1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32 #include <linux/context_tracking_irq.h>
33
34 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
35 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
36 #define ulong2long(a) (*(long *)(&(a)))
37 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
38 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
39
40 /* Exported common interfaces */
41 void call_rcu(struct rcu_head *head, rcu_callback_t func);
42 void rcu_barrier_tasks(void);
43 void rcu_barrier_tasks_rude(void);
44 void synchronize_rcu(void);
45
46 struct rcu_gp_oldstate;
47 unsigned long get_completed_synchronize_rcu(void);
48 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
49
50 // Maximum number of unsigned long values corresponding to
51 // not-yet-completed RCU grace periods.
52 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
53
54 /**
55 * same_state_synchronize_rcu - Are two old-state values identical?
56 * @oldstate1: First old-state value.
57 * @oldstate2: Second old-state value.
58 *
59 * The two old-state values must have been obtained from either
60 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
61 * get_completed_synchronize_rcu(). Returns @true if the two values are
62 * identical and @false otherwise. This allows structures whose lifetimes
63 * are tracked by old-state values to push these values to a list header,
64 * allowing those structures to be slightly smaller.
65 */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)66 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
67 {
68 return oldstate1 == oldstate2;
69 }
70
71 #ifdef CONFIG_PREEMPT_RCU
72
73 void __rcu_read_lock(void);
74 void __rcu_read_unlock(void);
75
76 /*
77 * Defined as a macro as it is a very low level header included from
78 * areas that don't even know about current. This gives the rcu_read_lock()
79 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
80 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
81 */
82 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
83
84 #else /* #ifdef CONFIG_PREEMPT_RCU */
85
86 #ifdef CONFIG_TINY_RCU
87 #define rcu_read_unlock_strict() do { } while (0)
88 #else
89 void rcu_read_unlock_strict(void);
90 #endif
91
__rcu_read_lock(void)92 static inline void __rcu_read_lock(void)
93 {
94 preempt_disable();
95 }
96
__rcu_read_unlock(void)97 static inline void __rcu_read_unlock(void)
98 {
99 preempt_enable();
100 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
101 rcu_read_unlock_strict();
102 }
103
rcu_preempt_depth(void)104 static inline int rcu_preempt_depth(void)
105 {
106 return 0;
107 }
108
109 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
110
111 #ifdef CONFIG_RCU_LAZY
112 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
113 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)114 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
115 {
116 call_rcu(head, func);
117 }
118 #endif
119
120 /* Internal to kernel */
121 void rcu_init(void);
122 extern int rcu_scheduler_active;
123 void rcu_sched_clock_irq(int user);
124 void rcu_report_dead(unsigned int cpu);
125 void rcutree_migrate_callbacks(int cpu);
126
127 #ifdef CONFIG_TASKS_RCU_GENERIC
128 void rcu_init_tasks_generic(void);
129 #else
rcu_init_tasks_generic(void)130 static inline void rcu_init_tasks_generic(void) { }
131 #endif
132
133 #ifdef CONFIG_RCU_STALL_COMMON
134 void rcu_sysrq_start(void);
135 void rcu_sysrq_end(void);
136 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)137 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)138 static inline void rcu_sysrq_end(void) { }
139 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
140
141 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
142 void rcu_irq_work_resched(void);
143 #else
rcu_irq_work_resched(void)144 static inline void rcu_irq_work_resched(void) { }
145 #endif
146
147 #ifdef CONFIG_RCU_NOCB_CPU
148 void rcu_init_nohz(void);
149 int rcu_nocb_cpu_offload(int cpu);
150 int rcu_nocb_cpu_deoffload(int cpu);
151 void rcu_nocb_flush_deferred_wakeup(void);
152 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)153 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)154 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)155 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)156 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
157 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
158
159 /**
160 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
161 * @a: Code that RCU needs to pay attention to.
162 *
163 * RCU read-side critical sections are forbidden in the inner idle loop,
164 * that is, between the ct_idle_enter() and the ct_idle_exit() -- RCU
165 * will happily ignore any such read-side critical sections. However,
166 * things like powertop need tracepoints in the inner idle loop.
167 *
168 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
169 * will tell RCU that it needs to pay attention, invoke its argument
170 * (in this example, calling the do_something_with_RCU() function),
171 * and then tell RCU to go back to ignoring this CPU. It is permissible
172 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
173 * on the order of a million or so, even on 32-bit systems). It is
174 * not legal to block within RCU_NONIDLE(), nor is it permissible to
175 * transfer control either into or out of RCU_NONIDLE()'s statement.
