1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 bool inprogress;
42
43 do {
44 unsigned long flags;
45
46 /*
47 * Wait until we're out of the critical section. This might
48 * give the wrong answer due to the lack of memory barriers.
49 */
50 while (irqd_irq_inprogress(&desc->irq_data))
51 cpu_relax();
52
53 /* Ok, that indicated we're done: double-check carefully. */
54 raw_spin_lock_irqsave(&desc->lock, flags);
55 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57 /*
58 * If requested and supported, check at the chip whether it
59 * is in flight at the hardware level, i.e. already pending
60 * in a CPU and waiting for service and acknowledge.
61 */
62 if (!inprogress && sync_chip) {
63 /*
64 * Ignore the return code. inprogress is only updated
65 * when the chip supports it.
66 */
67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 &inprogress);
69 }
70 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72 /* Oops, that failed? */
73 } while (inprogress);
74 }
75
76 /**
77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 * @irq: interrupt number to wait for
79 *
80 * This function waits for any pending hard IRQ handlers for this
81 * interrupt to complete before returning. If you use this
82 * function while holding a resource the IRQ handler may need you
83 * will deadlock. It does not take associated threaded handlers
84 * into account.
85 *
86 * Do not use this for shutdown scenarios where you must be sure
87 * that all parts (hardirq and threaded handler) have completed.
88 *
89 * Returns: false if a threaded handler is active.
90 *
91 * This function may be called - with care - from IRQ context.
92 *
93 * It does not check whether there is an interrupt in flight at the
94 * hardware level, but not serviced yet, as this might deadlock when
95 * called with interrupts disabled and the target CPU of the interrupt
96 * is the current CPU.
97 */
synchronize_hardirq(unsigned int irq)98 bool synchronize_hardirq(unsigned int irq)
99 {
100 struct irq_desc *desc = irq_to_desc(irq);
101
102 if (desc) {
103 __synchronize_hardirq(desc, false);
104 return !atomic_read(&desc->threads_active);
105 }
106
107 return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113 * @irq: interrupt number to wait for
114 *
115 * This function waits for any pending IRQ handlers for this interrupt
116 * to complete before returning. If you use this function while
117 * holding a resource the IRQ handler may need you will deadlock.
118 *
119 * Can only be called from preemptible code as it might sleep when
120 * an interrupt thread is associated to @irq.
121 *
122 * It optionally makes sure (when the irq chip supports that method)
123 * that the interrupt is not pending in any CPU and waiting for
124 * service.
125 */
synchronize_irq(unsigned int irq)126 void synchronize_irq(unsigned int irq)
127 {
128 struct irq_desc *desc = irq_to_desc(irq);
129
130 if (desc) {
131 __synchronize_hardirq(desc, true);
132 /*
133 * We made sure that no hardirq handler is
134 * running. Now verify that no threaded handlers are
135 * active.
136 */
137 wait_event(desc->wait_for_threads,
138 !atomic_read(&desc->threads_active));
139 }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
__irq_can_set_affinity(struct irq_desc * desc)146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 return false;
151 return true;
152 }
153
154 /**
155 * irq_can_set_affinity - Check if the affinity of a given irq can be set
156 * @irq: Interrupt to check
157 *
158 */
irq_can_set_affinity(unsigned int irq)159 int irq_can_set_affinity(unsigned int irq)
160 {
161 return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166 * @irq: Interrupt to check
167 *
168 * Like irq_can_set_affinity() above, but additionally checks for the
169 * AFFINITY_MANAGED flag.
170 */
irq_can_set_affinity_usr(unsigned int irq)171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 struct irq_desc *desc = irq_to_desc(irq);
174
175 return __irq_can_set_affinity(desc) &&
176 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180 * irq_set_thread_affinity - Notify irq threads to adjust affinity
181 * @desc: irq descriptor which has affinity changed
182 *
183 * We just set IRQTF_AFFINITY and delegate the affinity setting
184 * to the interrupt thread itself. We can not call
185 * set_cpus_allowed_ptr() here as we hold desc->lock and this
186 * code can be called from hard interrupt context.
187 */
irq_set_thread_affinity(struct irq_desc * desc)188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 struct irqaction *action;
191
192 for_each_action_of_desc(desc, action)
193 if (action->thread)
194 set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201 struct irq_chip *chip = irq_data_get_irq_chip(data);
202
203 if (!cpumask_empty(m))
204 return;
205 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206 chip->name, data->irq);
207 }
208 #else
irq_validate_effective_affinity(struct irq_data * data)209 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
210 #endif
211
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)212 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
213 bool force)
214 {
215 struct irq_desc *desc = irq_data_to_desc(data);
216 struct irq_chip *chip = irq_data_get_irq_chip(data);
217 const struct cpumask *prog_mask;
218 int ret;
219
220 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
221 static struct cpumask tmp_mask;
222
223 if (!chip || !chip->irq_set_affinity)
224 return -EINVAL;
225
226 raw_spin_lock(&tmp_mask_lock);
227 /*
228 * If this is a managed interrupt and housekeeping is enabled on
229 * it check whether the requested affinity mask intersects with
230 * a housekeeping CPU. If so, then remove the isolated CPUs from
231 * the mask and just keep the housekeeping CPU(s). This prevents
232 * the affinity setter from routing the interrupt to an isolated
233 * CPU to avoid that I/O submitted from a housekeeping CPU causes
234 * interrupts on an isolated one.
235 *
236 * If the masks do not intersect or include online CPU(s) then
237 * keep the requested mask. The isolated target CPUs are only
238 * receiving interrupts when the I/O operation was submitted
239 * directly from them.
240 *
241 * If all housekeeping CPUs in the affinity mask are offline, the
242 * interrupt will be migrated by the CPU hotplug code once a
243 * housekeeping CPU which belongs to the affinity mask comes
244 * online.
245 */
246 if (irqd_affinity_is_managed(data) &&
247 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
248 const struct cpumask *hk_mask;
249
250 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
251
252 cpumask_and(&tmp_mask, mask, hk_mask);
253 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
254 prog_mask = mask;
255 else
256 prog_mask = &tmp_mask;
257 } else {
258 prog_mask = mask;
259 }
260
261 /*
262 * Make sure we only provide online CPUs to the irqchip,
263 * unless we are being asked to force the affinity (in which
264 * case we do as we are told).
265 */
266 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
267 if (!force && !cpumask_empty(&tmp_mask))
268 ret = chip->irq_set_affinity(data, &tmp_mask, force);
269 else if (force)
270 ret = chip->irq_set_affinity(data, mask, force);
271 else
272 ret = -EINVAL;
273
274 raw_spin_unlock(&tmp_mask_lock);
275
276 switch (ret) {
277 case IRQ_SET_MASK_OK:
278 case IRQ_SET_MASK_OK_DONE:
279 cpumask_copy(desc->irq_common_data.affinity, mask);
280 fallthrough;
281 case IRQ_SET_MASK_OK_NOCOPY:
282 irq_validate_effective_affinity(data);
283 irq_set_thread_affinity(desc);
284 ret = 0;
285 }
286
287 return ret;
288 }
289
290 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)291 static inline int irq_set_affinity_pending(struct irq_data *data,
292 const struct cpumask *dest)
293 {
294 struct irq_desc *desc = irq_data_to_desc(data);
295
296 irqd_set_move_pending(data);
297 irq_copy_pending(desc, dest);
298 return 0;
299 }
300 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)301 static inline int irq_set_affinity_pending(struct irq_data *data,
302 const struct cpumask *dest)
303 {
304 return -EBUSY;
305 }
306 #endif
307
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)308 static int irq_try_set_affinity(struct irq_data *data,
309 const struct cpumask *dest, bool force)
310 {
311 int ret = irq_do_set_affinity(data, dest, force);
312
313 /*
314 * In case that the underlying vector management is busy and the
315 * architecture supports the generic pending mechanism then utilize
316 * this to avoid returning an error to user space.
317 */
318 if (ret == -EBUSY && !force)
319 ret = irq_set_affinity_pending(data, dest);
320 return ret;
321 }
322
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask)323 static bool irq_set_affinity_deactivated(struct irq_data *data,
324 const struct cpumask *mask)
325 {
326 struct irq_desc *desc = irq_data_to_desc(data);
327
328 /*
329 * Handle irq chips which can handle affinity only in activated
330 * state correctly
331 *
332 * If the interrupt is not yet activated, just store the affinity
333 * mask and do not call the chip driver at all. On activation the
334 * driver has to make sure anyway that the interrupt is in a
335 * usable state so startup works.
336 */
337 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
338 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
339 return false;
340
341 cpumask_copy(desc->irq_common_data.affinity, mask);
342 irq_data_update_effective_affinity(data, mask);
343 irqd_set(data, IRQD_AFFINITY_SET);
344 return true;
345 }
346
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)347 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
348 bool force)
349 {
350 struct irq_chip *chip = irq_data_get_irq_chip(data);
351 struct irq_desc *desc = irq_data_to_desc(data);
352 int ret = 0;
353
354 if (!chip || !chip->irq_set_affinity)
355 return -EINVAL;
356
357 if (irq_set_affinity_deactivated(data, mask))
358 return 0;
359
360 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
361 ret = irq_try_set_affinity(data, mask, force);
362 } else {
363 irqd_set_move_pending(data);
364 irq_copy_pending(desc, mask);
365 }
366
367 if (desc->affinity_notify) {
368 kref_get(&desc->affinity_notify->kref);
369 if (!schedule_work(&desc->affinity_notify->work)) {
370 /* Work was already scheduled, drop our extra ref */
371 kref_put(&desc->affinity_notify->kref,
372 desc->affinity_notify->release);
373 }
374 }
375 irqd_set(data, IRQD_AFFINITY_SET);
376
377 return ret;
378 }
379
380 /**
381 * irq_update_affinity_desc - Update affinity management for an interrupt
382 * @irq: The interrupt number to update
383 * @affinity: Pointer to the affinity descriptor
384 *
385 * This interface can be used to configure the affinity management of
386 * interrupts which have been allocated already.
387 *
388 * There are certain limitations on when it may be used - attempts to use it
389 * for when the kernel is configured for generic IRQ reservation mode (in
390 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
391 * managed/non-managed interrupt accounting. In addition, attempts to use it on
392 * an interrupt which is already started or which has already been configured
393 * as managed will also fail, as these mean invalid init state or double init.
394 */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)395 int irq_update_affinity_desc(unsigned int irq,
396 struct irq_affinity_desc *affinity)
397 {
398 struct irq_desc *desc;
399 unsigned long flags;
400 bool activated;
401 int ret = 0;
402
403 /*
404 * Supporting this with the reservation scheme used by x86 needs
405 * some more thought. Fail it for now.
406 */
407 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
408 return -EOPNOTSUPP;
409
410 desc = irq_get_desc_buslock(irq, &flags, 0);
411 if (!desc)
412 return -EINVAL;
413
414 /* Requires the interrupt to be shut down */
415 if (irqd_is_started(&desc->irq_data)) {
416 ret = -EBUSY;
417 goto out_unlock;
418 }
419
420 /* Interrupts which are already managed cannot be modified */
421 if (irqd_affinity_is_managed(&desc->irq_data)) {
422 ret = -EBUSY;
423 goto out_unlock;
424 }
425
426 /*
427 * Deactivate the interrupt. That's required to undo
428 * anything an earlier activation has established.
