1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Page table handling routines for radix page table.
4 *
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 */
7
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of.h>
15 #include <linux/of_fdt.h>
16 #include <linux/mm.h>
17 #include <linux/hugetlb.h>
18 #include <linux/string_helpers.h>
19 #include <linux/memory.h>
20
21 #include <asm/pgalloc.h>
22 #include <asm/mmu_context.h>
23 #include <asm/dma.h>
24 #include <asm/machdep.h>
25 #include <asm/mmu.h>
26 #include <asm/firmware.h>
27 #include <asm/powernv.h>
28 #include <asm/sections.h>
29 #include <asm/smp.h>
30 #include <asm/trace.h>
31 #include <asm/uaccess.h>
32 #include <asm/ultravisor.h>
33 #include <asm/set_memory.h>
34
35 #include <trace/events/thp.h>
36
37 #include <mm/mmu_decl.h>
38
39 unsigned int mmu_base_pid;
40 unsigned long radix_mem_block_size __ro_after_init;
41
early_alloc_pgtable(unsigned long size,int nid,unsigned long region_start,unsigned long region_end)42 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
43 unsigned long region_start, unsigned long region_end)
44 {
45 phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
46 phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
47 void *ptr;
48
49 if (region_start)
50 min_addr = region_start;
51 if (region_end)
52 max_addr = region_end;
53
54 ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
55
56 if (!ptr)
57 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
58 __func__, size, size, nid, &min_addr, &max_addr);
59
60 return ptr;
61 }
62
63 /*
64 * When allocating pud or pmd pointers, we allocate a complete page
65 * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
66 * is to ensure that the page obtained from the memblock allocator
67 * can be completely used as page table page and can be freed
68 * correctly when the page table entries are removed.
69 */
early_map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)70 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
71 pgprot_t flags,
72 unsigned int map_page_size,
73 int nid,
74 unsigned long region_start, unsigned long region_end)
75 {
76 unsigned long pfn = pa >> PAGE_SHIFT;
77 pgd_t *pgdp;
78 p4d_t *p4dp;
79 pud_t *pudp;
80 pmd_t *pmdp;
81 pte_t *ptep;
82
83 pgdp = pgd_offset_k(ea);
84 p4dp = p4d_offset(pgdp, ea);
85 if (p4d_none(*p4dp)) {
86 pudp = early_alloc_pgtable(PAGE_SIZE, nid,
87 region_start, region_end);
88 p4d_populate(&init_mm, p4dp, pudp);
89 }
90 pudp = pud_offset(p4dp, ea);
91 if (map_page_size == PUD_SIZE) {
92 ptep = (pte_t *)pudp;
93 goto set_the_pte;
94 }
95 if (pud_none(*pudp)) {
96 pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
97 region_end);
98 pud_populate(&init_mm, pudp, pmdp);
99 }
100 pmdp = pmd_offset(pudp, ea);
101 if (map_page_size == PMD_SIZE) {
102 ptep = pmdp_ptep(pmdp);
103 goto set_the_pte;
104 }
105 if (!pmd_present(*pmdp)) {
106 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
107 region_start, region_end);
108 pmd_populate_kernel(&init_mm, pmdp, ptep);
109 }
110 ptep = pte_offset_kernel(pmdp, ea);
111
112 set_the_pte:
113 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
114 asm volatile("ptesync": : :"memory");
115 return 0;
116 }
117
118 /*
119 * nid, region_start, and region_end are hints to try to place the page
120 * table memory in the same node or region.
121 */
__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)122 static int __map_kernel_page(unsigned long ea, unsigned long pa,
123 pgprot_t flags,
124 unsigned int map_page_size,
125 int nid,
126 unsigned long region_start, unsigned long region_end)
127 {
128 unsigned long pfn = pa >> PAGE_SHIFT;
129 pgd_t *pgdp;
130 p4d_t *p4dp;
131 pud_t *pudp;
132 pmd_t *pmdp;
133 pte_t *ptep;
134 /*
135 * Make sure task size is correct as per the max adddr
136 */
137 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
138
139 #ifdef CONFIG_PPC_64K_PAGES
140 BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
141 #endif
142
143 if (unlikely(!slab_is_available()))
144 return early_map_kernel_page(ea, pa, flags, map_page_size,
145 nid, region_start, region_end);
146
147 /*
148 * Should make page table allocation functions be able to take a
149 * node, so we can place kernel page tables on the right nodes after
150 * boot.
