
205  * does not store the requested state for the CPU power level. Hence an
206  * assertion is added to prevent us from accessing the CPU power level.
207  *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)208 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
209 					 unsigned int cpu_idx,
210 					 plat_local_state_t req_pwr_state)
211 {
212 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
213 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
214 			(cpu_idx < psci_plat_core_count)) {
215 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
216 	}
217 }
218 
219 /******************************************************************************
220  * This function initializes the psci_req_local_pwr_states.
221  *****************************************************************************/
psci_init_req_local_pwr_states(void)222 void __init psci_init_req_local_pwr_states(void)
223 {
224 	/* Initialize the requested state of all non CPU power domains as OFF */
225 	unsigned int pwrlvl;
226 	unsigned int core;
227 
228 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
229 		for (core = 0; core < psci_plat_core_count; core++) {
230 			psci_req_local_pwr_states[pwrlvl][core] =
231 				PLAT_MAX_OFF_STATE;
232 		}
233 	}
234 }
235 
236 /******************************************************************************
237  * Helper function to return a reference to an array containing the local power
238  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
239  * array will be the number of cpu power domains of which this power domain is
240  * an ancestor. These requested states will be used to determine a suitable
241  * target state for this power domain during psci state coordination. An
242  * assertion is added to prevent us from accessing the CPU power level.
243  *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)244 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
245 							 unsigned int cpu_idx)
246 {
247 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
248 
249 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
250 			(cpu_idx < psci_plat_core_count)) {
251 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
252 	} else
253 		return NULL;
254 }
255 
256 /*
257  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
258  * memory.
259  *
260  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
261  * it's accessed by both cached and non-cached participants. To serve the common
262  * minimum, perform a cache flush before read and after write so that non-cached
263  * participants operate on latest data in main memory.
264  *
265  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
266  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
267  * In both cases, no cache operations are required.
268  */
269 
270 /*
271  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
272  * after any required cache maintenance operation.
273  */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)274 static plat_local_state_t get_non_cpu_pd_node_local_state(
275 		unsigned int parent_idx)
276 {
277 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
278 	flush_dcache_range(
279 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
280 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
281 #endif
282 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
283 }
284 
285 /*
286  * Update local state of non-CPU power domain node from a cached CPU; perform
287  * any required cache maintenance operation afterwards.
288  */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)289 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
290 		plat_local_state_t state)
291 {
292 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
293 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
294 	flush_dcache_range(
295 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
296 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
297 #endif
298 }
299 
300 /******************************************************************************
301  * Helper function to return the current local power state of each power domain
302  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
303  * function will be called after a cpu is powered on to find the local state
304  * each power domain has emerged from.
305  *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)306 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
307 				      psci_power_state_t *target_state)
308 {
309 	unsigned int parent_idx, lvl;
310 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
311 
312 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
313 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
314 
315 	/* Copy the local power state from node to state_info */
316 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
317 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
318 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
319 	}
320 
321 	/* Set the the higher levels to RUN */
322 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
323 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
324 }
325 
326 /******************************************************************************
327  * Helper function to set the target local power state that each power domain
328  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
329  * enter. This function will be called after coordination of requested power
330  * states has been done for each power level.
331  *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)332 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
333 					const psci_power_state_t *target_state)
334 {
335 	unsigned int parent_idx, lvl;
336 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
337 
338 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
339 
340 	/*
341 	 * Need to flush as local_state might be accessed with Data Cache
342 	 * disabled during power on
343 	 */
344 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
345 
346 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
347 
348 	/* Copy the local_state from state_info */
349 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
350 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
351 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
352 	}
353 }
354 
355 
356 /*******************************************************************************
357  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
358  ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int * node_index)359 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
360 				      unsigned int end_lvl,
361 				      unsigned int *node_index)
362 {
363 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
364 	unsigned int i;
365 	unsigned int *node = node_index;
366 
367 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
368 		*node = parent_node;
369 		node++;
370 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
371 	}
372 }
373 
374 /******************************************************************************
375  * This function is invoked post CPU power up and initialization. It sets the
376  * affinity info state, target power state and requested power state for the
377  * current CPU and all its ancestor power domains to RUN.
