1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Procedures for interfacing to the RTAS on CHRP machines.
5 *
6 * Peter Bergner, IBM March 2001.
7 * Copyright (C) 2001 IBM.
8 */
9
10 #define pr_fmt(fmt) "rtas: " fmt
11
12 #include <linux/bsearch.h>
13 #include <linux/capability.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/kconfig.h>
18 #include <linux/kernel.h>
19 #include <linux/memblock.h>
20 #include <linux/of.h>
21 #include <linux/of_fdt.h>
22 #include <linux/reboot.h>
23 #include <linux/sched.h>
24 #include <linux/security.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/stdarg.h>
28 #include <linux/syscalls.h>
29 #include <linux/types.h>
30 #include <linux/uaccess.h>
31 #include <linux/xarray.h>
32
33 #include <asm/delay.h>
34 #include <asm/firmware.h>
35 #include <asm/interrupt.h>
36 #include <asm/machdep.h>
37 #include <asm/mmu.h>
38 #include <asm/page.h>
39 #include <asm/rtas-work-area.h>
40 #include <asm/rtas.h>
41 #include <asm/time.h>
42 #include <asm/trace.h>
43 #include <asm/udbg.h>
44
45 struct rtas_filter {
46 /* Indexes into the args buffer, -1 if not used */
47 const int buf_idx1;
48 const int size_idx1;
49 const int buf_idx2;
50 const int size_idx2;
51 /*
52 * Assumed buffer size per the spec if the function does not
53 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
54 */
55 const int fixed_size;
56 };
57
58 /**
59 * struct rtas_function - Descriptor for RTAS functions.
60 *
61 * @token: Value of @name if it exists under the /rtas node.
62 * @name: Function name.
63 * @filter: If non-NULL, invoking this function via the rtas syscall is
64 * generally allowed, and @filter describes constraints on the
65 * arguments. See also @banned_for_syscall_on_le.
66 * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
67 * but specifically restricted on ppc64le. Such
68 * functions are believed to have no users on
69 * ppc64le, and we want to keep it that way. It does
70 * not make sense for this to be set when @filter
71 * is false.
72 */
73 struct rtas_function {
74 s32 token;
75 const bool banned_for_syscall_on_le:1;
76 const char * const name;
77 const struct rtas_filter *filter;
78 };
79
80 static struct rtas_function rtas_function_table[] __ro_after_init = {
81 [RTAS_FNIDX__CHECK_EXCEPTION] = {
82 .name = "check-exception",
83 },
84 [RTAS_FNIDX__DISPLAY_CHARACTER] = {
85 .name = "display-character",
86 .filter = &(const struct rtas_filter) {
87 .buf_idx1 = -1, .size_idx1 = -1,
88 .buf_idx2 = -1, .size_idx2 = -1,
89 },
90 },
91 [RTAS_FNIDX__EVENT_SCAN] = {
92 .name = "event-scan",
93 },
94 [RTAS_FNIDX__FREEZE_TIME_BASE] = {
95 .name = "freeze-time-base",
96 },
97 [RTAS_FNIDX__GET_POWER_LEVEL] = {
98 .name = "get-power-level",
99 .filter = &(const struct rtas_filter) {
100 .buf_idx1 = -1, .size_idx1 = -1,
101 .buf_idx2 = -1, .size_idx2 = -1,
102 },
103 },
104 [RTAS_FNIDX__GET_SENSOR_STATE] = {
105 .name = "get-sensor-state",
106 .filter = &(const struct rtas_filter) {
107 .buf_idx1 = -1, .size_idx1 = -1,
108 .buf_idx2 = -1, .size_idx2 = -1,
109 },
110 },
111 [RTAS_FNIDX__GET_TERM_CHAR] = {
112 .name = "get-term-char",
113 },
114 [RTAS_FNIDX__GET_TIME_OF_DAY] = {
115 .name = "get-time-of-day",
116 .filter = &(const struct rtas_filter) {
117 .buf_idx1 = -1, .size_idx1 = -1,
118 .buf_idx2 = -1, .size_idx2 = -1,
119 },
120 },
121 [RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
122 .name = "ibm,activate-firmware",
123 .filter = &(const struct rtas_filter) {
124 .buf_idx1 = -1, .size_idx1 = -1,
125 .buf_idx2 = -1, .size_idx2 = -1,
126 },
127 },
128 [RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
129 .name = "ibm,cbe-start-ptcal",
130 },
131 [RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
132 .name = "ibm,cbe-stop-ptcal",
133 },
134 [RTAS_FNIDX__IBM_CHANGE_MSI] = {
135 .name = "ibm,change-msi",
136 },
137 [RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
138 .name = "ibm,close-errinjct",
139 .filter = &(const struct rtas_filter) {
140 .buf_idx1 = -1, .size_idx1 = -1,
141 .buf_idx2 = -1, .size_idx2 = -1,
142 },
143 },
144 [RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
145 .name = "ibm,configure-bridge",
146 },
147 [RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
148 .name = "ibm,configure-connector",
149 .filter = &(const struct rtas_filter) {
150 .buf_idx1 = 0, .size_idx1 = -1,
151 .buf_idx2 = 1, .size_idx2 = -1,
152 .fixed_size = 4096,
153 },
154 },
155 [RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
156 .name = "ibm,configure-kernel-dump",
157 },
158 [RTAS_FNIDX__IBM_CONFIGURE_PE] = {
159 .name = "ibm,configure-pe",
160 },
161 [RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
162 .name = "ibm,create-pe-dma-window",
163 },
164 [RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
165 .name = "ibm,display-message",
166 .filter = &(const struct rtas_filter) {
167 .buf_idx1 = 0, .size_idx1 = -1,
168 .buf_idx2 = -1, .size_idx2 = -1,
169 },
170 },
171 [RTAS_FNIDX__IBM_ERRINJCT] = {
172 .name = "ibm,errinjct",
173 .filter = &(const struct rtas_filter) {
174 .buf_idx1 = 2, .size_idx1 = -1,
175 .buf_idx2 = -1, .size_idx2 = -1,
176 .fixed_size = 1024,
177 },
178 },
179 [RTAS_FNIDX__IBM_EXTI2C] = {
180 .name = "ibm,exti2c",
181 },
182 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
183 .name = "ibm,get-config-addr-info",
184 },
185 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
186 .name = "ibm,get-config-addr-info2",
187 .filter = &(const struct rtas_filter) {
188 .buf_idx1 = -1, .size_idx1 = -1,
189 .buf_idx2 = -1, .size_idx2 = -1,
190 },
191 },
192 [RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
193 .name = "ibm,get-dynamic-sensor-state",
194 .filter = &(const struct rtas_filter) {
195 .buf_idx1 = 1, .size_idx1 = -1,
196 .buf_idx2 = -1, .size_idx2 = -1,
197 },
198 },
199 [RTAS_FNIDX__IBM_GET_INDICES] = {
200 .name = "ibm,get-indices",
201 .filter = &(const struct rtas_filter) {
202 .buf_idx1 = 2, .size_idx1 = 3,
203 .buf_idx2 = -1, .size_idx2 = -1,
204 },
205 },
206 [RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
207 .name = "ibm,get-rio-topology",
208 },
209 [RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
210 .name = "ibm,get-system-parameter",
211 .filter = &(const struct rtas_filter) {
212 .buf_idx1 = 1, .size_idx1 = 2,
213 .buf_idx2 = -1, .size_idx2 = -1,
214 },
215 },
216 [RTAS_FNIDX__IBM_GET_VPD] = {
217 .name = "ibm,get-vpd",
218 .filter = &(const struct rtas_filter) {
219 .buf_idx1 = 0, .size_idx1 = -1,
220 .buf_idx2 = 1, .size_idx2 = 2,
221 },
222 },
223 [RTAS_FNIDX__IBM_GET_XIVE] = {
224 .name = "ibm,get-xive",
225 },
226 [RTAS_FNIDX__IBM_INT_OFF] = {
227 .name = "ibm,int-off",
228 },
229 [RTAS_FNIDX__IBM_INT_ON] = {
230 .name = "ibm,int-on",
231 },
232 [RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
233 .name = "ibm,io-quiesce-ack",
234 },