151 */
152 pgdp = pgd_offset_k(ea);
153 p4dp = p4d_offset(pgdp, ea);
154 pudp = pud_alloc(&init_mm, p4dp, ea);
155 if (!pudp)
156 return -ENOMEM;
157 if (map_page_size == PUD_SIZE) {
158 ptep = (pte_t *)pudp;
159 goto set_the_pte;
160 }
161 pmdp = pmd_alloc(&init_mm, pudp, ea);
162 if (!pmdp)
163 return -ENOMEM;
164 if (map_page_size == PMD_SIZE) {
165 ptep = pmdp_ptep(pmdp);
166 goto set_the_pte;
167 }
168 ptep = pte_alloc_kernel(pmdp, ea);
169 if (!ptep)
170 return -ENOMEM;
171
172 set_the_pte:
173 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
174 asm volatile("ptesync": : :"memory");
175 return 0;
176 }
177
radix__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size)178 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
179 pgprot_t flags,
180 unsigned int map_page_size)
181 {
182 return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
183 }
184
185 #ifdef CONFIG_STRICT_KERNEL_RWX
radix__change_memory_range(unsigned long start,unsigned long end,unsigned long clear)186 static void radix__change_memory_range(unsigned long start, unsigned long end,
187 unsigned long clear)
188 {
189 unsigned long idx;
190 pgd_t *pgdp;
191 p4d_t *p4dp;
192 pud_t *pudp;
193 pmd_t *pmdp;
194 pte_t *ptep;
195
196 start = ALIGN_DOWN(start, PAGE_SIZE);
197 end = PAGE_ALIGN(end); // aligns up
198
199 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
200 start, end, clear);
201
202 for (idx = start; idx < end; idx += PAGE_SIZE) {
203 pgdp = pgd_offset_k(idx);
204 p4dp = p4d_offset(pgdp, idx);
205 pudp = pud_alloc(&init_mm, p4dp, idx);
206 if (!pudp)
207 continue;
208 if (pud_is_leaf(*pudp)) {
209 ptep = (pte_t *)pudp;
210 goto update_the_pte;
211 }
212 pmdp = pmd_alloc(&init_mm, pudp, idx);
213 if (!pmdp)
214 continue;
215 if (pmd_is_leaf(*pmdp)) {
216 ptep = pmdp_ptep(pmdp);
217 goto update_the_pte;
218 }
219 ptep = pte_alloc_kernel(pmdp, idx);
220 if (!ptep)
221 continue;
222 update_the_pte:
223 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
224 }
225
226 radix__flush_tlb_kernel_range(start, end);
227 }
228
radix__mark_rodata_ro(void)229 void radix__mark_rodata_ro(void)
230 {
231 unsigned long start, end;
232
233 start = (unsigned long)_stext;
234 end = (unsigned long)__end_rodata;
235
236 radix__change_memory_range(start, end, _PAGE_WRITE);
237
238 for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) {
239 end = start + PAGE_SIZE;
240 if (overlaps_interrupt_vector_text(start, end))
241 radix__change_memory_range(start, end, _PAGE_WRITE);
242 else
243 break;
244 }
245 }
246
radix__mark_initmem_nx(void)247 void radix__mark_initmem_nx(void)
248 {
249 unsigned long start = (unsigned long)__init_begin;
250 unsigned long end = (unsigned long)__init_end;
251
252 radix__change_memory_range(start, end, _PAGE_EXEC);
253 }
254 #endif /* CONFIG_STRICT_KERNEL_RWX */
255
256 static inline void __meminit
print_mapping(unsigned long start,unsigned long end,unsigned long size,bool exec)257 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
258 {
259 char buf[10];
260
261 if (end <= start)
262 return;
263
264 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
265
266 pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
267 exec ? " (exec)" : "");
268 }
269
next_boundary(unsigned long addr,unsigned long end)270 static unsigned long next_boundary(unsigned long addr, unsigned long end)
271 {
272 #ifdef CONFIG_STRICT_KERNEL_RWX
273 unsigned long stext_phys;
274
275 stext_phys = __pa_symbol(_stext);
276
277 // Relocatable kernel running at non-zero real address
278 if (stext_phys != 0) {
279 // The end of interrupts code at zero is a rodata boundary
280 unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys;
281 if (addr < end_intr)
282 return end_intr;
283
284 // Start of relocated kernel text is a rodata boundary
285 if (addr < stext_phys)
286 return stext_phys;
287 }
288