378  *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)379 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
380 {
381 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
382 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
383 
384 	/* Reset the local_state to RUN for the non cpu power domains. */
385 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
386 		set_non_cpu_pd_node_local_state(parent_idx,
387 				PSCI_LOCAL_STATE_RUN);
388 		psci_set_req_local_pwr_state(lvl,
389 					     cpu_idx,
390 					     PSCI_LOCAL_STATE_RUN);
391 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
392 	}
393 
394 	/* Set the affinity info state to ON */
395 	psci_set_aff_info_state(AFF_STATE_ON);
396 
397 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
398 	psci_flush_cpu_data(psci_svc_cpu_data);
399 }
400 
401 /******************************************************************************
402  * This function is passed the local power states requested for each power
403  * domain (state_info) between the current CPU domain and its ancestors until
404  * the target power level (end_pwrlvl). It updates the array of requested power
405  * states with this information.
406  *
407  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
408  * retrieves the states requested by all the cpus of which the power domain at
409  * that level is an ancestor. It passes this information to the platform to
410  * coordinate and return the target power state. If the target state for a level
411  * is RUN then subsequent levels are not considered. At the CPU level, state
412  * coordination is not required. Hence, the requested and the target states are
413  * the same.
414  *
415  * The 'state_info' is updated with the target state for each level between the
416  * CPU and the 'end_pwrlvl' and returned to the caller.
417  *
418  * This function will only be invoked with data cache enabled and while
419  * powering down a core.
420  *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)421 void psci_do_state_coordination(unsigned int end_pwrlvl,
422 				psci_power_state_t *state_info)
423 {
424 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
425 	unsigned int start_idx;
426 	unsigned int ncpus;
427 	plat_local_state_t target_state, *req_states;
428 
429 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
430 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
431 
432 	/* For level 0, the requested state will be equivalent
433 	   to target state */
434 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
435 
436 		/* First update the requested power state */
437 		psci_set_req_local_pwr_state(lvl, cpu_idx,
438 					     state_info->pwr_domain_state[lvl]);
439 
440 		/* Get the requested power states for this power level */
441 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
442 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
443 
444 		/*
445 		 * Let the platform coordinate amongst the requested states at
446 		 * this power level and return the target local power state.
447 		 */
448 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
449 		target_state = plat_get_target_pwr_state(lvl,
450 							 req_states,
451 							 ncpus);
452 
453 		state_info->pwr_domain_state[lvl] = target_state;
454 
455 		/* Break early if the negotiated target power state is RUN */
456 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
457 			break;
458 
459 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
460 	}
461 
462 	/*
463 	 * This is for cases when we break out of the above loop early because
464 	 * the target power state is RUN at a power level < end_pwlvl.
465 	 * We update the requested power state from state_info and then
466 	 * set the target state as RUN.
467 	 */
468 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
469 		psci_set_req_local_pwr_state(lvl, cpu_idx,
470 					     state_info->pwr_domain_state[lvl]);
471 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
472 
473 	}
474 
475 	/* Update the target state in the power domain nodes */
476 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
477 }
478 
479 /******************************************************************************
480  * This function validates a suspend request by making sure that if a standby
481  * state is requested then no power level is turned off and the highest power
482  * level is placed in a standby/retention state.
483  *
484  * It also ensures that the state level X will enter is not shallower than the
485  * state level X + 1 will enter.
486  *
487  * This validation will be enabled only for DEBUG builds as the platform is
488  * expected to perform these validations as well.
489  *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)490 int psci_validate_suspend_req(const psci_power_state_t *state_info,
491 			      unsigned int is_power_down_state)
492 {
493 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
494 	plat_local_state_t state;
495 	plat_local_state_type_t req_state_type, deepest_state_type;
496 	int i;
497 
498 	/* Find the target suspend power level */
499 	target_lvl = psci_find_target_suspend_lvl(state_info);
500 	if (target_lvl == PSCI_INVALID_PWR_LVL)
501 		return PSCI_E_INVALID_PARAMS;
502 
503 	/* All power domain levels are in a RUN state to begin with */
504 	deepest_state_type = STATE_TYPE_RUN;
505 
506 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
507 		state = state_info->pwr_domain_state[i];
508 		req_state_type = find_local_state_type(state);
509 
510 		/*
511 		 * While traversing from the highest power level to the lowest,
512 		 * the state requested for lower levels has to be the same or
513 		 * deeper i.e. equal to or greater than the state at the higher
514 		 * levels. If this condition is true, then the requested state
515 		 * becomes the deepest state encountered so far.