235 [RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
236 .name = "ibm,lpar-perftools",
237 .filter = &(const struct rtas_filter) {
238 .buf_idx1 = 2, .size_idx1 = 3,
239 .buf_idx2 = -1, .size_idx2 = -1,
240 },
241 },
242 [RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
243 .name = "ibm,manage-flash-image",
244 },
245 [RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
246 .name = "ibm,manage-storage-preservation",
247 },
248 [RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
249 .name = "ibm,nmi-interlock",
250 },
251 [RTAS_FNIDX__IBM_NMI_REGISTER] = {
252 .name = "ibm,nmi-register",
253 },
254 [RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
255 .name = "ibm,open-errinjct",
256 .filter = &(const struct rtas_filter) {
257 .buf_idx1 = -1, .size_idx1 = -1,
258 .buf_idx2 = -1, .size_idx2 = -1,
259 },
260 },
261 [RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
262 .name = "ibm,open-sriov-allow-unfreeze",
263 },
264 [RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
265 .name = "ibm,open-sriov-map-pe-number",
266 },
267 [RTAS_FNIDX__IBM_OS_TERM] = {
268 .name = "ibm,os-term",
269 },
270 [RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
271 .name = "ibm,partner-control",
272 },
273 [RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
274 .name = "ibm,physical-attestation",
275 .filter = &(const struct rtas_filter) {
276 .buf_idx1 = 0, .size_idx1 = 1,
277 .buf_idx2 = -1, .size_idx2 = -1,
278 },
279 },
280 [RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
281 .name = "ibm,platform-dump",
282 .filter = &(const struct rtas_filter) {
283 .buf_idx1 = 4, .size_idx1 = 5,
284 .buf_idx2 = -1, .size_idx2 = -1,
285 },
286 },
287 [RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
288 .name = "ibm,power-off-ups",
289 },
290 [RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
291 .name = "ibm,query-interrupt-source-number",
292 },
293 [RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
294 .name = "ibm,query-pe-dma-window",
295 },
296 [RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
297 .name = "ibm,read-pci-config",
298 },
299 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
300 .name = "ibm,read-slot-reset-state",
301 .filter = &(const struct rtas_filter) {
302 .buf_idx1 = -1, .size_idx1 = -1,
303 .buf_idx2 = -1, .size_idx2 = -1,
304 },
305 },
306 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
307 .name = "ibm,read-slot-reset-state2",
308 },
309 [RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
310 .name = "ibm,remove-pe-dma-window",
311 },
312 [RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOWS] = {
313 .name = "ibm,reset-pe-dma-windows",
314 },
315 [RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
316 .name = "ibm,scan-log-dump",
317 .filter = &(const struct rtas_filter) {
318 .buf_idx1 = 0, .size_idx1 = 1,
319 .buf_idx2 = -1, .size_idx2 = -1,
320 },
321 },
322 [RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
323 .name = "ibm,set-dynamic-indicator",
324 .filter = &(const struct rtas_filter) {
325 .buf_idx1 = 2, .size_idx1 = -1,
326 .buf_idx2 = -1, .size_idx2 = -1,
327 },
328 },
329 [RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
330 .name = "ibm,set-eeh-option",
331 .filter = &(const struct rtas_filter) {
332 .buf_idx1 = -1, .size_idx1 = -1,
333 .buf_idx2 = -1, .size_idx2 = -1,
334 },
335 },
336 [RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
337 .name = "ibm,set-slot-reset",
338 },
339 [RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
340 .name = "ibm,set-system-parameter",
341 .filter = &(const struct rtas_filter) {
342 .buf_idx1 = 1, .size_idx1 = -1,
343 .buf_idx2 = -1, .size_idx2 = -1,
344 },
345 },
346 [RTAS_FNIDX__IBM_SET_XIVE] = {
347 .name = "ibm,set-xive",
348 },
349 [RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
350 .name = "ibm,slot-error-detail",
351 },
352 [RTAS_FNIDX__IBM_SUSPEND_ME] = {
353 .name = "ibm,suspend-me",
354 .banned_for_syscall_on_le = true,
355 .filter = &(const struct rtas_filter) {
356 .buf_idx1 = -1, .size_idx1 = -1,
357 .buf_idx2 = -1, .size_idx2 = -1,
358 },
359 },
360 [RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
361 .name = "ibm,tune-dma-parms",
362 },
363 [RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
364 .name = "ibm,update-flash-64-and-reboot",
365 },
366 [RTAS_FNIDX__IBM_UPDATE_NODES] = {
367 .name = "ibm,update-nodes",
368 .banned_for_syscall_on_le = true,
369 .filter = &(const struct rtas_filter) {
370 .buf_idx1 = 0, .size_idx1 = -1,
371 .buf_idx2 = -1, .size_idx2 = -1,
372 .fixed_size = 4096,
373 },
374 },
375 [RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
376 .name = "ibm,update-properties",
377 .banned_for_syscall_on_le = true,
378 .filter = &(const struct rtas_filter) {
379 .buf_idx1 = 0, .size_idx1 = -1,
380 .buf_idx2 = -1, .size_idx2 = -1,
381 .fixed_size = 4096,
382 },
383 },
384 [RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
385 .name = "ibm,validate-flash-image",
386 },
387 [RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
388 .name = "ibm,write-pci-config",
389 },
390 [RTAS_FNIDX__NVRAM_FETCH] = {
391 .name = "nvram-fetch",
392 },
393 [RTAS_FNIDX__NVRAM_STORE] = {
394 .name = "nvram-store",
395 },
396 [RTAS_FNIDX__POWER_OFF] = {
397 .name = "power-off",
398 },
399 [RTAS_FNIDX__PUT_TERM_CHAR] = {
400 .name = "put-term-char",
401 },
402 [RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
403 .name = "query-cpu-stopped-state",
404 },
405 [RTAS_FNIDX__READ_PCI_CONFIG] = {
406 .name = "read-pci-config",
407 },
408 [RTAS_FNIDX__RTAS_LAST_ERROR] = {
409 .name = "rtas-last-error",
410 },
411 [RTAS_FNIDX__SET_INDICATOR] = {
412 .name = "set-indicator",
413 .filter = &(const struct rtas_filter) {
414 .buf_idx1 = -1, .size_idx1 = -1,
415 .buf_idx2 = -1, .size_idx2 = -1,
416 },
417 },
418 [RTAS_FNIDX__SET_POWER_LEVEL] = {
419 .name = "set-power-level",
420 .filter = &(const struct rtas_filter) {
421 .buf_idx1 = -1, .size_idx1 = -1,
422 .buf_idx2 = -1, .size_idx2 = -1,
423 },
424 },
425 [RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
426 .name = "set-time-for-power-on",
427 .filter = &(const struct rtas_filter) {
428 .buf_idx1 = -1, .size_idx1 = -1,
429 .buf_idx2 = -1, .size_idx2 = -1,
430 },
431 },
432 [RTAS_FNIDX__SET_TIME_OF_DAY] = {
433 .name = "set-time-of-day",
434 .filter = &(const struct rtas_filter) {
435 .buf_idx1 = -1, .size_idx1 = -1,
436 .buf_idx2 = -1, .size_idx2 = -1,
437 },
438 },
439 [RTAS_FNIDX__START_CPU] = {
440 .name = "start-cpu",
441 },
442 [RTAS_FNIDX__STOP_SELF] = {
443 .name = "stop-self",
444 },
445 [RTAS_FNIDX__SYSTEM_REBOOT] = {
446 .name = "system-reboot",
447 },
448 [RTAS_FNIDX__THAW_TIME_BASE] = {
449 .name = "thaw-time-base",
450 },
451 [RTAS_FNIDX__WRITE_PCI_CONFIG] = {
452 .name = "write-pci-config",
453 },
454 };
455
456 /**
457 * rtas_function_token() - RTAS function token lookup.