429 */
430 activated = irqd_is_activated(&desc->irq_data);
431 if (activated)
432 irq_domain_deactivate_irq(&desc->irq_data);
433
434 if (affinity->is_managed) {
435 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
436 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
437 }
438
439 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
440
441 /* Restore the activation state */
442 if (activated)
443 irq_domain_activate_irq(&desc->irq_data, false);
444
445 out_unlock:
446 irq_put_desc_busunlock(desc, flags);
447 return ret;
448 }
449
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)450 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
451 bool force)
452 {
453 struct irq_desc *desc = irq_to_desc(irq);
454 unsigned long flags;
455 int ret;
456
457 if (!desc)
458 return -EINVAL;
459
460 raw_spin_lock_irqsave(&desc->lock, flags);
461 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
462 raw_spin_unlock_irqrestore(&desc->lock, flags);
463 return ret;
464 }
465
466 /**
467 * irq_set_affinity - Set the irq affinity of a given irq
468 * @irq: Interrupt to set affinity
469 * @cpumask: cpumask
470 *
471 * Fails if cpumask does not contain an online CPU
472 */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)473 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
474 {
475 return __irq_set_affinity(irq, cpumask, false);
476 }
477 EXPORT_SYMBOL_GPL(irq_set_affinity);
478
479 /**
480 * irq_force_affinity - Force the irq affinity of a given irq
481 * @irq: Interrupt to set affinity
482 * @cpumask: cpumask
483 *
484 * Same as irq_set_affinity, but without checking the mask against
485 * online cpus.
486 *
487 * Solely for low level cpu hotplug code, where we need to make per
488 * cpu interrupts affine before the cpu becomes online.
489 */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)490 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
491 {
492 return __irq_set_affinity(irq, cpumask, true);
493 }
494 EXPORT_SYMBOL_GPL(irq_force_affinity);
495
__irq_apply_affinity_hint(unsigned int irq,const struct cpumask * m,bool setaffinity)496 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
497 bool setaffinity)
498 {
499 unsigned long flags;
500 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
501
502 if (!desc)
503 return -EINVAL;
504 desc->affinity_hint = m;
505 irq_put_desc_unlock(desc, flags);
506 if (m && setaffinity)
507 __irq_set_affinity(irq, m, false);
508 return 0;
509 }
510 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
511
irq_affinity_notify(struct work_struct * work)512 static void irq_affinity_notify(struct work_struct *work)
513 {
514 struct irq_affinity_notify *notify =
515 container_of(work, struct irq_affinity_notify, work);
516 struct irq_desc *desc = irq_to_desc(notify->irq);
517 cpumask_var_t cpumask;
518 unsigned long flags;
519
520 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
521 goto out;
522
523 raw_spin_lock_irqsave(&desc->lock, flags);
524 if (irq_move_pending(&desc->irq_data))
525 irq_get_pending(cpumask, desc);
526 else
527 cpumask_copy(cpumask, desc->irq_common_data.affinity);
528 raw_spin_unlock_irqrestore(&desc->lock, flags);
529
530 notify->notify(notify, cpumask);
531
532 free_cpumask_var(cpumask);
533 out:
534 kref_put(¬ify->kref, notify->release);
535 }
536
537 /**
538 * irq_set_affinity_notifier - control notification of IRQ affinity changes
539 * @irq: Interrupt for which to enable/disable notification
540 * @notify: Context for notification, or %NULL to disable
541 * notification. Function pointers must be initialised;
542 * the other fields will be initialised by this function.
543 *
544 * Must be called in process context. Notification may only be enabled
545 * after the IRQ is allocated and must be disabled before the IRQ is
546 * freed using free_irq().
547 */
548 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)549 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
550 {
551 struct irq_desc *desc = irq_to_desc(irq);
552 struct irq_affinity_notify *old_notify;
553 unsigned long flags;
554
555 /* The release function is promised process context */
556 might_sleep();
557
558 if (!desc || desc->istate & IRQS_NMI)
559 return -EINVAL;
560
561 /* Complete initialisation of *notify */
562 if (notify) {
563 notify->irq = irq;
564 kref_init(¬ify->kref);
565 INIT_WORK(¬ify->work, irq_affinity_notify);
566 }
567
568 raw_spin_lock_irqsave(&desc->lock, flags);
569 old_notify = desc->affinity_notify;
570 desc->affinity_notify = notify;
571 raw_spin_unlock_irqrestore(&desc->lock, flags);
572
573 if (old_notify) {
574 if (cancel_work_sync(&old_notify->work)) {
575 /* Pending work had a ref, put that one too */
576 kref_put(&old_notify->kref, old_notify->release);
577 }
578 kref_put(&old_notify->kref, old_notify->release);
579 }
580
581 return 0;
582 }
583 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
584
585 #ifndef CONFIG_AUTO_IRQ_AFFINITY
586 /*
587 * Generic version of the affinity autoselector.
588 */
irq_setup_affinity(struct irq_desc * desc)589 int irq_setup_affinity(struct irq_desc *desc)
590 {
591 struct cpumask *set = irq_default_affinity;
592 int ret, node = irq_desc_get_node(desc);
593 static DEFINE_RAW_SPINLOCK(mask_lock);
594 static struct cpumask mask;
595
596 /* Excludes PER_CPU and NO_BALANCE interrupts */
597 if (!__irq_can_set_affinity(desc))
598 return 0;
599
600 raw_spin_lock(&mask_lock);
601 /*
602 * Preserve the managed affinity setting and a userspace affinity
603 * setup, but make sure that one of the targets is online.
604 */
605 if (irqd_affinity_is_managed(&desc->irq_data) ||
606 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
607 if (cpumask_intersects(desc->irq_common_data.affinity,
608 cpu_online_mask))
609 set = desc->irq_common_data.affinity;
610 else
611 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
612 }
613
614 cpumask_and(&mask, cpu_online_mask, set);
615 if (cpumask_empty(&mask))
616 cpumask_copy(&mask, cpu_online_mask);
617
618 if (node != NUMA_NO_NODE) {
619 const struct cpumask *nodemask = cpumask_of_node(node);
620
621 /* make sure at least one of the cpus in nodemask is online */
622 if (cpumask_intersects(&mask, nodemask))
623 cpumask_and(&mask, &mask, nodemask);
624 }
625 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
626 raw_spin_unlock(&mask_lock);
627 return ret;
628 }
629 #else
630 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)631 int irq_setup_affinity(struct irq_desc *desc)
632 {
633 return irq_select_affinity(irq_desc_get_irq(desc));
634 }
635 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
636 #endif /* CONFIG_SMP */
637
638
639 /**
640 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
641 * @irq: interrupt number to set affinity
642 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
643 * specific data for percpu_devid interrupts
644 *
645 * This function uses the vCPU specific data to set the vCPU
646 * affinity for an irq. The vCPU specific data is passed from
647 * outside, such as KVM. One example code path is as below:
648 * KVM -> IOMMU -> irq_set_vcpu_affinity().
649 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)650 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
651 {
652 unsigned long flags;
653 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
654 struct irq_data *data;
655 struct irq_chip *chip;
656 int ret = -ENOSYS;
657
658 if (!desc)
659 return -EINVAL;
660
661 data = irq_desc_get_irq_data(desc);
662 do {
663 chip = irq_data_get_irq_chip(data);
664 if (chip && chip->irq_set_vcpu_affinity)
665 break;
666 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
667 data = data->parent_data;
668 #else
669 data = NULL;
670 #endif
671 } while (data);
672
673 if (data)
674 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
675 irq_put_desc_unlock(desc, flags);
676
677 return ret;
678 }
679 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
680
__disable_irq(struct irq_desc * desc)681 void __disable_irq(struct irq_desc *desc)
682 {
683 if (!desc->depth++)
684 irq_disable(desc);
685 }
686
__disable_irq_nosync(unsigned int irq)687 static int __disable_irq_nosync(unsigned int irq)
688 {
689 unsigned long flags;
690 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
691
692 if (!desc)
693 return -EINVAL;
694 __disable_irq(desc);
695 irq_put_desc_busunlock(desc, flags);
696 return 0;
697 }
698
699 /**
700 * disable_irq_nosync - disable an irq without waiting
701 * @irq: Interrupt to disable
702 *
703 * Disable the selected interrupt line. Disables and Enables are
704 * nested.
705 * Unlike disable_irq(), this function does not ensure existing
706 * instances of the IRQ handler have completed before returning.
707 *
708 * This function may be called from IRQ context.
709 */
disable_irq_nosync(unsigned int irq)710 void disable_irq_nosync(unsigned int irq)
711 {
712 __disable_irq_nosync(irq);
713 }
714 EXPORT_SYMBOL(disable_irq_nosync);
715
716 /**
717 * disable_irq - disable an irq and wait for completion
718 * @irq: Interrupt to disable
719 *
720 * Disable the selected interrupt line. Enables and Disables are
721 * nested.
722 * This function waits for any pending IRQ handlers for this interrupt
723 * to complete before returning. If you use this function while
724 * holding a resource the IRQ handler may need you will deadlock.
725 *
726 * Can only be called from preemptible code as it might sleep when
727 * an interrupt thread is associated to @irq.
728 *
729 */
disable_irq(unsigned int irq)730 void disable_irq(unsigned int irq)
731 {
732 might_sleep();
733 if (!__disable_irq_nosync(irq))
734 synchronize_irq(irq);
735 }
736 EXPORT_SYMBOL(disable_irq);
737
738 /**
739 * disable_hardirq - disables an irq and waits for hardirq completion
740 * @irq: Interrupt to disable
741 *
742 * Disable the selected interrupt line. Enables and Disables are
743 * nested.
744 * This function waits for any pending hard IRQ handlers for this
745 * interrupt to complete before returning. If you use this function while
746 * holding a resource the hard IRQ handler may need you will deadlock.
747 *
748 * When used to optimistically disable an interrupt from atomic context
749 * the return value must be checked.
750 *
751 * Returns: false if a threaded handler is active.
752 *
753 * This function may be called - with care - from IRQ context.
754 */
disable_hardirq(unsigned int irq)755 bool disable_hardirq(unsigned int irq)
756 {
757 if (!__disable_irq_nosync(irq))
758 return synchronize_hardirq(irq);
759
760 return false;
761 }
762 EXPORT_SYMBOL_GPL(disable_hardirq);
763
764 /**
765 * disable_nmi_nosync - disable an nmi without waiting
766 * @irq: Interrupt to disable
767 *
768 * Disable the selected interrupt line. Disables and enables are
769 * nested.
770 * The interrupt to disable must have been requested through request_nmi.
771 * Unlike disable_nmi(), this function does not ensure existing
772 * instances of the IRQ handler have completed before returning.