516 		 */
517 		if (req_state_type < deepest_state_type)
518 			return PSCI_E_INVALID_PARAMS;
519 		deepest_state_type = req_state_type;
520 	}
521 
522 	/* Find the highest off power level */
523 	max_off_lvl = psci_find_max_off_lvl(state_info);
524 
525 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
526 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
527 	if (target_lvl != max_off_lvl)
528 		max_retn_lvl = target_lvl;
529 
530 	/*
531 	 * If this is not a request for a power down state then max off level
532 	 * has to be invalid and max retention level has to be a valid power
533 	 * level.
534 	 */
535 	if ((is_power_down_state == 0U) &&
536 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
537 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
538 		return PSCI_E_INVALID_PARAMS;
539 
540 	return PSCI_E_SUCCESS;
541 }
542 
543 /******************************************************************************
544  * This function finds the highest power level which will be powered down
545  * amongst all the power levels specified in the 'state_info' structure
546  *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)547 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
548 {
549 	int i;
550 
551 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
552 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
553 			return (unsigned int) i;
554 	}
555 
556 	return PSCI_INVALID_PWR_LVL;
557 }
558 
559 /******************************************************************************
560  * This functions finds the level of the highest power domain which will be
561  * placed in a low power state during a suspend operation.
562  *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)563 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
564 {
565 	int i;
566 
567 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
568 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
569 			return (unsigned int) i;
570 	}
571 
572 	return PSCI_INVALID_PWR_LVL;
573 }
574 
575 /*******************************************************************************
576  * This function is passed the highest level in the topology tree that the
577  * operation should be applied to and a list of node indexes. It picks up locks
578  * from the node index list in order of increasing power domain level in the
579  * range specified.
580  ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)581 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
582 				   const unsigned int *parent_nodes)
583 {
584 	unsigned int parent_idx;
585 	unsigned int level;
586 
587 	/* No locking required for level 0. Hence start locking from level 1 */
588 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
589 		parent_idx = parent_nodes[level - 1U];
590 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
591 	}
592 }
593 
594 /*******************************************************************************
595  * This function is passed the highest level in the topology tree that the
596  * operation should be applied to and a list of node indexes. It releases the
597  * locks in order of decreasing power domain level in the range specified.
598  ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)599 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
600 				   const unsigned int *parent_nodes)
601 {
602 	unsigned int parent_idx;
603 	unsigned int level;
604 
605 	/* Unlock top down. No unlocking required for level 0. */
606 	for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
607 		parent_idx = parent_nodes[level - 1U];
608 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
609 	}
610 }
611 
612 /*******************************************************************************
613  * Simple routine to determine whether a mpidr is valid or not.
614  ******************************************************************************/
psci_validate_mpidr(u_register_t mpidr)615 int psci_validate_mpidr(u_register_t mpidr)
616 {
617 	if (plat_core_pos_by_mpidr(mpidr) < 0)
618 		return PSCI_E_INVALID_PARAMS;
619 
620 	return PSCI_E_SUCCESS;
621 }
622 
623 /*******************************************************************************
624  * This function determines the full entrypoint information for the requested
625  * PSCI entrypoint on power on/resume and returns it.
