1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis */
2 /* SPDX-License-Identifier: Unlicense */
3 #include "tomcrypt_private.h"
4
5 /**
6 @param rmd256.c
7 RLTC_MD256 Hash function
8 */
9
10 #ifdef LTC_RIPEMD256
11
12 const struct ltc_hash_descriptor rmd256_desc =
13 {
14 "rmd256",
15 13,
16 32,
17 64,
18
19 /* OID */
20 { 1, 3, 36, 3, 2, 3 },
21 6,
22
23 &rmd256_init,
24 &rmd256_process,
25 &rmd256_done,
26 &rmd256_test,
27 NULL
28 };
29
30 /* the four basic functions F(), G() and H() */
31 #define F(x, y, z) ((x) ^ (y) ^ (z))
32 #define G(x, y, z) (((x) & (y)) | (~(x) & (z)))
33 #define H(x, y, z) (((x) | ~(y)) ^ (z))
34 #define I(x, y, z) (((x) & (z)) | ((y) & ~(z)))
35
36 /* the eight basic operations FF() through III() */
37 #define FF(a, b, c, d, x, s) \
38 (a) += F((b), (c), (d)) + (x);\
39 (a) = ROLc((a), (s));
40
41 #define GG(a, b, c, d, x, s) \
42 (a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\
43 (a) = ROLc((a), (s));
44
45 #define HH(a, b, c, d, x, s) \
46 (a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\
47 (a) = ROLc((a), (s));
48
49 #define II(a, b, c, d, x, s) \
50 (a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\
51 (a) = ROLc((a), (s));
52
53 #define FFF(a, b, c, d, x, s) \
54 (a) += F((b), (c), (d)) + (x);\
55 (a) = ROLc((a), (s));
56
57 #define GGG(a, b, c, d, x, s) \
58 (a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\
59 (a) = ROLc((a), (s));
60
61 #define HHH(a, b, c, d, x, s) \
62 (a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\
63 (a) = ROLc((a), (s));
64
65 #define III(a, b, c, d, x, s) \
66 (a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\
67 (a) = ROLc((a), (s));
68
69 #ifdef LTC_CLEAN_STACK
ss_rmd256_compress(hash_state * md,const unsigned char * buf)70 static int ss_rmd256_compress(hash_state *md, const unsigned char *buf)
71 #else
72 static int s_rmd256_compress(hash_state *md, const unsigned char *buf)
73 #endif
74 {
75 ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,tmp,X[16];
76 int i;
77
78 /* load words X */
79 for (i = 0; i < 16; i++){
80 LOAD32L(X[i], buf + (4 * i));
81 }
82
83 /* load state */
84 aa = md->rmd256.state[0];
85 bb = md->rmd256.state[1];
86 cc = md->rmd256.state[2];
87 dd = md->rmd256.state[3];
88 aaa = md->rmd256.state[4];
89 bbb = md->rmd256.state[5];
90 ccc = md->rmd256.state[6];
91 ddd = md->rmd256.state[7];
92
93 /* round 1 */
94 FF(aa, bb, cc, dd, X[ 0], 11);
95 FF(dd, aa, bb, cc, X[ 1], 14);