773 */
disable_nmi_nosync(unsigned int irq)774 void disable_nmi_nosync(unsigned int irq)
775 {
776 disable_irq_nosync(irq);
777 }
778
__enable_irq(struct irq_desc * desc)779 void __enable_irq(struct irq_desc *desc)
780 {
781 switch (desc->depth) {
782 case 0:
783 err_out:
784 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
785 irq_desc_get_irq(desc));
786 break;
787 case 1: {
788 if (desc->istate & IRQS_SUSPENDED)
789 goto err_out;
790 /* Prevent probing on this irq: */
791 irq_settings_set_noprobe(desc);
792 /*
793 * Call irq_startup() not irq_enable() here because the
794 * interrupt might be marked NOAUTOEN. So irq_startup()
795 * needs to be invoked when it gets enabled the first
796 * time. If it was already started up, then irq_startup()
797 * will invoke irq_enable() under the hood.
798 */
799 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
800 break;
801 }
802 default:
803 desc->depth--;
804 }
805 }
806
807 /**
808 * enable_irq - enable handling of an irq
809 * @irq: Interrupt to enable
810 *
811 * Undoes the effect of one call to disable_irq(). If this
812 * matches the last disable, processing of interrupts on this
813 * IRQ line is re-enabled.
814 *
815 * This function may be called from IRQ context only when
816 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
817 */
enable_irq(unsigned int irq)818 void enable_irq(unsigned int irq)
819 {
820 unsigned long flags;
821 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
822
823 if (!desc)
824 return;
825 if (WARN(!desc->irq_data.chip,
826 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
827 goto out;
828
829 __enable_irq(desc);
830 out:
831 irq_put_desc_busunlock(desc, flags);
832 }
833 EXPORT_SYMBOL(enable_irq);
834
835 /**
836 * enable_nmi - enable handling of an nmi
837 * @irq: Interrupt to enable
838 *
839 * The interrupt to enable must have been requested through request_nmi.
840 * Undoes the effect of one call to disable_nmi(). If this
841 * matches the last disable, processing of interrupts on this
842 * IRQ line is re-enabled.
843 */
enable_nmi(unsigned int irq)844 void enable_nmi(unsigned int irq)
845 {
846 enable_irq(irq);
847 }
848
set_irq_wake_real(unsigned int irq,unsigned int on)849 static int set_irq_wake_real(unsigned int irq, unsigned int on)
850 {
851 struct irq_desc *desc = irq_to_desc(irq);
852 int ret = -ENXIO;
853
854 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
855 return 0;
856
857 if (desc->irq_data.chip->irq_set_wake)
858 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
859
860 return ret;
861 }
862
863 /**
864 * irq_set_irq_wake - control irq power management wakeup
865 * @irq: interrupt to control
866 * @on: enable/disable power management wakeup
867 *
868 * Enable/disable power management wakeup mode, which is
869 * disabled by default. Enables and disables must match,
870 * just as they match for non-wakeup mode support.
871 *
872 * Wakeup mode lets this IRQ wake the system from sleep
873 * states like "suspend to RAM".
874 *
875 * Note: irq enable/disable state is completely orthogonal
876 * to the enable/disable state of irq wake. An irq can be
877 * disabled with disable_irq() and still wake the system as
878 * long as the irq has wake enabled. If this does not hold,
879 * then the underlying irq chip and the related driver need
880 * to be investigated.
881 */
irq_set_irq_wake(unsigned int irq,unsigned int on)882 int irq_set_irq_wake(unsigned int irq, unsigned int on)
883 {
884 unsigned long flags;
885 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
886 int ret = 0;
887
888 if (!desc)
889 return -EINVAL;
890
891 /* Don't use NMIs as wake up interrupts please */
892 if (desc->istate & IRQS_NMI) {
893 ret = -EINVAL;
894 goto out_unlock;
895 }
896
897 /* wakeup-capable irqs can be shared between drivers that
898 * don't need to have the same sleep mode behaviors.
899 */
900 if (on) {
901 if (desc->wake_depth++ == 0) {
902 ret = set_irq_wake_real(irq, on);
903 if (ret)
904 desc->wake_depth = 0;
905 else
906 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
907 }
908 } else {
909 if (desc->wake_depth == 0) {
910 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
911 } else if (--desc->wake_depth == 0) {
912 ret = set_irq_wake_real(irq, on);
913 if (ret)
914 desc->wake_depth = 1;
915 else
916 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
917 }
918 }
919
920 out_unlock:
921 irq_put_desc_busunlock(desc, flags);
922 return ret;
923 }
924 EXPORT_SYMBOL(irq_set_irq_wake);
925
926 /*
927 * Internal function that tells the architecture code whether a
928 * particular irq has been exclusively allocated or is available
929 * for driver use.
930 */
can_request_irq(unsigned int irq,unsigned long irqflags)931 int can_request_irq(unsigned int irq, unsigned long irqflags)
932 {
933 unsigned long flags;
934 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
935 int canrequest = 0;
936
937 if (!desc)
938 return 0;
939
940 if (irq_settings_can_request(desc)) {
941 if (!desc->action ||
942 irqflags & desc->action->flags & IRQF_SHARED)
943 canrequest = 1;
944 }
945 irq_put_desc_unlock(desc, flags);
946 return canrequest;
947 }
948
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)949 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
950 {
951 struct irq_chip *chip = desc->irq_data.chip;
952 int ret, unmask = 0;
953
954 if (!chip || !chip->irq_set_type) {
955 /*
956 * IRQF_TRIGGER_* but the PIC does not support multiple
957 * flow-types?
958 */
959 pr_debug("No set_type function for IRQ %d (%s)\n",
960 irq_desc_get_irq(desc),
961 chip ? (chip->name ? : "unknown") : "unknown");
962 return 0;
963 }
964
965 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
966 if (!irqd_irq_masked(&desc->irq_data))
967 mask_irq(desc);
968 if (!irqd_irq_disabled(&desc->irq_data))
969 unmask = 1;
970 }
971
972 /* Mask all flags except trigger mode */
973 flags &= IRQ_TYPE_SENSE_MASK;
974 ret = chip->irq_set_type(&desc->irq_data, flags);
975
976 switch (ret) {
977 case IRQ_SET_MASK_OK:
978 case IRQ_SET_MASK_OK_DONE:
979 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
980 irqd_set(&desc->irq_data, flags);
981 fallthrough;
982
983 case IRQ_SET_MASK_OK_NOCOPY:
984 flags = irqd_get_trigger_type(&desc->irq_data);
985 irq_settings_set_trigger_mask(desc, flags);
986 irqd_clear(&desc->irq_data, IRQD_LEVEL);
987 irq_settings_clr_level(desc);
988 if (flags & IRQ_TYPE_LEVEL_MASK) {
989 irq_settings_set_level(desc);
990 irqd_set(&desc->irq_data, IRQD_LEVEL);
991 }
992
993 ret = 0;
994 break;
995 default:
996 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
997 flags, irq_desc_get_irq(desc), chip->irq_set_type);
998 }
999 if (unmask)
1000 unmask_irq(desc);
1001 return ret;
1002 }
1003
1004 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)1005 int irq_set_parent(int irq, int parent_irq)
1006 {
1007 unsigned long flags;
1008 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1009
1010 if (!desc)
1011 return -EINVAL;
1012
1013 desc->parent_irq = parent_irq;
1014
1015 irq_put_desc_unlock(desc, flags);
1016 return 0;
1017 }
1018 EXPORT_SYMBOL_GPL(irq_set_parent);
1019 #endif
1020
1021 /*
1022 * Default primary interrupt handler for threaded interrupts. Is
1023 * assigned as primary handler when request_threaded_irq is called
1024 * with handler == NULL. Useful for oneshot interrupts.
1025 */
irq_default_primary_handler(int irq,void * dev_id)1026 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1027 {
1028 return IRQ_WAKE_THREAD;
1029 }
1030
1031 /*
1032 * Primary handler for nested threaded interrupts. Should never be
1033 * called.
1034 */
irq_nested_primary_handler(int irq,void * dev_id)1035 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1036 {
1037 WARN(1, "Primary handler called for nested irq %d\n", irq);
1038 return IRQ_NONE;
1039 }
1040
irq_forced_secondary_handler(int irq,void * dev_id)1041 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1042 {
1043 WARN(1, "Secondary action handler called for irq %d\n", irq);
1044 return IRQ_NONE;
1045 }
1046
irq_wait_for_interrupt(struct irqaction * action)1047 static int irq_wait_for_interrupt(struct irqaction *action)
1048 {
1049 for (;;) {
1050 set_current_state(TASK_INTERRUPTIBLE);
1051
1052 if (kthread_should_stop()) {
1053 /* may need to run one last time */
1054 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1055 &action->thread_flags)) {
1056 __set_current_state(TASK_RUNNING);
1057 return 0;
1058 }
1059 __set_current_state(TASK_RUNNING);
1060 return -1;
1061 }
1062
1063 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1064 &action->thread_flags)) {
1065 __set_current_state(TASK_RUNNING);
1066 return 0;
1067 }
1068 schedule();
1069 }
1070 }
1071
1072 /*
1073 * Oneshot interrupts keep the irq line masked until the threaded
1074 * handler finished. unmask if the interrupt has not been disabled and
1075 * is marked MASKED.
1076 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1077 static void irq_finalize_oneshot(struct irq_desc *desc,
1078 struct irqaction *action)
1079 {
1080 if (!(desc->istate & IRQS_ONESHOT) ||
1081 action->handler == irq_forced_secondary_handler)
1082 return;
1083 again:
1084 chip_bus_lock(desc);
1085 raw_spin_lock_irq(&desc->lock);
1086
1087 /*
1088 * Implausible though it may be we need to protect us against
1089 * the following scenario:
1090 *
1091 * The thread is faster done than the hard interrupt handler
1092 * on the other CPU. If we unmask the irq line then the
1093 * interrupt can come in again and masks the line, leaves due
1094 * to IRQS_INPROGRESS and the irq line is masked forever.
1095 *
1096 * This also serializes the state of shared oneshot handlers
1097 * versus "desc->threads_oneshot |= action->thread_mask;" in
1098 * irq_wake_thread(). See the comment there which explains the
1099 * serialization.
1100 */
1101 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1102 raw_spin_unlock_irq(&desc->lock);
1103 chip_bus_sync_unlock(desc);
1104 cpu_relax();
1105 goto again;
1106 }
1107
1108 /*
1109 * Now check again, whether the thread should run. Otherwise
1110 * we would clear the threads_oneshot bit of this thread which
1111 * was just set.
1112 */
1113 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1114 goto out_unlock;
1115
1116 desc->threads_oneshot &= ~action->thread_mask;
1117
1118 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1119 irqd_irq_masked(&desc->irq_data))
1120 unmask_threaded_irq(desc);
1121
1122 out_unlock:
1123 raw_spin_unlock_irq(&desc->lock);
1124 chip_bus_sync_unlock(desc);
1125 }
1126
1127 #ifdef CONFIG_SMP
1128 /*
1129 * Check whether we need to change the affinity of the interrupt thread.