289 if (addr < __pa_symbol(__srwx_boundary))
290 return __pa_symbol(__srwx_boundary);
291 #endif
292 return end;
293 }
294
create_physical_mapping(unsigned long start,unsigned long end,int nid,pgprot_t _prot)295 static int __meminit create_physical_mapping(unsigned long start,
296 unsigned long end,
297 int nid, pgprot_t _prot)
298 {
299 unsigned long vaddr, addr, mapping_size = 0;
300 bool prev_exec, exec = false;
301 pgprot_t prot;
302 int psize;
303 unsigned long max_mapping_size = radix_mem_block_size;
304
305 if (debug_pagealloc_enabled_or_kfence())
306 max_mapping_size = PAGE_SIZE;
307
308 start = ALIGN(start, PAGE_SIZE);
309 end = ALIGN_DOWN(end, PAGE_SIZE);
310 for (addr = start; addr < end; addr += mapping_size) {
311 unsigned long gap, previous_size;
312 int rc;
313
314 gap = next_boundary(addr, end) - addr;
315 if (gap > max_mapping_size)
316 gap = max_mapping_size;
317 previous_size = mapping_size;
318 prev_exec = exec;
319
320 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
321 mmu_psize_defs[MMU_PAGE_1G].shift) {
322 mapping_size = PUD_SIZE;
323 psize = MMU_PAGE_1G;
324 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
325 mmu_psize_defs[MMU_PAGE_2M].shift) {
326 mapping_size = PMD_SIZE;
327 psize = MMU_PAGE_2M;
328 } else {
329 mapping_size = PAGE_SIZE;
330 psize = mmu_virtual_psize;
331 }
332
333 vaddr = (unsigned long)__va(addr);
334
335 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
336 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
337 prot = PAGE_KERNEL_X;
338 exec = true;
339 } else {
340 prot = _prot;
341 exec = false;
342 }
343
344 if (mapping_size != previous_size || exec != prev_exec) {
345 print_mapping(start, addr, previous_size, prev_exec);
346 start = addr;
347 }
348
349 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
350 if (rc)
351 return rc;
352
353 update_page_count(psize, 1);
354 }
355
356 print_mapping(start, addr, mapping_size, exec);
357 return 0;
358 }
359
radix_init_pgtable(void)360 static void __init radix_init_pgtable(void)
361 {
362 unsigned long rts_field;
363 phys_addr_t start, end;
364 u64 i;
365
366 /* We don't support slb for radix */
367 slb_set_size(0);
368
369 /*
370 * Create the linear mapping
371 */
372 for_each_mem_range(i, &start, &end) {
373 /*
374 * The memblock allocator is up at this point, so the
375 * page tables will be allocated within the range. No
376 * need or a node (which we don't have yet).
377 */
378
379 if (end >= RADIX_VMALLOC_START) {
380 pr_warn("Outside the supported range\n");
381 continue;
382 }
383
384 WARN_ON(create_physical_mapping(start, end,
385 -1, PAGE_KERNEL));
386 }
387
388 if (!cpu_has_feature(CPU_FTR_HVMODE) &&
389 cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
390 /*
391 * Older versions of KVM on these machines prefer if the
392 * guest only uses the low 19 PID bits.
393 */
394 mmu_pid_bits = 19;
395 }
396 mmu_base_pid = 1;
397
398 /*
399 * Allocate Partition table and process table for the
400 * host.
401 */
402 BUG_ON(PRTB_SIZE_SHIFT > 36);
403 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
404 /*
405 * Fill in the process table.
406 */
407 rts_field = radix__get_tree_size();
408 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
409
410 /*
411 * The init_mm context is given the first available (non-zero) PID,
412 * which is the "guard PID" and contains no page table. PIDR should
413 * never be set to zero because that duplicates the kernel address
414 * space at the 0x0... offset (quadrant 0)!
415 *
416 * An arbitrary PID that may later be allocated by the PID allocator
417 * for userspace processes must not be used either, because that
418 * would cause stale user mappings for that PID on CPUs outside of
419 * the TLB invalidation scheme (because it won't be in mm_cpumask).
420 *
421 * So permanently carve out one PID for the purpose of a guard PID.