96 FF(cc, dd, aa, bb, X[ 2], 15);
97 FF(bb, cc, dd, aa, X[ 3], 12);
98 FF(aa, bb, cc, dd, X[ 4], 5);
99 FF(dd, aa, bb, cc, X[ 5], 8);
100 FF(cc, dd, aa, bb, X[ 6], 7);
101 FF(bb, cc, dd, aa, X[ 7], 9);
102 FF(aa, bb, cc, dd, X[ 8], 11);
103 FF(dd, aa, bb, cc, X[ 9], 13);
104 FF(cc, dd, aa, bb, X[10], 14);
105 FF(bb, cc, dd, aa, X[11], 15);
106 FF(aa, bb, cc, dd, X[12], 6);
107 FF(dd, aa, bb, cc, X[13], 7);
108 FF(cc, dd, aa, bb, X[14], 9);
109 FF(bb, cc, dd, aa, X[15], 8);
110
111 /* parallel round 1 */
112 III(aaa, bbb, ccc, ddd, X[ 5], 8);
113 III(ddd, aaa, bbb, ccc, X[14], 9);
114 III(ccc, ddd, aaa, bbb, X[ 7], 9);
115 III(bbb, ccc, ddd, aaa, X[ 0], 11);
116 III(aaa, bbb, ccc, ddd, X[ 9], 13);
117 III(ddd, aaa, bbb, ccc, X[ 2], 15);
118 III(ccc, ddd, aaa, bbb, X[11], 15);
119 III(bbb, ccc, ddd, aaa, X[ 4], 5);
120 III(aaa, bbb, ccc, ddd, X[13], 7);
121 III(ddd, aaa, bbb, ccc, X[ 6], 7);
122 III(ccc, ddd, aaa, bbb, X[15], 8);
123 III(bbb, ccc, ddd, aaa, X[ 8], 11);
124 III(aaa, bbb, ccc, ddd, X[ 1], 14);
125 III(ddd, aaa, bbb, ccc, X[10], 14);
126 III(ccc, ddd, aaa, bbb, X[ 3], 12);
127 III(bbb, ccc, ddd, aaa, X[12], 6);
128
129 tmp = aa; aa = aaa; aaa = tmp;
130
131 /* round 2 */
132 GG(aa, bb, cc, dd, X[ 7], 7);
133 GG(dd, aa, bb, cc, X[ 4], 6);
134 GG(cc, dd, aa, bb, X[13], 8);
135 GG(bb, cc, dd, aa, X[ 1], 13);
136 GG(aa, bb, cc, dd, X[10], 11);
137 GG(dd, aa, bb, cc, X[ 6], 9);
138 GG(cc, dd, aa, bb, X[15], 7);
139 GG(bb, cc, dd, aa, X[ 3], 15);
140 GG(aa, bb, cc, dd, X[12], 7);
141 GG(dd, aa, bb, cc, X[ 0], 12);
142 GG(cc, dd, aa, bb, X[ 9], 15);
143 GG(bb, cc, dd, aa, X[ 5], 9);
144 GG(aa, bb, cc, dd, X[ 2], 11);
145 GG(dd, aa, bb, cc, X[14], 7);
146 GG(cc, dd, aa, bb, X[11], 13);
147 GG(bb, cc, dd, aa, X[ 8], 12);
148
149 /* parallel round 2 */
150 HHH(aaa, bbb, ccc, ddd, X[ 6], 9);
151 HHH(ddd, aaa, bbb, ccc, X[11], 13);
152 HHH(ccc, ddd, aaa, bbb, X[ 3], 15);
153 HHH(bbb, ccc, ddd, aaa, X[ 7], 7);
154 HHH(aaa, bbb, ccc, ddd, X[ 0], 12);
155 HHH(ddd, aaa, bbb, ccc, X[13], 8);
156 HHH(ccc, ddd, aaa, bbb, X[ 5], 9);
157 HHH(bbb, ccc, ddd, aaa, X[10], 11);
158 HHH(aaa, bbb, ccc, ddd, X[14], 7);
159 HHH(ddd, aaa, bbb, ccc, X[15], 7);
160 HHH(ccc, ddd, aaa, bbb, X[ 8], 12);
161 HHH(bbb, ccc, ddd, aaa, X[12], 7);
162 HHH(aaa, bbb, ccc, ddd, X[ 4], 6);
163 HHH(ddd, aaa, bbb, ccc, X[ 9], 15);
164 HHH(ccc, ddd, aaa, bbb, X[ 1], 13);
165 HHH(bbb, ccc, ddd, aaa, X[ 2], 11);
166
167 tmp = bb; bb = bbb; bbb = tmp;