1130 */
1131 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1132 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1133 {
1134 cpumask_var_t mask;
1135 bool valid = true;
1136
1137 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1138 return;
1139
1140 /*
1141 * In case we are out of memory we set IRQTF_AFFINITY again and
1142 * try again next time
1143 */
1144 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1145 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1146 return;
1147 }
1148
1149 raw_spin_lock_irq(&desc->lock);
1150 /*
1151 * This code is triggered unconditionally. Check the affinity
1152 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1153 */
1154 if (cpumask_available(desc->irq_common_data.affinity)) {
1155 const struct cpumask *m;
1156
1157 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1158 cpumask_copy(mask, m);
1159 } else {
1160 valid = false;
1161 }
1162 raw_spin_unlock_irq(&desc->lock);
1163
1164 if (valid)
1165 set_cpus_allowed_ptr(current, mask);
1166 free_cpumask_var(mask);
1167 }
1168 #else
1169 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1170 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1171 #endif
1172
1173 /*
1174 * Interrupts which are not explicitly requested as threaded
1175 * interrupts rely on the implicit bh/preempt disable of the hard irq
1176 * context. So we need to disable bh here to avoid deadlocks and other
1177 * side effects.
1178 */
1179 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1180 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1181 {
1182 irqreturn_t ret;
1183
1184 local_bh_disable();
1185 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1186 local_irq_disable();
1187 ret = action->thread_fn(action->irq, action->dev_id);
1188 if (ret == IRQ_HANDLED)
1189 atomic_inc(&desc->threads_handled);
1190
1191 irq_finalize_oneshot(desc, action);
1192 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1193 local_irq_enable();
1194 local_bh_enable();
1195 return ret;
1196 }
1197
1198 /*
1199 * Interrupts explicitly requested as threaded interrupts want to be
1200 * preemptible - many of them need to sleep and wait for slow busses to
1201 * complete.
1202 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1203 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1204 struct irqaction *action)
1205 {
1206 irqreturn_t ret;
1207
1208 ret = action->thread_fn(action->irq, action->dev_id);
1209 if (ret == IRQ_HANDLED)
1210 atomic_inc(&desc->threads_handled);
1211
1212 irq_finalize_oneshot(desc, action);
1213 return ret;
1214 }
1215
wake_threads_waitq(struct irq_desc * desc)1216 static void wake_threads_waitq(struct irq_desc *desc)
1217 {
1218 if (atomic_dec_and_test(&desc->threads_active))
1219 wake_up(&desc->wait_for_threads);
1220 }
1221
irq_thread_dtor(struct callback_head * unused)1222 static void irq_thread_dtor(struct callback_head *unused)
1223 {
1224 struct task_struct *tsk = current;
1225 struct irq_desc *desc;
1226 struct irqaction *action;
1227
1228 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1229 return;
1230
1231 action = kthread_data(tsk);
1232
1233 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1234 tsk->comm, tsk->pid, action->irq);
1235
1236
1237 desc = irq_to_desc(action->irq);
1238 /*
1239 * If IRQTF_RUNTHREAD is set, we need to decrement
1240 * desc->threads_active and wake possible waiters.
1241 */
1242 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1243 wake_threads_waitq(desc);
1244
1245 /* Prevent a stale desc->threads_oneshot */
1246 irq_finalize_oneshot(desc, action);
1247 }
1248
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1249 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1250 {
1251 struct irqaction *secondary = action->secondary;
1252
1253 if (WARN_ON_ONCE(!secondary))
1254 return;
1255
1256 raw_spin_lock_irq(&desc->lock);
1257 __irq_wake_thread(desc, secondary);
1258 raw_spin_unlock_irq(&desc->lock);
1259 }
1260
1261 /*
1262 * Internal function to notify that a interrupt thread is ready.
1263 */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1264 static void irq_thread_set_ready(struct irq_desc *desc,
1265 struct irqaction *action)
1266 {
1267 set_bit(IRQTF_READY, &action->thread_flags);
1268 wake_up(&desc->wait_for_threads);
1269 }
1270
1271 /*
1272 * Internal function to wake up a interrupt thread and wait until it is
1273 * ready.
1274 */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1275 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1276 struct irqaction *action)
1277 {
1278 if (!action || !action->thread)
1279 return;
1280
1281 wake_up_process(action->thread);
1282 wait_event(desc->wait_for_threads,
1283 test_bit(IRQTF_READY, &action->thread_flags));
1284 }
1285
1286 /*
1287 * Interrupt handler thread
1288 */
irq_thread(void * data)1289 static int irq_thread(void *data)
1290 {
1291 struct callback_head on_exit_work;
1292 struct irqaction *action = data;
1293 struct irq_desc *desc = irq_to_desc(action->irq);
1294 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1295 struct irqaction *action);
1296
1297 irq_thread_set_ready(desc, action);
1298
1299 sched_set_fifo(current);
1300
1301 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1302 &action->thread_flags))
1303 handler_fn = irq_forced_thread_fn;
1304 else
1305 handler_fn = irq_thread_fn;
1306
1307 init_task_work(&on_exit_work, irq_thread_dtor);
1308 task_work_add(current, &on_exit_work, TWA_NONE);
1309
1310 irq_thread_check_affinity(desc, action);
1311
1312 while (!irq_wait_for_interrupt(action)) {
1313 irqreturn_t action_ret;
1314
1315 irq_thread_check_affinity(desc, action);
1316
1317 action_ret = handler_fn(desc, action);
1318 if (action_ret == IRQ_WAKE_THREAD)
1319 irq_wake_secondary(desc, action);
1320
1321 wake_threads_waitq(desc);
1322 }
1323
1324 /*
1325 * This is the regular exit path. __free_irq() is stopping the
1326 * thread via kthread_stop() after calling
1327 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1328 * oneshot mask bit can be set.
1329 */
1330 task_work_cancel(current, irq_thread_dtor);
1331 return 0;
1332 }
1333
1334 /**
1335 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1336 * @irq: Interrupt line
1337 * @dev_id: Device identity for which the thread should be woken
1338 *
1339 */
irq_wake_thread(unsigned int irq,void * dev_id)1340 void irq_wake_thread(unsigned int irq, void *dev_id)
1341 {
1342 struct irq_desc *desc = irq_to_desc(irq);
1343 struct irqaction *action;
1344 unsigned long flags;
1345
1346 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1347 return;
1348
1349 raw_spin_lock_irqsave(&desc->lock, flags);
1350 for_each_action_of_desc(desc, action) {
1351 if (action->dev_id == dev_id) {
1352 if (action->thread)
1353 __irq_wake_thread(desc, action);
1354 break;
1355 }
1356 }
1357 raw_spin_unlock_irqrestore(&desc->lock, flags);
1358 }
1359 EXPORT_SYMBOL_GPL(irq_wake_thread);
1360
irq_setup_forced_threading(struct irqaction * new)1361 static int irq_setup_forced_threading(struct irqaction *new)
1362 {
1363 if (!force_irqthreads())
1364 return 0;
1365 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1366 return 0;
1367
1368 /*
1369 * No further action required for interrupts which are requested as
1370 * threaded interrupts already
1371 */
1372 if (new->handler == irq_default_primary_handler)
1373 return 0;
1374
1375 new->flags |= IRQF_ONESHOT;
1376
1377 /*
1378 * Handle the case where we have a real primary handler and a
1379 * thread handler. We force thread them as well by creating a
1380 * secondary action.
1381 */
1382 if (new->handler && new->thread_fn) {
1383 /* Allocate the secondary action */
1384 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1385 if (!new->secondary)
1386 return -ENOMEM;
1387 new->secondary->handler = irq_forced_secondary_handler;
1388 new->secondary->thread_fn = new->thread_fn;
1389 new->secondary->dev_id = new->dev_id;
1390 new->secondary->irq = new->irq;
1391 new->secondary->name = new->name;
1392 }
1393 /* Deal with the primary handler */
1394 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1395 new->thread_fn = new->handler;
1396 new->handler = irq_default_primary_handler;
1397 return 0;
1398 }
1399
irq_request_resources(struct irq_desc * desc)1400 static int irq_request_resources(struct irq_desc *desc)
1401 {
1402 struct irq_data *d = &desc->irq_data;
1403 struct irq_chip *c = d->chip;
1404
1405 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1406 }
1407
irq_release_resources(struct irq_desc * desc)1408 static void irq_release_resources(struct irq_desc *desc)
1409 {
1410 struct irq_data *d = &desc->irq_data;
1411 struct irq_chip *c = d->chip;
1412
1413 if (c->irq_release_resources)
1414 c->irq_release_resources(d);
1415 }
1416
irq_supports_nmi(struct irq_desc * desc)1417 static bool irq_supports_nmi(struct irq_desc *desc)
1418 {
1419 struct irq_data *d = irq_desc_get_irq_data(desc);
1420
1421 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1422 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1423 if (d->parent_data)
1424 return false;
1425 #endif
1426 /* Don't support NMIs for chips behind a slow bus */
1427 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1428 return false;
1429
1430 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1431 }
1432
irq_nmi_setup(struct irq_desc * desc)1433 static int irq_nmi_setup(struct irq_desc *desc)
1434 {
1435 struct irq_data *d = irq_desc_get_irq_data(desc);
1436 struct irq_chip *c = d->chip;
1437
1438 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1439 }
1440
irq_nmi_teardown(struct irq_desc * desc)1441 static void irq_nmi_teardown(struct irq_desc *desc)
1442 {
1443 struct irq_data *d = irq_desc_get_irq_data(desc);
1444 struct irq_chip *c = d->chip;
1445
1446 if (c->irq_nmi_teardown)
1447 c->irq_nmi_teardown(d);
1448 }
1449
1450 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1451 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1452 {
1453 struct task_struct *t;
1454
1455 if (!secondary) {
1456 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1457 new->name);
1458 } else {
1459 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1460 new->name);
1461 }
1462
1463 if (IS_ERR(t))
1464 return PTR_ERR(t);
1465
1466 /*
1467 * We keep the reference to the task struct even if
1468 * the thread dies to avoid that the interrupt code
1469 * references an already freed task_struct.
1470 */
1471 new->thread = get_task_struct(t);
1472 /*
1473 * Tell the thread to set its affinity. This is
1474 * important for shared interrupt handlers as we do
1475 * not invoke setup_affinity() for the secondary
1476 * handlers as everything is already set up. Even for
1477 * interrupts marked with IRQF_NO_BALANCE this is
1478 * correct as we want the thread to move to the cpu(s)
1479 * on which the requesting code placed the interrupt.
1480 */
1481 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1482 return 0;
1483 }
1484
1485 /*
1486 * Internal function to register an irqaction - typically used to
1487 * allocate special interrupts that are part of the architecture.
1488 *
1489 * Locking rules:
1490 *
1491 * desc->request_mutex Provides serialization against a concurrent free_irq()
1492 * chip_bus_lock Provides serialization for slow bus operations
1493 * desc->lock Provides serialization against hard interrupts
1494 *
1495 * chip_bus_lock and desc->lock are sufficient for all other management and
1496 * interrupt related functions. desc->request_mutex solely serializes
1497 * request/free_irq().
1498 */
1499 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1500 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1501 {
1502 struct irqaction *old, **old_ptr;
1503 unsigned long flags, thread_mask = 0;
1504 int ret, nested, shared = 0;
1505
1506 if (!desc)
1507 return -EINVAL;
1508
1509 if (desc->irq_data.chip == &no_irq_chip)
1510 return -ENOSYS;
1511 if (!try_module_get(desc->owner))
1512 return -ENODEV;
1513
1514 new->irq = irq;
1515
1516 /*
1517 * If the trigger type is not specified by the caller,
1518 * then use the default for this interrupt.