626  ******************************************************************************/
627 #ifdef __aarch64__
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)628 static int psci_get_ns_ep_info(entry_point_info_t *ep,
629 			       uintptr_t entrypoint,
630 			       u_register_t context_id)
631 {
632 	u_register_t ep_attr, sctlr;
633 	unsigned int daif, ee, mode;
634 	u_register_t ns_scr_el3 = read_scr_el3();
635 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
636 
637 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
638 		read_sctlr_el2() : ns_sctlr_el1;
639 	ee = 0;
640 
641 	ep_attr = NON_SECURE | EP_ST_DISABLE;
642 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
643 		ep_attr |= EP_EE_BIG;
644 		ee = 1;
645 	}
646 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
647 
648 	ep->pc = entrypoint;
649 	zeromem(&ep->args, sizeof(ep->args));
650 	ep->args.arg0 = context_id;
651 
652 	/*
653 	 * Figure out whether the cpu enters the non-secure address space
654 	 * in aarch32 or aarch64
655 	 */
656 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
657 
658 		/*
659 		 * Check whether a Thumb entry point has been provided for an
660 		 * aarch64 EL
661 		 */
662 		if ((entrypoint & 0x1UL) != 0UL)
663 			return PSCI_E_INVALID_ADDRESS;
664 
665 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
666 
667 		ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
668 				   DISABLE_ALL_EXCEPTIONS);
669 	} else {
670 
671 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
672 			MODE32_hyp : MODE32_svc;
673 
674 		/*
675 		 * TODO: Choose async. exception bits if HYP mode is not
676 		 * implemented according to the values of SCR.{AW, FW} bits
677 		 */
678 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
679 
680 		ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
681 				       daif);
682 	}
683 
684 	return PSCI_E_SUCCESS;
685 }
686 #else /* !__aarch64__ */
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)687 static int psci_get_ns_ep_info(entry_point_info_t *ep,
688 			       uintptr_t entrypoint,
689 			       u_register_t context_id)
690 {
691 	u_register_t ep_attr;
692 	unsigned int aif, ee, mode;
693 	u_register_t scr = read_scr();
694 	u_register_t ns_sctlr, sctlr;
695 
696 	/* Switch to non secure state */
697 	write_scr(scr | SCR_NS_BIT);
698 	isb();
699 	ns_sctlr = read_sctlr();
700 
701 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
702 
703 	/* Return to original state */
704 	write_scr(scr);
705 	isb();
706 	ee = 0;
707 
708 	ep_attr = NON_SECURE | EP_ST_DISABLE;
709 	if (sctlr & SCTLR_EE_BIT) {
710 		ep_attr |= EP_EE_BIG;
711 		ee = 1;
712 	}
713 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
714 
715 	ep->pc = entrypoint;
716 	zeromem(&ep->args, sizeof(ep->args));
717 	ep->args.arg0 = context_id;
718 
719 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
720 
721 	/*
722 	 * TODO: Choose async. exception bits if HYP mode is not
723 	 * implemented according to the values of SCR.{AW, FW} bits
724 	 */
725 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
726 
727 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
728 
729 	return PSCI_E_SUCCESS;
730 }
731 
732 #endif /* __aarch64__ */
733 
734 /*******************************************************************************
735  * This function validates the entrypoint with the platform layer if the
736  * appropriate pm_ops hook is exported by the platform and returns the
737  * 'entry_point_info'.
738  ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)739 int psci_validate_entry_point(entry_point_info_t *ep,
740 			      uintptr_t entrypoint,
741 			      u_register_t context_id)
742 {
743 	int rc;
744 
745 	/* Validate the entrypoint using platform psci_ops */
746 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
747 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
748 		if (rc != PSCI_E_SUCCESS)
749 			return PSCI_E_INVALID_ADDRESS;
750 	}
751 
752 	/*
753 	 * Verify and derive the re-entry information for
754 	 * the non-secure world from the non-secure state from
755 	 * where this call originated.
756 	 */
757 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
758 	return rc;
759 }
760 
761 /*******************************************************************************
762  * Generic handler which is called when a cpu is physically powered on. It
763  * traverses the node information and finds the highest power level powered
764  * off and performs generic, architectural, platform setup and state management
765  * to power on that power level and power levels below it.
766  * e.g. For a cpu that's been powered on, it will call the platform specific
767  * code to enable the gic cpu interface and for a cluster it will enable
768  * coherency at the interconnect level in addition to gic cpu interface.
769  ******************************************************************************/
psci_warmboot_entrypoint(void)770 void psci_warmboot_entrypoint(void)
771 {
772 	unsigned int end_pwrlvl;
773 	unsigned int cpu_idx = plat_my_core_pos();
774 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
775 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
776 
777 	/*
778 	 * Verify that we have been explicitly turned ON or resumed from
779 	 * suspend.
780 	 */
781 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
782 		ERROR("Unexpected affinity info state.\n");
783 		panic();
784 	}
785 
786 	/*
787 	 * Get the maximum power domain level to traverse to after this cpu
788 	 * has been physically powered up.
789 	 */
790 	end_pwrlvl = get_power_on_target_pwrlvl();
791 
792 	/* Get the parent nodes */
793 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
794 
795 	/*
796 	 * This function acquires the lock corresponding to each power level so
797 	 * that by the time all locks are taken, the system topology is snapshot
798 	 * and state management can be done safely.