458 * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
459 *
460 * Context: Any context.
461 * Return: the token value for the function if implemented by this platform,
462 * otherwise RTAS_UNKNOWN_SERVICE.
463 */
rtas_function_token(const rtas_fn_handle_t handle)464 s32 rtas_function_token(const rtas_fn_handle_t handle)
465 {
466 const size_t index = handle.index;
467 const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
468
469 if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
470 return RTAS_UNKNOWN_SERVICE;
471 /*
472 * Various drivers attempt token lookups on non-RTAS
473 * platforms.
474 */
475 if (!rtas.dev)
476 return RTAS_UNKNOWN_SERVICE;
477
478 return rtas_function_table[index].token;
479 }
480 EXPORT_SYMBOL_GPL(rtas_function_token);
481
rtas_function_cmp(const void * a,const void * b)482 static int rtas_function_cmp(const void *a, const void *b)
483 {
484 const struct rtas_function *f1 = a;
485 const struct rtas_function *f2 = b;
486
487 return strcmp(f1->name, f2->name);
488 }
489
490 /*
491 * Boot-time initialization of the function table needs the lookup to
492 * return a non-const-qualified object. Use rtas_name_to_function()
493 * in all other contexts.
494 */
__rtas_name_to_function(const char * name)495 static struct rtas_function *__rtas_name_to_function(const char *name)
496 {
497 const struct rtas_function key = {
498 .name = name,
499 };
500 struct rtas_function *found;
501
502 found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
503 sizeof(rtas_function_table[0]), rtas_function_cmp);
504
505 return found;
506 }
507
rtas_name_to_function(const char * name)508 static const struct rtas_function *rtas_name_to_function(const char *name)
509 {
510 return __rtas_name_to_function(name);
511 }
512
513 static DEFINE_XARRAY(rtas_token_to_function_xarray);
514
rtas_token_to_function_xarray_init(void)515 static int __init rtas_token_to_function_xarray_init(void)
516 {
517 int err = 0;
518
519 for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
520 const struct rtas_function *func = &rtas_function_table[i];
521 const s32 token = func->token;
522
523 if (token == RTAS_UNKNOWN_SERVICE)
524 continue;
525
526 err = xa_err(xa_store(&rtas_token_to_function_xarray,
527 token, (void *)func, GFP_KERNEL));
528 if (err)
529 break;
530 }
531
532 return err;
533 }
534 arch_initcall(rtas_token_to_function_xarray_init);
535
rtas_token_to_function(s32 token)536 static const struct rtas_function *rtas_token_to_function(s32 token)
537 {
538 const struct rtas_function *func;
539
540 if (WARN_ONCE(token < 0, "invalid token %d", token))
541 return NULL;
542
543 func = xa_load(&rtas_token_to_function_xarray, token);
544
545 if (WARN_ONCE(!func, "unexpected failed lookup for token %d", token))
546 return NULL;
547
548 return func;
549 }
550
551 /* This is here deliberately so it's only used in this file */
552 void enter_rtas(unsigned long);
553
__do_enter_rtas(struct rtas_args * args)554 static void __do_enter_rtas(struct rtas_args *args)
555 {
556 enter_rtas(__pa(args));
557 srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
558 }
559
__do_enter_rtas_trace(struct rtas_args * args)560 static void __do_enter_rtas_trace(struct rtas_args *args)
561 {
562 const char *name = NULL;
563 /*
564 * If the tracepoints that consume the function name aren't
565 * active, avoid the lookup.
566 */
567 if ((trace_rtas_input_enabled() || trace_rtas_output_enabled())) {
568 const s32 token = be32_to_cpu(args->token);
569 const struct rtas_function *func = rtas_token_to_function(token);
570
571 name = func->name;
572 }
573
574 trace_rtas_input(args, name);
575 trace_rtas_ll_entry(args);
576
577 __do_enter_rtas(args);
578
579 trace_rtas_ll_exit(args);
580 trace_rtas_output(args, name);
581 }
582
do_enter_rtas(struct rtas_args * args)583 static void do_enter_rtas(struct rtas_args *args)
584 {
585 const unsigned long msr = mfmsr();
586 /*
587 * Situations where we want to skip any active tracepoints for
588 * safety reasons:
589 *
590 * 1. The last code executed on an offline CPU as it stops,
591 * i.e. we're about to call stop-self. The tracepoints'
592 * function name lookup uses xarray, which uses RCU, which
593 * isn't valid to call on an offline CPU. Any events
594 * emitted on an offline CPU will be discarded anyway.
595 *
596 * 2. In real mode, as when invoking ibm,nmi-interlock from
597 * the pseries MCE handler. We cannot count on trace
598 * buffers or the entries in rtas_token_to_function_xarray
599 * to be contained in the RMO.
600 */
601 const unsigned long mask = MSR_IR | MSR_DR;
602 const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
603 (msr & mask) == mask);
604 /*
605 * Make sure MSR[RI] is currently enabled as it will be forced later
606 * in enter_rtas.
