1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29 
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	static_branch_enable(&force_irqthreads_key);
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 	bool inprogress;
42 
43 	do {
44 		unsigned long flags;
45 
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		raw_spin_lock_irqsave(&desc->lock, flags);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		raw_spin_unlock_irqrestore(&desc->lock, flags);
71 
72 		/* Oops, that failed? */
73 	} while (inprogress);
74 }
75 
76 /**
77  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *	@irq: interrupt number to wait for
79  *
80  *	This function waits for any pending hard IRQ handlers for this
81  *	interrupt to complete before returning. If you use this
82  *	function while holding a resource the IRQ handler may need you
83  *	will deadlock. It does not take associated threaded handlers
84  *	into account.
85  *
86  *	Do not use this for shutdown scenarios where you must be sure
87  *	that all parts (hardirq and threaded handler) have completed.
88  *
89  *	Returns: false if a threaded handler is active.
90  *
91  *	This function may be called - with care - from IRQ context.
92  *
93  *	It does not check whether there is an interrupt in flight at the
94  *	hardware level, but not serviced yet, as this might deadlock when
95  *	called with interrupts disabled and the target CPU of the interrupt
96  *	is the current CPU.
97  */
synchronize_hardirq(unsigned int irq)98 bool synchronize_hardirq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc, false);
104 		return !atomic_read(&desc->threads_active);
105 	}
106 
107 	return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110 
111 /**
112  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *	@irq: interrupt number to wait for
114  *
115  *	This function waits for any pending IRQ handlers for this interrupt
116  *	to complete before returning. If you use this function while
117  *	holding a resource the IRQ handler may need you will deadlock.
118  *
119  *	Can only be called from preemptible code as it might sleep when
120  *	an interrupt thread is associated to @irq.
121  *
122  *	It optionally makes sure (when the irq chip supports that method)
123  *	that the interrupt is not pending in any CPU and waiting for
124  *	service.
125  */
synchronize_irq(unsigned int irq)126 void synchronize_irq(unsigned int irq)
127 {
128 	struct irq_desc *desc = irq_to_desc(irq);
129 
130 	if (desc) {
131 		__synchronize_hardirq(desc, true);
132 		/*
133 		 * We made sure that no hardirq handler is
134 		 * running. Now verify that no threaded handlers are
135 		 * active.
136 		 */
137 		wait_event(desc->wait_for_threads,
138 			   !atomic_read(&desc->threads_active));
139 	}
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142 
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145 
__irq_can_set_affinity(struct irq_desc * desc)146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 		return false;
151 	return true;
152 }
153 
154 /**
155  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *	@irq:		Interrupt to check
157  *
158  */
irq_can_set_affinity(unsigned int irq)159 int irq_can_set_affinity(unsigned int irq)
160 {
161 	return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163 
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:	Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
irq_can_set_affinity_usr(unsigned int irq)171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 	struct irq_desc *desc = irq_to_desc(irq);
174 
175 	return __irq_can_set_affinity(desc) &&
176 		!irqd_affinity_is_managed(&desc->irq_data);
177 }
178 
179 /**
180  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *	@desc:		irq descriptor which has affinity changed
182  *
183  *	We just set IRQTF_AFFINITY and delegate the affinity setting
184  *	to the interrupt thread itself. We can not call
185  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *	code can be called from hard interrupt context.
187  */
irq_set_thread_affinity(struct irq_desc * desc)188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 	struct irqaction *action;
191 
192 	for_each_action_of_desc(desc, action)
193 		if (action->thread)
194 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196 
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201 	struct irq_chip *chip = irq_data_get_irq_chip(data);
202 
203 	if (!cpumask_empty(m))
204 		return;
205 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206 		     chip->name, data->irq);
207 }
208 #else
irq_validate_effective_affinity(struct irq_data * data)209 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
210 #endif
211 
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)212 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
213 			bool force)
214 {
215 	struct irq_desc *desc = irq_data_to_desc(data);
216 	struct irq_chip *chip = irq_data_get_irq_chip(data);
217 	const struct cpumask  *prog_mask;
218 	int ret;
219 
220 	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
221 	static struct cpumask tmp_mask;
222 
223 	if (!chip || !chip->irq_set_affinity)
224 		return -EINVAL;
225 
226 	raw_spin_lock(&tmp_mask_lock);
227 	/*
228 	 * If this is a managed interrupt and housekeeping is enabled on
229 	 * it check whether the requested affinity mask intersects with
230 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
231 	 * the mask and just keep the housekeeping CPU(s). This prevents
232 	 * the affinity setter from routing the interrupt to an isolated
233 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
234 	 * interrupts on an isolated one.
235 	 *
236 	 * If the masks do not intersect or include online CPU(s) then
237 	 * keep the requested mask. The isolated target CPUs are only
238 	 * receiving interrupts when the I/O operation was submitted
239 	 * directly from them.
240 	 *
241 	 * If all housekeeping CPUs in the affinity mask are offline, the
242 	 * interrupt will be migrated by the CPU hotplug code once a
243 	 * housekeeping CPU which belongs to the affinity mask comes
244 	 * online.
245 	 */
246 	if (irqd_affinity_is_managed(data) &&
247 	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
248 		const struct cpumask *hk_mask;
249 
250 		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
251 
252 		cpumask_and(&tmp_mask, mask, hk_mask);
253 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
254 			prog_mask = mask;
255 		else
256 			prog_mask = &tmp_mask;
257 	} else {
258 		prog_mask = mask;
259 	}
260 
261 	/*
262 	 * Make sure we only provide online CPUs to the irqchip,
263 	 * unless we are being asked to force the affinity (in which
264 	 * case we do as we are told).
265 	 */
266 	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
267 	if (!force && !cpumask_empty(&tmp_mask))
268 		ret = chip->irq_set_affinity(data, &tmp_mask, force);
269 	else if (force)
270 		ret = chip->irq_set_affinity(data, mask, force);
271 	else
272 		ret = -EINVAL;
273 
274 	raw_spin_unlock(&tmp_mask_lock);
275 
276 	switch (ret) {
277 	case IRQ_SET_MASK_OK:
278 	case IRQ_SET_MASK_OK_DONE:
279 		cpumask_copy(desc->irq_common_data.affinity, mask);
280 		fallthrough;
281 	case IRQ_SET_MASK_OK_NOCOPY:
282 		irq_validate_effective_affinity(data);
283 		irq_set_thread_affinity(desc);
284 		ret = 0;
285 	}
286 
287 	return ret;
288 }
289 
290 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)291 static inline int irq_set_affinity_pending(struct irq_data *data,
292 					   const struct cpumask *dest)
293 {
294 	struct irq_desc *desc = irq_data_to_desc(data);
295 
296 	irqd_set_move_pending(data);
297 	irq_copy_pending(desc, dest);
298 	return 0;
299 }
300 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)301 static inline int irq_set_affinity_pending(struct irq_data *data,
302 					   const struct cpumask *dest)
303 {
304 	return -EBUSY;
305 }
306 #endif
307 
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)308 static int irq_try_set_affinity(struct irq_data *data,
309 				const struct cpumask *dest, bool force)
310 {
311 	int ret = irq_do_set_affinity(data, dest, force);
312 
313 	/*
314 	 * In case that the underlying vector management is busy and the
315 	 * architecture supports the generic pending mechanism then utilize
316 	 * this to avoid returning an error to user space.
317 	 */
318 	if (ret == -EBUSY && !force)
319 		ret = irq_set_affinity_pending(data, dest);
320 	return ret;
321 }
322 
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask)323 static bool irq_set_affinity_deactivated(struct irq_data *data,
324 					 const struct cpumask *mask)
325 {
326 	struct irq_desc *desc = irq_data_to_desc(data);
327 
328 	/*
329 	 * Handle irq chips which can handle affinity only in activated
330 	 * state correctly
331 	 *
332 	 * If the interrupt is not yet activated, just store the affinity
333 	 * mask and do not call the chip driver at all. On activation the
334 	 * driver has to make sure anyway that the interrupt is in a
335 	 * usable state so startup works.
336 	 */
337 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
338 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
339 		return false;
340 
341 	cpumask_copy(desc->irq_common_data.affinity, mask);
342 	irq_data_update_effective_affinity(data, mask);
343 	irqd_set(data, IRQD_AFFINITY_SET);
344 	return true;
345 }
346 
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)347 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
348 			    bool force)
349 {
350 	struct irq_chip *chip = irq_data_get_irq_chip(data);
351 	struct irq_desc *desc = irq_data_to_desc(data);
352 	int ret = 0;
353 
354 	if (!chip || !chip->irq_set_affinity)
355 		return -EINVAL;
356 
357 	if (irq_set_affinity_deactivated(data, mask))
358 		return 0;
359 
360 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
361 		ret = irq_try_set_affinity(data, mask, force);
362 	} else {
363 		irqd_set_move_pending(data);
364 		irq_copy_pending(desc, mask);
365 	}
366 
367 	if (desc->affinity_notify) {
368 		kref_get(&desc->affinity_notify->kref);
369 		if (!schedule_work(&desc->affinity_notify->work)) {
370 			/* Work was already scheduled, drop our extra ref */
371 			kref_put(&desc->affinity_notify->kref,
372 				 desc->affinity_notify->release);
373 		}
374 	}
375 	irqd_set(data, IRQD_AFFINITY_SET);
376 
377 	return ret;
378 }
379 
380 /**
381  * irq_update_affinity_desc - Update affinity management for an interrupt
382  * @irq:	The interrupt number to update
383  * @affinity:	Pointer to the affinity descriptor
384  *
385  * This interface can be used to configure the affinity management of
386  * interrupts which have been allocated already.
387  *
388  * There are certain limitations on when it may be used - attempts to use it
389  * for when the kernel is configured for generic IRQ reservation mode (in
390  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
391  * managed/non-managed interrupt accounting. In addition, attempts to use it on
392  * an interrupt which is already started or which has already been configured
393  * as managed will also fail, as these mean invalid init state or double init.
394  */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)395 int irq_update_affinity_desc(unsigned int irq,
396 			     struct irq_affinity_desc *affinity)
397 {
398 	struct irq_desc *desc;
399 	unsigned long flags;
400 	bool activated;
401 	int ret = 0;
402 
403 	/*
404 	 * Supporting this with the reservation scheme used by x86 needs
405 	 * some more thought. Fail it for now.
406 	 */
407 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
408 		return -EOPNOTSUPP;
409 
410 	desc = irq_get_desc_buslock(irq, &flags, 0);
411 	if (!desc)
412 		return -EINVAL;
413 
414 	/* Requires the interrupt to be shut down */
415 	if (irqd_is_started(&desc->irq_data)) {
416 		ret = -EBUSY;
417 		goto out_unlock;
418 	}
419 
420 	/* Interrupts which are already managed cannot be modified */
421 	if (irqd_affinity_is_managed(&desc->irq_data)) {
422 		ret = -EBUSY;
423 		goto out_unlock;
424 	}
425 
426 	/*
427 	 * Deactivate the interrupt. That's required to undo
428 	 * anything an earlier activation has established.