799 	 */
800 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
801 
802 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
803 
804 #if ENABLE_PSCI_STAT
805 	plat_psci_stat_accounting_stop(&state_info);
806 #endif
807 
808 	/*
809 	 * This CPU could be resuming from suspend or it could have just been
810 	 * turned on. To distinguish between these 2 cases, we examine the
811 	 * affinity state of the CPU:
812 	 *  - If the affinity state is ON_PENDING then it has just been
813 	 *    turned on.
814 	 *  - Else it is resuming from suspend.
815 	 *
816 	 * Depending on the type of warm reset identified, choose the right set
817 	 * of power management handler and perform the generic, architecture
818 	 * and platform specific handling.
819 	 */
820 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
821 		psci_cpu_on_finish(cpu_idx, &state_info);
822 	else
823 		psci_cpu_suspend_finish(cpu_idx, &state_info);
824 
825 	/*
826 	 * Set the requested and target state of this CPU and all the higher
827 	 * power domains which are ancestors of this CPU to run.
828 	 */
829 	psci_set_pwr_domains_to_run(end_pwrlvl);
830 
831 #if ENABLE_PSCI_STAT
832 	/*
833 	 * Update PSCI stats.
834 	 * Caches are off when writing stats data on the power down path.
835 	 * Since caches are now enabled, it's necessary to do cache
836 	 * maintenance before reading that same data.
837 	 */
838 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
839 #endif
840 
841 	/*
842 	 * This loop releases the lock corresponding to each power level
843 	 * in the reverse order to which they were acquired.
844 	 */
845 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
846 }
847 
848 /*******************************************************************************
849  * This function initializes the set of hooks that PSCI invokes as part of power
850  * management operation. The power management hooks are expected to be provided
851  * by the SPD, after it finishes all its initialization
852  ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)853 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
854 {
855 	assert(pm != NULL);
856 	psci_spd_pm = pm;
857 
858 	if (pm->svc_migrate != NULL)
859 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
860 
861 	if (pm->svc_migrate_info != NULL)
862 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
863 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
864 }
865 
866 /*******************************************************************************
867  * This function invokes the migrate info hook in the spd_pm_ops. It performs
868  * the necessary return value validation. If the Secure Payload is UP and
869  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
870  * is resident through the mpidr parameter. Else the value of the parameter on
871  * return is undefined.
872  ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)873 int psci_spd_migrate_info(u_register_t *mpidr)
874 {
875 	int rc;
876 
877 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
878 		return PSCI_E_NOT_SUPPORTED;
879 
880 	rc = psci_spd_pm->svc_migrate_info(mpidr);
881 
882 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
883 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
884 
885 	return rc;
886 }
887 
888 
889 /*******************************************************************************
890  * This function prints the state of all power domains present in the
891  * system
892  ******************************************************************************/
psci_print_power_domain_map(void)893 void psci_print_power_domain_map(void)
894 {
895 #if LOG_LEVEL >= LOG_LEVEL_INFO
896 	unsigned int idx;
897 	plat_local_state_t state;
898 	plat_local_state_type_t state_type;
899 
900 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
901 	static const char * const psci_state_type_str[] = {
902 		"ON",
903 		"RETENTION",
904 		"OFF",
905 	};
906 
907 	INFO("PSCI Power Domain Map:\n");
908 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
909 							idx++) {
910 		state_type = find_local_state_type(
911 				psci_non_cpu_pd_nodes[idx].local_state);
912 		INFO("  Domain Node : Level %u, parent_node %u,"
913 				" State %s (0x%x)\n",
914 				psci_non_cpu_pd_nodes[idx].level,
915 				psci_non_cpu_pd_nodes[idx].parent_node,
916 				psci_state_type_str[state_type],
917 				psci_non_cpu_pd_nodes[idx].local_state);
918 	}
919 
920 	for (idx = 0; idx < psci_plat_core_count; idx++) {
921 		state = psci_get_cpu_local_state_by_idx(idx);
922 		state_type = find_local_state_type(state);
923 		INFO("  CPU Node : MPID 0x%llx, parent_node %u,"
924 				" State %s (0x%x)\n",
925 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
926 				psci_cpu_pd_nodes[idx].parent_node,
927 				psci_state_type_str[state_type],
928 				psci_get_cpu_local_state_by_idx(idx));
929 	}
930 #endif
931 }
932 
933 /******************************************************************************
934  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
935  * have ever been powered up would have set its MPDIR value to something other
936  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
937  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
938  * meaningful only when called on the primary CPU during early boot.