422 */
423 init_mm.context.id = mmu_base_pid;
424 mmu_base_pid++;
425 }
426
radix_init_partition_table(void)427 static void __init radix_init_partition_table(void)
428 {
429 unsigned long rts_field, dw0, dw1;
430
431 mmu_partition_table_init();
432 rts_field = radix__get_tree_size();
433 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
434 dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
435 mmu_partition_table_set_entry(0, dw0, dw1, false);
436
437 pr_info("Initializing Radix MMU\n");
438 }
439
get_idx_from_shift(unsigned int shift)440 static int __init get_idx_from_shift(unsigned int shift)
441 {
442 int idx = -1;
443
444 switch (shift) {
445 case 0xc:
446 idx = MMU_PAGE_4K;
447 break;
448 case 0x10:
449 idx = MMU_PAGE_64K;
450 break;
451 case 0x15:
452 idx = MMU_PAGE_2M;
453 break;
454 case 0x1e:
455 idx = MMU_PAGE_1G;
456 break;
457 }
458 return idx;
459 }
460
radix_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)461 static int __init radix_dt_scan_page_sizes(unsigned long node,
462 const char *uname, int depth,
463 void *data)
464 {
465 int size = 0;
466 int shift, idx;
467 unsigned int ap;
468 const __be32 *prop;
469 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
470
471 /* We are scanning "cpu" nodes only */
472 if (type == NULL || strcmp(type, "cpu") != 0)
473 return 0;
474
475 /* Grab page size encodings */
476 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
477 if (!prop)
478 return 0;
479
480 pr_info("Page sizes from device-tree:\n");
481 for (; size >= 4; size -= 4, ++prop) {
482
483 struct mmu_psize_def *def;
484
485 /* top 3 bit is AP encoding */
486 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
487 ap = be32_to_cpu(prop[0]) >> 29;
488 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
489
490 idx = get_idx_from_shift(shift);
491 if (idx < 0)
492 continue;
493
494 def = &mmu_psize_defs[idx];
495 def->shift = shift;
496 def->ap = ap;
497 def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
498 }
499
500 /* needed ? */
501 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
502 return 1;
503 }
504
505 #ifdef CONFIG_MEMORY_HOTPLUG
probe_memory_block_size(unsigned long node,const char * uname,int depth,void * data)506 static int __init probe_memory_block_size(unsigned long node, const char *uname, int
507 depth, void *data)
508 {
509 unsigned long *mem_block_size = (unsigned long *)data;
510 const __be32 *prop;
511 int len;
512
513 if (depth != 1)
514 return 0;
515
516 if (strcmp(uname, "ibm,dynamic-reconfiguration-memory"))
517 return 0;
518
519 prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &len);
520
521 if (!prop || len < dt_root_size_cells * sizeof(__be32))
522 /*
523 * Nothing in the device tree
524 */
525 *mem_block_size = MIN_MEMORY_BLOCK_SIZE;
526 else
527 *mem_block_size = of_read_number(prop, dt_root_size_cells);
528 return 1;
529 }
530
radix_memory_block_size(void)531 static unsigned long __init radix_memory_block_size(void)
532 {
533 unsigned long mem_block_size = MIN_MEMORY_BLOCK_SIZE;
534
535 /*
536 * OPAL firmware feature is set by now. Hence we are ok
537 * to test OPAL feature.
538 */
539 if (firmware_has_feature(FW_FEATURE_OPAL))
540 mem_block_size = 1UL * 1024 * 1024 * 1024;
541 else
542 of_scan_flat_dt(probe_memory_block_size, &mem_block_size);
543
544 return mem_block_size;
545 }
546
547 #else /* CONFIG_MEMORY_HOTPLUG */
548
radix_memory_block_size(void)549 static unsigned long __init radix_memory_block_size(void)
550 {
551 return 1UL * 1024 * 1024 * 1024;
552 }
553
554 #endif /* CONFIG_MEMORY_HOTPLUG */
555
556
radix__early_init_devtree(void)557 void __init radix__early_init_devtree(void)
558 {
559 int rc;
560
561 /*
562 * Try to find the available page sizes in the device-tree
563 */
564 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
565 if (!rc) {
566 /*
567 * No page size details found in device tree.
568 * Let's assume we have page 4k and 64k support
569 */
570 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
571 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
572 mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
573 psize_to_rpti_pgsize(MMU_PAGE_4K);
574
575 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
576 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
577 mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
578 psize_to_rpti_pgsize(MMU_PAGE_64K);
579 }
580
581 /*
582 * Max mapping size used when mapping pages. We don't use
583 * ppc_md.memory_block_size() here because this get called
584 * early and we don't have machine probe called yet. Also
585 * the pseries implementation only check for ibm,lmb-size.
586 * All hypervisor supporting radix do expose that device
587 * tree node.