607 */
608 BUG_ON(!(msr & MSR_RI));
609
610 BUG_ON(!irqs_disabled());
611
612 hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
613
614 if (can_trace)
615 __do_enter_rtas_trace(args);
616 else
617 __do_enter_rtas(args);
618 }
619
620 struct rtas_t rtas;
621
622 /*
623 * Nearly all RTAS calls need to be serialized. All uses of the
624 * default rtas_args block must hold rtas_lock.
625 *
626 * Exceptions to the RTAS serialization requirement (e.g. stop-self)
627 * must use a separate rtas_args structure.
628 */
629 static DEFINE_RAW_SPINLOCK(rtas_lock);
630 static struct rtas_args rtas_args;
631
632 DEFINE_SPINLOCK(rtas_data_buf_lock);
633 EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
634
635 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
636 EXPORT_SYMBOL_GPL(rtas_data_buf);
637
638 unsigned long rtas_rmo_buf;
639
640 /*
641 * If non-NULL, this gets called when the kernel terminates.
642 * This is done like this so rtas_flash can be a module.
643 */
644 void (*rtas_flash_term_hook)(int);
645 EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
646
647 /*
648 * call_rtas_display_status and call_rtas_display_status_delay
649 * are designed only for very early low-level debugging, which
650 * is why the token is hard-coded to 10.
651 */
call_rtas_display_status(unsigned char c)652 static void call_rtas_display_status(unsigned char c)
653 {
654 unsigned long flags;
655
656 if (!rtas.base)
657 return;
658
659 raw_spin_lock_irqsave(&rtas_lock, flags);
660 rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
661 raw_spin_unlock_irqrestore(&rtas_lock, flags);
662 }
663
call_rtas_display_status_delay(char c)664 static void call_rtas_display_status_delay(char c)
665 {
666 static int pending_newline = 0; /* did last write end with unprinted newline? */
667 static int width = 16;
668
669 if (c == '\n') {
670 while (width-- > 0)
671 call_rtas_display_status(' ');
672 width = 16;
673 mdelay(500);
674 pending_newline = 1;
675 } else {
676 if (pending_newline) {
677 call_rtas_display_status('\r');
678 call_rtas_display_status('\n');
679 }
680 pending_newline = 0;
681 if (width--) {
682 call_rtas_display_status(c);
683 udelay(10000);
684 }
685 }
686 }
687
udbg_init_rtas_panel(void)688 void __init udbg_init_rtas_panel(void)
689 {
690 udbg_putc = call_rtas_display_status_delay;
691 }
692
693 #ifdef CONFIG_UDBG_RTAS_CONSOLE
694
695 /* If you think you're dying before early_init_dt_scan_rtas() does its
696 * work, you can hard code the token values for your firmware here and
697 * hardcode rtas.base/entry etc.
698 */
699 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
700 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
701
udbg_rtascon_putc(char c)702 static void udbg_rtascon_putc(char c)
703 {
704 int tries;
705
706 if (!rtas.base)
707 return;
708
709 /* Add CRs before LFs */
710 if (c == '\n')
711 udbg_rtascon_putc('\r');
712
713 /* if there is more than one character to be displayed, wait a bit */
714 for (tries = 0; tries < 16; tries++) {
715 if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
716 break;
717 udelay(1000);
718 }
719 }
720
udbg_rtascon_getc_poll(void)721 static int udbg_rtascon_getc_poll(void)
722 {
723 int c;
724
725 if (!rtas.base)
726 return -1;
727
728 if (rtas_call(rtas_getchar_token, 0, 2, &c))
729 return -1;
730
731 return c;
732 }
733
udbg_rtascon_getc(void)734 static int udbg_rtascon_getc(void)
735 {
736 int c;
737
738 while ((c = udbg_rtascon_getc_poll()) == -1)
739 ;
740
741 return c;
742 }
743
744
udbg_init_rtas_console(void)745 void __init udbg_init_rtas_console(void)
746 {
747 udbg_putc = udbg_rtascon_putc;
748 udbg_getc = udbg_rtascon_getc;
749 udbg_getc_poll = udbg_rtascon_getc_poll;
750 }
751 #endif /* CONFIG_UDBG_RTAS_CONSOLE */
752
rtas_progress(char * s,unsigned short hex)753 void rtas_progress(char *s, unsigned short hex)
754 {
755 struct device_node *root;
756 int width;
757 const __be32 *p;
758 char *os;
759 static int display_character, set_indicator;
760 static int display_width, display_lines, form_feed;
761 static const int *row_width;
762 static DEFINE_SPINLOCK(progress_lock);
763 static int current_line;
764 static int pending_newline = 0; /* did last write end with unprinted newline? */
765
766 if (!rtas.base)
767 return;
768
769 if (display_width == 0) {
770 display_width = 0x10;
771 if ((root = of_find_node_by_path("/rtas"))) {
772 if ((p = of_get_property(root,
773 "ibm,display-line-length", NULL)))
774 display_width = be32_to_cpu(*p);
775 if ((p = of_get_property(root,
776 "ibm,form-feed", NULL)))
777 form_feed = be32_to_cpu(*p);
778 if ((p = of_get_property(root,
779 "ibm,display-number-of-lines", NULL)))
780 display_lines = be32_to_cpu(*p);
781 row_width = of_get_property(root,
782 "ibm,display-truncation-length", NULL);
783 of_node_put(root);
784 }
785 display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
786 set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
787 }
788
789 if (display_character == RTAS_UNKNOWN_SERVICE) {
790 /* use hex display if available */
791 if (set_indicator != RTAS_UNKNOWN_SERVICE)
792 rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
793 return;
794 }
795
796 spin_lock(&progress_lock);
797
798 /*
799 * Last write ended with newline, but we didn't print it since
800 * it would just clear the bottom line of output. Print it now
801 * instead.
802 *
803 * If no newline is pending and form feed is supported, clear the
804 * display with a form feed; otherwise, print a CR to start output
805 * at the beginning of the line.
806 */
807 if (pending_newline) {
808 rtas_call(display_character, 1, 1, NULL, '\r');
809 rtas_call(display_character, 1, 1, NULL, '\n');
810 pending_newline = 0;
811 } else {
812 current_line = 0;
813 if (form_feed)
814 rtas_call(display_character, 1, 1, NULL,
815 (char)form_feed);
816 else
817 rtas_call(display_character, 1, 1, NULL, '\r');
818 }
819
820 if (row_width)
821 width = row_width[current_line];
822 else
823 width = display_width;
824 os = s;
825 while (*os) {
826 if (*os == '\n' || *os == '\r') {
827 /* If newline is the last character, save it
828 * until next call to avoid bumping up the
829 * display output.
830 */
831 if (*os == '\n' && !os[1]) {
832 pending_newline = 1;
833 current_line++;
834 if (current_line > display_lines-1)
835 current_line = display_lines-1;
836 spin_unlock(&progress_lock);
837 return;
838 }
839
840 /* RTAS wants CR-LF, not just LF */
841
842 if (*os == '\n') {
843 rtas_call(display_character, 1, 1, NULL, '\r');
844 rtas_call(display_character, 1, 1, NULL, '\n');
845 } else {
846 /* CR might be used to re-draw a line, so we'll
847 * leave it alone and not add LF.