176 */
177 #define RCU_NONIDLE(a) \
178 do { \
179 ct_irq_enter_irqson(); \
180 do { a; } while (0); \
181 ct_irq_exit_irqson(); \
182 } while (0)
183
184 /*
185 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
186 * This is a macro rather than an inline function to avoid #include hell.
187 */
188 #ifdef CONFIG_TASKS_RCU_GENERIC
189
190 # ifdef CONFIG_TASKS_RCU
191 # define rcu_tasks_classic_qs(t, preempt) \
192 do { \
193 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
194 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
195 } while (0)
196 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
197 void synchronize_rcu_tasks(void);
198 # else
199 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
200 # define call_rcu_tasks call_rcu
201 # define synchronize_rcu_tasks synchronize_rcu
202 # endif
203
204 # ifdef CONFIG_TASKS_TRACE_RCU
205 // Bits for ->trc_reader_special.b.need_qs field.
206 #define TRC_NEED_QS 0x1 // Task needs a quiescent state.
207 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state.
208
209 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
210 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
211
212 # define rcu_tasks_trace_qs(t) \
213 do { \
214 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \
215 \
216 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \
217 likely(!___rttq_nesting)) { \
218 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \
219 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \
220 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \
221 rcu_tasks_trace_qs_blkd(t); \
222 } \
223 } while (0)
224 # else
225 # define rcu_tasks_trace_qs(t) do { } while (0)
226 # endif
227
228 #define rcu_tasks_qs(t, preempt) \
229 do { \
230 rcu_tasks_classic_qs((t), (preempt)); \
231 rcu_tasks_trace_qs(t); \
232 } while (0)
233
234 # ifdef CONFIG_TASKS_RUDE_RCU
235 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
236 void synchronize_rcu_tasks_rude(void);
237 # endif
238
239 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
240 void exit_tasks_rcu_start(void);
241 void exit_tasks_rcu_stop(void);
242 void exit_tasks_rcu_finish(void);
243 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
244 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
245 #define rcu_tasks_qs(t, preempt) do { } while (0)
246 #define rcu_note_voluntary_context_switch(t) do { } while (0)
247 #define call_rcu_tasks call_rcu
248 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)249 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)250 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)251 static inline void exit_tasks_rcu_finish(void) { }
252 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
253
254 /**
255 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
256 *
257 * As an accident of implementation, an RCU Tasks Trace grace period also
258 * acts as an RCU grace period. However, this could change at any time.
259 * Code relying on this accident must call this function to verify that
260 * this accident is still happening.
261 *
262 * You have been warned!
263 */
rcu_trace_implies_rcu_gp(void)264 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
265
266 /**
267 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
268 *
269 * This macro resembles cond_resched(), except that it is defined to
270 * report potential quiescent states to RCU-tasks even if the cond_resched()
271 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
272 */
273 #define cond_resched_tasks_rcu_qs() \
274 do { \
275 rcu_tasks_qs(current, false); \
276 cond_resched(); \
277 } while (0)
278
279 /*
280 * Infrastructure to implement the synchronize_() primitives in
281 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
282 */
283
284 #if defined(CONFIG_TREE_RCU)
285 #include <linux/rcutree.h>
286 #elif defined(CONFIG_TINY_RCU)
287 #include <linux/rcutiny.h>
288 #else
289 #error "Unknown RCU implementation specified to kernel configuration"
290 #endif
291
292 /*
293 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
294 * are needed for dynamic initialization and destruction of rcu_head
295 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
296 * dynamic initialization and destruction of statically allocated rcu_head
297 * structures. However, rcu_head structures allocated dynamically in the
298 * heap don't need any initialization.