588 */
589 radix_mem_block_size = radix_memory_block_size();
590 return;
591 }
592
radix__early_init_mmu(void)593 void __init radix__early_init_mmu(void)
594 {
595 unsigned long lpcr;
596
597 #ifdef CONFIG_PPC_64S_HASH_MMU
598 #ifdef CONFIG_PPC_64K_PAGES
599 /* PAGE_SIZE mappings */
600 mmu_virtual_psize = MMU_PAGE_64K;
601 #else
602 mmu_virtual_psize = MMU_PAGE_4K;
603 #endif
604
605 #ifdef CONFIG_SPARSEMEM_VMEMMAP
606 /* vmemmap mapping */
607 if (mmu_psize_defs[MMU_PAGE_2M].shift) {
608 /*
609 * map vmemmap using 2M if available
610 */
611 mmu_vmemmap_psize = MMU_PAGE_2M;
612 } else
613 mmu_vmemmap_psize = mmu_virtual_psize;
614 #endif
615 #endif
616 /*
617 * initialize page table size
618 */
619 __pte_index_size = RADIX_PTE_INDEX_SIZE;
620 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
621 __pud_index_size = RADIX_PUD_INDEX_SIZE;
622 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
623 __pud_cache_index = RADIX_PUD_INDEX_SIZE;
624 __pte_table_size = RADIX_PTE_TABLE_SIZE;
625 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
626 __pud_table_size = RADIX_PUD_TABLE_SIZE;
627 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
628
629 __pmd_val_bits = RADIX_PMD_VAL_BITS;
630 __pud_val_bits = RADIX_PUD_VAL_BITS;
631 __pgd_val_bits = RADIX_PGD_VAL_BITS;
632
633 __kernel_virt_start = RADIX_KERN_VIRT_START;
634 __vmalloc_start = RADIX_VMALLOC_START;
635 __vmalloc_end = RADIX_VMALLOC_END;
636 __kernel_io_start = RADIX_KERN_IO_START;
637 __kernel_io_end = RADIX_KERN_IO_END;
638 vmemmap = (struct page *)RADIX_VMEMMAP_START;
639 ioremap_bot = IOREMAP_BASE;
640
641 #ifdef CONFIG_PCI
642 pci_io_base = ISA_IO_BASE;
643 #endif
644 __pte_frag_nr = RADIX_PTE_FRAG_NR;
645 __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
646 __pmd_frag_nr = RADIX_PMD_FRAG_NR;
647 __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
648
649 radix_init_pgtable();
650
651 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
652 lpcr = mfspr(SPRN_LPCR);
653 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
654 radix_init_partition_table();
655 } else {
656 radix_init_pseries();
657 }
658
659 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
660
661 /* Switch to the guard PID before turning on MMU */
662 radix__switch_mmu_context(NULL, &init_mm);
663 tlbiel_all();
664 }
665
radix__early_init_mmu_secondary(void)666 void radix__early_init_mmu_secondary(void)
667 {
668 unsigned long lpcr;
669 /*
670 * update partition table control register and UPRT
671 */
672 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
673 lpcr = mfspr(SPRN_LPCR);
674 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
675
676 set_ptcr_when_no_uv(__pa(partition_tb) |
677 (PATB_SIZE_SHIFT - 12));
678 }
679
680 radix__switch_mmu_context(NULL, &init_mm);
681 tlbiel_all();
682
683 /* Make sure userspace can't change the AMR */
684 mtspr(SPRN_UAMOR, 0);
685 }
686
687 /* Called during kexec sequence with MMU off */
radix__mmu_cleanup_all(void)688 notrace void radix__mmu_cleanup_all(void)
689 {
690 unsigned long lpcr;
691
692 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
693 lpcr = mfspr(SPRN_LPCR);
694 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
695 set_ptcr_when_no_uv(0);
696 powernv_set_nmmu_ptcr(0);
697 radix__flush_tlb_all();
698 }
699 }
700
701 #ifdef CONFIG_MEMORY_HOTPLUG
free_pte_table(pte_t * pte_start,pmd_t * pmd)702 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
703 {
704 pte_t *pte;
705 int i;
706
707 for (i = 0; i < PTRS_PER_PTE; i++) {
708 pte = pte_start + i;
709 if (!pte_none(*pte))
710 return;
711 }
712
713 pte_free_kernel(&init_mm, pte_start);
714 pmd_clear(pmd);
715 }
716
free_pmd_table(pmd_t * pmd_start,pud_t * pud)717 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
718 {
719 pmd_t *pmd;
720 int i;
721
722 for (i = 0; i < PTRS_PER_PMD; i++) {
723 pmd = pmd_start + i;
724 if (!pmd_none(*pmd))
725 return;
726 }
727
728 pmd_free(&init_mm, pmd_start);
729 pud_clear(pud);
730 }
731
free_pud_table(pud_t * pud_start,p4d_t * p4d)732 static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
733 {
734 pud_t *pud;
735 int i;
736
737 for (i = 0; i < PTRS_PER_PUD; i++) {
738 pud = pud_start + i;
739 if (!pud_none(*pud))
740 return;
741 }
742
743 pud_free(&init_mm, pud_start);
744 p4d_clear(p4d);
745 }
746
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end)747 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
748 unsigned long end)
749 {
750 unsigned long next;
751 pte_t *pte;
752
753 pte = pte_start + pte_index(addr);
754 for (; addr < end; addr = next, pte++) {
755 next = (addr + PAGE_SIZE) & PAGE_MASK;
756 if (next > end)
757 next = end;
758
759 if (!pte_present(*pte))
760 continue;
761
762 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
763 /*
764 * The vmemmap_free() and remove_section_mapping()
765 * codepaths call us with aligned addresses.