1519 */
1520 if (!(new->flags & IRQF_TRIGGER_MASK))
1521 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1522
1523 /*
1524 * Check whether the interrupt nests into another interrupt
1525 * thread.
1526 */
1527 nested = irq_settings_is_nested_thread(desc);
1528 if (nested) {
1529 if (!new->thread_fn) {
1530 ret = -EINVAL;
1531 goto out_mput;
1532 }
1533 /*
1534 * Replace the primary handler which was provided from
1535 * the driver for non nested interrupt handling by the
1536 * dummy function which warns when called.
1537 */
1538 new->handler = irq_nested_primary_handler;
1539 } else {
1540 if (irq_settings_can_thread(desc)) {
1541 ret = irq_setup_forced_threading(new);
1542 if (ret)
1543 goto out_mput;
1544 }
1545 }
1546
1547 /*
1548 * Create a handler thread when a thread function is supplied
1549 * and the interrupt does not nest into another interrupt
1550 * thread.
1551 */
1552 if (new->thread_fn && !nested) {
1553 ret = setup_irq_thread(new, irq, false);
1554 if (ret)
1555 goto out_mput;
1556 if (new->secondary) {
1557 ret = setup_irq_thread(new->secondary, irq, true);
1558 if (ret)
1559 goto out_thread;
1560 }
1561 }
1562
1563 /*
1564 * Drivers are often written to work w/o knowledge about the
1565 * underlying irq chip implementation, so a request for a
1566 * threaded irq without a primary hard irq context handler
1567 * requires the ONESHOT flag to be set. Some irq chips like
1568 * MSI based interrupts are per se one shot safe. Check the
1569 * chip flags, so we can avoid the unmask dance at the end of
1570 * the threaded handler for those.
1571 */
1572 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1573 new->flags &= ~IRQF_ONESHOT;
1574
1575 /*
1576 * Protects against a concurrent __free_irq() call which might wait
1577 * for synchronize_hardirq() to complete without holding the optional
1578 * chip bus lock and desc->lock. Also protects against handing out
1579 * a recycled oneshot thread_mask bit while it's still in use by
1580 * its previous owner.
1581 */
1582 mutex_lock(&desc->request_mutex);
1583
1584 /*
1585 * Acquire bus lock as the irq_request_resources() callback below
1586 * might rely on the serialization or the magic power management
1587 * functions which are abusing the irq_bus_lock() callback,
1588 */
1589 chip_bus_lock(desc);
1590
1591 /* First installed action requests resources. */
1592 if (!desc->action) {
1593 ret = irq_request_resources(desc);
1594 if (ret) {
1595 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1596 new->name, irq, desc->irq_data.chip->name);
1597 goto out_bus_unlock;
1598 }
1599 }
1600
1601 /*
1602 * The following block of code has to be executed atomically
1603 * protected against a concurrent interrupt and any of the other
1604 * management calls which are not serialized via
1605 * desc->request_mutex or the optional bus lock.
1606 */
1607 raw_spin_lock_irqsave(&desc->lock, flags);
1608 old_ptr = &desc->action;
1609 old = *old_ptr;
1610 if (old) {
1611 /*
1612 * Can't share interrupts unless both agree to and are
1613 * the same type (level, edge, polarity). So both flag
1614 * fields must have IRQF_SHARED set and the bits which
1615 * set the trigger type must match. Also all must
1616 * agree on ONESHOT.
1617 * Interrupt lines used for NMIs cannot be shared.
1618 */
1619 unsigned int oldtype;
1620
1621 if (desc->istate & IRQS_NMI) {
1622 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1623 new->name, irq, desc->irq_data.chip->name);
1624 ret = -EINVAL;
1625 goto out_unlock;
1626 }
1627
1628 /*
1629 * If nobody did set the configuration before, inherit
1630 * the one provided by the requester.
1631 */
1632 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1633 oldtype = irqd_get_trigger_type(&desc->irq_data);
1634 } else {
1635 oldtype = new->flags & IRQF_TRIGGER_MASK;
1636 irqd_set_trigger_type(&desc->irq_data, oldtype);
1637 }
1638
1639 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1640 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1641 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1642 goto mismatch;
1643
1644 /* All handlers must agree on per-cpuness */
1645 if ((old->flags & IRQF_PERCPU) !=
1646 (new->flags & IRQF_PERCPU))
1647 goto mismatch;
1648
1649 /* add new interrupt at end of irq queue */
1650 do {
1651 /*
1652 * Or all existing action->thread_mask bits,
1653 * so we can find the next zero bit for this
1654 * new action.
1655 */
1656 thread_mask |= old->thread_mask;
1657 old_ptr = &old->next;
1658 old = *old_ptr;
1659 } while (old);
1660 shared = 1;
1661 }
1662
1663 /*
1664 * Setup the thread mask for this irqaction for ONESHOT. For
1665 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1666 * conditional in irq_wake_thread().
1667 */
1668 if (new->flags & IRQF_ONESHOT) {
1669 /*
1670 * Unlikely to have 32 resp 64 irqs sharing one line,
1671 * but who knows.
1672 */
1673 if (thread_mask == ~0UL) {
1674 ret = -EBUSY;
1675 goto out_unlock;
1676 }
1677 /*
1678 * The thread_mask for the action is or'ed to
1679 * desc->thread_active to indicate that the
1680 * IRQF_ONESHOT thread handler has been woken, but not
1681 * yet finished. The bit is cleared when a thread
1682 * completes. When all threads of a shared interrupt
1683 * line have completed desc->threads_active becomes
1684 * zero and the interrupt line is unmasked. See
1685 * handle.c:irq_wake_thread() for further information.
1686 *
1687 * If no thread is woken by primary (hard irq context)
1688 * interrupt handlers, then desc->threads_active is
1689 * also checked for zero to unmask the irq line in the
1690 * affected hard irq flow handlers
1691 * (handle_[fasteoi|level]_irq).
1692 *
1693 * The new action gets the first zero bit of
1694 * thread_mask assigned. See the loop above which or's
1695 * all existing action->thread_mask bits.
1696 */
1697 new->thread_mask = 1UL << ffz(thread_mask);
1698
1699 } else if (new->handler == irq_default_primary_handler &&
1700 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1701 /*
1702 * The interrupt was requested with handler = NULL, so
1703 * we use the default primary handler for it. But it
1704 * does not have the oneshot flag set. In combination
1705 * with level interrupts this is deadly, because the
1706 * default primary handler just wakes the thread, then
1707 * the irq lines is reenabled, but the device still
1708 * has the level irq asserted. Rinse and repeat....
1709 *
1710 * While this works for edge type interrupts, we play
1711 * it safe and reject unconditionally because we can't
1712 * say for sure which type this interrupt really
1713 * has. The type flags are unreliable as the
1714 * underlying chip implementation can override them.
1715 */
1716 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1717 new->name, irq);
1718 ret = -EINVAL;
1719 goto out_unlock;
1720 }
1721
1722 if (!shared) {
1723 /* Setup the type (level, edge polarity) if configured: */
1724 if (new->flags & IRQF_TRIGGER_MASK) {
1725 ret = __irq_set_trigger(desc,
1726 new->flags & IRQF_TRIGGER_MASK);
1727
1728 if (ret)
1729 goto out_unlock;
1730 }
1731
1732 /*
1733 * Activate the interrupt. That activation must happen
1734 * independently of IRQ_NOAUTOEN. request_irq() can fail
1735 * and the callers are supposed to handle
1736 * that. enable_irq() of an interrupt requested with
1737 * IRQ_NOAUTOEN is not supposed to fail. The activation
1738 * keeps it in shutdown mode, it merily associates
1739 * resources if necessary and if that's not possible it
1740 * fails. Interrupts which are in managed shutdown mode
1741 * will simply ignore that activation request.
1742 */
1743 ret = irq_activate(desc);
1744 if (ret)
1745 goto out_unlock;
1746
1747 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1748 IRQS_ONESHOT | IRQS_WAITING);
1749 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1750
1751 if (new->flags & IRQF_PERCPU) {
1752 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1753 irq_settings_set_per_cpu(desc);
1754 if (new->flags & IRQF_NO_DEBUG)
1755 irq_settings_set_no_debug(desc);
1756 }
1757
1758 if (noirqdebug)
1759 irq_settings_set_no_debug(desc);
1760
1761 if (new->flags & IRQF_ONESHOT)
1762 desc->istate |= IRQS_ONESHOT;
1763
1764 /* Exclude IRQ from balancing if requested */
1765 if (new->flags & IRQF_NOBALANCING) {
1766 irq_settings_set_no_balancing(desc);
1767 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1768 }
1769
1770 if (!(new->flags & IRQF_NO_AUTOEN) &&
1771 irq_settings_can_autoenable(desc)) {
1772 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1773 } else {
1774 /*
1775 * Shared interrupts do not go well with disabling
1776 * auto enable. The sharing interrupt might request
1777 * it while it's still disabled and then wait for
1778 * interrupts forever.
1779 */
1780 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1781 /* Undo nested disables: */
1782 desc->depth = 1;
1783 }
1784
1785 } else if (new->flags & IRQF_TRIGGER_MASK) {
1786 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1787 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1788
1789 if (nmsk != omsk)
1790 /* hope the handler works with current trigger mode */
1791 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1792 irq, omsk, nmsk);
1793 }
1794
1795 *old_ptr = new;
1796
1797 irq_pm_install_action(desc, new);
1798
1799 /* Reset broken irq detection when installing new handler */
1800 desc->irq_count = 0;
1801 desc->irqs_unhandled = 0;
1802
1803 /*
1804 * Check whether we disabled the irq via the spurious handler
1805 * before. Reenable it and give it another chance.
1806 */
1807 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1808 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1809 __enable_irq(desc);
1810 }
1811
1812 raw_spin_unlock_irqrestore(&desc->lock, flags);
1813 chip_bus_sync_unlock(desc);
1814 mutex_unlock(&desc->request_mutex);
1815
1816 irq_setup_timings(desc, new);
1817
1818 wake_up_and_wait_for_irq_thread_ready(desc, new);
1819 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1820
1821 register_irq_proc(irq, desc);
1822 new->dir = NULL;
1823 register_handler_proc(irq, new);
1824 return 0;
1825
1826 mismatch:
1827 if (!(new->flags & IRQF_PROBE_SHARED)) {
1828 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1829 irq, new->flags, new->name, old->flags, old->name);
1830 #ifdef CONFIG_DEBUG_SHIRQ
1831 dump_stack();
1832 #endif
1833 }
1834 ret = -EBUSY;
1835
1836 out_unlock:
1837 raw_spin_unlock_irqrestore(&desc->lock, flags);
1838
1839 if (!desc->action)
1840 irq_release_resources(desc);
1841 out_bus_unlock:
1842 chip_bus_sync_unlock(desc);
1843 mutex_unlock(&desc->request_mutex);
1844
1845 out_thread:
1846 if (new->thread) {
1847 struct task_struct *t = new->thread;
1848
1849 new->thread = NULL;
1850 kthread_stop(t);
1851 put_task_struct(t);
1852 }
1853 if (new->secondary && new->secondary->thread) {
1854 struct task_struct *t = new->secondary->thread;
1855
1856 new->secondary->thread = NULL;
1857 kthread_stop(t);
1858 put_task_struct(t);
1859 }
1860 out_mput:
1861 module_put(desc->owner);
1862 return ret;
1863 }
1864
1865 /*
1866 * Internal function to unregister an irqaction - used to free
1867 * regular and special interrupts that are part of the architecture.