299 */
300 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
301 void init_rcu_head(struct rcu_head *head);
302 void destroy_rcu_head(struct rcu_head *head);
303 void init_rcu_head_on_stack(struct rcu_head *head);
304 void destroy_rcu_head_on_stack(struct rcu_head *head);
305 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)306 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)307 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)308 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)309 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
310 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
311
312 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
313 bool rcu_lockdep_current_cpu_online(void);
314 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)315 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
316 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
317
318 extern struct lockdep_map rcu_lock_map;
319 extern struct lockdep_map rcu_bh_lock_map;
320 extern struct lockdep_map rcu_sched_lock_map;
321 extern struct lockdep_map rcu_callback_map;
322
323 #ifdef CONFIG_DEBUG_LOCK_ALLOC
324
rcu_lock_acquire(struct lockdep_map * map)325 static inline void rcu_lock_acquire(struct lockdep_map *map)
326 {
327 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
328 }
329
rcu_lock_release(struct lockdep_map * map)330 static inline void rcu_lock_release(struct lockdep_map *map)
331 {
332 lock_release(map, _THIS_IP_);
333 }
334
335 int debug_lockdep_rcu_enabled(void);
336 int rcu_read_lock_held(void);
337 int rcu_read_lock_bh_held(void);
338 int rcu_read_lock_sched_held(void);
339 int rcu_read_lock_any_held(void);
340
341 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
342
343 # define rcu_lock_acquire(a) do { } while (0)
344 # define rcu_lock_release(a) do { } while (0)
345
rcu_read_lock_held(void)346 static inline int rcu_read_lock_held(void)
347 {
348 return 1;
349 }
350
rcu_read_lock_bh_held(void)351 static inline int rcu_read_lock_bh_held(void)
352 {
353 return 1;
354 }
355
rcu_read_lock_sched_held(void)356 static inline int rcu_read_lock_sched_held(void)
357 {
358 return !preemptible();
359 }
360
rcu_read_lock_any_held(void)361 static inline int rcu_read_lock_any_held(void)
362 {
363 return !preemptible();
364 }
365
debug_lockdep_rcu_enabled(void)366 static inline int debug_lockdep_rcu_enabled(void)
367 {
368 return 0;
369 }
370
371 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
372
373 #ifdef CONFIG_PROVE_RCU
374
375 /**
376 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
377 * @c: condition to check
378 * @s: informative message
379 *
380 * This checks debug_lockdep_rcu_enabled() before checking (c) to
381 * prevent early boot splats due to lockdep not yet being initialized,
382 * and rechecks it after checking (c) to prevent false-positive splats
383 * due to races with lockdep being disabled. See commit 3066820034b5dd
384 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
385 */
386 #define RCU_LOCKDEP_WARN(c, s) \
387 do { \
388 static bool __section(".data.unlikely") __warned; \
389 if (debug_lockdep_rcu_enabled() && (c) && \
390 debug_lockdep_rcu_enabled() && !__warned) { \
391 __warned = true; \
392 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
393 } \
394 } while (0)
395
396 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)397 static inline void rcu_preempt_sleep_check(void)
398 {
399 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
400 "Illegal context switch in RCU read-side critical section");
401 }
402 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)403 static inline void rcu_preempt_sleep_check(void) { }
404 #endif /* #else #ifdef CONFIG_PROVE_RCU */
405
406 #define rcu_sleep_check() \
407 do { \
408 rcu_preempt_sleep_check(); \
409 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
410 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
411 "Illegal context switch in RCU-bh read-side critical section"); \
412 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
413 "Illegal context switch in RCU-sched read-side critical section"); \
414 } while (0)
415
416 #else /* #ifdef CONFIG_PROVE_RCU */
417
418 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
419 #define rcu_sleep_check() do { } while (0)
420
421 #endif /* #else #ifdef CONFIG_PROVE_RCU */
422
423 /*
424 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
425 * and rcu_assign_pointer(). Some of these could be folded into their
426 * callers, but they are left separate in order to ease introduction of
427 * multiple pointers markings to match different RCU implementations
428 * (e.g., __srcu), should this make sense in the future.
429 */
430
431 #ifdef __CHECKER__
432 #define rcu_check_sparse(p, space) \
433 ((void)(((typeof(*p) space *)p) == p))
434 #else /* #ifdef __CHECKER__ */
435 #define rcu_check_sparse(p, space)
436 #endif /* #else #ifdef __CHECKER__ */
437
438 #define __unrcu_pointer(p, local) \
439 ({ \
440 typeof(*p) *local = (typeof(*p) *__force)(p); \
441 rcu_check_sparse(p, __rcu); \
442 ((typeof(*p) __force __kernel *)(local)); \
443 })
444 /**
445 * unrcu_pointer - mark a pointer as not being RCU protected
446 * @p: pointer needing to lose its __rcu property
447 *
448 * Converts @p from an __rcu pointer to a __kernel pointer.
449 * This allows an __rcu pointer to be used with xchg() and friends.