848 */
849 rtas_call(display_character, 1, 1, NULL, *os);
850 }
851
852 if (row_width)
853 width = row_width[current_line];
854 else
855 width = display_width;
856 } else {
857 width--;
858 rtas_call(display_character, 1, 1, NULL, *os);
859 }
860
861 os++;
862
863 /* if we overwrite the screen length */
864 if (width <= 0)
865 while ((*os != 0) && (*os != '\n') && (*os != '\r'))
866 os++;
867 }
868
869 spin_unlock(&progress_lock);
870 }
871 EXPORT_SYMBOL_GPL(rtas_progress); /* needed by rtas_flash module */
872
rtas_token(const char * service)873 int rtas_token(const char *service)
874 {
875 const struct rtas_function *func;
876 const __be32 *tokp;
877
878 if (rtas.dev == NULL)
879 return RTAS_UNKNOWN_SERVICE;
880
881 func = rtas_name_to_function(service);
882 if (func)
883 return func->token;
884 /*
885 * The caller is looking up a name that is not known to be an
886 * RTAS function. Either it's a function that needs to be
887 * added to the table, or they're misusing rtas_token() to
888 * access non-function properties of the /rtas node. Warn and
889 * fall back to the legacy behavior.
890 */
891 WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
892 service);
893
894 tokp = of_get_property(rtas.dev, service, NULL);
895 return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
896 }
897 EXPORT_SYMBOL_GPL(rtas_token);
898
rtas_service_present(const char * service)899 int rtas_service_present(const char *service)
900 {
901 return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
902 }
903
904 #ifdef CONFIG_RTAS_ERROR_LOGGING
905
906 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
907
908 /*
909 * Return the firmware-specified size of the error log buffer
910 * for all rtas calls that require an error buffer argument.
911 * This includes 'check-exception' and 'rtas-last-error'.
912 */
rtas_get_error_log_max(void)913 int rtas_get_error_log_max(void)
914 {
915 return rtas_error_log_max;
916 }
917
init_error_log_max(void)918 static void __init init_error_log_max(void)
919 {
920 static const char propname[] __initconst = "rtas-error-log-max";
921 u32 max;
922
923 if (of_property_read_u32(rtas.dev, propname, &max)) {
924 pr_warn("%s not found, using default of %u\n",
925 propname, RTAS_ERROR_LOG_MAX);
926 max = RTAS_ERROR_LOG_MAX;
927 }
928
929 if (max > RTAS_ERROR_LOG_MAX) {
930 pr_warn("%s = %u, clamping max error log size to %u\n",
931 propname, max, RTAS_ERROR_LOG_MAX);
932 max = RTAS_ERROR_LOG_MAX;
933 }
934
935 rtas_error_log_max = max;
936 }
937
938
939 static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
940
941 /** Return a copy of the detailed error text associated with the
942 * most recent failed call to rtas. Because the error text
943 * might go stale if there are any other intervening rtas calls,
944 * this routine must be called atomically with whatever produced
945 * the error (i.e. with rtas_lock still held from the previous call).
946 */
__fetch_rtas_last_error(char * altbuf)947 static char *__fetch_rtas_last_error(char *altbuf)
948 {
949 const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
950 struct rtas_args err_args, save_args;
951 u32 bufsz;
952 char *buf = NULL;
953
954 if (token == -1)
955 return NULL;
956
957 bufsz = rtas_get_error_log_max();
958
959 err_args.token = cpu_to_be32(token);
960 err_args.nargs = cpu_to_be32(2);
961 err_args.nret = cpu_to_be32(1);
962 err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
963 err_args.args[1] = cpu_to_be32(bufsz);
964 err_args.args[2] = 0;
965
966 save_args = rtas_args;
967 rtas_args = err_args;
968
969 do_enter_rtas(&rtas_args);
970
971 err_args = rtas_args;
972 rtas_args = save_args;
973
974 /* Log the error in the unlikely case that there was one. */
975 if (unlikely(err_args.args[2] == 0)) {
976 if (altbuf) {
977 buf = altbuf;
978 } else {
979 buf = rtas_err_buf;
980 if (slab_is_available())
981 buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
982 }
983 if (buf)
984 memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
985 }
986
987 return buf;
988 }
989
990 #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
991
992 #else /* CONFIG_RTAS_ERROR_LOGGING */
993 #define __fetch_rtas_last_error(x) NULL
994 #define get_errorlog_buffer() NULL
init_error_log_max(void)995 static void __init init_error_log_max(void) {}
996 #endif
997
998
999 static void
va_rtas_call_unlocked(struct rtas_args * args,int token,int nargs,int nret,va_list list)1000 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1001 va_list list)
1002 {
1003 int i;
1004
1005 args->token = cpu_to_be32(token);
1006 args->nargs = cpu_to_be32(nargs);
1007 args->nret = cpu_to_be32(nret);
1008 args->rets = &(args->args[nargs]);
1009
1010 for (i = 0; i < nargs; ++i)
1011 args->args[i] = cpu_to_be32(va_arg(list, __u32));
1012
1013 for (i = 0; i < nret; ++i)
1014 args->rets[i] = 0;
1015
1016 do_enter_rtas(args);
1017 }
1018
rtas_call_unlocked(struct rtas_args * args,int token,int nargs,int nret,...)1019 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1020 {
1021 va_list list;
1022
1023 va_start(list, nret);
1024 va_rtas_call_unlocked(args, token, nargs, nret, list);
1025 va_end(list);
1026 }
1027
token_is_restricted_errinjct(s32 token)1028 static bool token_is_restricted_errinjct(s32 token)
1029 {
1030 return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1031 token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1032 }
1033
1034 /**
1035 * rtas_call() - Invoke an RTAS firmware function.
1036 * @token: Identifies the function being invoked.
1037 * @nargs: Number of input parameters. Does not include token.
1038 * @nret: Number of output parameters, including the call status.
1039 * @outputs: Array of @nret output words.
1040 * @....: List of @nargs input parameters.
1041 *
1042 * Invokes the RTAS function indicated by @token, which the caller
1043 * should obtain via rtas_function_token().
1044 *
1045 * The @nargs and @nret arguments must match the number of input and
1046 * output parameters specified for the RTAS function.
1047 *
1048 * rtas_call() returns RTAS status codes, not conventional Linux errno
1049 * values. Callers must translate any failure to an appropriate errno
1050 * in syscall context. Most callers of RTAS functions that can return
1051 * -2 or 990x should use rtas_busy_delay() to correctly handle those
1052 * statuses before calling again.
1053 *
1054 * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1055 * Codes of the PAPR and CHRP specifications.
1056 *
1057 * Context: Process context preferably, interrupt context if
1058 * necessary. Acquires an internal spinlock and may perform
1059 * GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1060 * context.
1061 * Return:
1062 * * 0 - RTAS function call succeeded.