766 */
767 WARN_ONCE(1, "%s: unaligned range\n", __func__);
768 continue;
769 }
770
771 pte_clear(&init_mm, addr, pte);
772 }
773 }
774
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end)775 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
776 unsigned long end)
777 {
778 unsigned long next;
779 pte_t *pte_base;
780 pmd_t *pmd;
781
782 pmd = pmd_start + pmd_index(addr);
783 for (; addr < end; addr = next, pmd++) {
784 next = pmd_addr_end(addr, end);
785
786 if (!pmd_present(*pmd))
787 continue;
788
789 if (pmd_is_leaf(*pmd)) {
790 if (!IS_ALIGNED(addr, PMD_SIZE) ||
791 !IS_ALIGNED(next, PMD_SIZE)) {
792 WARN_ONCE(1, "%s: unaligned range\n", __func__);
793 continue;
794 }
795 pte_clear(&init_mm, addr, (pte_t *)pmd);
796 continue;
797 }
798
799 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
800 remove_pte_table(pte_base, addr, next);
801 free_pte_table(pte_base, pmd);
802 }
803 }
804
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end)805 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
806 unsigned long end)
807 {
808 unsigned long next;
809 pmd_t *pmd_base;
810 pud_t *pud;
811
812 pud = pud_start + pud_index(addr);
813 for (; addr < end; addr = next, pud++) {
814 next = pud_addr_end(addr, end);
815
816 if (!pud_present(*pud))
817 continue;
818
819 if (pud_is_leaf(*pud)) {
820 if (!IS_ALIGNED(addr, PUD_SIZE) ||
821 !IS_ALIGNED(next, PUD_SIZE)) {
822 WARN_ONCE(1, "%s: unaligned range\n", __func__);
823 continue;
824 }
825 pte_clear(&init_mm, addr, (pte_t *)pud);
826 continue;
827 }
828
829 pmd_base = pud_pgtable(*pud);
830 remove_pmd_table(pmd_base, addr, next);
831 free_pmd_table(pmd_base, pud);
832 }
833 }
834
remove_pagetable(unsigned long start,unsigned long end)835 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
836 {
837 unsigned long addr, next;
838 pud_t *pud_base;
839 pgd_t *pgd;
840 p4d_t *p4d;
841
842 spin_lock(&init_mm.page_table_lock);
843
844 for (addr = start; addr < end; addr = next) {
845 next = pgd_addr_end(addr, end);
846
847 pgd = pgd_offset_k(addr);
848 p4d = p4d_offset(pgd, addr);
849 if (!p4d_present(*p4d))
850 continue;
851
852 if (p4d_is_leaf(*p4d)) {
853 if (!IS_ALIGNED(addr, P4D_SIZE) ||
854 !IS_ALIGNED(next, P4D_SIZE)) {
855 WARN_ONCE(1, "%s: unaligned range\n", __func__);
856 continue;
857 }
858
859 pte_clear(&init_mm, addr, (pte_t *)pgd);
860 continue;
861 }
862
863 pud_base = p4d_pgtable(*p4d);
864 remove_pud_table(pud_base, addr, next);
865 free_pud_table(pud_base, p4d);
866 }
867
868 spin_unlock(&init_mm.page_table_lock);
869 radix__flush_tlb_kernel_range(start, end);
870 }
871
radix__create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)872 int __meminit radix__create_section_mapping(unsigned long start,
873 unsigned long end, int nid,
874 pgprot_t prot)
875 {
876 if (end >= RADIX_VMALLOC_START) {
877 pr_warn("Outside the supported range\n");
878 return -1;
879 }
880
881 return create_physical_mapping(__pa(start), __pa(end),
882 nid, prot);
883 }
884
radix__remove_section_mapping(unsigned long start,unsigned long end)885 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
886 {
887 remove_pagetable(start, end);
888 return 0;
889 }
890 #endif /* CONFIG_MEMORY_HOTPLUG */
891
892 #ifdef CONFIG_SPARSEMEM_VMEMMAP
__map_kernel_page_nid(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid)893 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
894 pgprot_t flags, unsigned int map_page_size,
895 int nid)
896 {
897 return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
898 }
899
radix__vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)900 int __meminit radix__vmemmap_create_mapping(unsigned long start,
901 unsigned long page_size,
902 unsigned long phys)
903 {
904 /* Create a PTE encoding */
905 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
906 int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
907 int ret;
908
909 if ((start + page_size) >= RADIX_VMEMMAP_END) {
910 pr_warn("Outside the supported range\n");
911 return -1;
912 }
913
914 ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