429 	 */
430 	activated = irqd_is_activated(&desc->irq_data);
431 	if (activated)
432 		irq_domain_deactivate_irq(&desc->irq_data);
433 
434 	if (affinity->is_managed) {
435 		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
436 		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
437 	}
438 
439 	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
440 
441 	/* Restore the activation state */
442 	if (activated)
443 		irq_domain_activate_irq(&desc->irq_data, false);
444 
445 out_unlock:
446 	irq_put_desc_busunlock(desc, flags);
447 	return ret;
448 }
449 
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)450 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
451 			      bool force)
452 {
453 	struct irq_desc *desc = irq_to_desc(irq);
454 	unsigned long flags;
455 	int ret;
456 
457 	if (!desc)
458 		return -EINVAL;
459 
460 	raw_spin_lock_irqsave(&desc->lock, flags);
461 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
462 	raw_spin_unlock_irqrestore(&desc->lock, flags);
463 	return ret;
464 }
465 
466 /**
467  * irq_set_affinity - Set the irq affinity of a given irq
468  * @irq:	Interrupt to set affinity
469  * @cpumask:	cpumask
470  *
471  * Fails if cpumask does not contain an online CPU
472  */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)473 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
474 {
475 	return __irq_set_affinity(irq, cpumask, false);
476 }
477 EXPORT_SYMBOL_GPL(irq_set_affinity);
478 
479 /**
480  * irq_force_affinity - Force the irq affinity of a given irq
481  * @irq:	Interrupt to set affinity
482  * @cpumask:	cpumask
483  *
484  * Same as irq_set_affinity, but without checking the mask against
485  * online cpus.
486  *
487  * Solely for low level cpu hotplug code, where we need to make per
488  * cpu interrupts affine before the cpu becomes online.
489  */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)490 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
491 {
492 	return __irq_set_affinity(irq, cpumask, true);
493 }
494 EXPORT_SYMBOL_GPL(irq_force_affinity);
495 
__irq_apply_affinity_hint(unsigned int irq,const struct cpumask * m,bool setaffinity)496 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
497 			      bool setaffinity)
498 {
499 	unsigned long flags;
500 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
501 
502 	if (!desc)
503 		return -EINVAL;
504 	desc->affinity_hint = m;
505 	irq_put_desc_unlock(desc, flags);
506 	if (m && setaffinity)
507 		__irq_set_affinity(irq, m, false);
508 	return 0;
509 }
510 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
511 
irq_affinity_notify(struct work_struct * work)512 static void irq_affinity_notify(struct work_struct *work)
513 {
514 	struct irq_affinity_notify *notify =
515 		container_of(work, struct irq_affinity_notify, work);
516 	struct irq_desc *desc = irq_to_desc(notify->irq);
517 	cpumask_var_t cpumask;
518 	unsigned long flags;
519 
520 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
521 		goto out;
522 
523 	raw_spin_lock_irqsave(&desc->lock, flags);
524 	if (irq_move_pending(&desc->irq_data))
525 		irq_get_pending(cpumask, desc);
526 	else
527 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
528 	raw_spin_unlock_irqrestore(&desc->lock, flags);
529 
530 	notify->notify(notify, cpumask);
531 
532 	free_cpumask_var(cpumask);
533 out:
534 	kref_put(&notify->kref, notify->release);
535 }
536 
537 /**
538  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
539  *	@irq:		Interrupt for which to enable/disable notification
540  *	@notify:	Context for notification, or %NULL to disable
541  *			notification.  Function pointers must be initialised;
542  *			the other fields will be initialised by this function.
543  *
544  *	Must be called in process context.  Notification may only be enabled
545  *	after the IRQ is allocated and must be disabled before the IRQ is
546  *	freed using free_irq().
547  */
548 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)549 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
550 {
551 	struct irq_desc *desc = irq_to_desc(irq);
552 	struct irq_affinity_notify *old_notify;
553 	unsigned long flags;
554 
555 	/* The release function is promised process context */
556 	might_sleep();
557 
558 	if (!desc || desc->istate & IRQS_NMI)
559 		return -EINVAL;
560 
561 	/* Complete initialisation of *notify */
562 	if (notify) {
563 		notify->irq = irq;
564 		kref_init(&notify->kref);
565 		INIT_WORK(&notify->work, irq_affinity_notify);
566 	}
567 
568 	raw_spin_lock_irqsave(&desc->lock, flags);
569 	old_notify = desc->affinity_notify;
570 	desc->affinity_notify = notify;
571 	raw_spin_unlock_irqrestore(&desc->lock, flags);
572 
573 	if (old_notify) {
574 		if (cancel_work_sync(&old_notify->work)) {
575 			/* Pending work had a ref, put that one too */
576 			kref_put(&old_notify->kref, old_notify->release);
577 		}
578 		kref_put(&old_notify->kref, old_notify->release);
579 	}
580 
581 	return 0;
582 }
583 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
584 
585 #ifndef CONFIG_AUTO_IRQ_AFFINITY
586 /*
587  * Generic version of the affinity autoselector.
588  */
irq_setup_affinity(struct irq_desc * desc)589 int irq_setup_affinity(struct irq_desc *desc)
590 {
591 	struct cpumask *set = irq_default_affinity;
592 	int ret, node = irq_desc_get_node(desc);
593 	static DEFINE_RAW_SPINLOCK(mask_lock);
594 	static struct cpumask mask;
595 
596 	/* Excludes PER_CPU and NO_BALANCE interrupts */
597 	if (!__irq_can_set_affinity(desc))
598 		return 0;
599 
600 	raw_spin_lock(&mask_lock);
601 	/*
602 	 * Preserve the managed affinity setting and a userspace affinity
603 	 * setup, but make sure that one of the targets is online.
604 	 */
605 	if (irqd_affinity_is_managed(&desc->irq_data) ||
606 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
607 		if (cpumask_intersects(desc->irq_common_data.affinity,
608 				       cpu_online_mask))
609 			set = desc->irq_common_data.affinity;
610 		else
611 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
612 	}
613 
614 	cpumask_and(&mask, cpu_online_mask, set);
615 	if (cpumask_empty(&mask))
616 		cpumask_copy(&mask, cpu_online_mask);
617 
618 	if (node != NUMA_NO_NODE) {
619 		const struct cpumask *nodemask = cpumask_of_node(node);
620 
621 		/* make sure at least one of the cpus in nodemask is online */
622 		if (cpumask_intersects(&mask, nodemask))
623 			cpumask_and(&mask, &mask, nodemask);
624 	}
625 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
626 	raw_spin_unlock(&mask_lock);
627 	return ret;
628 }
629 #else
630 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)631 int irq_setup_affinity(struct irq_desc *desc)
632 {
633 	return irq_select_affinity(irq_desc_get_irq(desc));
634 }
635 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
636 #endif /* CONFIG_SMP */
637 
638 
639 /**
640  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
641  *	@irq: interrupt number to set affinity
642  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
643  *	            specific data for percpu_devid interrupts
644  *
645  *	This function uses the vCPU specific data to set the vCPU
646  *	affinity for an irq. The vCPU specific data is passed from
647  *	outside, such as KVM. One example code path is as below:
648  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
649  */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)650 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
651 {
652 	unsigned long flags;
653 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
654 	struct irq_data *data;
655 	struct irq_chip *chip;
656 	int ret = -ENOSYS;
657 
658 	if (!desc)
659 		return -EINVAL;
660 
661 	data = irq_desc_get_irq_data(desc);
662 	do {
663 		chip = irq_data_get_irq_chip(data);
664 		if (chip && chip->irq_set_vcpu_affinity)
665 			break;
666 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
667 		data = data->parent_data;
668 #else
669 		data = NULL;
670 #endif
671 	} while (data);
672 
673 	if (data)
674 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
675 	irq_put_desc_unlock(desc, flags);
676 
677 	return ret;
678 }
679 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
680 
__disable_irq(struct irq_desc * desc)681 void __disable_irq(struct irq_desc *desc)
682 {
683 	if (!desc->depth++)
684 		irq_disable(desc);
685 }
686 
__disable_irq_nosync(unsigned int irq)687 static int __disable_irq_nosync(unsigned int irq)
688 {
689 	unsigned long flags;
690 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
691 
692 	if (!desc)
693 		return -EINVAL;
694 	__disable_irq(desc);
695 	irq_put_desc_busunlock(desc, flags);
696 	return 0;
697 }
698 
699 /**
700  *	disable_irq_nosync - disable an irq without waiting
701  *	@irq: Interrupt to disable
702  *
703  *	Disable the selected interrupt line.  Disables and Enables are
704  *	nested.
705  *	Unlike disable_irq(), this function does not ensure existing
706  *	instances of the IRQ handler have completed before returning.
707  *
708  *	This function may be called from IRQ context.
709  */
disable_irq_nosync(unsigned int irq)710 void disable_irq_nosync(unsigned int irq)
711 {
712 	__disable_irq_nosync(irq);
713 }
714 EXPORT_SYMBOL(disable_irq_nosync);
715 
716 /**
717  *	disable_irq - disable an irq and wait for completion
718  *	@irq: Interrupt to disable
719  *
720  *	Disable the selected interrupt line.  Enables and Disables are
721  *	nested.
722  *	This function waits for any pending IRQ handlers for this interrupt
723  *	to complete before returning. If you use this function while
724  *	holding a resource the IRQ handler may need you will deadlock.
725  *
726  *	Can only be called from preemptible code as it might sleep when
727  *	an interrupt thread is associated to @irq.
728  *
729  */
disable_irq(unsigned int irq)730 void disable_irq(unsigned int irq)
731 {
732 	might_sleep();
733 	if (!__disable_irq_nosync(irq))
734 		synchronize_irq(irq);
735 }
736 EXPORT_SYMBOL(disable_irq);
737 
738 /**
739  *	disable_hardirq - disables an irq and waits for hardirq completion
740  *	@irq: Interrupt to disable
741  *
742  *	Disable the selected interrupt line.  Enables and Disables are
743  *	nested.
744  *	This function waits for any pending hard IRQ handlers for this
745  *	interrupt to complete before returning. If you use this function while
746  *	holding a resource the hard IRQ handler may need you will deadlock.
747  *
748  *	When used to optimistically disable an interrupt from atomic context
749  *	the return value must be checked.
750  *
751  *	Returns: false if a threaded handler is active.
752  *
753  *	This function may be called - with care - from IRQ context.
754  */
disable_hardirq(unsigned int irq)755 bool disable_hardirq(unsigned int irq)
756 {
757 	if (!__disable_irq_nosync(irq))
758 		return synchronize_hardirq(irq);
759 
760 	return false;
761 }
762 EXPORT_SYMBOL_GPL(disable_hardirq);
763 
764 /**
765  *	disable_nmi_nosync - disable an nmi without waiting
766  *	@irq: Interrupt to disable
767  *
768  *	Disable the selected interrupt line. Disables and enables are
769  *	nested.
770  *	The interrupt to disable must have been requested through request_nmi.
771  *	Unlike disable_nmi(), this function does not ensure existing
772  *	instances of the IRQ handler have completed before returning.
773  */
disable_nmi_nosync(unsigned int irq)774 void disable_nmi_nosync(unsigned int irq)
775 {
776 	disable_irq_nosync(irq);
777 }
778 
__enable_irq(struct irq_desc * desc)779 void __enable_irq(struct irq_desc *desc)
780 {
781 	switch (desc->depth) {
782 	case 0:
783  err_out:
784 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
785 		     irq_desc_get_irq(desc));
786 		break;
787 	case 1: {
788 		if (desc->istate & IRQS_SUSPENDED)
789 			goto err_out;
790 		/* Prevent probing on this irq: */
791 		irq_settings_set_noprobe(desc);
792 		/*
793 		 * Call irq_startup() not irq_enable() here because the
794 		 * interrupt might be marked NOAUTOEN. So irq_startup()
795 		 * needs to be invoked when it gets enabled the first
796 		 * time. If it was already started up, then irq_startup()
797 		 * will invoke irq_enable() under the hood.