1868 */
__free_irq(struct irq_desc * desc,void * dev_id)1869 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1870 {
1871 unsigned irq = desc->irq_data.irq;
1872 struct irqaction *action, **action_ptr;
1873 unsigned long flags;
1874
1875 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1876
1877 mutex_lock(&desc->request_mutex);
1878 chip_bus_lock(desc);
1879 raw_spin_lock_irqsave(&desc->lock, flags);
1880
1881 /*
1882 * There can be multiple actions per IRQ descriptor, find the right
1883 * one based on the dev_id:
1884 */
1885 action_ptr = &desc->action;
1886 for (;;) {
1887 action = *action_ptr;
1888
1889 if (!action) {
1890 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1891 raw_spin_unlock_irqrestore(&desc->lock, flags);
1892 chip_bus_sync_unlock(desc);
1893 mutex_unlock(&desc->request_mutex);
1894 return NULL;
1895 }
1896
1897 if (action->dev_id == dev_id)
1898 break;
1899 action_ptr = &action->next;
1900 }
1901
1902 /* Found it - now remove it from the list of entries: */
1903 *action_ptr = action->next;
1904
1905 irq_pm_remove_action(desc, action);
1906
1907 /* If this was the last handler, shut down the IRQ line: */
1908 if (!desc->action) {
1909 irq_settings_clr_disable_unlazy(desc);
1910 /* Only shutdown. Deactivate after synchronize_hardirq() */
1911 irq_shutdown(desc);
1912 }
1913
1914 #ifdef CONFIG_SMP
1915 /* make sure affinity_hint is cleaned up */
1916 if (WARN_ON_ONCE(desc->affinity_hint))
1917 desc->affinity_hint = NULL;
1918 #endif
1919
1920 raw_spin_unlock_irqrestore(&desc->lock, flags);
1921 /*
1922 * Drop bus_lock here so the changes which were done in the chip
1923 * callbacks above are synced out to the irq chips which hang
1924 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1925 *
1926 * Aside of that the bus_lock can also be taken from the threaded
1927 * handler in irq_finalize_oneshot() which results in a deadlock
1928 * because kthread_stop() would wait forever for the thread to
1929 * complete, which is blocked on the bus lock.
1930 *
1931 * The still held desc->request_mutex() protects against a
1932 * concurrent request_irq() of this irq so the release of resources
1933 * and timing data is properly serialized.
1934 */
1935 chip_bus_sync_unlock(desc);
1936
1937 unregister_handler_proc(irq, action);
1938
1939 /*
1940 * Make sure it's not being used on another CPU and if the chip
1941 * supports it also make sure that there is no (not yet serviced)
1942 * interrupt in flight at the hardware level.
1943 */
1944 __synchronize_hardirq(desc, true);
1945
1946 #ifdef CONFIG_DEBUG_SHIRQ
1947 /*
1948 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1949 * event to happen even now it's being freed, so let's make sure that
1950 * is so by doing an extra call to the handler ....
1951 *
1952 * ( We do this after actually deregistering it, to make sure that a
1953 * 'real' IRQ doesn't run in parallel with our fake. )
1954 */
1955 if (action->flags & IRQF_SHARED) {
1956 local_irq_save(flags);
1957 action->handler(irq, dev_id);
1958 local_irq_restore(flags);
1959 }
1960 #endif
1961
1962 /*
1963 * The action has already been removed above, but the thread writes
1964 * its oneshot mask bit when it completes. Though request_mutex is
1965 * held across this which prevents __setup_irq() from handing out
1966 * the same bit to a newly requested action.
1967 */
1968 if (action->thread) {
1969 kthread_stop(action->thread);
1970 put_task_struct(action->thread);
1971 if (action->secondary && action->secondary->thread) {
1972 kthread_stop(action->secondary->thread);
1973 put_task_struct(action->secondary->thread);
1974 }
1975 }
1976
1977 /* Last action releases resources */
1978 if (!desc->action) {
1979 /*
1980 * Reacquire bus lock as irq_release_resources() might
1981 * require it to deallocate resources over the slow bus.
1982 */
1983 chip_bus_lock(desc);
1984 /*
1985 * There is no interrupt on the fly anymore. Deactivate it
1986 * completely.
1987 */
1988 raw_spin_lock_irqsave(&desc->lock, flags);
1989 irq_domain_deactivate_irq(&desc->irq_data);
1990 raw_spin_unlock_irqrestore(&desc->lock, flags);
1991
1992 irq_release_resources(desc);
1993 chip_bus_sync_unlock(desc);
1994 irq_remove_timings(desc);
1995 }
1996
1997 mutex_unlock(&desc->request_mutex);
1998
1999 irq_chip_pm_put(&desc->irq_data);
2000 module_put(desc->owner);
2001 kfree(action->secondary);
2002 return action;
2003 }
2004
2005 /**
2006 * free_irq - free an interrupt allocated with request_irq
2007 * @irq: Interrupt line to free
2008 * @dev_id: Device identity to free
2009 *
2010 * Remove an interrupt handler. The handler is removed and if the
2011 * interrupt line is no longer in use by any driver it is disabled.
2012 * On a shared IRQ the caller must ensure the interrupt is disabled
2013 * on the card it drives before calling this function. The function
2014 * does not return until any executing interrupts for this IRQ
2015 * have completed.
2016 *
2017 * This function must not be called from interrupt context.
2018 *
2019 * Returns the devname argument passed to request_irq.
2020 */
free_irq(unsigned int irq,void * dev_id)2021 const void *free_irq(unsigned int irq, void *dev_id)
2022 {
2023 struct irq_desc *desc = irq_to_desc(irq);
2024 struct irqaction *action;
2025 const char *devname;
2026
2027 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2028 return NULL;
2029
2030 #ifdef CONFIG_SMP
2031 if (WARN_ON(desc->affinity_notify))
2032 desc->affinity_notify = NULL;
2033 #endif
2034
2035 action = __free_irq(desc, dev_id);
2036
2037 if (!action)
2038 return NULL;
2039
2040 devname = action->name;
2041 kfree(action);
2042 return devname;
2043 }
2044 EXPORT_SYMBOL(free_irq);
2045
2046 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)2047 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2048 {
2049 const char *devname = NULL;
2050
2051 desc->istate &= ~IRQS_NMI;
2052
2053 if (!WARN_ON(desc->action == NULL)) {
2054 irq_pm_remove_action(desc, desc->action);
2055 devname = desc->action->name;
2056 unregister_handler_proc(irq, desc->action);
2057
2058 kfree(desc->action);
2059 desc->action = NULL;
2060 }
2061
2062 irq_settings_clr_disable_unlazy(desc);
2063 irq_shutdown_and_deactivate(desc);
2064
2065 irq_release_resources(desc);
2066
2067 irq_chip_pm_put(&desc->irq_data);
2068 module_put(desc->owner);
2069
2070 return devname;
2071 }
2072
free_nmi(unsigned int irq,void * dev_id)2073 const void *free_nmi(unsigned int irq, void *dev_id)
2074 {
2075 struct irq_desc *desc = irq_to_desc(irq);
2076 unsigned long flags;
2077 const void *devname;
2078
2079 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2080 return NULL;
2081
2082 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2083 return NULL;
2084
2085 /* NMI still enabled */
2086 if (WARN_ON(desc->depth == 0))
2087 disable_nmi_nosync(irq);
2088
2089 raw_spin_lock_irqsave(&desc->lock, flags);
2090
2091 irq_nmi_teardown(desc);
2092 devname = __cleanup_nmi(irq, desc);
2093
2094 raw_spin_unlock_irqrestore(&desc->lock, flags);
2095
2096 return devname;
2097 }
2098
2099 /**
2100 * request_threaded_irq - allocate an interrupt line
2101 * @irq: Interrupt line to allocate
2102 * @handler: Function to be called when the IRQ occurs.
2103 * Primary handler for threaded interrupts.
2104 * If handler is NULL and thread_fn != NULL
2105 * the default primary handler is installed.
2106 * @thread_fn: Function called from the irq handler thread
2107 * If NULL, no irq thread is created
2108 * @irqflags: Interrupt type flags
2109 * @devname: An ascii name for the claiming device
2110 * @dev_id: A cookie passed back to the handler function
2111 *
2112 * This call allocates interrupt resources and enables the
2113 * interrupt line and IRQ handling. From the point this
2114 * call is made your handler function may be invoked. Since
2115 * your handler function must clear any interrupt the board
2116 * raises, you must take care both to initialise your hardware
2117 * and to set up the interrupt handler in the right order.
2118 *
2119 * If you want to set up a threaded irq handler for your device
2120 * then you need to supply @handler and @thread_fn. @handler is
2121 * still called in hard interrupt context and has to check
2122 * whether the interrupt originates from the device. If yes it
2123 * needs to disable the interrupt on the device and return
2124 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2125 * @thread_fn. This split handler design is necessary to support
2126 * shared interrupts.
2127 *
2128 * Dev_id must be globally unique. Normally the address of the
2129 * device data structure is used as the cookie. Since the handler
2130 * receives this value it makes sense to use it.
2131 *
2132 * If your interrupt is shared you must pass a non NULL dev_id
2133 * as this is required when freeing the interrupt.
2134 *
2135 * Flags:
2136 *
2137 * IRQF_SHARED Interrupt is shared
2138 * IRQF_TRIGGER_* Specify active edge(s) or level
2139 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2140 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2141 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2142 irq_handler_t thread_fn, unsigned long irqflags,
2143 const char *devname, void *dev_id)
2144 {
2145 struct irqaction *action;
2146 struct irq_desc *desc;
2147 int retval;
2148
2149 if (irq == IRQ_NOTCONNECTED)
2150 return -ENOTCONN;
2151
2152 /*
2153 * Sanity-check: shared interrupts must pass in a real dev-ID,
2154 * otherwise we'll have trouble later trying to figure out
2155 * which interrupt is which (messes up the interrupt freeing
2156 * logic etc).
2157 *
2158 * Also shared interrupts do not go well with disabling auto enable.
2159 * The sharing interrupt might request it while it's still disabled
2160 * and then wait for interrupts forever.
2161 *
2162 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2163 * it cannot be set along with IRQF_NO_SUSPEND.