915 BUG_ON(ret);
916
917 return 0;
918 }
919
920 #ifdef CONFIG_MEMORY_HOTPLUG
radix__vmemmap_remove_mapping(unsigned long start,unsigned long page_size)921 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
922 {
923 remove_pagetable(start, start + page_size);
924 }
925 #endif
926 #endif
927
928 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
radix__kernel_map_pages(struct page * page,int numpages,int enable)929 void radix__kernel_map_pages(struct page *page, int numpages, int enable)
930 {
931 unsigned long addr;
932
933 addr = (unsigned long)page_address(page);
934
935 if (enable)
936 set_memory_p(addr, numpages);
937 else
938 set_memory_np(addr, numpages);
939 }
940 #endif
941
942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
943
radix__pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)944 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
945 pmd_t *pmdp, unsigned long clr,
946 unsigned long set)
947 {
948 unsigned long old;
949
950 #ifdef CONFIG_DEBUG_VM
951 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
952 assert_spin_locked(pmd_lockptr(mm, pmdp));
953 #endif
954
955 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
956 trace_hugepage_update(addr, old, clr, set);
957
958 return old;
959 }
960
radix__pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)961 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
962 pmd_t *pmdp)
963
964 {
965 pmd_t pmd;
966
967 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
968 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
969 VM_BUG_ON(pmd_devmap(*pmdp));
970 /*
971 * khugepaged calls this for normal pmd
972 */
973 pmd = *pmdp;
974 pmd_clear(pmdp);
975
976 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
977
978 return pmd;
979 }
980
981 /*
982 * For us pgtable_t is pte_t *. Inorder to save the deposisted
983 * page table, we consider the allocated page table as a list
984 * head. On withdraw we need to make sure we zero out the used
985 * list_head memory area.
986 */
radix__pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)987 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
988 pgtable_t pgtable)
989 {
990 struct list_head *lh = (struct list_head *) pgtable;
991
992 assert_spin_locked(pmd_lockptr(mm, pmdp));
993
994 /* FIFO */
995 if (!pmd_huge_pte(mm, pmdp))
996 INIT_LIST_HEAD(lh);
997 else
998 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
999 pmd_huge_pte(mm, pmdp) = pgtable;
1000 }
1001
radix__pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1002 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1003 {
1004 pte_t *ptep;
1005 pgtable_t pgtable;
1006 struct list_head *lh;
1007
1008 assert_spin_locked(pmd_lockptr(mm, pmdp));
1009
1010 /* FIFO */
1011 pgtable = pmd_huge_pte(mm, pmdp);
1012 lh = (struct list_head *) pgtable;
1013 if (list_empty(lh))
1014 pmd_huge_pte(mm, pmdp) = NULL;
1015 else {
1016 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1017 list_del(lh);
1018 }
1019 ptep = (pte_t *) pgtable;
1020 *ptep = __pte(0);
1021 ptep++;
1022 *ptep = __pte(0);
1023 return pgtable;
1024 }
1025
radix__pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1026 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1027 unsigned long addr, pmd_t *pmdp)
1028 {
1029 pmd_t old_pmd;
1030 unsigned long old;
1031
1032 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1033 old_pmd = __pmd(old);
1034 return old_pmd;
1035 }
1036
1037 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1038
radix__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)1039 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1040 pte_t entry, unsigned long address, int psize)
1041 {
1042 struct mm_struct *mm = vma->vm_mm;
1043 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1044 _PAGE_RW | _PAGE_EXEC);
1045
1046 unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1047 /*
1048 * On POWER9, the NMMU is not able to relax PTE access permissions
1049 * for a translation with a TLB. The PTE must be invalidated, TLB
1050 * flushed before the new PTE is installed.