450 */
451 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
452
453 #define __rcu_access_pointer(p, local, space) \
454 ({ \
455 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
456 rcu_check_sparse(p, space); \
457 ((typeof(*p) __force __kernel *)(local)); \
458 })
459 #define __rcu_dereference_check(p, local, c, space) \
460 ({ \
461 /* Dependency order vs. p above. */ \
462 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
463 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
464 rcu_check_sparse(p, space); \
465 ((typeof(*p) __force __kernel *)(local)); \
466 })
467 #define __rcu_dereference_protected(p, local, c, space) \
468 ({ \
469 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
470 rcu_check_sparse(p, space); \
471 ((typeof(*p) __force __kernel *)(p)); \
472 })
473 #define __rcu_dereference_raw(p, local) \
474 ({ \
475 /* Dependency order vs. p above. */ \
476 typeof(p) local = READ_ONCE(p); \
477 ((typeof(*p) __force __kernel *)(local)); \
478 })
479 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
480
481 /**
482 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
483 * @v: The value to statically initialize with.
484 */
485 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
486
487 /**
488 * rcu_assign_pointer() - assign to RCU-protected pointer
489 * @p: pointer to assign to
490 * @v: value to assign (publish)
491 *
492 * Assigns the specified value to the specified RCU-protected
493 * pointer, ensuring that any concurrent RCU readers will see
494 * any prior initialization.
495 *
496 * Inserts memory barriers on architectures that require them
497 * (which is most of them), and also prevents the compiler from
498 * reordering the code that initializes the structure after the pointer
499 * assignment. More importantly, this call documents which pointers
500 * will be dereferenced by RCU read-side code.
501 *
502 * In some special cases, you may use RCU_INIT_POINTER() instead
503 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
504 * to the fact that it does not constrain either the CPU or the compiler.
505 * That said, using RCU_INIT_POINTER() when you should have used
506 * rcu_assign_pointer() is a very bad thing that results in
507 * impossible-to-diagnose memory corruption. So please be careful.
508 * See the RCU_INIT_POINTER() comment header for details.
509 *
510 * Note that rcu_assign_pointer() evaluates each of its arguments only
511 * once, appearances notwithstanding. One of the "extra" evaluations
512 * is in typeof() and the other visible only to sparse (__CHECKER__),
513 * neither of which actually execute the argument. As with most cpp
514 * macros, this execute-arguments-only-once property is important, so
515 * please be careful when making changes to rcu_assign_pointer() and the
516 * other macros that it invokes.
517 */
518 #define rcu_assign_pointer(p, v) \
519 do { \
520 uintptr_t _r_a_p__v = (uintptr_t)(v); \
521 rcu_check_sparse(p, __rcu); \
522 \
523 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
524 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
525 else \
526 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
527 } while (0)
528
529 /**
530 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
531 * @rcu_ptr: RCU pointer, whose old value is returned
532 * @ptr: regular pointer
533 * @c: the lockdep conditions under which the dereference will take place
534 *
535 * Perform a replacement, where @rcu_ptr is an RCU-annotated
536 * pointer and @c is the lockdep argument that is passed to the
537 * rcu_dereference_protected() call used to read that pointer. The old
538 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
539 */
540 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
541 ({ \
542 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
543 rcu_assign_pointer((rcu_ptr), (ptr)); \
544 __tmp; \
545 })
546
547 /**
548 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
549 * @p: The pointer to read
550 *
551 * Return the value of the specified RCU-protected pointer, but omit the
552 * lockdep checks for being in an RCU read-side critical section. This is
553 * useful when the value of this pointer is accessed, but the pointer is
554 * not dereferenced, for example, when testing an RCU-protected pointer
555 * against NULL. Although rcu_access_pointer() may also be used in cases
556 * where update-side locks prevent the value of the pointer from changing,
557 * you should instead use rcu_dereference_protected() for this use case.
558 * Within an RCU read-side critical section, there is little reason to
559 * use rcu_access_pointer().
560 *
561 * It is usually best to test the rcu_access_pointer() return value
562 * directly in order to avoid accidental dereferences being introduced
563 * by later inattentive changes. In other words, assigning the
564 * rcu_access_pointer() return value to a local variable results in an
565 * accident waiting to happen.
566 *
567 * It is also permissible to use rcu_access_pointer() when read-side
568 * access to the pointer was removed at least one grace period ago, as is
569 * the case in the context of the RCU callback that is freeing up the data,
570 * or after a synchronize_rcu() returns. This can be useful when tearing
571 * down multi-linked structures after a grace period has elapsed. However,
572 * rcu_dereference_protected() is normally preferred for this use case.
573 */
574 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
575
576 /**
577 * rcu_dereference_check() - rcu_dereference with debug checking
578 * @p: The pointer to read, prior to dereferencing
579 * @c: The conditions under which the dereference will take place
580 *
581 * Do an rcu_dereference(), but check that the conditions under which the
582 * dereference will take place are correct. Typically the conditions
583 * indicate the various locking conditions that should be held at that
584 * point. The check should return true if the conditions are satisfied.