168
169 /* round 3 */
170 HH(aa, bb, cc, dd, X[ 3], 11);
171 HH(dd, aa, bb, cc, X[10], 13);
172 HH(cc, dd, aa, bb, X[14], 6);
173 HH(bb, cc, dd, aa, X[ 4], 7);
174 HH(aa, bb, cc, dd, X[ 9], 14);
175 HH(dd, aa, bb, cc, X[15], 9);
176 HH(cc, dd, aa, bb, X[ 8], 13);
177 HH(bb, cc, dd, aa, X[ 1], 15);
178 HH(aa, bb, cc, dd, X[ 2], 14);
179 HH(dd, aa, bb, cc, X[ 7], 8);
180 HH(cc, dd, aa, bb, X[ 0], 13);
181 HH(bb, cc, dd, aa, X[ 6], 6);
182 HH(aa, bb, cc, dd, X[13], 5);
183 HH(dd, aa, bb, cc, X[11], 12);
184 HH(cc, dd, aa, bb, X[ 5], 7);
185 HH(bb, cc, dd, aa, X[12], 5);
186
187 /* parallel round 3 */
188 GGG(aaa, bbb, ccc, ddd, X[15], 9);
189 GGG(ddd, aaa, bbb, ccc, X[ 5], 7);
190 GGG(ccc, ddd, aaa, bbb, X[ 1], 15);
191 GGG(bbb, ccc, ddd, aaa, X[ 3], 11);
192 GGG(aaa, bbb, ccc, ddd, X[ 7], 8);
193 GGG(ddd, aaa, bbb, ccc, X[14], 6);
194 GGG(ccc, ddd, aaa, bbb, X[ 6], 6);
195 GGG(bbb, ccc, ddd, aaa, X[ 9], 14);
196 GGG(aaa, bbb, ccc, ddd, X[11], 12);
197 GGG(ddd, aaa, bbb, ccc, X[ 8], 13);
198 GGG(ccc, ddd, aaa, bbb, X[12], 5);
199 GGG(bbb, ccc, ddd, aaa, X[ 2], 14);
200 GGG(aaa, bbb, ccc, ddd, X[10], 13);
201 GGG(ddd, aaa, bbb, ccc, X[ 0], 13);
202 GGG(ccc, ddd, aaa, bbb, X[ 4], 7);
203 GGG(bbb, ccc, ddd, aaa, X[13], 5);
204
205 tmp = cc; cc = ccc; ccc = tmp;
206
207 /* round 4 */
208 II(aa, bb, cc, dd, X[ 1], 11);
209 II(dd, aa, bb, cc, X[ 9], 12);
210 II(cc, dd, aa, bb, X[11], 14);
211 II(bb, cc, dd, aa, X[10], 15);
212 II(aa, bb, cc, dd, X[ 0], 14);
213 II(dd, aa, bb, cc, X[ 8], 15);
214 II(cc, dd, aa, bb, X[12], 9);
215 II(bb, cc, dd, aa, X[ 4], 8);
216 II(aa, bb, cc, dd, X[13], 9);
217 II(dd, aa, bb, cc, X[ 3], 14);
218 II(cc, dd, aa, bb, X[ 7], 5);
219 II(bb, cc, dd, aa, X[15], 6);
220 II(aa, bb, cc, dd, X[14], 8);
221 II(dd, aa, bb, cc, X[ 5], 6);
222 II(cc, dd, aa, bb, X[ 6], 5);
223 II(bb, cc, dd, aa, X[ 2], 12);
224
225 /* parallel round 4 */
226 FFF(aaa, bbb, ccc, ddd, X[ 8], 15);
227 FFF(ddd, aaa, bbb, ccc, X[ 6], 5);
228 FFF(ccc, ddd, aaa, bbb, X[ 4], 8);
229 FFF(bbb, ccc, ddd, aaa, X[ 1], 11);
230 FFF(aaa, bbb, ccc, ddd, X[ 3], 14);
231 FFF(ddd, aaa, bbb, ccc, X[11], 14);
232 FFF(ccc, ddd, aaa, bbb, X[15], 6);
233 FFF(bbb, ccc, ddd, aaa, X[ 0], 14);
234 FFF(aaa, bbb, ccc, ddd, X[ 5], 6);
235 FFF(ddd, aaa, bbb, ccc, X[12], 9);
236 FFF(ccc, ddd, aaa, bbb, X[ 2], 12);
237 FFF(bbb, ccc, ddd, aaa, X[13], 9);
238 FFF(aaa, bbb, ccc, ddd, X[ 9], 12);
239 FFF(ddd, aaa, bbb, ccc, X[ 7], 5);
240 FFF(ccc, ddd, aaa, bbb, X[10], 15);