798 		 */
799 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
800 		break;
801 	}
802 	default:
803 		desc->depth--;
804 	}
805 }
806 
807 /**
808  *	enable_irq - enable handling of an irq
809  *	@irq: Interrupt to enable
810  *
811  *	Undoes the effect of one call to disable_irq().  If this
812  *	matches the last disable, processing of interrupts on this
813  *	IRQ line is re-enabled.
814  *
815  *	This function may be called from IRQ context only when
816  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
817  */
enable_irq(unsigned int irq)818 void enable_irq(unsigned int irq)
819 {
820 	unsigned long flags;
821 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
822 
823 	if (!desc)
824 		return;
825 	if (WARN(!desc->irq_data.chip,
826 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
827 		goto out;
828 
829 	__enable_irq(desc);
830 out:
831 	irq_put_desc_busunlock(desc, flags);
832 }
833 EXPORT_SYMBOL(enable_irq);
834 
835 /**
836  *	enable_nmi - enable handling of an nmi
837  *	@irq: Interrupt to enable
838  *
839  *	The interrupt to enable must have been requested through request_nmi.
840  *	Undoes the effect of one call to disable_nmi(). If this
841  *	matches the last disable, processing of interrupts on this
842  *	IRQ line is re-enabled.
843  */
enable_nmi(unsigned int irq)844 void enable_nmi(unsigned int irq)
845 {
846 	enable_irq(irq);
847 }
848 
set_irq_wake_real(unsigned int irq,unsigned int on)849 static int set_irq_wake_real(unsigned int irq, unsigned int on)
850 {
851 	struct irq_desc *desc = irq_to_desc(irq);
852 	int ret = -ENXIO;
853 
854 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
855 		return 0;
856 
857 	if (desc->irq_data.chip->irq_set_wake)
858 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
859 
860 	return ret;
861 }
862 
863 /**
864  *	irq_set_irq_wake - control irq power management wakeup
865  *	@irq:	interrupt to control
866  *	@on:	enable/disable power management wakeup
867  *
868  *	Enable/disable power management wakeup mode, which is
869  *	disabled by default.  Enables and disables must match,
870  *	just as they match for non-wakeup mode support.
871  *
872  *	Wakeup mode lets this IRQ wake the system from sleep
873  *	states like "suspend to RAM".
874  *
875  *	Note: irq enable/disable state is completely orthogonal
876  *	to the enable/disable state of irq wake. An irq can be
877  *	disabled with disable_irq() and still wake the system as
878  *	long as the irq has wake enabled. If this does not hold,
879  *	then the underlying irq chip and the related driver need
880  *	to be investigated.
881  */
irq_set_irq_wake(unsigned int irq,unsigned int on)882 int irq_set_irq_wake(unsigned int irq, unsigned int on)
883 {
884 	unsigned long flags;
885 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
886 	int ret = 0;
887 
888 	if (!desc)
889 		return -EINVAL;
890 
891 	/* Don't use NMIs as wake up interrupts please */
892 	if (desc->istate & IRQS_NMI) {
893 		ret = -EINVAL;
894 		goto out_unlock;
895 	}
896 
897 	/* wakeup-capable irqs can be shared between drivers that
898 	 * don't need to have the same sleep mode behaviors.
899 	 */
900 	if (on) {
901 		if (desc->wake_depth++ == 0) {
902 			ret = set_irq_wake_real(irq, on);
903 			if (ret)
904 				desc->wake_depth = 0;
905 			else
906 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
907 		}
908 	} else {
909 		if (desc->wake_depth == 0) {
910 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
911 		} else if (--desc->wake_depth == 0) {
912 			ret = set_irq_wake_real(irq, on);
913 			if (ret)
914 				desc->wake_depth = 1;
915 			else
916 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
917 		}
918 	}
919 
920 out_unlock:
921 	irq_put_desc_busunlock(desc, flags);
922 	return ret;
923 }
924 EXPORT_SYMBOL(irq_set_irq_wake);
925 
926 /*
927  * Internal function that tells the architecture code whether a
928  * particular irq has been exclusively allocated or is available
929  * for driver use.
930  */
can_request_irq(unsigned int irq,unsigned long irqflags)931 int can_request_irq(unsigned int irq, unsigned long irqflags)
932 {
933 	unsigned long flags;
934 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
935 	int canrequest = 0;
936 
937 	if (!desc)
938 		return 0;
939 
940 	if (irq_settings_can_request(desc)) {
941 		if (!desc->action ||
942 		    irqflags & desc->action->flags & IRQF_SHARED)
943 			canrequest = 1;
944 	}
945 	irq_put_desc_unlock(desc, flags);
946 	return canrequest;
947 }
948 
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)949 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
950 {
951 	struct irq_chip *chip = desc->irq_data.chip;
952 	int ret, unmask = 0;
953 
954 	if (!chip || !chip->irq_set_type) {
955 		/*
956 		 * IRQF_TRIGGER_* but the PIC does not support multiple
957 		 * flow-types?
958 		 */
959 		pr_debug("No set_type function for IRQ %d (%s)\n",
960 			 irq_desc_get_irq(desc),
961 			 chip ? (chip->name ? : "unknown") : "unknown");
962 		return 0;
963 	}
964 
965 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
966 		if (!irqd_irq_masked(&desc->irq_data))
967 			mask_irq(desc);
968 		if (!irqd_irq_disabled(&desc->irq_data))
969 			unmask = 1;
970 	}
971 
972 	/* Mask all flags except trigger mode */
973 	flags &= IRQ_TYPE_SENSE_MASK;
974 	ret = chip->irq_set_type(&desc->irq_data, flags);
975 
976 	switch (ret) {
977 	case IRQ_SET_MASK_OK:
978 	case IRQ_SET_MASK_OK_DONE:
979 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
980 		irqd_set(&desc->irq_data, flags);
981 		fallthrough;
982 
983 	case IRQ_SET_MASK_OK_NOCOPY:
984 		flags = irqd_get_trigger_type(&desc->irq_data);
985 		irq_settings_set_trigger_mask(desc, flags);
986 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
987 		irq_settings_clr_level(desc);
988 		if (flags & IRQ_TYPE_LEVEL_MASK) {
989 			irq_settings_set_level(desc);
990 			irqd_set(&desc->irq_data, IRQD_LEVEL);
991 		}
992 
993 		ret = 0;
994 		break;
995 	default:
996 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
997 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
998 	}
999 	if (unmask)
1000 		unmask_irq(desc);
1001 	return ret;
1002 }
1003 
1004 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)1005 int irq_set_parent(int irq, int parent_irq)
1006 {
1007 	unsigned long flags;
1008 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1009 
1010 	if (!desc)
1011 		return -EINVAL;
1012 
1013 	desc->parent_irq = parent_irq;
1014 
1015 	irq_put_desc_unlock(desc, flags);
1016 	return 0;
1017 }
1018 EXPORT_SYMBOL_GPL(irq_set_parent);
1019 #endif
1020 
1021 /*
1022  * Default primary interrupt handler for threaded interrupts. Is
1023  * assigned as primary handler when request_threaded_irq is called
1024  * with handler == NULL. Useful for oneshot interrupts.
1025  */
irq_default_primary_handler(int irq,void * dev_id)1026 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1027 {
1028 	return IRQ_WAKE_THREAD;
1029 }
1030 
1031 /*
1032  * Primary handler for nested threaded interrupts. Should never be
1033  * called.
1034  */
irq_nested_primary_handler(int irq,void * dev_id)1035 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1036 {
1037 	WARN(1, "Primary handler called for nested irq %d\n", irq);
1038 	return IRQ_NONE;
1039 }
1040 
irq_forced_secondary_handler(int irq,void * dev_id)1041 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1042 {
1043 	WARN(1, "Secondary action handler called for irq %d\n", irq);
1044 	return IRQ_NONE;
1045 }
1046 
irq_wait_for_interrupt(struct irqaction * action)1047 static int irq_wait_for_interrupt(struct irqaction *action)
1048 {
1049 	for (;;) {
1050 		set_current_state(TASK_INTERRUPTIBLE);
1051 
1052 		if (kthread_should_stop()) {
1053 			/* may need to run one last time */
1054 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1055 					       &action->thread_flags)) {
1056 				__set_current_state(TASK_RUNNING);
1057 				return 0;
1058 			}
1059 			__set_current_state(TASK_RUNNING);
1060 			return -1;
1061 		}
1062 
1063 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1064 				       &action->thread_flags)) {
1065 			__set_current_state(TASK_RUNNING);
1066 			return 0;
1067 		}
1068 		schedule();
1069 	}
1070 }
1071 
1072 /*
1073  * Oneshot interrupts keep the irq line masked until the threaded
1074  * handler finished. unmask if the interrupt has not been disabled and
1075  * is marked MASKED.
1076  */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1077 static void irq_finalize_oneshot(struct irq_desc *desc,
1078 				 struct irqaction *action)
1079 {
1080 	if (!(desc->istate & IRQS_ONESHOT) ||
1081 	    action->handler == irq_forced_secondary_handler)
1082 		return;
1083 again:
1084 	chip_bus_lock(desc);
1085 	raw_spin_lock_irq(&desc->lock);
1086 
1087 	/*
1088 	 * Implausible though it may be we need to protect us against
1089 	 * the following scenario:
1090 	 *
1091 	 * The thread is faster done than the hard interrupt handler
1092 	 * on the other CPU. If we unmask the irq line then the
1093 	 * interrupt can come in again and masks the line, leaves due
1094 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1095 	 *
1096 	 * This also serializes the state of shared oneshot handlers
1097 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1098 	 * irq_wake_thread(). See the comment there which explains the
1099 	 * serialization.
1100 	 */
1101 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1102 		raw_spin_unlock_irq(&desc->lock);
1103 		chip_bus_sync_unlock(desc);
1104 		cpu_relax();
1105 		goto again;
1106 	}
1107 
1108 	/*
1109 	 * Now check again, whether the thread should run. Otherwise
1110 	 * we would clear the threads_oneshot bit of this thread which
1111 	 * was just set.
1112 	 */
1113 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1114 		goto out_unlock;
1115 
1116 	desc->threads_oneshot &= ~action->thread_mask;
1117 
1118 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1119 	    irqd_irq_masked(&desc->irq_data))
1120 		unmask_threaded_irq(desc);
1121 
1122 out_unlock:
1123 	raw_spin_unlock_irq(&desc->lock);
1124 	chip_bus_sync_unlock(desc);
1125 }
1126 
1127 #ifdef CONFIG_SMP
1128 /*
1129  * Check whether we need to change the affinity of the interrupt thread.
1130  */
1131 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1132 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1133 {
1134 	cpumask_var_t mask;
1135 	bool valid = true;
1136 
1137 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1138 		return;
1139 
1140 	/*
1141 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1142 	 * try again next time
1143 	 */
1144 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1145 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1146 		return;
1147 	}
1148 
1149 	raw_spin_lock_irq(&desc->lock);
1150 	/*
1151 	 * This code is triggered unconditionally. Check the affinity
1152 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1153 	 */
1154 	if (cpumask_available(desc->irq_common_data.affinity)) {
1155 		const struct cpumask *m;
1156 
1157 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1158 		cpumask_copy(mask, m);
1159 	} else {
1160 		valid = false;
1161 	}
1162 	raw_spin_unlock_irq(&desc->lock);
1163 
1164 	if (valid)
1165 		set_cpus_allowed_ptr(current, mask);
1166 	free_cpumask_var(mask);
1167 }
1168 #else
1169 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1170 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1171 #endif
1172 
1173 /*
1174  * Interrupts which are not explicitly requested as threaded
1175  * interrupts rely on the implicit bh/preempt disable of the hard irq
1176  * context. So we need to disable bh here to avoid deadlocks and other
1177  * side effects.