2164 */
2165 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2166 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2167 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2168 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2169 return -EINVAL;
2170
2171 desc = irq_to_desc(irq);
2172 if (!desc)
2173 return -EINVAL;
2174
2175 if (!irq_settings_can_request(desc) ||
2176 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2177 return -EINVAL;
2178
2179 if (!handler) {
2180 if (!thread_fn)
2181 return -EINVAL;
2182 handler = irq_default_primary_handler;
2183 }
2184
2185 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2186 if (!action)
2187 return -ENOMEM;
2188
2189 action->handler = handler;
2190 action->thread_fn = thread_fn;
2191 action->flags = irqflags;
2192 action->name = devname;
2193 action->dev_id = dev_id;
2194
2195 retval = irq_chip_pm_get(&desc->irq_data);
2196 if (retval < 0) {
2197 kfree(action);
2198 return retval;
2199 }
2200
2201 retval = __setup_irq(irq, desc, action);
2202
2203 if (retval) {
2204 irq_chip_pm_put(&desc->irq_data);
2205 kfree(action->secondary);
2206 kfree(action);
2207 }
2208
2209 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2210 if (!retval && (irqflags & IRQF_SHARED)) {
2211 /*
2212 * It's a shared IRQ -- the driver ought to be prepared for it
2213 * to happen immediately, so let's make sure....
2214 * We disable the irq to make sure that a 'real' IRQ doesn't
2215 * run in parallel with our fake.
2216 */
2217 unsigned long flags;
2218
2219 disable_irq(irq);
2220 local_irq_save(flags);
2221
2222 handler(irq, dev_id);
2223
2224 local_irq_restore(flags);
2225 enable_irq(irq);
2226 }
2227 #endif
2228 return retval;
2229 }
2230 EXPORT_SYMBOL(request_threaded_irq);
2231
2232 /**
2233 * request_any_context_irq - allocate an interrupt line
2234 * @irq: Interrupt line to allocate
2235 * @handler: Function to be called when the IRQ occurs.
2236 * Threaded handler for threaded interrupts.
2237 * @flags: Interrupt type flags
2238 * @name: An ascii name for the claiming device
2239 * @dev_id: A cookie passed back to the handler function
2240 *
2241 * This call allocates interrupt resources and enables the
2242 * interrupt line and IRQ handling. It selects either a
2243 * hardirq or threaded handling method depending on the
2244 * context.
2245 *
2246 * On failure, it returns a negative value. On success,
2247 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2248 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2249 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2250 unsigned long flags, const char *name, void *dev_id)
2251 {
2252 struct irq_desc *desc;
2253 int ret;
2254
2255 if (irq == IRQ_NOTCONNECTED)
2256 return -ENOTCONN;
2257
2258 desc = irq_to_desc(irq);
2259 if (!desc)
2260 return -EINVAL;
2261
2262 if (irq_settings_is_nested_thread(desc)) {
2263 ret = request_threaded_irq(irq, NULL, handler,
2264 flags, name, dev_id);
2265 return !ret ? IRQC_IS_NESTED : ret;
2266 }
2267
2268 ret = request_irq(irq, handler, flags, name, dev_id);
2269 return !ret ? IRQC_IS_HARDIRQ : ret;
2270 }
2271 EXPORT_SYMBOL_GPL(request_any_context_irq);
2272
2273 /**
2274 * request_nmi - allocate an interrupt line for NMI delivery
2275 * @irq: Interrupt line to allocate
2276 * @handler: Function to be called when the IRQ occurs.
2277 * Threaded handler for threaded interrupts.
2278 * @irqflags: Interrupt type flags
2279 * @name: An ascii name for the claiming device
2280 * @dev_id: A cookie passed back to the handler function
2281 *
2282 * This call allocates interrupt resources and enables the
2283 * interrupt line and IRQ handling. It sets up the IRQ line
2284 * to be handled as an NMI.
2285 *
2286 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2287 * cannot be threaded.
2288 *
2289 * Interrupt lines requested for NMI delivering must produce per cpu
2290 * interrupts and have auto enabling setting disabled.
2291 *
2292 * Dev_id must be globally unique. Normally the address of the
2293 * device data structure is used as the cookie. Since the handler
2294 * receives this value it makes sense to use it.
2295 *
2296 * If the interrupt line cannot be used to deliver NMIs, function
2297 * will fail and return a negative value.
2298 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2299 int request_nmi(unsigned int irq, irq_handler_t handler,
2300 unsigned long irqflags, const char *name, void *dev_id)
2301 {
2302 struct irqaction *action;
2303 struct irq_desc *desc;
2304 unsigned long flags;
2305 int retval;
2306
2307 if (irq == IRQ_NOTCONNECTED)
2308 return -ENOTCONN;
2309
2310 /* NMI cannot be shared, used for Polling */
2311 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2312 return -EINVAL;
2313
2314 if (!(irqflags & IRQF_PERCPU))
2315 return -EINVAL;
2316
2317 if (!handler)
2318 return -EINVAL;
2319
2320 desc = irq_to_desc(irq);
2321
2322 if (!desc || (irq_settings_can_autoenable(desc) &&
2323 !(irqflags & IRQF_NO_AUTOEN)) ||
2324 !irq_settings_can_request(desc) ||
2325 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2326 !irq_supports_nmi(desc))
2327 return -EINVAL;
2328
2329 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2330 if (!action)
2331 return -ENOMEM;
2332
2333 action->handler = handler;
2334 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2335 action->name = name;
2336 action->dev_id = dev_id;
2337
2338 retval = irq_chip_pm_get(&desc->irq_data);
2339 if (retval < 0)
2340 goto err_out;
2341
2342 retval = __setup_irq(irq, desc, action);
2343 if (retval)
2344 goto err_irq_setup;
2345
2346 raw_spin_lock_irqsave(&desc->lock, flags);
2347
2348 /* Setup NMI state */
2349 desc->istate |= IRQS_NMI;
2350 retval = irq_nmi_setup(desc);
2351 if (retval) {
2352 __cleanup_nmi(irq, desc);
2353 raw_spin_unlock_irqrestore(&desc->lock, flags);
2354 return -EINVAL;
2355 }
2356
2357 raw_spin_unlock_irqrestore(&desc->lock, flags);
2358
2359 return 0;
2360
2361 err_irq_setup:
2362 irq_chip_pm_put(&desc->irq_data);
2363 err_out:
2364 kfree(action);
2365
2366 return retval;
2367 }
2368
enable_percpu_irq(unsigned int irq,unsigned int type)2369 void enable_percpu_irq(unsigned int irq, unsigned int type)
2370 {
2371 unsigned int cpu = smp_processor_id();
2372 unsigned long flags;
2373 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2374
2375 if (!desc)
2376 return;
2377
2378 /*
2379 * If the trigger type is not specified by the caller, then
2380 * use the default for this interrupt.
2381 */
2382 type &= IRQ_TYPE_SENSE_MASK;
2383 if (type == IRQ_TYPE_NONE)
2384 type = irqd_get_trigger_type(&desc->irq_data);
2385
2386 if (type != IRQ_TYPE_NONE) {
2387 int ret;
2388
2389 ret = __irq_set_trigger(desc, type);
2390
2391 if (ret) {
2392 WARN(1, "failed to set type for IRQ%d\n", irq);
2393 goto out;
2394 }
2395 }
2396
2397 irq_percpu_enable(desc, cpu);
2398 out:
2399 irq_put_desc_unlock(desc, flags);
2400 }
2401 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2402
enable_percpu_nmi(unsigned int irq,unsigned int type)2403 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2404 {
2405 enable_percpu_irq(irq, type);
2406 }
2407
2408 /**
2409 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2410 * @irq: Linux irq number to check for
2411 *
2412 * Must be called from a non migratable context. Returns the enable
2413 * state of a per cpu interrupt on the current cpu.
2414 */
irq_percpu_is_enabled(unsigned int irq)2415 bool irq_percpu_is_enabled(unsigned int irq)
2416 {
2417 unsigned int cpu = smp_processor_id();
2418 struct irq_desc *desc;
2419 unsigned long flags;
2420 bool is_enabled;
2421
2422 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2423 if (!desc)
2424 return false;
2425
2426 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2427 irq_put_desc_unlock(desc, flags);
2428
2429 return is_enabled;
2430 }
2431 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2432
disable_percpu_irq(unsigned int irq)2433 void disable_percpu_irq(unsigned int irq)
2434 {
2435 unsigned int cpu = smp_processor_id();
2436 unsigned long flags;
2437 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2438
2439 if (!desc)
2440 return;
2441
2442 irq_percpu_disable(desc, cpu);
2443 irq_put_desc_unlock(desc, flags);
2444 }
2445 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2446
disable_percpu_nmi(unsigned int irq)2447 void disable_percpu_nmi(unsigned int irq)
2448 {
2449 disable_percpu_irq(irq);
2450 }
2451
2452 /*
2453 * Internal function to unregister a percpu irqaction.
2454 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2455 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2456 {
2457 struct irq_desc *desc = irq_to_desc(irq);
2458 struct irqaction *action;
2459 unsigned long flags;
2460
2461 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2462
2463 if (!desc)
2464 return NULL;
2465
2466 raw_spin_lock_irqsave(&desc->lock, flags);
2467
2468 action = desc->action;
2469 if (!action || action->percpu_dev_id != dev_id) {
2470 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2471 goto bad;
2472 }
2473
2474 if (!cpumask_empty(desc->percpu_enabled)) {
2475 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2476 irq, cpumask_first(desc->percpu_enabled));
2477 goto bad;
2478 }
2479
2480 /* Found it - now remove it from the list of entries: */
2481 desc->action = NULL;
2482
2483 desc->istate &= ~IRQS_NMI;
2484
2485 raw_spin_unlock_irqrestore(&desc->lock, flags);
2486
2487 unregister_handler_proc(irq, action);
2488
2489 irq_chip_pm_put(&desc->irq_data);
2490 module_put(desc->owner);
2491 return action;
2492
2493 bad:
2494 raw_spin_unlock_irqrestore(&desc->lock, flags);
2495 return NULL;
2496 }
2497
2498 /**
2499 * remove_percpu_irq - free a per-cpu interrupt
2500 * @irq: Interrupt line to free
2501 * @act: irqaction for the interrupt
2502 *
2503 * Used to remove interrupts statically setup by the early boot process.
2504 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2505 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2506 {
2507 struct irq_desc *desc = irq_to_desc(irq);
2508
2509 if (desc && irq_settings_is_per_cpu_devid(desc))
2510 __free_percpu_irq(irq, act->percpu_dev_id);
2511 }
2512
2513 /**
2514 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2515 * @irq: Interrupt line to free
2516 * @dev_id: Device identity to free
2517 *
2518 * Remove a percpu interrupt handler. The handler is removed, but
2519 * the interrupt line is not disabled. This must be done on each
2520 * CPU before calling this function. The function does not return
2521 * until any executing interrupts for this IRQ have completed.
2522 *
2523 * This function must not be called from interrupt context.
2524 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2525 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2526 {
2527 struct irq_desc *desc = irq_to_desc(irq);
2528
2529 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2530 return;
2531
2532 chip_bus_lock(desc);
2533 kfree(__free_percpu_irq(irq, dev_id));
2534 chip_bus_sync_unlock(desc);
2535 }
2536 EXPORT_SYMBOL_GPL(free_percpu_irq);
2537
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2538 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2539 {
2540 struct irq_desc *desc = irq_to_desc(irq);
2541
2542 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2543 return;
2544
2545 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2546 return;
2547
2548 kfree(__free_percpu_irq(irq, dev_id));
2549 }
2550
2551 /**
2552 * setup_percpu_irq - setup a per-cpu interrupt
2553 * @irq: Interrupt line to setup
2554 * @act: irqaction for the interrupt
2555 *
2556 * Used to statically setup per-cpu interrupts in the early boot process.