939  *****************************************************************************/
psci_secondaries_brought_up(void)940 int psci_secondaries_brought_up(void)
941 {
942 	unsigned int idx, n_valid = 0U;
943 
944 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
945 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
946 			n_valid++;
947 	}
948 
949 	assert(n_valid > 0U);
950 
951 	return (n_valid > 1U) ? 1 : 0;
952 }
953 
954 /*******************************************************************************
955  * Initiate power down sequence, by calling power down operations registered for
956  * this CPU.
957  ******************************************************************************/
psci_pwrdown_cpu(unsigned int power_level)958 void psci_pwrdown_cpu(unsigned int power_level)
959 {
960 #if HW_ASSISTED_COHERENCY
961 	/*
962 	 * With hardware-assisted coherency, the CPU drivers only initiate the
963 	 * power down sequence, without performing cache-maintenance operations
964 	 * in software. Data caches enabled both before and after this call.
965 	 */
966 	prepare_cpu_pwr_dwn(power_level);
967 #else
968 	/*
969 	 * Without hardware-assisted coherency, the CPU drivers disable data
970 	 * caches, then perform cache-maintenance operations in software.
971 	 *
972 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
973 	 * sequence, but that function will return with data caches disabled.
974 	 * We must ensure that the stack memory is flushed out to memory before
975 	 * we start popping from it again.
976 	 */
977 	psci_do_pwrdown_cache_maintenance(power_level);
978 #endif
979 }
980 
981 /*******************************************************************************
982  * This function invokes the callback 'stop_func()' with the 'mpidr' of each
983  * online PE. Caller can pass suitable method to stop a remote core.
984  *
985  * 'wait_ms' is the timeout value in milliseconds for the other cores to
986  * transition to power down state. Passing '0' makes it non-blocking.
987  *
988  * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
989  * given timeout.
990  ******************************************************************************/
psci_stop_other_cores(unsigned int wait_ms,void (* stop_func)(u_register_t mpidr))991 int psci_stop_other_cores(unsigned int wait_ms,
992 				   void (*stop_func)(u_register_t mpidr))
993 {
994 	unsigned int idx, this_cpu_idx;
995 
996 	this_cpu_idx = plat_my_core_pos();
997 
998 	/* Invoke stop_func for each core */
999 	for (idx = 0U; idx < psci_plat_core_count; idx++) {
1000 		/* skip current CPU */
1001 		if (idx == this_cpu_idx) {
1002 			continue;
1003 		}
1004 
1005 		/* Check if the CPU is ON */
1006 		if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1007 			(*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1008 		}
1009 	}
1010 
1011 	/* Need to wait for other cores to shutdown */
1012 	if (wait_ms != 0U) {
1013 		while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) {
1014 			mdelay(1U);
1015 		}
1016 
1017 		if (!psci_is_last_on_cpu()) {
1018 			WARN("Failed to stop all cores!\n");
1019 			psci_print_power_domain_map();
1020 			return PSCI_E_DENIED;
1021 		}
1022 	}
1023 
1024 	return PSCI_E_SUCCESS;
1025 }
1026 
1027 /*******************************************************************************
1028  * This function verifies that all the other cores in the system have been
1029  * turned OFF and the current CPU is the last running CPU in the system.
1030  * Returns true if the current CPU is the last ON CPU or false otherwise.
1031  *
1032  * This API has following differences with psci_is_last_on_cpu
1033  *  1. PSCI states are locked
1034  ******************************************************************************/
psci_is_last_on_cpu_safe(void)1035 bool psci_is_last_on_cpu_safe(void)
1036 {
1037 	unsigned int this_core = plat_my_core_pos();
1038 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1039 
1040 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1041 
1042 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1043 
1044 	if (!psci_is_last_on_cpu()) {
1045 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1046 		return false;
1047 	}
1048 
1049 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1050 
1051 	return true;
1052 }
1053