585 * An implicit check for being in an RCU read-side critical section
586 * (rcu_read_lock()) is included.
587 *
588 * For example:
589 *
590 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
591 *
592 * could be used to indicate to lockdep that foo->bar may only be dereferenced
593 * if either rcu_read_lock() is held, or that the lock required to replace
594 * the bar struct at foo->bar is held.
595 *
596 * Note that the list of conditions may also include indications of when a lock
597 * need not be held, for example during initialisation or destruction of the
598 * target struct:
599 *
600 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
601 * atomic_read(&foo->usage) == 0);
602 *
603 * Inserts memory barriers on architectures that require them
604 * (currently only the Alpha), prevents the compiler from refetching
605 * (and from merging fetches), and, more importantly, documents exactly
606 * which pointers are protected by RCU and checks that the pointer is
607 * annotated as __rcu.
608 */
609 #define rcu_dereference_check(p, c) \
610 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
611 (c) || rcu_read_lock_held(), __rcu)
612
613 /**
614 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
615 * @p: The pointer to read, prior to dereferencing
616 * @c: The conditions under which the dereference will take place
617 *
618 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
619 * please note that starting in v5.0 kernels, vanilla RCU grace periods
620 * wait for local_bh_disable() regions of code in addition to regions of
621 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
622 * that synchronize_rcu(), call_rcu, and friends all take not only
623 * rcu_read_lock() but also rcu_read_lock_bh() into account.
624 */
625 #define rcu_dereference_bh_check(p, c) \
626 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
627 (c) || rcu_read_lock_bh_held(), __rcu)
628
629 /**
630 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
631 * @p: The pointer to read, prior to dereferencing
632 * @c: The conditions under which the dereference will take place
633 *
634 * This is the RCU-sched counterpart to rcu_dereference_check().
635 * However, please note that starting in v5.0 kernels, vanilla RCU grace
636 * periods wait for preempt_disable() regions of code in addition to
637 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
638 * This means that synchronize_rcu(), call_rcu, and friends all take not
639 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
640 */
641 #define rcu_dereference_sched_check(p, c) \
642 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
643 (c) || rcu_read_lock_sched_held(), \
644 __rcu)
645
646 /*
647 * The tracing infrastructure traces RCU (we want that), but unfortunately
648 * some of the RCU checks causes tracing to lock up the system.
649 *
650 * The no-tracing version of rcu_dereference_raw() must not call
651 * rcu_read_lock_held().
652 */
653 #define rcu_dereference_raw_check(p) \
654 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
655
656 /**
657 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
658 * @p: The pointer to read, prior to dereferencing
659 * @c: The conditions under which the dereference will take place
660 *
661 * Return the value of the specified RCU-protected pointer, but omit
662 * the READ_ONCE(). This is useful in cases where update-side locks
663 * prevent the value of the pointer from changing. Please note that this
664 * primitive does *not* prevent the compiler from repeating this reference
665 * or combining it with other references, so it should not be used without
666 * protection of appropriate locks.
667 *
668 * This function is only for update-side use. Using this function
669 * when protected only by rcu_read_lock() will result in infrequent
670 * but very ugly failures.
671 */
672 #define rcu_dereference_protected(p, c) \
673 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
674
675
676 /**
677 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
678 * @p: The pointer to read, prior to dereferencing
679 *
680 * This is a simple wrapper around rcu_dereference_check().
681 */
682 #define rcu_dereference(p) rcu_dereference_check(p, 0)
683
684 /**
685 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
686 * @p: The pointer to read, prior to dereferencing
687 *
688 * Makes rcu_dereference_check() do the dirty work.
689 */
690 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
691
692 /**
693 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
694 * @p: The pointer to read, prior to dereferencing
695 *
696 * Makes rcu_dereference_check() do the dirty work.
697 */
698 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
699
700 /**
701 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
702 * @p: The pointer to hand off
703 *
704 * This is simply an identity function, but it documents where a pointer
705 * is handed off from RCU to some other synchronization mechanism, for
706 * example, reference counting or locking. In C11, it would map to
707 * kill_dependency(). It could be used as follows::
708 *
709 * rcu_read_lock();
710 * p = rcu_dereference(gp);
711 * long_lived = is_long_lived(p);
712 * if (long_lived) {
713 * if (!atomic_inc_not_zero(p->refcnt))
714 * long_lived = false;
715 * else
716 * p = rcu_pointer_handoff(p);
717 * }
718 * rcu_read_unlock();
719 */
720 #define rcu_pointer_handoff(p) (p)
721
722 /**
723 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
724 *
725 * When synchronize_rcu() is invoked on one CPU while other CPUs
726 * are within RCU read-side critical sections, then the
727 * synchronize_rcu() is guaranteed to block until after all the other
728 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
729 * on one CPU while other CPUs are within RCU read-side critical
730 * sections, invocation of the corresponding RCU callback is deferred
731 * until after the all the other CPUs exit their critical sections.