1178  */
1179 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1180 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1181 {
1182 	irqreturn_t ret;
1183 
1184 	local_bh_disable();
1185 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1186 		local_irq_disable();
1187 	ret = action->thread_fn(action->irq, action->dev_id);
1188 	if (ret == IRQ_HANDLED)
1189 		atomic_inc(&desc->threads_handled);
1190 
1191 	irq_finalize_oneshot(desc, action);
1192 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1193 		local_irq_enable();
1194 	local_bh_enable();
1195 	return ret;
1196 }
1197 
1198 /*
1199  * Interrupts explicitly requested as threaded interrupts want to be
1200  * preemptible - many of them need to sleep and wait for slow busses to
1201  * complete.
1202  */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1203 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1204 		struct irqaction *action)
1205 {
1206 	irqreturn_t ret;
1207 
1208 	ret = action->thread_fn(action->irq, action->dev_id);
1209 	if (ret == IRQ_HANDLED)
1210 		atomic_inc(&desc->threads_handled);
1211 
1212 	irq_finalize_oneshot(desc, action);
1213 	return ret;
1214 }
1215 
wake_threads_waitq(struct irq_desc * desc)1216 static void wake_threads_waitq(struct irq_desc *desc)
1217 {
1218 	if (atomic_dec_and_test(&desc->threads_active))
1219 		wake_up(&desc->wait_for_threads);
1220 }
1221 
irq_thread_dtor(struct callback_head * unused)1222 static void irq_thread_dtor(struct callback_head *unused)
1223 {
1224 	struct task_struct *tsk = current;
1225 	struct irq_desc *desc;
1226 	struct irqaction *action;
1227 
1228 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1229 		return;
1230 
1231 	action = kthread_data(tsk);
1232 
1233 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1234 	       tsk->comm, tsk->pid, action->irq);
1235 
1236 
1237 	desc = irq_to_desc(action->irq);
1238 	/*
1239 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1240 	 * desc->threads_active and wake possible waiters.
1241 	 */
1242 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1243 		wake_threads_waitq(desc);
1244 
1245 	/* Prevent a stale desc->threads_oneshot */
1246 	irq_finalize_oneshot(desc, action);
1247 }
1248 
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1249 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1250 {
1251 	struct irqaction *secondary = action->secondary;
1252 
1253 	if (WARN_ON_ONCE(!secondary))
1254 		return;
1255 
1256 	raw_spin_lock_irq(&desc->lock);
1257 	__irq_wake_thread(desc, secondary);
1258 	raw_spin_unlock_irq(&desc->lock);
1259 }
1260 
1261 /*
1262  * Internal function to notify that a interrupt thread is ready.
1263  */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1264 static void irq_thread_set_ready(struct irq_desc *desc,
1265 				 struct irqaction *action)
1266 {
1267 	set_bit(IRQTF_READY, &action->thread_flags);
1268 	wake_up(&desc->wait_for_threads);
1269 }
1270 
1271 /*
1272  * Internal function to wake up a interrupt thread and wait until it is
1273  * ready.
1274  */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1275 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1276 						  struct irqaction *action)
1277 {
1278 	if (!action || !action->thread)
1279 		return;
1280 
1281 	wake_up_process(action->thread);
1282 	wait_event(desc->wait_for_threads,
1283 		   test_bit(IRQTF_READY, &action->thread_flags));
1284 }
1285 
1286 /*
1287  * Interrupt handler thread
1288  */
irq_thread(void * data)1289 static int irq_thread(void *data)
1290 {
1291 	struct callback_head on_exit_work;
1292 	struct irqaction *action = data;
1293 	struct irq_desc *desc = irq_to_desc(action->irq);
1294 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1295 			struct irqaction *action);
1296 
1297 	irq_thread_set_ready(desc, action);
1298 
1299 	sched_set_fifo(current);
1300 
1301 	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1302 					   &action->thread_flags))
1303 		handler_fn = irq_forced_thread_fn;
1304 	else
1305 		handler_fn = irq_thread_fn;
1306 
1307 	init_task_work(&on_exit_work, irq_thread_dtor);
1308 	task_work_add(current, &on_exit_work, TWA_NONE);
1309 
1310 	irq_thread_check_affinity(desc, action);
1311 
1312 	while (!irq_wait_for_interrupt(action)) {
1313 		irqreturn_t action_ret;
1314 
1315 		irq_thread_check_affinity(desc, action);
1316 
1317 		action_ret = handler_fn(desc, action);
1318 		if (action_ret == IRQ_WAKE_THREAD)
1319 			irq_wake_secondary(desc, action);
1320 
1321 		wake_threads_waitq(desc);
1322 	}
1323 
1324 	/*
1325 	 * This is the regular exit path. __free_irq() is stopping the
1326 	 * thread via kthread_stop() after calling
1327 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1328 	 * oneshot mask bit can be set.
1329 	 */
1330 	task_work_cancel(current, irq_thread_dtor);
1331 	return 0;
1332 }
1333 
1334 /**
1335  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1336  *	@irq:		Interrupt line
1337  *	@dev_id:	Device identity for which the thread should be woken
1338  *
1339  */
irq_wake_thread(unsigned int irq,void * dev_id)1340 void irq_wake_thread(unsigned int irq, void *dev_id)
1341 {
1342 	struct irq_desc *desc = irq_to_desc(irq);
1343 	struct irqaction *action;
1344 	unsigned long flags;
1345 
1346 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1347 		return;
1348 
1349 	raw_spin_lock_irqsave(&desc->lock, flags);
1350 	for_each_action_of_desc(desc, action) {
1351 		if (action->dev_id == dev_id) {
1352 			if (action->thread)
1353 				__irq_wake_thread(desc, action);
1354 			break;
1355 		}
1356 	}
1357 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1358 }
1359 EXPORT_SYMBOL_GPL(irq_wake_thread);
1360 
irq_setup_forced_threading(struct irqaction * new)1361 static int irq_setup_forced_threading(struct irqaction *new)
1362 {
1363 	if (!force_irqthreads())
1364 		return 0;
1365 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1366 		return 0;
1367 
1368 	/*
1369 	 * No further action required for interrupts which are requested as
1370 	 * threaded interrupts already
1371 	 */
1372 	if (new->handler == irq_default_primary_handler)
1373 		return 0;
1374 
1375 	new->flags |= IRQF_ONESHOT;
1376 
1377 	/*
1378 	 * Handle the case where we have a real primary handler and a
1379 	 * thread handler. We force thread them as well by creating a
1380 	 * secondary action.
1381 	 */
1382 	if (new->handler && new->thread_fn) {
1383 		/* Allocate the secondary action */
1384 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1385 		if (!new->secondary)
1386 			return -ENOMEM;
1387 		new->secondary->handler = irq_forced_secondary_handler;
1388 		new->secondary->thread_fn = new->thread_fn;
1389 		new->secondary->dev_id = new->dev_id;
1390 		new->secondary->irq = new->irq;
1391 		new->secondary->name = new->name;
1392 	}
1393 	/* Deal with the primary handler */
1394 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1395 	new->thread_fn = new->handler;
1396 	new->handler = irq_default_primary_handler;
1397 	return 0;
1398 }
1399 
irq_request_resources(struct irq_desc * desc)1400 static int irq_request_resources(struct irq_desc *desc)
1401 {
1402 	struct irq_data *d = &desc->irq_data;
1403 	struct irq_chip *c = d->chip;
1404 
1405 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1406 }
1407 
irq_release_resources(struct irq_desc * desc)1408 static void irq_release_resources(struct irq_desc *desc)
1409 {
1410 	struct irq_data *d = &desc->irq_data;
1411 	struct irq_chip *c = d->chip;
1412 
1413 	if (c->irq_release_resources)
1414 		c->irq_release_resources(d);
1415 }
1416 
irq_supports_nmi(struct irq_desc * desc)1417 static bool irq_supports_nmi(struct irq_desc *desc)
1418 {
1419 	struct irq_data *d = irq_desc_get_irq_data(desc);
1420 
1421 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1422 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1423 	if (d->parent_data)
1424 		return false;
1425 #endif
1426 	/* Don't support NMIs for chips behind a slow bus */
1427 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1428 		return false;
1429 
1430 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1431 }
1432 
irq_nmi_setup(struct irq_desc * desc)1433 static int irq_nmi_setup(struct irq_desc *desc)
1434 {
1435 	struct irq_data *d = irq_desc_get_irq_data(desc);
1436 	struct irq_chip *c = d->chip;
1437 
1438 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1439 }
1440 
irq_nmi_teardown(struct irq_desc * desc)1441 static void irq_nmi_teardown(struct irq_desc *desc)
1442 {
1443 	struct irq_data *d = irq_desc_get_irq_data(desc);
1444 	struct irq_chip *c = d->chip;
1445 
1446 	if (c->irq_nmi_teardown)
1447 		c->irq_nmi_teardown(d);
1448 }
1449 
1450 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1451 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1452 {
1453 	struct task_struct *t;
1454 
1455 	if (!secondary) {
1456 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1457 				   new->name);
1458 	} else {
1459 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1460 				   new->name);
1461 	}
1462 
1463 	if (IS_ERR(t))
1464 		return PTR_ERR(t);
1465 
1466 	/*
1467 	 * We keep the reference to the task struct even if
1468 	 * the thread dies to avoid that the interrupt code
1469 	 * references an already freed task_struct.
1470 	 */
1471 	new->thread = get_task_struct(t);
1472 	/*
1473 	 * Tell the thread to set its affinity. This is
1474 	 * important for shared interrupt handlers as we do
1475 	 * not invoke setup_affinity() for the secondary
1476 	 * handlers as everything is already set up. Even for
1477 	 * interrupts marked with IRQF_NO_BALANCE this is
1478 	 * correct as we want the thread to move to the cpu(s)
1479 	 * on which the requesting code placed the interrupt.
1480 	 */
1481 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1482 	return 0;
1483 }
1484 
1485 /*
1486  * Internal function to register an irqaction - typically used to
1487  * allocate special interrupts that are part of the architecture.
1488  *
1489  * Locking rules:
1490  *
1491  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1492  *   chip_bus_lock	Provides serialization for slow bus operations
1493  *     desc->lock	Provides serialization against hard interrupts
1494  *
1495  * chip_bus_lock and desc->lock are sufficient for all other management and
1496  * interrupt related functions. desc->request_mutex solely serializes
1497  * request/free_irq().
1498  */
1499 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1500 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1501 {
1502 	struct irqaction *old, **old_ptr;
1503 	unsigned long flags, thread_mask = 0;
1504 	int ret, nested, shared = 0;
1505 
1506 	if (!desc)
1507 		return -EINVAL;
1508 
1509 	if (desc->irq_data.chip == &no_irq_chip)
1510 		return -ENOSYS;
1511 	if (!try_module_get(desc->owner))
1512 		return -ENODEV;
1513 
1514 	new->irq = irq;
1515 
1516 	/*
1517 	 * If the trigger type is not specified by the caller,
1518 	 * then use the default for this interrupt.