241 FFF(bbb, ccc, ddd, aaa, X[14], 8);
242
243 tmp = dd; dd = ddd; ddd = tmp;
244
245 /* combine results */
246 md->rmd256.state[0] += aa;
247 md->rmd256.state[1] += bb;
248 md->rmd256.state[2] += cc;
249 md->rmd256.state[3] += dd;
250 md->rmd256.state[4] += aaa;
251 md->rmd256.state[5] += bbb;
252 md->rmd256.state[6] += ccc;
253 md->rmd256.state[7] += ddd;
254
255 return CRYPT_OK;
256 }
257
258 #ifdef LTC_CLEAN_STACK
s_rmd256_compress(hash_state * md,const unsigned char * buf)259 static int s_rmd256_compress(hash_state *md, const unsigned char *buf)
260 {
261 int err;
262 err = ss_rmd256_compress(md, buf);
263 burn_stack(sizeof(ulong32) * 25 + sizeof(int));
264 return err;
265 }
266 #endif
267
268 /**
269 Initialize the hash state
270 @param md The hash state you wish to initialize
271 @return CRYPT_OK if successful
272 */
rmd256_init(hash_state * md)273 int rmd256_init(hash_state * md)
274 {
275 LTC_ARGCHK(md != NULL);
276 md->rmd256.state[0] = 0x67452301UL;
277 md->rmd256.state[1] = 0xefcdab89UL;
278 md->rmd256.state[2] = 0x98badcfeUL;
279 md->rmd256.state[3] = 0x10325476UL;
280 md->rmd256.state[4] = 0x76543210UL;
281 md->rmd256.state[5] = 0xfedcba98UL;
282 md->rmd256.state[6] = 0x89abcdefUL;
283 md->rmd256.state[7] = 0x01234567UL;
284 md->rmd256.curlen = 0;
285 md->rmd256.length = 0;
286 return CRYPT_OK;
287 }
288
289 /**
290 Process a block of memory though the hash
291 @param md The hash state
292 @param in The data to hash
293 @param inlen The length of the data (octets)
294 @return CRYPT_OK if successful
295 */
296 HASH_PROCESS(rmd256_process, s_rmd256_compress, rmd256, 64)
297
298 /**
299 Terminate the hash to get the digest
300 @param md The hash state
301 @param out [out] The destination of the hash (16 bytes)
302 @return CRYPT_OK if successful
303 */
rmd256_done(hash_state * md,unsigned char * out)304 int rmd256_done(hash_state * md, unsigned char *out)
305 {
306 int i;
307
308 LTC_ARGCHK(md != NULL);
309 LTC_ARGCHK(out != NULL);
310
311 if (md->rmd256.curlen >= sizeof(md->rmd256.buf)) {
312 return CRYPT_INVALID_ARG;
313 }
314
315
316 /* increase the length of the message */
317 md->rmd256.length += md->rmd256.curlen * 8;
318
319 /* append the '1' bit */
320 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0x80;
321
322 /* if the length is currently above 56 bytes we append zeros
323 * then compress. Then we can fall back to padding zeros and length
324 * encoding like normal.