1063 * * -1 - RTAS function encountered a hardware or
1064 * platform error, or the token is invalid,
1065 * or the function is restricted by kernel policy.
1066 * * -2 - Specs say "A necessary hardware device was busy,
1067 * and the requested function could not be
1068 * performed. The operation should be retried at
1069 * a later time." This is misleading, at least with
1070 * respect to current RTAS implementations. What it
1071 * usually means in practice is that the function
1072 * could not be completed while meeting RTAS's
1073 * deadline for returning control to the OS (250us
1074 * for PAPR/PowerVM, typically), but the call may be
1075 * immediately reattempted to resume work on it.
1076 * * -3 - Parameter error.
1077 * * -7 - Unexpected state change.
1078 * * 9000...9899 - Vendor-specific success codes.
1079 * * 9900...9905 - Advisory extended delay. Caller should try
1080 * again after ~10^x ms has elapsed, where x is
1081 * the last digit of the status [0-5]. Again going
1082 * beyond the PAPR text, 990x on PowerVM indicates
1083 * contention for RTAS-internal resources. Other
1084 * RTAS call sequences in progress should be
1085 * allowed to complete before reattempting the
1086 * call.
1087 * * -9000 - Multi-level isolation error.
1088 * * -9999...-9004 - Vendor-specific error codes.
1089 * * Additional negative values - Function-specific error.
1090 * * Additional positive values - Function-specific success.
1091 */
rtas_call(int token,int nargs,int nret,int * outputs,...)1092 int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1093 {
1094 va_list list;
1095 int i;
1096 unsigned long flags;
1097 struct rtas_args *args;
1098 char *buff_copy = NULL;
1099 int ret;
1100
1101 if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1102 return -1;
1103
1104 if (token_is_restricted_errinjct(token)) {
1105 /*
1106 * It would be nicer to not discard the error value
1107 * from security_locked_down(), but callers expect an
1108 * RTAS status, not an errno.
1109 */
1110 if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1111 return -1;
1112 }
1113
1114 if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1115 WARN_ON_ONCE(1);
1116 return -1;
1117 }
1118
1119 raw_spin_lock_irqsave(&rtas_lock, flags);
1120 /* We use the global rtas args buffer */
1121 args = &rtas_args;
1122
1123 va_start(list, outputs);
1124 va_rtas_call_unlocked(args, token, nargs, nret, list);
1125 va_end(list);
1126
1127 /* A -1 return code indicates that the last command couldn't
1128 be completed due to a hardware error. */
1129 if (be32_to_cpu(args->rets[0]) == -1)
1130 buff_copy = __fetch_rtas_last_error(NULL);
1131
1132 if (nret > 1 && outputs != NULL)
1133 for (i = 0; i < nret-1; ++i)
1134 outputs[i] = be32_to_cpu(args->rets[i + 1]);
1135 ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1136
1137 raw_spin_unlock_irqrestore(&rtas_lock, flags);
1138
1139 if (buff_copy) {
1140 log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1141 if (slab_is_available())
1142 kfree(buff_copy);
1143 }
1144 return ret;
1145 }
1146 EXPORT_SYMBOL_GPL(rtas_call);
1147
1148 /**
1149 * rtas_busy_delay_time() - From an RTAS status value, calculate the
1150 * suggested delay time in milliseconds.
1151 *
1152 * @status: a value returned from rtas_call() or similar APIs which return
1153 * the status of a RTAS function call.
1154 *
1155 * Context: Any context.
1156 *
1157 * Return:
1158 * * 100000 - If @status is 9905.
1159 * * 10000 - If @status is 9904.
1160 * * 1000 - If @status is 9903.
1161 * * 100 - If @status is 9902.
1162 * * 10 - If @status is 9901.
1163 * * 1 - If @status is either 9900 or -2. This is "wrong" for -2, but
1164 * some callers depend on this behavior, and the worst outcome
1165 * is that they will delay for longer than necessary.
1166 * * 0 - If @status is not a busy or extended delay value.
1167 */
rtas_busy_delay_time(int status)1168 unsigned int rtas_busy_delay_time(int status)
1169 {
1170 int order;
1171 unsigned int ms = 0;
1172
1173 if (status == RTAS_BUSY) {
1174 ms = 1;
1175 } else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1176 status <= RTAS_EXTENDED_DELAY_MAX) {
1177 order = status - RTAS_EXTENDED_DELAY_MIN;
1178 for (ms = 1; order > 0; order--)
1179 ms *= 10;
1180 }
1181
1182 return ms;
1183 }
1184
1185 /*
1186 * Early boot fallback for rtas_busy_delay().
1187 */
rtas_busy_delay_early(int status)1188 static bool __init rtas_busy_delay_early(int status)
1189 {
1190 static size_t successive_ext_delays __initdata;
1191 bool retry;
1192
1193 switch (status) {
1194 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1195 /*
1196 * In the unlikely case that we receive an extended
1197 * delay status in early boot, the OS is probably not
1198 * the cause, and there's nothing we can do to clear
1199 * the condition. Best we can do is delay for a bit
1200 * and hope it's transient. Lie to the caller if it
1201 * seems like we're stuck in a retry loop.
1202 */
1203 mdelay(1);
1204 retry = true;
1205 successive_ext_delays += 1;
1206 if (successive_ext_delays > 1000) {
1207 pr_err("too many extended delays, giving up\n");
1208 dump_stack();
1209 retry = false;
1210 successive_ext_delays = 0;
1211 }
1212 break;
1213 case RTAS_BUSY:
1214 retry = true;
1215 successive_ext_delays = 0;
1216 break;
1217 default:
1218 retry = false;
1219 successive_ext_delays = 0;
1220 break;
1221 }
1222
1223 return retry;
1224 }
1225
1226 /**
1227 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1228 *
1229 * @status: a value returned from rtas_call() or similar APIs which return
1230 * the status of a RTAS function call.
1231 *
1232 * Context: Process context. May sleep or schedule.
1233 *
1234 * Return:
1235 * * true - @status is RTAS_BUSY or an extended delay hint. The
1236 * caller may assume that the CPU has been yielded if necessary,
1237 * and that an appropriate delay for @status has elapsed.
1238 * Generally the caller should reattempt the RTAS call which
1239 * yielded @status.
1240 *
1241 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1242 * caller is responsible for handling @status.
1243 */
rtas_busy_delay(int status)1244 bool __ref rtas_busy_delay(int status)
1245 {
1246 unsigned int ms;
1247 bool ret;
1248
1249 /*
1250 * Can't do timed sleeps before timekeeping is up.
1251 */
1252 if (system_state < SYSTEM_SCHEDULING)
1253 return rtas_busy_delay_early(status);
1254
1255 switch (status) {
1256 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1257 ret = true;
1258 ms = rtas_busy_delay_time(status);
1259 /*
1260 * The extended delay hint can be as high as 100 seconds.
1261 * Surely any function returning such a status is either
1262 * buggy or isn't going to be significantly slowed by us
1263 * polling at 1HZ. Clamp the sleep time to one second.