1519 	 */
1520 	if (!(new->flags & IRQF_TRIGGER_MASK))
1521 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1522 
1523 	/*
1524 	 * Check whether the interrupt nests into another interrupt
1525 	 * thread.
1526 	 */
1527 	nested = irq_settings_is_nested_thread(desc);
1528 	if (nested) {
1529 		if (!new->thread_fn) {
1530 			ret = -EINVAL;
1531 			goto out_mput;
1532 		}
1533 		/*
1534 		 * Replace the primary handler which was provided from
1535 		 * the driver for non nested interrupt handling by the
1536 		 * dummy function which warns when called.
1537 		 */
1538 		new->handler = irq_nested_primary_handler;
1539 	} else {
1540 		if (irq_settings_can_thread(desc)) {
1541 			ret = irq_setup_forced_threading(new);
1542 			if (ret)
1543 				goto out_mput;
1544 		}
1545 	}
1546 
1547 	/*
1548 	 * Create a handler thread when a thread function is supplied
1549 	 * and the interrupt does not nest into another interrupt
1550 	 * thread.
1551 	 */
1552 	if (new->thread_fn && !nested) {
1553 		ret = setup_irq_thread(new, irq, false);
1554 		if (ret)
1555 			goto out_mput;
1556 		if (new->secondary) {
1557 			ret = setup_irq_thread(new->secondary, irq, true);
1558 			if (ret)
1559 				goto out_thread;
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * Drivers are often written to work w/o knowledge about the
1565 	 * underlying irq chip implementation, so a request for a
1566 	 * threaded irq without a primary hard irq context handler
1567 	 * requires the ONESHOT flag to be set. Some irq chips like
1568 	 * MSI based interrupts are per se one shot safe. Check the
1569 	 * chip flags, so we can avoid the unmask dance at the end of
1570 	 * the threaded handler for those.
1571 	 */
1572 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1573 		new->flags &= ~IRQF_ONESHOT;
1574 
1575 	/*
1576 	 * Protects against a concurrent __free_irq() call which might wait
1577 	 * for synchronize_hardirq() to complete without holding the optional
1578 	 * chip bus lock and desc->lock. Also protects against handing out
1579 	 * a recycled oneshot thread_mask bit while it's still in use by
1580 	 * its previous owner.
1581 	 */
1582 	mutex_lock(&desc->request_mutex);
1583 
1584 	/*
1585 	 * Acquire bus lock as the irq_request_resources() callback below
1586 	 * might rely on the serialization or the magic power management
1587 	 * functions which are abusing the irq_bus_lock() callback,
1588 	 */
1589 	chip_bus_lock(desc);
1590 
1591 	/* First installed action requests resources. */
1592 	if (!desc->action) {
1593 		ret = irq_request_resources(desc);
1594 		if (ret) {
1595 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1596 			       new->name, irq, desc->irq_data.chip->name);
1597 			goto out_bus_unlock;
1598 		}
1599 	}
1600 
1601 	/*
1602 	 * The following block of code has to be executed atomically
1603 	 * protected against a concurrent interrupt and any of the other
1604 	 * management calls which are not serialized via
1605 	 * desc->request_mutex or the optional bus lock.
1606 	 */
1607 	raw_spin_lock_irqsave(&desc->lock, flags);
1608 	old_ptr = &desc->action;
1609 	old = *old_ptr;
1610 	if (old) {
1611 		/*
1612 		 * Can't share interrupts unless both agree to and are
1613 		 * the same type (level, edge, polarity). So both flag
1614 		 * fields must have IRQF_SHARED set and the bits which
1615 		 * set the trigger type must match. Also all must
1616 		 * agree on ONESHOT.
1617 		 * Interrupt lines used for NMIs cannot be shared.
1618 		 */
1619 		unsigned int oldtype;
1620 
1621 		if (desc->istate & IRQS_NMI) {
1622 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1623 				new->name, irq, desc->irq_data.chip->name);
1624 			ret = -EINVAL;
1625 			goto out_unlock;
1626 		}
1627 
1628 		/*
1629 		 * If nobody did set the configuration before, inherit
1630 		 * the one provided by the requester.
1631 		 */
1632 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1633 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1634 		} else {
1635 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1636 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1637 		}
1638 
1639 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1640 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1641 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1642 			goto mismatch;
1643 
1644 		/* All handlers must agree on per-cpuness */
1645 		if ((old->flags & IRQF_PERCPU) !=
1646 		    (new->flags & IRQF_PERCPU))
1647 			goto mismatch;
1648 
1649 		/* add new interrupt at end of irq queue */
1650 		do {
1651 			/*
1652 			 * Or all existing action->thread_mask bits,
1653 			 * so we can find the next zero bit for this
1654 			 * new action.
1655 			 */
1656 			thread_mask |= old->thread_mask;
1657 			old_ptr = &old->next;
1658 			old = *old_ptr;
1659 		} while (old);
1660 		shared = 1;
1661 	}
1662 
1663 	/*
1664 	 * Setup the thread mask for this irqaction for ONESHOT. For
1665 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1666 	 * conditional in irq_wake_thread().
1667 	 */
1668 	if (new->flags & IRQF_ONESHOT) {
1669 		/*
1670 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1671 		 * but who knows.
1672 		 */
1673 		if (thread_mask == ~0UL) {
1674 			ret = -EBUSY;
1675 			goto out_unlock;
1676 		}
1677 		/*
1678 		 * The thread_mask for the action is or'ed to
1679 		 * desc->thread_active to indicate that the
1680 		 * IRQF_ONESHOT thread handler has been woken, but not
1681 		 * yet finished. The bit is cleared when a thread
1682 		 * completes. When all threads of a shared interrupt
1683 		 * line have completed desc->threads_active becomes
1684 		 * zero and the interrupt line is unmasked. See
1685 		 * handle.c:irq_wake_thread() for further information.
1686 		 *
1687 		 * If no thread is woken by primary (hard irq context)
1688 		 * interrupt handlers, then desc->threads_active is
1689 		 * also checked for zero to unmask the irq line in the
1690 		 * affected hard irq flow handlers
1691 		 * (handle_[fasteoi|level]_irq).
1692 		 *
1693 		 * The new action gets the first zero bit of
1694 		 * thread_mask assigned. See the loop above which or's
1695 		 * all existing action->thread_mask bits.
1696 		 */
1697 		new->thread_mask = 1UL << ffz(thread_mask);
1698 
1699 	} else if (new->handler == irq_default_primary_handler &&
1700 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1701 		/*
1702 		 * The interrupt was requested with handler = NULL, so
1703 		 * we use the default primary handler for it. But it
1704 		 * does not have the oneshot flag set. In combination
1705 		 * with level interrupts this is deadly, because the
1706 		 * default primary handler just wakes the thread, then
1707 		 * the irq lines is reenabled, but the device still
1708 		 * has the level irq asserted. Rinse and repeat....
1709 		 *
1710 		 * While this works for edge type interrupts, we play
1711 		 * it safe and reject unconditionally because we can't
1712 		 * say for sure which type this interrupt really
1713 		 * has. The type flags are unreliable as the
1714 		 * underlying chip implementation can override them.
1715 		 */
1716 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1717 		       new->name, irq);
1718 		ret = -EINVAL;
1719 		goto out_unlock;
1720 	}
1721 
1722 	if (!shared) {
1723 		/* Setup the type (level, edge polarity) if configured: */
1724 		if (new->flags & IRQF_TRIGGER_MASK) {
1725 			ret = __irq_set_trigger(desc,
1726 						new->flags & IRQF_TRIGGER_MASK);
1727 
1728 			if (ret)
1729 				goto out_unlock;
1730 		}
1731 
1732 		/*
1733 		 * Activate the interrupt. That activation must happen
1734 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1735 		 * and the callers are supposed to handle
1736 		 * that. enable_irq() of an interrupt requested with
1737 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1738 		 * keeps it in shutdown mode, it merily associates
1739 		 * resources if necessary and if that's not possible it
1740 		 * fails. Interrupts which are in managed shutdown mode
1741 		 * will simply ignore that activation request.
1742 		 */
1743 		ret = irq_activate(desc);
1744 		if (ret)
1745 			goto out_unlock;
1746 
1747 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1748 				  IRQS_ONESHOT | IRQS_WAITING);
1749 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1750 
1751 		if (new->flags & IRQF_PERCPU) {
1752 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1753 			irq_settings_set_per_cpu(desc);
1754 			if (new->flags & IRQF_NO_DEBUG)
1755 				irq_settings_set_no_debug(desc);
1756 		}
1757 
1758 		if (noirqdebug)
1759 			irq_settings_set_no_debug(desc);
1760 
1761 		if (new->flags & IRQF_ONESHOT)
1762 			desc->istate |= IRQS_ONESHOT;
1763 
1764 		/* Exclude IRQ from balancing if requested */
1765 		if (new->flags & IRQF_NOBALANCING) {
1766 			irq_settings_set_no_balancing(desc);
1767 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1768 		}
1769 
1770 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1771 		    irq_settings_can_autoenable(desc)) {
1772 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1773 		} else {
1774 			/*
1775 			 * Shared interrupts do not go well with disabling
1776 			 * auto enable. The sharing interrupt might request
1777 			 * it while it's still disabled and then wait for
1778 			 * interrupts forever.
1779 			 */
1780 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1781 			/* Undo nested disables: */
1782 			desc->depth = 1;
1783 		}
1784 
1785 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1786 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1787 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1788 
1789 		if (nmsk != omsk)
1790 			/* hope the handler works with current  trigger mode */
1791 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1792 				irq, omsk, nmsk);
1793 	}
1794 
1795 	*old_ptr = new;
1796 
1797 	irq_pm_install_action(desc, new);
1798 
1799 	/* Reset broken irq detection when installing new handler */
1800 	desc->irq_count = 0;
1801 	desc->irqs_unhandled = 0;
1802 
1803 	/*
1804 	 * Check whether we disabled the irq via the spurious handler
1805 	 * before. Reenable it and give it another chance.
1806 	 */
1807 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1808 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1809 		__enable_irq(desc);
1810 	}
1811 
1812 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1813 	chip_bus_sync_unlock(desc);
1814 	mutex_unlock(&desc->request_mutex);
1815 
1816 	irq_setup_timings(desc, new);
1817 
1818 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1819 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1820 
1821 	register_irq_proc(irq, desc);
1822 	new->dir = NULL;
1823 	register_handler_proc(irq, new);
1824 	return 0;
1825 
1826 mismatch:
1827 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1828 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1829 		       irq, new->flags, new->name, old->flags, old->name);
1830 #ifdef CONFIG_DEBUG_SHIRQ
1831 		dump_stack();
1832 #endif
1833 	}
1834 	ret = -EBUSY;
1835 
1836 out_unlock:
1837 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1838 
1839 	if (!desc->action)
1840 		irq_release_resources(desc);
1841 out_bus_unlock:
1842 	chip_bus_sync_unlock(desc);
1843 	mutex_unlock(&desc->request_mutex);
1844 
1845 out_thread:
1846 	if (new->thread) {
1847 		struct task_struct *t = new->thread;
1848 
1849 		new->thread = NULL;
1850 		kthread_stop(t);
1851 		put_task_struct(t);
1852 	}
1853 	if (new->secondary && new->secondary->thread) {
1854 		struct task_struct *t = new->secondary->thread;
1855 
1856 		new->secondary->thread = NULL;
1857 		kthread_stop(t);
1858 		put_task_struct(t);
1859 	}
1860 out_mput:
1861 	module_put(desc->owner);
1862 	return ret;
1863 }
1864 
1865 /*
1866  * Internal function to unregister an irqaction - used to free
1867  * regular and special interrupts that are part of the architecture.