732 *
733 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
734 * wait for regions of code with preemption disabled, including regions of
735 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
736 * define synchronize_sched(), only code enclosed within rcu_read_lock()
737 * and rcu_read_unlock() are guaranteed to be waited for.
738 *
739 * Note, however, that RCU callbacks are permitted to run concurrently
740 * with new RCU read-side critical sections. One way that this can happen
741 * is via the following sequence of events: (1) CPU 0 enters an RCU
742 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
743 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
744 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
745 * callback is invoked. This is legal, because the RCU read-side critical
746 * section that was running concurrently with the call_rcu() (and which
747 * therefore might be referencing something that the corresponding RCU
748 * callback would free up) has completed before the corresponding
749 * RCU callback is invoked.
750 *
751 * RCU read-side critical sections may be nested. Any deferred actions
752 * will be deferred until the outermost RCU read-side critical section
753 * completes.
754 *
755 * You can avoid reading and understanding the next paragraph by
756 * following this rule: don't put anything in an rcu_read_lock() RCU
757 * read-side critical section that would block in a !PREEMPTION kernel.
758 * But if you want the full story, read on!
759 *
760 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
761 * it is illegal to block while in an RCU read-side critical section.
762 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
763 * kernel builds, RCU read-side critical sections may be preempted,
764 * but explicit blocking is illegal. Finally, in preemptible RCU
765 * implementations in real-time (with -rt patchset) kernel builds, RCU
766 * read-side critical sections may be preempted and they may also block, but
767 * only when acquiring spinlocks that are subject to priority inheritance.
768 */
rcu_read_lock(void)769 static __always_inline void rcu_read_lock(void)
770 {
771 __rcu_read_lock();
772 __acquire(RCU);
773 rcu_lock_acquire(&rcu_lock_map);
774 RCU_LOCKDEP_WARN(!rcu_is_watching(),
775 "rcu_read_lock() used illegally while idle");
776 }
777
778 /*
779 * So where is rcu_write_lock()? It does not exist, as there is no
780 * way for writers to lock out RCU readers. This is a feature, not
781 * a bug -- this property is what provides RCU's performance benefits.
782 * Of course, writers must coordinate with each other. The normal
783 * spinlock primitives work well for this, but any other technique may be
784 * used as well. RCU does not care how the writers keep out of each
785 * others' way, as long as they do so.
786 */
787
788 /**
789 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
790 *
791 * In almost all situations, rcu_read_unlock() is immune from deadlock.
792 * In recent kernels that have consolidated synchronize_sched() and
793 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
794 * also extends to the scheduler's runqueue and priority-inheritance
795 * spinlocks, courtesy of the quiescent-state deferral that is carried
796 * out when rcu_read_unlock() is invoked with interrupts disabled.
797 *
798 * See rcu_read_lock() for more information.
799 */
rcu_read_unlock(void)800 static inline void rcu_read_unlock(void)
801 {
802 RCU_LOCKDEP_WARN(!rcu_is_watching(),
803 "rcu_read_unlock() used illegally while idle");
804 __release(RCU);
805 __rcu_read_unlock();
806 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
807 }
808
809 /**
810 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
811 *
812 * This is equivalent to rcu_read_lock(), but also disables softirqs.
813 * Note that anything else that disables softirqs can also serve as an RCU
814 * read-side critical section. However, please note that this equivalence
815 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
816 * rcu_read_lock_bh() were unrelated.
817 *
818 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
819 * must occur in the same context, for example, it is illegal to invoke
820 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
821 * was invoked from some other task.
822 */
rcu_read_lock_bh(void)823 static inline void rcu_read_lock_bh(void)
824 {
825 local_bh_disable();
826 __acquire(RCU_BH);
827 rcu_lock_acquire(&rcu_bh_lock_map);
828 RCU_LOCKDEP_WARN(!rcu_is_watching(),
829 "rcu_read_lock_bh() used illegally while idle");
830 }
831
832 /**
833 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
834 *
835 * See rcu_read_lock_bh() for more information.