1264 */
1265 ms = clamp(ms, 1U, 1000U);
1266 /*
1267 * The delay hint is an order-of-magnitude suggestion, not
1268 * a minimum. It is fine, possibly even advantageous, for
1269 * us to pause for less time than hinted. For small values,
1270 * use usleep_range() to ensure we don't sleep much longer
1271 * than actually needed.
1272 *
1273 * See Documentation/timers/timers-howto.rst for
1274 * explanation of the threshold used here. In effect we use
1275 * usleep_range() for 9900 and 9901, msleep() for
1276 * 9902-9905.
1277 */
1278 if (ms <= 20)
1279 usleep_range(ms * 100, ms * 1000);
1280 else
1281 msleep(ms);
1282 break;
1283 case RTAS_BUSY:
1284 ret = true;
1285 /*
1286 * We should call again immediately if there's no other
1287 * work to do.
1288 */
1289 cond_resched();
1290 break;
1291 default:
1292 ret = false;
1293 /*
1294 * Not a busy or extended delay status; the caller should
1295 * handle @status itself. Ensure we warn on misuses in
1296 * atomic context regardless.
1297 */
1298 might_sleep();
1299 break;
1300 }
1301
1302 return ret;
1303 }
1304 EXPORT_SYMBOL_GPL(rtas_busy_delay);
1305
rtas_error_rc(int rtas_rc)1306 static int rtas_error_rc(int rtas_rc)
1307 {
1308 int rc;
1309
1310 switch (rtas_rc) {
1311 case -1: /* Hardware Error */
1312 rc = -EIO;
1313 break;
1314 case -3: /* Bad indicator/domain/etc */
1315 rc = -EINVAL;
1316 break;
1317 case -9000: /* Isolation error */
1318 rc = -EFAULT;
1319 break;
1320 case -9001: /* Outstanding TCE/PTE */
1321 rc = -EEXIST;
1322 break;
1323 case -9002: /* No usable slot */
1324 rc = -ENODEV;
1325 break;
1326 default:
1327 pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1328 rc = -ERANGE;
1329 break;
1330 }
1331 return rc;
1332 }
1333
rtas_get_power_level(int powerdomain,int * level)1334 int rtas_get_power_level(int powerdomain, int *level)
1335 {
1336 int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1337 int rc;
1338
1339 if (token == RTAS_UNKNOWN_SERVICE)
1340 return -ENOENT;
1341
1342 while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1343 udelay(1);
1344
1345 if (rc < 0)
1346 return rtas_error_rc(rc);
1347 return rc;
1348 }
1349 EXPORT_SYMBOL_GPL(rtas_get_power_level);
1350
rtas_set_power_level(int powerdomain,int level,int * setlevel)1351 int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1352 {
1353 int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1354 int rc;
1355
1356 if (token == RTAS_UNKNOWN_SERVICE)
1357 return -ENOENT;
1358
1359 do {
1360 rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1361 } while (rtas_busy_delay(rc));
1362
1363 if (rc < 0)
1364 return rtas_error_rc(rc);
1365 return rc;
1366 }
1367 EXPORT_SYMBOL_GPL(rtas_set_power_level);
1368
rtas_get_sensor(int sensor,int index,int * state)1369 int rtas_get_sensor(int sensor, int index, int *state)
1370 {
1371 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1372 int rc;
1373
1374 if (token == RTAS_UNKNOWN_SERVICE)
1375 return -ENOENT;
1376
1377 do {
1378 rc = rtas_call(token, 2, 2, state, sensor, index);
1379 } while (rtas_busy_delay(rc));
1380
1381 if (rc < 0)
1382 return rtas_error_rc(rc);
1383 return rc;
1384 }
1385 EXPORT_SYMBOL_GPL(rtas_get_sensor);
1386
rtas_get_sensor_fast(int sensor,int index,int * state)1387 int rtas_get_sensor_fast(int sensor, int index, int *state)
1388 {
1389 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1390 int rc;
1391
1392 if (token == RTAS_UNKNOWN_SERVICE)
1393 return -ENOENT;
1394
1395 rc = rtas_call(token, 2, 2, state, sensor, index);
1396 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1397 rc <= RTAS_EXTENDED_DELAY_MAX));
1398
1399 if (rc < 0)
1400 return rtas_error_rc(rc);
1401 return rc;
1402 }
1403
rtas_indicator_present(int token,int * maxindex)1404 bool rtas_indicator_present(int token, int *maxindex)
1405 {
1406 int proplen, count, i;
1407 const struct indicator_elem {
1408 __be32 token;
1409 __be32 maxindex;
1410 } *indicators;
1411
1412 indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1413 if (!indicators)
1414 return false;
1415
1416 count = proplen / sizeof(struct indicator_elem);
1417
1418 for (i = 0; i < count; i++) {
1419 if (__be32_to_cpu(indicators[i].token) != token)
1420 continue;
1421 if (maxindex)
1422 *maxindex = __be32_to_cpu(indicators[i].maxindex);
1423 return true;
1424 }
1425
1426 return false;
1427 }
1428
rtas_set_indicator(int indicator,int index,int new_value)1429 int rtas_set_indicator(int indicator, int index, int new_value)
1430 {
1431 int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1432 int rc;
1433
1434 if (token == RTAS_UNKNOWN_SERVICE)
1435 return -ENOENT;
1436
1437 do {
1438 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1439 } while (rtas_busy_delay(rc));
1440
1441 if (rc < 0)
1442 return rtas_error_rc(rc);
1443 return rc;
1444 }
1445 EXPORT_SYMBOL_GPL(rtas_set_indicator);
1446
1447 /*
1448 * Ignoring RTAS extended delay
1449 */
rtas_set_indicator_fast(int indicator,int index,int new_value)1450 int rtas_set_indicator_fast(int indicator, int index, int new_value)
1451 {
1452 int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1453 int rc;
1454
1455 if (token == RTAS_UNKNOWN_SERVICE)
1456 return -ENOENT;
1457
1458 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1459
1460 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1461 rc <= RTAS_EXTENDED_DELAY_MAX));
1462
1463 if (rc < 0)
1464 return rtas_error_rc(rc);
1465
1466 return rc;
1467 }
1468
1469 /**
1470 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1471 *
1472 * @fw_status: RTAS call status will be placed here if not NULL.
1473 *
1474 * rtas_ibm_suspend_me() should be called only on a CPU which has
1475 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1476 * should be waiting to return from H_JOIN.
1477 *
1478 * rtas_ibm_suspend_me() may suspend execution of the OS
1479 * indefinitely. Callers should take appropriate measures upon return, such as
1480 * resetting watchdog facilities.
1481 *
1482 * Callers may choose to retry this call if @fw_status is
1483 * %RTAS_THREADS_ACTIVE.
1484 *
1485 * Return:
1486 * 0 - The partition has resumed from suspend, possibly after
1487 * migration to a different host.
1488 * -ECANCELED - The operation was aborted.
1489 * -EAGAIN - There were other CPUs not in H_JOIN at the time of the call.