1868  */
__free_irq(struct irq_desc * desc,void * dev_id)1869 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1870 {
1871 	unsigned irq = desc->irq_data.irq;
1872 	struct irqaction *action, **action_ptr;
1873 	unsigned long flags;
1874 
1875 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1876 
1877 	mutex_lock(&desc->request_mutex);
1878 	chip_bus_lock(desc);
1879 	raw_spin_lock_irqsave(&desc->lock, flags);
1880 
1881 	/*
1882 	 * There can be multiple actions per IRQ descriptor, find the right
1883 	 * one based on the dev_id:
1884 	 */
1885 	action_ptr = &desc->action;
1886 	for (;;) {
1887 		action = *action_ptr;
1888 
1889 		if (!action) {
1890 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1891 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1892 			chip_bus_sync_unlock(desc);
1893 			mutex_unlock(&desc->request_mutex);
1894 			return NULL;
1895 		}
1896 
1897 		if (action->dev_id == dev_id)
1898 			break;
1899 		action_ptr = &action->next;
1900 	}
1901 
1902 	/* Found it - now remove it from the list of entries: */
1903 	*action_ptr = action->next;
1904 
1905 	irq_pm_remove_action(desc, action);
1906 
1907 	/* If this was the last handler, shut down the IRQ line: */
1908 	if (!desc->action) {
1909 		irq_settings_clr_disable_unlazy(desc);
1910 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1911 		irq_shutdown(desc);
1912 	}
1913 
1914 #ifdef CONFIG_SMP
1915 	/* make sure affinity_hint is cleaned up */
1916 	if (WARN_ON_ONCE(desc->affinity_hint))
1917 		desc->affinity_hint = NULL;
1918 #endif
1919 
1920 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1921 	/*
1922 	 * Drop bus_lock here so the changes which were done in the chip
1923 	 * callbacks above are synced out to the irq chips which hang
1924 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1925 	 *
1926 	 * Aside of that the bus_lock can also be taken from the threaded
1927 	 * handler in irq_finalize_oneshot() which results in a deadlock
1928 	 * because kthread_stop() would wait forever for the thread to
1929 	 * complete, which is blocked on the bus lock.
1930 	 *
1931 	 * The still held desc->request_mutex() protects against a
1932 	 * concurrent request_irq() of this irq so the release of resources
1933 	 * and timing data is properly serialized.
1934 	 */
1935 	chip_bus_sync_unlock(desc);
1936 
1937 	unregister_handler_proc(irq, action);
1938 
1939 	/*
1940 	 * Make sure it's not being used on another CPU and if the chip
1941 	 * supports it also make sure that there is no (not yet serviced)
1942 	 * interrupt in flight at the hardware level.
1943 	 */
1944 	__synchronize_hardirq(desc, true);
1945 
1946 #ifdef CONFIG_DEBUG_SHIRQ
1947 	/*
1948 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1949 	 * event to happen even now it's being freed, so let's make sure that
1950 	 * is so by doing an extra call to the handler ....
1951 	 *
1952 	 * ( We do this after actually deregistering it, to make sure that a
1953 	 *   'real' IRQ doesn't run in parallel with our fake. )
1954 	 */
1955 	if (action->flags & IRQF_SHARED) {
1956 		local_irq_save(flags);
1957 		action->handler(irq, dev_id);
1958 		local_irq_restore(flags);
1959 	}
1960 #endif
1961 
1962 	/*
1963 	 * The action has already been removed above, but the thread writes
1964 	 * its oneshot mask bit when it completes. Though request_mutex is
1965 	 * held across this which prevents __setup_irq() from handing out
1966 	 * the same bit to a newly requested action.
1967 	 */
1968 	if (action->thread) {
1969 		kthread_stop(action->thread);
1970 		put_task_struct(action->thread);
1971 		if (action->secondary && action->secondary->thread) {
1972 			kthread_stop(action->secondary->thread);
1973 			put_task_struct(action->secondary->thread);
1974 		}
1975 	}
1976 
1977 	/* Last action releases resources */
1978 	if (!desc->action) {
1979 		/*
1980 		 * Reacquire bus lock as irq_release_resources() might
1981 		 * require it to deallocate resources over the slow bus.
1982 		 */
1983 		chip_bus_lock(desc);
1984 		/*
1985 		 * There is no interrupt on the fly anymore. Deactivate it
1986 		 * completely.
1987 		 */
1988 		raw_spin_lock_irqsave(&desc->lock, flags);
1989 		irq_domain_deactivate_irq(&desc->irq_data);
1990 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1991 
1992 		irq_release_resources(desc);
1993 		chip_bus_sync_unlock(desc);
1994 		irq_remove_timings(desc);
1995 	}
1996 
1997 	mutex_unlock(&desc->request_mutex);
1998 
1999 	irq_chip_pm_put(&desc->irq_data);
2000 	module_put(desc->owner);
2001 	kfree(action->secondary);
2002 	return action;
2003 }
2004 
2005 /**
2006  *	free_irq - free an interrupt allocated with request_irq
2007  *	@irq: Interrupt line to free
2008  *	@dev_id: Device identity to free
2009  *
2010  *	Remove an interrupt handler. The handler is removed and if the
2011  *	interrupt line is no longer in use by any driver it is disabled.
2012  *	On a shared IRQ the caller must ensure the interrupt is disabled
2013  *	on the card it drives before calling this function. The function
2014  *	does not return until any executing interrupts for this IRQ
2015  *	have completed.
2016  *
2017  *	This function must not be called from interrupt context.
2018  *
2019  *	Returns the devname argument passed to request_irq.
2020  */
free_irq(unsigned int irq,void * dev_id)2021 const void *free_irq(unsigned int irq, void *dev_id)
2022 {
2023 	struct irq_desc *desc = irq_to_desc(irq);
2024 	struct irqaction *action;
2025 	const char *devname;
2026 
2027 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2028 		return NULL;
2029 
2030 #ifdef CONFIG_SMP
2031 	if (WARN_ON(desc->affinity_notify))
2032 		desc->affinity_notify = NULL;
2033 #endif
2034 
2035 	action = __free_irq(desc, dev_id);
2036 
2037 	if (!action)
2038 		return NULL;
2039 
2040 	devname = action->name;
2041 	kfree(action);
2042 	return devname;
2043 }
2044 EXPORT_SYMBOL(free_irq);
2045 
2046 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)2047 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2048 {
2049 	const char *devname = NULL;
2050 
2051 	desc->istate &= ~IRQS_NMI;
2052 
2053 	if (!WARN_ON(desc->action == NULL)) {
2054 		irq_pm_remove_action(desc, desc->action);
2055 		devname = desc->action->name;
2056 		unregister_handler_proc(irq, desc->action);
2057 
2058 		kfree(desc->action);
2059 		desc->action = NULL;
2060 	}
2061 
2062 	irq_settings_clr_disable_unlazy(desc);
2063 	irq_shutdown_and_deactivate(desc);
2064 
2065 	irq_release_resources(desc);
2066 
2067 	irq_chip_pm_put(&desc->irq_data);
2068 	module_put(desc->owner);
2069 
2070 	return devname;
2071 }
2072 
free_nmi(unsigned int irq,void * dev_id)2073 const void *free_nmi(unsigned int irq, void *dev_id)
2074 {
2075 	struct irq_desc *desc = irq_to_desc(irq);
2076 	unsigned long flags;
2077 	const void *devname;
2078 
2079 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2080 		return NULL;
2081 
2082 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2083 		return NULL;
2084 
2085 	/* NMI still enabled */
2086 	if (WARN_ON(desc->depth == 0))
2087 		disable_nmi_nosync(irq);
2088 
2089 	raw_spin_lock_irqsave(&desc->lock, flags);
2090 
2091 	irq_nmi_teardown(desc);
2092 	devname = __cleanup_nmi(irq, desc);
2093 
2094 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2095 
2096 	return devname;
2097 }
2098 
2099 /**
2100  *	request_threaded_irq - allocate an interrupt line
2101  *	@irq: Interrupt line to allocate
2102  *	@handler: Function to be called when the IRQ occurs.
2103  *		  Primary handler for threaded interrupts.
2104  *		  If handler is NULL and thread_fn != NULL
2105  *		  the default primary handler is installed.
2106  *	@thread_fn: Function called from the irq handler thread
2107  *		    If NULL, no irq thread is created
2108  *	@irqflags: Interrupt type flags
2109  *	@devname: An ascii name for the claiming device
2110  *	@dev_id: A cookie passed back to the handler function
2111  *
2112  *	This call allocates interrupt resources and enables the
2113  *	interrupt line and IRQ handling. From the point this
2114  *	call is made your handler function may be invoked. Since
2115  *	your handler function must clear any interrupt the board
2116  *	raises, you must take care both to initialise your hardware
2117  *	and to set up the interrupt handler in the right order.
2118  *
2119  *	If you want to set up a threaded irq handler for your device
2120  *	then you need to supply @handler and @thread_fn. @handler is
2121  *	still called in hard interrupt context and has to check
2122  *	whether the interrupt originates from the device. If yes it
2123  *	needs to disable the interrupt on the device and return
2124  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2125  *	@thread_fn. This split handler design is necessary to support
2126  *	shared interrupts.
2127  *
2128  *	Dev_id must be globally unique. Normally the address of the
2129  *	device data structure is used as the cookie. Since the handler
2130  *	receives this value it makes sense to use it.
2131  *
2132  *	If your interrupt is shared you must pass a non NULL dev_id
2133  *	as this is required when freeing the interrupt.
2134  *
2135  *	Flags:
2136  *
2137  *	IRQF_SHARED		Interrupt is shared
2138  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2139  *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2140  */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2141 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2142 			 irq_handler_t thread_fn, unsigned long irqflags,
2143 			 const char *devname, void *dev_id)
2144 {
2145 	struct irqaction *action;
2146 	struct irq_desc *desc;
2147 	int retval;
2148 
2149 	if (irq == IRQ_NOTCONNECTED)
2150 		return -ENOTCONN;
2151 
2152 	/*
2153 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2154 	 * otherwise we'll have trouble later trying to figure out
2155 	 * which interrupt is which (messes up the interrupt freeing
2156 	 * logic etc).
2157 	 *
2158 	 * Also shared interrupts do not go well with disabling auto enable.
2159 	 * The sharing interrupt might request it while it's still disabled
2160 	 * and then wait for interrupts forever.
2161 	 *
2162 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2163 	 * it cannot be set along with IRQF_NO_SUSPEND.
2164 	 */
2165 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2166 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2167 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2168 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2169 		return -EINVAL;
2170 
2171 	desc = irq_to_desc(irq);
2172 	if (!desc)
2173 		return -EINVAL;
2174 
2175 	if (!irq_settings_can_request(desc) ||
2176 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2177 		return -EINVAL;
2178 
2179 	if (!handler) {
2180 		if (!thread_fn)
2181 			return -EINVAL;
2182 		handler = irq_default_primary_handler;
2183 	}
2184 
2185 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2186 	if (!action)
2187 		return -ENOMEM;
2188 
2189 	action->handler = handler;
2190 	action->thread_fn = thread_fn;
2191 	action->flags = irqflags;
2192 	action->name = devname;
2193 	action->dev_id = dev_id;
2194 
2195 	retval = irq_chip_pm_get(&desc->irq_data);
2196 	if (retval < 0) {
2197 		kfree(action);
2198 		return retval;
2199 	}
2200 
2201 	retval = __setup_irq(irq, desc, action);
2202 
2203 	if (retval) {
2204 		irq_chip_pm_put(&desc->irq_data);
2205 		kfree(action->secondary);
2206 		kfree(action);
2207 	}
2208 
2209 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2210 	if (!retval && (irqflags & IRQF_SHARED)) {
2211 		/*
2212 		 * It's a shared IRQ -- the driver ought to be prepared for it
2213 		 * to happen immediately, so let's make sure....