836 */
rcu_read_unlock_bh(void)837 static inline void rcu_read_unlock_bh(void)
838 {
839 RCU_LOCKDEP_WARN(!rcu_is_watching(),
840 "rcu_read_unlock_bh() used illegally while idle");
841 rcu_lock_release(&rcu_bh_lock_map);
842 __release(RCU_BH);
843 local_bh_enable();
844 }
845
846 /**
847 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
848 *
849 * This is equivalent to rcu_read_lock(), but also disables preemption.
850 * Read-side critical sections can also be introduced by anything else that
851 * disables preemption, including local_irq_disable() and friends. However,
852 * please note that the equivalence to rcu_read_lock() applies only to
853 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
854 * were unrelated.
855 *
856 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
857 * must occur in the same context, for example, it is illegal to invoke
858 * rcu_read_unlock_sched() from process context if the matching
859 * rcu_read_lock_sched() was invoked from an NMI handler.
860 */
rcu_read_lock_sched(void)861 static inline void rcu_read_lock_sched(void)
862 {
863 preempt_disable();
864 __acquire(RCU_SCHED);
865 rcu_lock_acquire(&rcu_sched_lock_map);
866 RCU_LOCKDEP_WARN(!rcu_is_watching(),
867 "rcu_read_lock_sched() used illegally while idle");
868 }
869
870 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)871 static inline notrace void rcu_read_lock_sched_notrace(void)
872 {
873 preempt_disable_notrace();
874 __acquire(RCU_SCHED);
875 }
876
877 /**
878 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
879 *
880 * See rcu_read_lock_sched() for more information.
881 */
rcu_read_unlock_sched(void)882 static inline void rcu_read_unlock_sched(void)
883 {
884 RCU_LOCKDEP_WARN(!rcu_is_watching(),
885 "rcu_read_unlock_sched() used illegally while idle");
886 rcu_lock_release(&rcu_sched_lock_map);
887 __release(RCU_SCHED);
888 preempt_enable();
889 }
890
891 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)892 static inline notrace void rcu_read_unlock_sched_notrace(void)
893 {
894 __release(RCU_SCHED);
895 preempt_enable_notrace();
896 }
897
898 /**
899 * RCU_INIT_POINTER() - initialize an RCU protected pointer
900 * @p: The pointer to be initialized.
901 * @v: The value to initialized the pointer to.
902 *
903 * Initialize an RCU-protected pointer in special cases where readers
904 * do not need ordering constraints on the CPU or the compiler. These
905 * special cases are:
906 *
907 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
908 * 2. The caller has taken whatever steps are required to prevent
909 * RCU readers from concurrently accessing this pointer *or*
910 * 3. The referenced data structure has already been exposed to
911 * readers either at compile time or via rcu_assign_pointer() *and*
912 *
913 * a. You have not made *any* reader-visible changes to
914 * this structure since then *or*
915 * b. It is OK for readers accessing this structure from its
916 * new location to see the old state of the structure. (For
917 * example, the changes were to statistical counters or to
918 * other state where exact synchronization is not required.)
919 *
920 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
921 * result in impossible-to-diagnose memory corruption. As in the structures
922 * will look OK in crash dumps, but any concurrent RCU readers might
923 * see pre-initialized values of the referenced data structure. So
924 * please be very careful how you use RCU_INIT_POINTER()!!!
925 *
926 * If you are creating an RCU-protected linked structure that is accessed
927 * by a single external-to-structure RCU-protected pointer, then you may
928 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
929 * pointers, but you must use rcu_assign_pointer() to initialize the
930 * external-to-structure pointer *after* you have completely initialized
931 * the reader-accessible portions of the linked structure.
932 *
933 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
934 * ordering guarantees for either the CPU or the compiler.
935 */
936 #define RCU_INIT_POINTER(p, v) \
937 do { \
938 rcu_check_sparse(p, __rcu); \
939 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
940 } while (0)
941
942 /**
943 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
944 * @p: The pointer to be initialized.
945 * @v: The value to initialized the pointer to.
946 *
947 * GCC-style initialization for an RCU-protected pointer in a structure field.
948 */
949 #define RCU_POINTER_INITIALIZER(p, v) \
950 .p = RCU_INITIALIZER(v)
951
952 /*
953 * Does the specified offset indicate that the corresponding rcu_head
954 * structure can be handled by kvfree_rcu()?
955 */
956 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
957
958 /**
959 * kfree_rcu() - kfree an object after a grace period.
960 * @ptr: pointer to kfree for both single- and double-argument invocations.
961 * @rhf: the name of the struct rcu_head within the type of @ptr,
962 * but only for double-argument invocations.