1051 *
1052 * This only needs to be done for radix, because hash translation does
1053 * flush when updating the linux pte (and we don't support NMMU
1054 * accelerators on HPT on POWER9 anyway XXX: do we?).
1055 *
1056 * POWER10 (and P9P) NMMU does behave as per ISA.
1057 */
1058 if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) &&
1059 atomic_read(&mm->context.copros) > 0) {
1060 unsigned long old_pte, new_pte;
1061
1062 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1063 new_pte = old_pte | set;
1064 radix__flush_tlb_page_psize(mm, address, psize);
1065 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1066 } else {
1067 __radix_pte_update(ptep, 0, set);
1068 /*
1069 * Book3S does not require a TLB flush when relaxing access
1070 * restrictions when the address space (modulo the POWER9 nest
1071 * MMU issue above) because the MMU will reload the PTE after
1072 * taking an access fault, as defined by the architecture. See
1073 * "Setting a Reference or Change Bit or Upgrading Access
1074 * Authority (PTE Subject to Atomic Hardware Updates)" in
1075 * Power ISA Version 3.1B.
1076 */
1077 }
1078 /* See ptesync comment in radix__set_pte_at */
1079 }
1080
radix__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1081 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1082 unsigned long addr, pte_t *ptep,
1083 pte_t old_pte, pte_t pte)
1084 {
1085 struct mm_struct *mm = vma->vm_mm;
1086
1087 /*
1088 * POWER9 NMMU must flush the TLB after clearing the PTE before
1089 * installing a PTE with more relaxed access permissions, see
1090 * radix__ptep_set_access_flags.
1091 */
1092 if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
1093 is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1094 (atomic_read(&mm->context.copros) > 0))
1095 radix__flush_tlb_page(vma, addr);
1096
1097 set_pte_at(mm, addr, ptep, pte);
1098 }
1099
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1100 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1101 {
1102 pte_t *ptep = (pte_t *)pud;
1103 pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1104
1105 if (!radix_enabled())
1106 return 0;
1107
1108 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1109
1110 return 1;
1111 }
1112
pud_clear_huge(pud_t * pud)1113 int pud_clear_huge(pud_t *pud)
1114 {
1115 if (pud_is_leaf(*pud)) {
1116 pud_clear(pud);
1117 return 1;
1118 }
1119
1120 return 0;
1121 }
1122
pud_free_pmd_page(pud_t * pud,unsigned long addr)1123 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1124 {
1125 pmd_t *pmd;
1126 int i;
1127
1128 pmd = pud_pgtable(*pud);
1129 pud_clear(pud);
1130
1131 flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1132
1133 for (i = 0; i < PTRS_PER_PMD; i++) {
1134 if (!pmd_none(pmd[i])) {
1135 pte_t *pte;
1136 pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1137
1138 pte_free_kernel(&init_mm, pte);
1139 }
1140 }
1141
1142 pmd_free(&init_mm, pmd);
1143
1144 return 1;
1145 }
1146
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1147 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1148 {
1149 pte_t *ptep = (pte_t *)pmd;
1150 pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1151
1152 if (!radix_enabled())
1153 return 0;
1154
1155 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1156
1157 return 1;
1158 }
1159
pmd_clear_huge(pmd_t * pmd)1160 int pmd_clear_huge(pmd_t *pmd)
1161 {
1162 if (pmd_is_leaf(*pmd)) {
1163 pmd_clear(pmd);
1164 return 1;
1165 }
1166
1167 return 0;
1168 }
1169
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1170 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1171 {
1172 pte_t *pte;
1173
1174 pte = (pte_t *)pmd_page_vaddr(*pmd);
1175 pmd_clear(pmd);
1176
1177 flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1178
1179 pte_free_kernel(&init_mm, pte);
1180
1181 return 1;
1182 }
1183