2214 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2215 		 * run in parallel with our fake.
2216 		 */
2217 		unsigned long flags;
2218 
2219 		disable_irq(irq);
2220 		local_irq_save(flags);
2221 
2222 		handler(irq, dev_id);
2223 
2224 		local_irq_restore(flags);
2225 		enable_irq(irq);
2226 	}
2227 #endif
2228 	return retval;
2229 }
2230 EXPORT_SYMBOL(request_threaded_irq);
2231 
2232 /**
2233  *	request_any_context_irq - allocate an interrupt line
2234  *	@irq: Interrupt line to allocate
2235  *	@handler: Function to be called when the IRQ occurs.
2236  *		  Threaded handler for threaded interrupts.
2237  *	@flags: Interrupt type flags
2238  *	@name: An ascii name for the claiming device
2239  *	@dev_id: A cookie passed back to the handler function
2240  *
2241  *	This call allocates interrupt resources and enables the
2242  *	interrupt line and IRQ handling. It selects either a
2243  *	hardirq or threaded handling method depending on the
2244  *	context.
2245  *
2246  *	On failure, it returns a negative value. On success,
2247  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2248  */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2249 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2250 			    unsigned long flags, const char *name, void *dev_id)
2251 {
2252 	struct irq_desc *desc;
2253 	int ret;
2254 
2255 	if (irq == IRQ_NOTCONNECTED)
2256 		return -ENOTCONN;
2257 
2258 	desc = irq_to_desc(irq);
2259 	if (!desc)
2260 		return -EINVAL;
2261 
2262 	if (irq_settings_is_nested_thread(desc)) {
2263 		ret = request_threaded_irq(irq, NULL, handler,
2264 					   flags, name, dev_id);
2265 		return !ret ? IRQC_IS_NESTED : ret;
2266 	}
2267 
2268 	ret = request_irq(irq, handler, flags, name, dev_id);
2269 	return !ret ? IRQC_IS_HARDIRQ : ret;
2270 }
2271 EXPORT_SYMBOL_GPL(request_any_context_irq);
2272 
2273 /**
2274  *	request_nmi - allocate an interrupt line for NMI delivery
2275  *	@irq: Interrupt line to allocate
2276  *	@handler: Function to be called when the IRQ occurs.
2277  *		  Threaded handler for threaded interrupts.
2278  *	@irqflags: Interrupt type flags
2279  *	@name: An ascii name for the claiming device
2280  *	@dev_id: A cookie passed back to the handler function
2281  *
2282  *	This call allocates interrupt resources and enables the
2283  *	interrupt line and IRQ handling. It sets up the IRQ line
2284  *	to be handled as an NMI.
2285  *
2286  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2287  *	cannot be threaded.
2288  *
2289  *	Interrupt lines requested for NMI delivering must produce per cpu
2290  *	interrupts and have auto enabling setting disabled.
2291  *
2292  *	Dev_id must be globally unique. Normally the address of the
2293  *	device data structure is used as the cookie. Since the handler
2294  *	receives this value it makes sense to use it.
2295  *
2296  *	If the interrupt line cannot be used to deliver NMIs, function
2297  *	will fail and return a negative value.
2298  */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2299 int request_nmi(unsigned int irq, irq_handler_t handler,
2300 		unsigned long irqflags, const char *name, void *dev_id)
2301 {
2302 	struct irqaction *action;
2303 	struct irq_desc *desc;
2304 	unsigned long flags;
2305 	int retval;
2306 
2307 	if (irq == IRQ_NOTCONNECTED)
2308 		return -ENOTCONN;
2309 
2310 	/* NMI cannot be shared, used for Polling */
2311 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2312 		return -EINVAL;
2313 
2314 	if (!(irqflags & IRQF_PERCPU))
2315 		return -EINVAL;
2316 
2317 	if (!handler)
2318 		return -EINVAL;
2319 
2320 	desc = irq_to_desc(irq);
2321 
2322 	if (!desc || (irq_settings_can_autoenable(desc) &&
2323 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2324 	    !irq_settings_can_request(desc) ||
2325 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2326 	    !irq_supports_nmi(desc))
2327 		return -EINVAL;
2328 
2329 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2330 	if (!action)
2331 		return -ENOMEM;
2332 
2333 	action->handler = handler;
2334 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2335 	action->name = name;
2336 	action->dev_id = dev_id;
2337 
2338 	retval = irq_chip_pm_get(&desc->irq_data);
2339 	if (retval < 0)
2340 		goto err_out;
2341 
2342 	retval = __setup_irq(irq, desc, action);
2343 	if (retval)
2344 		goto err_irq_setup;
2345 
2346 	raw_spin_lock_irqsave(&desc->lock, flags);
2347 
2348 	/* Setup NMI state */
2349 	desc->istate |= IRQS_NMI;
2350 	retval = irq_nmi_setup(desc);
2351 	if (retval) {
2352 		__cleanup_nmi(irq, desc);
2353 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2354 		return -EINVAL;
2355 	}
2356 
2357 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2358 
2359 	return 0;
2360 
2361 err_irq_setup:
2362 	irq_chip_pm_put(&desc->irq_data);
2363 err_out:
2364 	kfree(action);
2365 
2366 	return retval;
2367 }
2368 
enable_percpu_irq(unsigned int irq,unsigned int type)2369 void enable_percpu_irq(unsigned int irq, unsigned int type)
2370 {
2371 	unsigned int cpu = smp_processor_id();
2372 	unsigned long flags;
2373 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2374 
2375 	if (!desc)
2376 		return;
2377 
2378 	/*
2379 	 * If the trigger type is not specified by the caller, then
2380 	 * use the default for this interrupt.
2381 	 */
2382 	type &= IRQ_TYPE_SENSE_MASK;
2383 	if (type == IRQ_TYPE_NONE)
2384 		type = irqd_get_trigger_type(&desc->irq_data);
2385 
2386 	if (type != IRQ_TYPE_NONE) {
2387 		int ret;
2388 
2389 		ret = __irq_set_trigger(desc, type);
2390 
2391 		if (ret) {
2392 			WARN(1, "failed to set type for IRQ%d\n", irq);
2393 			goto out;
2394 		}
2395 	}
2396 
2397 	irq_percpu_enable(desc, cpu);
2398 out:
2399 	irq_put_desc_unlock(desc, flags);
2400 }
2401 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2402 
enable_percpu_nmi(unsigned int irq,unsigned int type)2403 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2404 {
2405 	enable_percpu_irq(irq, type);
2406 }
2407 
2408 /**
2409  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2410  * @irq:	Linux irq number to check for
2411  *
2412  * Must be called from a non migratable context. Returns the enable
2413  * state of a per cpu interrupt on the current cpu.
2414  */
irq_percpu_is_enabled(unsigned int irq)2415 bool irq_percpu_is_enabled(unsigned int irq)
2416 {
2417 	unsigned int cpu = smp_processor_id();
2418 	struct irq_desc *desc;
2419 	unsigned long flags;
2420 	bool is_enabled;
2421 
2422 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2423 	if (!desc)
2424 		return false;
2425 
2426 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2427 	irq_put_desc_unlock(desc, flags);
2428 
2429 	return is_enabled;
2430 }
2431 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2432 
disable_percpu_irq(unsigned int irq)2433 void disable_percpu_irq(unsigned int irq)
2434 {
2435 	unsigned int cpu = smp_processor_id();
2436 	unsigned long flags;
2437 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2438 
2439 	if (!desc)
2440 		return;
2441 
2442 	irq_percpu_disable(desc, cpu);
2443 	irq_put_desc_unlock(desc, flags);
2444 }
2445 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2446 
disable_percpu_nmi(unsigned int irq)2447 void disable_percpu_nmi(unsigned int irq)
2448 {
2449 	disable_percpu_irq(irq);
2450 }
2451 
2452 /*
2453  * Internal function to unregister a percpu irqaction.
2454  */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2455 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2456 {
2457 	struct irq_desc *desc = irq_to_desc(irq);
2458 	struct irqaction *action;
2459 	unsigned long flags;
2460 
2461 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2462 
2463 	if (!desc)
2464 		return NULL;
2465 
2466 	raw_spin_lock_irqsave(&desc->lock, flags);
2467 
2468 	action = desc->action;
2469 	if (!action || action->percpu_dev_id != dev_id) {
2470 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2471 		goto bad;
2472 	}
2473 
2474 	if (!cpumask_empty(desc->percpu_enabled)) {
2475 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2476 		     irq, cpumask_first(desc->percpu_enabled));
2477 		goto bad;
2478 	}
2479 
2480 	/* Found it - now remove it from the list of entries: */
2481 	desc->action = NULL;
2482 
2483 	desc->istate &= ~IRQS_NMI;
2484 
2485 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2486 
2487 	unregister_handler_proc(irq, action);
2488 
2489 	irq_chip_pm_put(&desc->irq_data);
2490 	module_put(desc->owner);
2491 	return action;
2492 
2493 bad:
2494 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2495 	return NULL;
2496 }
2497 
2498 /**
2499  *	remove_percpu_irq - free a per-cpu interrupt
2500  *	@irq: Interrupt line to free
2501  *	@act: irqaction for the interrupt
2502  *
2503  * Used to remove interrupts statically setup by the early boot process.
2504  */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2505 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2506 {
2507 	struct irq_desc *desc = irq_to_desc(irq);
2508 
2509 	if (desc && irq_settings_is_per_cpu_devid(desc))
2510 	    __free_percpu_irq(irq, act->percpu_dev_id);
2511 }
2512 
2513 /**
2514  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2515  *	@irq: Interrupt line to free
2516  *	@dev_id: Device identity to free
2517  *
2518  *	Remove a percpu interrupt handler. The handler is removed, but
2519  *	the interrupt line is not disabled. This must be done on each
2520  *	CPU before calling this function. The function does not return
2521  *	until any executing interrupts for this IRQ have completed.
2522  *
2523  *	This function must not be called from interrupt context.
2524  */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2525 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2526 {
2527 	struct irq_desc *desc = irq_to_desc(irq);
2528 
2529 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2530 		return;
2531 
2532 	chip_bus_lock(desc);
2533 	kfree(__free_percpu_irq(irq, dev_id));
2534 	chip_bus_sync_unlock(desc);
2535 }
2536 EXPORT_SYMBOL_GPL(free_percpu_irq);
2537 
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2538 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2539 {
2540 	struct irq_desc *desc = irq_to_desc(irq);
2541 
2542 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2543 		return;
2544 
2545 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2546 		return;
2547 
2548 	kfree(__free_percpu_irq(irq, dev_id));
2549 }
2550 
2551 /**
2552  *	setup_percpu_irq - setup a per-cpu interrupt
2553  *	@irq: Interrupt line to setup
2554  *	@act: irqaction for the interrupt
2555  *
2556  * Used to statically setup per-cpu interrupts in the early boot process.