963 *
964 * Many rcu callbacks functions just call kfree() on the base structure.
965 * These functions are trivial, but their size adds up, and furthermore
966 * when they are used in a kernel module, that module must invoke the
967 * high-latency rcu_barrier() function at module-unload time.
968 *
969 * The kfree_rcu() function handles this issue. Rather than encoding a
970 * function address in the embedded rcu_head structure, kfree_rcu() instead
971 * encodes the offset of the rcu_head structure within the base structure.
972 * Because the functions are not allowed in the low-order 4096 bytes of
973 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
974 * If the offset is larger than 4095 bytes, a compile-time error will
975 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
976 * either fall back to use of call_rcu() or rearrange the structure to
977 * position the rcu_head structure into the first 4096 bytes.
978 *
979 * Note that the allowable offset might decrease in the future, for example,
980 * to allow something like kmem_cache_free_rcu().
981 *
982 * The BUILD_BUG_ON check must not involve any function calls, hence the
983 * checks are done in macros here.
984 */
985 #define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
986
987 /**
988 * kvfree_rcu() - kvfree an object after a grace period.
989 *
990 * This macro consists of one or two arguments and it is
991 * based on whether an object is head-less or not. If it
992 * has a head then a semantic stays the same as it used
993 * to be before:
994 *
995 * kvfree_rcu(ptr, rhf);
996 *
997 * where @ptr is a pointer to kvfree(), @rhf is the name
998 * of the rcu_head structure within the type of @ptr.
999 *
1000 * When it comes to head-less variant, only one argument
1001 * is passed and that is just a pointer which has to be
1002 * freed after a grace period. Therefore the semantic is
1003 *
1004 * kvfree_rcu(ptr);
1005 *
1006 * where @ptr is the pointer to be freed by kvfree().
1007 *
1008 * Please note, head-less way of freeing is permitted to
1009 * use from a context that has to follow might_sleep()
1010 * annotation. Otherwise, please switch and embed the
1011 * rcu_head structure within the type of @ptr.
1012 */
1013 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \
1014 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
1015
1016 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1017 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_mightsleep(ptr)
1018
1019 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
1020 #define kvfree_rcu_arg_2(ptr, rhf) \
1021 do { \
1022 typeof (ptr) ___p = (ptr); \
1023 \
1024 if (___p) { \
1025 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
1026 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \
1027 } \
1028 } while (0)
1029
1030 #define kvfree_rcu_arg_1(ptr) \
1031 do { \
1032 typeof(ptr) ___p = (ptr); \
1033 \
1034 if (___p) \
1035 kvfree_call_rcu(NULL, (void *) (___p)); \
1036 } while (0)
1037
1038 /*
1039 * Place this after a lock-acquisition primitive to guarantee that
1040 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1041 * if the UNLOCK and LOCK are executed by the same CPU or if the
1042 * UNLOCK and LOCK operate on the same lock variable.
1043 */
1044 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1045 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1046 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1047 #define smp_mb__after_unlock_lock() do { } while (0)
1048 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1049
1050
1051 /* Has the specified rcu_head structure been handed to call_rcu()? */
1052
1053 /**
1054 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1055 * @rhp: The rcu_head structure to initialize.
1056 *
1057 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1058 * given rcu_head structure has already been passed to call_rcu(), then
1059 * you must also invoke this rcu_head_init() function on it just after
1060 * allocating that structure. Calls to this function must not race with
1061 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1062 */
rcu_head_init(struct rcu_head * rhp)1063 static inline void rcu_head_init(struct rcu_head *rhp)
1064 {
1065 rhp->func = (rcu_callback_t)~0L;
1066 }
1067
1068 /**
1069 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1070 * @rhp: The rcu_head structure to test.
1071 * @f: The function passed to call_rcu() along with @rhp.
1072 *
1073 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1074 * and @false otherwise. Emits a warning in any other case, including
1075 * the case where @rhp has already been invoked after a grace period.
1076 * Calls to this function must not race with callback invocation. One way
1077 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1078 * in an RCU read-side critical section that includes a read-side fetch
1079 * of the pointer to the structure containing @rhp.
1080 */
1081 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1082 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1083 {
1084 rcu_callback_t func = READ_ONCE(rhp->func);
1085
1086 if (func == f)
1087 return true;
1088 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1089 return false;
1090 }
1091
1092 /* kernel/ksysfs.c definitions */
1093 extern int rcu_expedited;
1094 extern int rcu_normal;
1095
1096 #endif /* __LINUX_RCUPDATE_H */
1097