325 */
326 if (md->rmd256.curlen > 56) {
327 while (md->rmd256.curlen < 64) {
328 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0;
329 }
330 s_rmd256_compress(md, md->rmd256.buf);
331 md->rmd256.curlen = 0;
332 }
333
334 /* pad upto 56 bytes of zeroes */
335 while (md->rmd256.curlen < 56) {
336 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0;
337 }
338
339 /* store length */
340 STORE64L(md->rmd256.length, md->rmd256.buf+56);
341 s_rmd256_compress(md, md->rmd256.buf);
342
343 /* copy output */
344 for (i = 0; i < 8; i++) {
345 STORE32L(md->rmd256.state[i], out+(4*i));
346 }
347 #ifdef LTC_CLEAN_STACK
348 zeromem(md, sizeof(hash_state));
349 #endif
350 return CRYPT_OK;
351 }
352
353 /**
354 Self-test the hash
355 @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
356 */
rmd256_test(void)357 int rmd256_test(void)
358 {
359 #ifndef LTC_TEST
360 return CRYPT_NOP;
361 #else
362 static const struct {
363 const char *msg;
364 unsigned char hash[32];
365 } tests[] = {
366 { "",
367 { 0x02, 0xba, 0x4c, 0x4e, 0x5f, 0x8e, 0xcd, 0x18,
368 0x77, 0xfc, 0x52, 0xd6, 0x4d, 0x30, 0xe3, 0x7a,
369 0x2d, 0x97, 0x74, 0xfb, 0x1e, 0x5d, 0x02, 0x63,
370 0x80, 0xae, 0x01, 0x68, 0xe3, 0xc5, 0x52, 0x2d }
371 },
372 { "a",
373 { 0xf9, 0x33, 0x3e, 0x45, 0xd8, 0x57, 0xf5, 0xd9,
374 0x0a, 0x91, 0xba, 0xb7, 0x0a, 0x1e, 0xba, 0x0c,
375 0xfb, 0x1b, 0xe4, 0xb0, 0x78, 0x3c, 0x9a, 0xcf,
376 0xcd, 0x88, 0x3a, 0x91, 0x34, 0x69, 0x29, 0x25 }
377 },
378 { "abc",
379 { 0xaf, 0xbd, 0x6e, 0x22, 0x8b, 0x9d, 0x8c, 0xbb,
380 0xce, 0xf5, 0xca, 0x2d, 0x03, 0xe6, 0xdb, 0xa1,
381 0x0a, 0xc0, 0xbc, 0x7d, 0xcb, 0xe4, 0x68, 0x0e,
382 0x1e, 0x42, 0xd2, 0xe9, 0x75, 0x45, 0x9b, 0x65 }
383 },
384 { "message digest",
385 { 0x87, 0xe9, 0x71, 0x75, 0x9a, 0x1c, 0xe4, 0x7a,
386 0x51, 0x4d, 0x5c, 0x91, 0x4c, 0x39, 0x2c, 0x90,
387 0x18, 0xc7, 0xc4, 0x6b, 0xc1, 0x44, 0x65, 0x55,
388 0x4a, 0xfc, 0xdf, 0x54, 0xa5, 0x07, 0x0c, 0x0e }
389 },
390 { "abcdefghijklmnopqrstuvwxyz",
391 { 0x64, 0x9d, 0x30, 0x34, 0x75, 0x1e, 0xa2, 0x16,
392 0x77, 0x6b, 0xf9, 0xa1, 0x8a, 0xcc, 0x81, 0xbc,
393 0x78, 0x96, 0x11, 0x8a, 0x51, 0x97, 0x96, 0x87,
394 0x82, 0xdd, 0x1f, 0xd9, 0x7d, 0x8d, 0x51, 0x33 }
395 },
396 { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
397 { 0x57, 0x40, 0xa4, 0x08, 0xac, 0x16, 0xb7, 0x20,
398 0xb8, 0x44, 0x24, 0xae, 0x93, 0x1c, 0xbb, 0x1f,
399 0xe3, 0x63, 0xd1, 0xd0, 0xbf, 0x40, 0x17, 0xf1,
400 0xa8, 0x9f, 0x7e, 0xa6, 0xde, 0x77, 0xa0, 0xb8 }
401 }
402 };
403
404 int i;
405 unsigned char tmp[32];
406 hash_state md;
407
408 for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
409 rmd256_init(&md);
410 rmd256_process(&md, (unsigned char *)tests[i].msg, XSTRLEN(tests[i].msg));
411 rmd256_done(&md, tmp);
412 if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "RIPEMD256", i)) {
413 return CRYPT_FAIL_TESTVECTOR;
414 }
415 }
416 return CRYPT_OK;
417 #endif
418 }
419
420 #endif
421