2557  */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2558 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2559 {
2560 	struct irq_desc *desc = irq_to_desc(irq);
2561 	int retval;
2562 
2563 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2564 		return -EINVAL;
2565 
2566 	retval = irq_chip_pm_get(&desc->irq_data);
2567 	if (retval < 0)
2568 		return retval;
2569 
2570 	retval = __setup_irq(irq, desc, act);
2571 
2572 	if (retval)
2573 		irq_chip_pm_put(&desc->irq_data);
2574 
2575 	return retval;
2576 }
2577 
2578 /**
2579  *	__request_percpu_irq - allocate a percpu interrupt line
2580  *	@irq: Interrupt line to allocate
2581  *	@handler: Function to be called when the IRQ occurs.
2582  *	@flags: Interrupt type flags (IRQF_TIMER only)
2583  *	@devname: An ascii name for the claiming device
2584  *	@dev_id: A percpu cookie passed back to the handler function
2585  *
2586  *	This call allocates interrupt resources and enables the
2587  *	interrupt on the local CPU. If the interrupt is supposed to be
2588  *	enabled on other CPUs, it has to be done on each CPU using
2589  *	enable_percpu_irq().
2590  *
2591  *	Dev_id must be globally unique. It is a per-cpu variable, and
2592  *	the handler gets called with the interrupted CPU's instance of
2593  *	that variable.
2594  */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2595 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2596 			 unsigned long flags, const char *devname,
2597 			 void __percpu *dev_id)
2598 {
2599 	struct irqaction *action;
2600 	struct irq_desc *desc;
2601 	int retval;
2602 
2603 	if (!dev_id)
2604 		return -EINVAL;
2605 
2606 	desc = irq_to_desc(irq);
2607 	if (!desc || !irq_settings_can_request(desc) ||
2608 	    !irq_settings_is_per_cpu_devid(desc))
2609 		return -EINVAL;
2610 
2611 	if (flags && flags != IRQF_TIMER)
2612 		return -EINVAL;
2613 
2614 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2615 	if (!action)
2616 		return -ENOMEM;
2617 
2618 	action->handler = handler;
2619 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2620 	action->name = devname;
2621 	action->percpu_dev_id = dev_id;
2622 
2623 	retval = irq_chip_pm_get(&desc->irq_data);
2624 	if (retval < 0) {
2625 		kfree(action);
2626 		return retval;
2627 	}
2628 
2629 	retval = __setup_irq(irq, desc, action);
2630 
2631 	if (retval) {
2632 		irq_chip_pm_put(&desc->irq_data);
2633 		kfree(action);
2634 	}
2635 
2636 	return retval;
2637 }
2638 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2639 
2640 /**
2641  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2642  *	@irq: Interrupt line to allocate
2643  *	@handler: Function to be called when the IRQ occurs.
2644  *	@name: An ascii name for the claiming device
2645  *	@dev_id: A percpu cookie passed back to the handler function
2646  *
2647  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2648  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2649  *	being enabled on the same CPU by using enable_percpu_nmi().
2650  *
2651  *	Dev_id must be globally unique. It is a per-cpu variable, and
2652  *	the handler gets called with the interrupted CPU's instance of
2653  *	that variable.
2654  *
2655  *	Interrupt lines requested for NMI delivering should have auto enabling
2656  *	setting disabled.
2657  *
2658  *	If the interrupt line cannot be used to deliver NMIs, function
2659  *	will fail returning a negative value.
2660  */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2661 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2662 		       const char *name, void __percpu *dev_id)
2663 {
2664 	struct irqaction *action;
2665 	struct irq_desc *desc;
2666 	unsigned long flags;
2667 	int retval;
2668 
2669 	if (!handler)
2670 		return -EINVAL;
2671 
2672 	desc = irq_to_desc(irq);
2673 
2674 	if (!desc || !irq_settings_can_request(desc) ||
2675 	    !irq_settings_is_per_cpu_devid(desc) ||
2676 	    irq_settings_can_autoenable(desc) ||
2677 	    !irq_supports_nmi(desc))
2678 		return -EINVAL;
2679 
2680 	/* The line cannot already be NMI */
2681 	if (desc->istate & IRQS_NMI)
2682 		return -EINVAL;
2683 
2684 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2685 	if (!action)
2686 		return -ENOMEM;
2687 
2688 	action->handler = handler;
2689 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2690 		| IRQF_NOBALANCING;
2691 	action->name = name;
2692 	action->percpu_dev_id = dev_id;
2693 
2694 	retval = irq_chip_pm_get(&desc->irq_data);
2695 	if (retval < 0)
2696 		goto err_out;
2697 
2698 	retval = __setup_irq(irq, desc, action);
2699 	if (retval)
2700 		goto err_irq_setup;
2701 
2702 	raw_spin_lock_irqsave(&desc->lock, flags);
2703 	desc->istate |= IRQS_NMI;
2704 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2705 
2706 	return 0;
2707 
2708 err_irq_setup:
2709 	irq_chip_pm_put(&desc->irq_data);
2710 err_out:
2711 	kfree(action);
2712 
2713 	return retval;
2714 }
2715 
2716 /**
2717  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2718  *	@irq: Interrupt line to prepare for NMI delivery
2719  *
2720  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2721  *	before that interrupt line gets enabled with enable_percpu_nmi().
2722  *
2723  *	As a CPU local operation, this should be called from non-preemptible
2724  *	context.
2725  *
2726  *	If the interrupt line cannot be used to deliver NMIs, function
2727  *	will fail returning a negative value.
2728  */
prepare_percpu_nmi(unsigned int irq)2729 int prepare_percpu_nmi(unsigned int irq)
2730 {
2731 	unsigned long flags;
2732 	struct irq_desc *desc;
2733 	int ret = 0;
2734 
2735 	WARN_ON(preemptible());
2736 
2737 	desc = irq_get_desc_lock(irq, &flags,
2738 				 IRQ_GET_DESC_CHECK_PERCPU);
2739 	if (!desc)
2740 		return -EINVAL;
2741 
2742 	if (WARN(!(desc->istate & IRQS_NMI),
2743 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2744 		 irq)) {
2745 		ret = -EINVAL;
2746 		goto out;
2747 	}
2748 
2749 	ret = irq_nmi_setup(desc);
2750 	if (ret) {
2751 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2752 		goto out;
2753 	}
2754 
2755 out:
2756 	irq_put_desc_unlock(desc, flags);
2757 	return ret;
2758 }
2759 
2760 /**
2761  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2762  *	@irq: Interrupt line from which CPU local NMI configuration should be
2763  *	      removed
2764  *
2765  *	This call undoes the setup done by prepare_percpu_nmi().
2766  *
2767  *	IRQ line should not be enabled for the current CPU.
2768  *
2769  *	As a CPU local operation, this should be called from non-preemptible
2770  *	context.
2771  */
teardown_percpu_nmi(unsigned int irq)2772 void teardown_percpu_nmi(unsigned int irq)
2773 {
2774 	unsigned long flags;
2775 	struct irq_desc *desc;
2776 
2777 	WARN_ON(preemptible());
2778 
2779 	desc = irq_get_desc_lock(irq, &flags,
2780 				 IRQ_GET_DESC_CHECK_PERCPU);
2781 	if (!desc)
2782 		return;
2783 
2784 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2785 		goto out;
2786 
2787 	irq_nmi_teardown(desc);
2788 out:
2789 	irq_put_desc_unlock(desc, flags);
2790 }
2791 
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2792 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2793 			    bool *state)
2794 {
2795 	struct irq_chip *chip;
2796 	int err = -EINVAL;
2797 
2798 	do {
2799 		chip = irq_data_get_irq_chip(data);
2800 		if (WARN_ON_ONCE(!chip))
2801 			return -ENODEV;
2802 		if (chip->irq_get_irqchip_state)
2803 			break;
2804 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2805 		data = data->parent_data;
2806 #else
2807 		data = NULL;
2808 #endif
2809 	} while (data);
2810 
2811 	if (data)
2812 		err = chip->irq_get_irqchip_state(data, which, state);
2813 	return err;
2814 }
2815 
2816 /**
2817  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2818  *	@irq: Interrupt line that is forwarded to a VM
2819  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2820  *	@state: a pointer to a boolean where the state is to be stored
2821  *
2822  *	This call snapshots the internal irqchip state of an
2823  *	interrupt, returning into @state the bit corresponding to
2824  *	stage @which
2825  *
2826  *	This function should be called with preemption disabled if the
2827  *	interrupt controller has per-cpu registers.
2828  */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2829 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2830 			  bool *state)
2831 {
2832 	struct irq_desc *desc;
2833 	struct irq_data *data;
2834 	unsigned long flags;
2835 	int err = -EINVAL;
2836 
2837 	desc = irq_get_desc_buslock(irq, &flags, 0);
2838 	if (!desc)
2839 		return err;
2840 
2841 	data = irq_desc_get_irq_data(desc);
2842 
2843 	err = __irq_get_irqchip_state(data, which, state);
2844 
2845 	irq_put_desc_busunlock(desc, flags);
2846 	return err;
2847 }
2848 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2849 
2850 /**
2851  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2852  *	@irq: Interrupt line that is forwarded to a VM
2853  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2854  *	@val: Value corresponding to @which
2855  *
2856  *	This call sets the internal irqchip state of an interrupt,
2857  *	depending on the value of @which.
2858  *
2859  *	This function should be called with migration disabled if the
2860  *	interrupt controller has per-cpu registers.
2861  */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2862 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2863 			  bool val)
2864 {
2865 	struct irq_desc *desc;
2866 	struct irq_data *data;
2867 	struct irq_chip *chip;
2868 	unsigned long flags;
2869 	int err = -EINVAL;
2870 
2871 	desc = irq_get_desc_buslock(irq, &flags, 0);
2872 	if (!desc)
2873 		return err;
2874 
2875 	data = irq_desc_get_irq_data(desc);
2876 
2877 	do {
2878 		chip = irq_data_get_irq_chip(data);
2879 		if (WARN_ON_ONCE(!chip)) {
2880 			err = -ENODEV;
2881 			goto out_unlock;
2882 		}
2883 		if (chip->irq_set_irqchip_state)
2884 			break;
2885 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2886 		data = data->parent_data;
2887 #else
2888 		data = NULL;
2889 #endif
2890 	} while (data);
2891 
2892 	if (data)
2893 		err = chip->irq_set_irqchip_state(data, which, val);
2894 
2895 out_unlock:
2896 	irq_put_desc_busunlock(desc, flags);
2897 	return err;
2898 }
2899 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2900 
2901 /**
2902  * irq_has_action - Check whether an interrupt is requested
2903  * @irq:	The linux irq number
2904  *
2905  * Returns: A snapshot of the current state
2906  */
irq_has_action(unsigned int irq)2907 bool irq_has_action(unsigned int irq)
2908 {
2909 	bool res;
2910 
2911 	rcu_read_lock();
2912 	res = irq_desc_has_action(irq_to_desc(irq));
2913 	rcu_read_unlock();
2914 	return res;
2915 }
2916 EXPORT_SYMBOL_GPL(irq_has_action);
2917 
2918 /**
2919  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2920  * @irq:	The linux irq number
2921  * @bitmask:	The bitmask to evaluate
2922  *
2923  * Returns: True if one of the bits in @bitmask is set
2924  */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2925 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2926 {
2927 	struct irq_desc *desc;
2928 	bool res = false;
2929 
2930 	rcu_read_lock();
2931 	desc = irq_to_desc(irq);
2932 	if (desc)
2933 		res = !!(desc->status_use_accessors & bitmask);
2934 	rcu_read_unlock();
2935 	return res;
2936 }
2937 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2938