2557 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2558 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2559 {
2560 struct irq_desc *desc = irq_to_desc(irq);
2561 int retval;
2562
2563 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2564 return -EINVAL;
2565
2566 retval = irq_chip_pm_get(&desc->irq_data);
2567 if (retval < 0)
2568 return retval;
2569
2570 retval = __setup_irq(irq, desc, act);
2571
2572 if (retval)
2573 irq_chip_pm_put(&desc->irq_data);
2574
2575 return retval;
2576 }
2577
2578 /**
2579 * __request_percpu_irq - allocate a percpu interrupt line
2580 * @irq: Interrupt line to allocate
2581 * @handler: Function to be called when the IRQ occurs.
2582 * @flags: Interrupt type flags (IRQF_TIMER only)
2583 * @devname: An ascii name for the claiming device
2584 * @dev_id: A percpu cookie passed back to the handler function
2585 *
2586 * This call allocates interrupt resources and enables the
2587 * interrupt on the local CPU. If the interrupt is supposed to be
2588 * enabled on other CPUs, it has to be done on each CPU using
2589 * enable_percpu_irq().
2590 *
2591 * Dev_id must be globally unique. It is a per-cpu variable, and
2592 * the handler gets called with the interrupted CPU's instance of
2593 * that variable.
2594 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2595 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2596 unsigned long flags, const char *devname,
2597 void __percpu *dev_id)
2598 {
2599 struct irqaction *action;
2600 struct irq_desc *desc;
2601 int retval;
2602
2603 if (!dev_id)
2604 return -EINVAL;
2605
2606 desc = irq_to_desc(irq);
2607 if (!desc || !irq_settings_can_request(desc) ||
2608 !irq_settings_is_per_cpu_devid(desc))
2609 return -EINVAL;
2610
2611 if (flags && flags != IRQF_TIMER)
2612 return -EINVAL;
2613
2614 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2615 if (!action)
2616 return -ENOMEM;
2617
2618 action->handler = handler;
2619 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2620 action->name = devname;
2621 action->percpu_dev_id = dev_id;
2622
2623 retval = irq_chip_pm_get(&desc->irq_data);
2624 if (retval < 0) {
2625 kfree(action);
2626 return retval;
2627 }
2628
2629 retval = __setup_irq(irq, desc, action);
2630
2631 if (retval) {
2632 irq_chip_pm_put(&desc->irq_data);
2633 kfree(action);
2634 }
2635
2636 return retval;
2637 }
2638 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2639
2640 /**
2641 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2642 * @irq: Interrupt line to allocate
2643 * @handler: Function to be called when the IRQ occurs.
2644 * @name: An ascii name for the claiming device
2645 * @dev_id: A percpu cookie passed back to the handler function
2646 *
2647 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2648 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2649 * being enabled on the same CPU by using enable_percpu_nmi().
2650 *
2651 * Dev_id must be globally unique. It is a per-cpu variable, and
2652 * the handler gets called with the interrupted CPU's instance of
2653 * that variable.
2654 *
2655 * Interrupt lines requested for NMI delivering should have auto enabling
2656 * setting disabled.
2657 *
2658 * If the interrupt line cannot be used to deliver NMIs, function
2659 * will fail returning a negative value.
2660 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2661 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2662 const char *name, void __percpu *dev_id)
2663 {
2664 struct irqaction *action;
2665 struct irq_desc *desc;
2666 unsigned long flags;
2667 int retval;
2668
2669 if (!handler)
2670 return -EINVAL;
2671
2672 desc = irq_to_desc(irq);
2673
2674 if (!desc || !irq_settings_can_request(desc) ||
2675 !irq_settings_is_per_cpu_devid(desc) ||
2676 irq_settings_can_autoenable(desc) ||
2677 !irq_supports_nmi(desc))
2678 return -EINVAL;
2679
2680 /* The line cannot already be NMI */
2681 if (desc->istate & IRQS_NMI)
2682 return -EINVAL;
2683
2684 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2685 if (!action)
2686 return -ENOMEM;
2687
2688 action->handler = handler;
2689 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2690 | IRQF_NOBALANCING;
2691 action->name = name;
2692 action->percpu_dev_id = dev_id;
2693
2694 retval = irq_chip_pm_get(&desc->irq_data);
2695 if (retval < 0)
2696 goto err_out;
2697
2698 retval = __setup_irq(irq, desc, action);
2699 if (retval)
2700 goto err_irq_setup;
2701
2702 raw_spin_lock_irqsave(&desc->lock, flags);
2703 desc->istate |= IRQS_NMI;
2704 raw_spin_unlock_irqrestore(&desc->lock, flags);
2705
2706 return 0;
2707
2708 err_irq_setup:
2709 irq_chip_pm_put(&desc->irq_data);
2710 err_out:
2711 kfree(action);
2712
2713 return retval;
2714 }
2715
2716 /**
2717 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2718 * @irq: Interrupt line to prepare for NMI delivery
2719 *
2720 * This call prepares an interrupt line to deliver NMI on the current CPU,
2721 * before that interrupt line gets enabled with enable_percpu_nmi().
2722 *
2723 * As a CPU local operation, this should be called from non-preemptible
2724 * context.
2725 *
2726 * If the interrupt line cannot be used to deliver NMIs, function
2727 * will fail returning a negative value.
2728 */
prepare_percpu_nmi(unsigned int irq)2729 int prepare_percpu_nmi(unsigned int irq)
2730 {
2731 unsigned long flags;
2732 struct irq_desc *desc;
2733 int ret = 0;
2734
2735 WARN_ON(preemptible());
2736
2737 desc = irq_get_desc_lock(irq, &flags,
2738 IRQ_GET_DESC_CHECK_PERCPU);
2739 if (!desc)
2740 return -EINVAL;
2741
2742 if (WARN(!(desc->istate & IRQS_NMI),
2743 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2744 irq)) {
2745 ret = -EINVAL;
2746 goto out;
2747 }
2748
2749 ret = irq_nmi_setup(desc);
2750 if (ret) {
2751 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2752 goto out;
2753 }
2754
2755 out:
2756 irq_put_desc_unlock(desc, flags);
2757 return ret;
2758 }
2759
2760 /**
2761 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2762 * @irq: Interrupt line from which CPU local NMI configuration should be
2763 * removed
2764 *
2765 * This call undoes the setup done by prepare_percpu_nmi().
2766 *
2767 * IRQ line should not be enabled for the current CPU.
2768 *
2769 * As a CPU local operation, this should be called from non-preemptible
2770 * context.
2771 */
teardown_percpu_nmi(unsigned int irq)2772 void teardown_percpu_nmi(unsigned int irq)
2773 {
2774 unsigned long flags;
2775 struct irq_desc *desc;
2776
2777 WARN_ON(preemptible());
2778
2779 desc = irq_get_desc_lock(irq, &flags,
2780 IRQ_GET_DESC_CHECK_PERCPU);
2781 if (!desc)
2782 return;
2783
2784 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2785 goto out;
2786
2787 irq_nmi_teardown(desc);
2788 out:
2789 irq_put_desc_unlock(desc, flags);
2790 }
2791
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2792 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2793 bool *state)
2794 {
2795 struct irq_chip *chip;
2796 int err = -EINVAL;
2797
2798 do {
2799 chip = irq_data_get_irq_chip(data);
2800 if (WARN_ON_ONCE(!chip))
2801 return -ENODEV;
2802 if (chip->irq_get_irqchip_state)
2803 break;
2804 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2805 data = data->parent_data;
2806 #else
2807 data = NULL;
2808 #endif
2809 } while (data);
2810
2811 if (data)
2812 err = chip->irq_get_irqchip_state(data, which, state);
2813 return err;
2814 }
2815
2816 /**
2817 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2818 * @irq: Interrupt line that is forwarded to a VM
2819 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2820 * @state: a pointer to a boolean where the state is to be stored
2821 *
2822 * This call snapshots the internal irqchip state of an
2823 * interrupt, returning into @state the bit corresponding to
2824 * stage @which
2825 *
2826 * This function should be called with preemption disabled if the
2827 * interrupt controller has per-cpu registers.
2828 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2829 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2830 bool *state)
2831 {
2832 struct irq_desc *desc;
2833 struct irq_data *data;
2834 unsigned long flags;
2835 int err = -EINVAL;
2836
2837 desc = irq_get_desc_buslock(irq, &flags, 0);
2838 if (!desc)
2839 return err;
2840
2841 data = irq_desc_get_irq_data(desc);
2842
2843 err = __irq_get_irqchip_state(data, which, state);
2844
2845 irq_put_desc_busunlock(desc, flags);
2846 return err;
2847 }
2848 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2849
2850 /**
2851 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2852 * @irq: Interrupt line that is forwarded to a VM
2853 * @which: State to be restored (one of IRQCHIP_STATE_*)
2854 * @val: Value corresponding to @which
2855 *
2856 * This call sets the internal irqchip state of an interrupt,
2857 * depending on the value of @which.
2858 *
2859 * This function should be called with migration disabled if the
2860 * interrupt controller has per-cpu registers.
2861 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2862 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2863 bool val)
2864 {
2865 struct irq_desc *desc;
2866 struct irq_data *data;
2867 struct irq_chip *chip;
2868 unsigned long flags;
2869 int err = -EINVAL;
2870
2871 desc = irq_get_desc_buslock(irq, &flags, 0);
2872 if (!desc)
2873 return err;
2874
2875 data = irq_desc_get_irq_data(desc);
2876
2877 do {
2878 chip = irq_data_get_irq_chip(data);
2879 if (WARN_ON_ONCE(!chip)) {
2880 err = -ENODEV;
2881 goto out_unlock;
2882 }
2883 if (chip->irq_set_irqchip_state)
2884 break;
2885 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2886 data = data->parent_data;
2887 #else
2888 data = NULL;
2889 #endif
2890 } while (data);
2891
2892 if (data)
2893 err = chip->irq_set_irqchip_state(data, which, val);
2894
2895 out_unlock:
2896 irq_put_desc_busunlock(desc, flags);
2897 return err;
2898 }
2899 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2900
2901 /**
2902 * irq_has_action - Check whether an interrupt is requested
2903 * @irq: The linux irq number
2904 *
2905 * Returns: A snapshot of the current state
2906 */
irq_has_action(unsigned int irq)2907 bool irq_has_action(unsigned int irq)
2908 {
2909 bool res;
2910
2911 rcu_read_lock();
2912 res = irq_desc_has_action(irq_to_desc(irq));
2913 rcu_read_unlock();
2914 return res;
2915 }
2916 EXPORT_SYMBOL_GPL(irq_has_action);
2917
2918 /**
2919 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2920 * @irq: The linux irq number
2921 * @bitmask: The bitmask to evaluate
2922 *
2923 * Returns: True if one of the bits in @bitmask is set
2924 */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2925 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2926 {
2927 struct irq_desc *desc;
2928 bool res = false;
2929
2930 rcu_read_lock();
2931 desc = irq_to_desc(irq);
2932 if (desc)
2933 res = !!(desc->status_use_accessors & bitmask);
2934 rcu_read_unlock();
2935 return res;
2936 }
2937 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2938