1490 * -EBUSY - Some other condition prevented the suspend from succeeding.
1491 * -EIO - Hardware/platform error.
1492 */
rtas_ibm_suspend_me(int * fw_status)1493 int rtas_ibm_suspend_me(int *fw_status)
1494 {
1495 int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1496 int fwrc;
1497 int ret;
1498
1499 fwrc = rtas_call(token, 0, 1, NULL);
1500
1501 switch (fwrc) {
1502 case 0:
1503 ret = 0;
1504 break;
1505 case RTAS_SUSPEND_ABORTED:
1506 ret = -ECANCELED;
1507 break;
1508 case RTAS_THREADS_ACTIVE:
1509 ret = -EAGAIN;
1510 break;
1511 case RTAS_NOT_SUSPENDABLE:
1512 case RTAS_OUTSTANDING_COPROC:
1513 ret = -EBUSY;
1514 break;
1515 case -1:
1516 default:
1517 ret = -EIO;
1518 break;
1519 }
1520
1521 if (fw_status)
1522 *fw_status = fwrc;
1523
1524 return ret;
1525 }
1526
rtas_restart(char * cmd)1527 void __noreturn rtas_restart(char *cmd)
1528 {
1529 if (rtas_flash_term_hook)
1530 rtas_flash_term_hook(SYS_RESTART);
1531 pr_emerg("system-reboot returned %d\n",
1532 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1533 for (;;);
1534 }
1535
rtas_power_off(void)1536 void rtas_power_off(void)
1537 {
1538 if (rtas_flash_term_hook)
1539 rtas_flash_term_hook(SYS_POWER_OFF);
1540 /* allow power on only with power button press */
1541 pr_emerg("power-off returned %d\n",
1542 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1543 for (;;);
1544 }
1545
rtas_halt(void)1546 void __noreturn rtas_halt(void)
1547 {
1548 if (rtas_flash_term_hook)
1549 rtas_flash_term_hook(SYS_HALT);
1550 /* allow power on only with power button press */
1551 pr_emerg("power-off returned %d\n",
1552 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1553 for (;;);
1554 }
1555
1556 /* Must be in the RMO region, so we place it here */
1557 static char rtas_os_term_buf[2048];
1558 static bool ibm_extended_os_term;
1559
rtas_os_term(char * str)1560 void rtas_os_term(char *str)
1561 {
1562 s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1563 int status;
1564
1565 /*
1566 * Firmware with the ibm,extended-os-term property is guaranteed
1567 * to always return from an ibm,os-term call. Earlier versions without
1568 * this property may terminate the partition which we want to avoid
1569 * since it interferes with panic_timeout.
1570 */
1571
1572 if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1573 return;
1574
1575 snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1576
1577 /*
1578 * Keep calling as long as RTAS returns a "try again" status,
1579 * but don't use rtas_busy_delay(), which potentially
1580 * schedules.
1581 */
1582 do {
1583 status = rtas_call(token, 1, 1, NULL, __pa(rtas_os_term_buf));
1584 } while (rtas_busy_delay_time(status));
1585
1586 if (status != 0)
1587 pr_emerg("ibm,os-term call failed %d\n", status);
1588 }
1589
1590 /**
1591 * rtas_activate_firmware() - Activate a new version of firmware.
1592 *
1593 * Context: This function may sleep.
1594 *
1595 * Activate a new version of partition firmware. The OS must call this
1596 * after resuming from a partition hibernation or migration in order
1597 * to maintain the ability to perform live firmware updates. It's not
1598 * catastrophic for this method to be absent or to fail; just log the
1599 * condition in that case.
1600 */
rtas_activate_firmware(void)1601 void rtas_activate_firmware(void)
1602 {
1603 int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1604 int fwrc;
1605
1606 if (token == RTAS_UNKNOWN_SERVICE) {
1607 pr_notice("ibm,activate-firmware method unavailable\n");
1608 return;
1609 }
1610
1611 do {
1612 fwrc = rtas_call(token, 0, 1, NULL);
1613 } while (rtas_busy_delay(fwrc));
1614
1615 if (fwrc)
1616 pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1617 }
1618
1619 /**
1620 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1621 * extended event log.
1622 * @log: RTAS error/event log
1623 * @section_id: two character section identifier
1624 *
1625 * Return: A pointer to the specified errorlog or NULL if not found.
1626 */
get_pseries_errorlog(struct rtas_error_log * log,uint16_t section_id)1627 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1628 uint16_t section_id)
1629 {
1630 struct rtas_ext_event_log_v6 *ext_log =
1631 (struct rtas_ext_event_log_v6 *)log->buffer;
1632 struct pseries_errorlog *sect;
1633 unsigned char *p, *log_end;
1634 uint32_t ext_log_length = rtas_error_extended_log_length(log);
1635 uint8_t log_format = rtas_ext_event_log_format(ext_log);
1636 uint32_t company_id = rtas_ext_event_company_id(ext_log);
1637
1638 /* Check that we understand the format */
1639 if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1640 log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1641 company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1642 return NULL;
1643
1644 log_end = log->buffer + ext_log_length;
1645 p = ext_log->vendor_log;
1646
1647 while (p < log_end) {
1648 sect = (struct pseries_errorlog *)p;
1649 if (pseries_errorlog_id(sect) == section_id)
1650 return sect;
1651 p += pseries_errorlog_length(sect);
1652 }
1653
1654 return NULL;
1655 }
1656
1657 /*
1658 * The sys_rtas syscall, as originally designed, allows root to pass
1659 * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1660 * can be abused to write to arbitrary memory and do other things that
1661 * are potentially harmful to system integrity, and thus should only
1662 * be used inside the kernel and not exposed to userspace.
1663 *
1664 * All known legitimate users of the sys_rtas syscall will only ever
1665 * pass addresses that fall within the RMO buffer, and use a known
1666 * subset of RTAS calls.
1667 *
1668 * Accordingly, we filter RTAS requests to check that the call is
1669 * permitted, and that provided pointers fall within the RMO buffer.
1670 * If a function is allowed to be invoked via the syscall, then its
1671 * entry in the rtas_functions table points to a rtas_filter that
1672 * describes its constraints, with the indexes of the parameters which
1673 * are expected to contain addresses and sizes of buffers allocated
1674 * inside the RMO buffer.
1675 */
1676
in_rmo_buf(u32 base,u32 end)1677 static bool in_rmo_buf(u32 base, u32 end)
1678 {
1679 return base >= rtas_rmo_buf &&
1680 base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1681 base <= end &&
1682 end >= rtas_rmo_buf &&
1683 end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1684 }
1685
block_rtas_call(int token,int nargs,struct rtas_args * args)1686 static bool block_rtas_call(int token, int nargs,
1687 struct rtas_args *args)
1688 {
1689 const struct rtas_function *func;
1690 const struct rtas_filter *f;
1691 const bool is_platform_dump = token == rtas_function_token(RTAS_FN_IBM_PLATFORM_DUMP);
1692 const bool is_config_conn = token == rtas_function_token(RTAS_FN_IBM_CONFIGURE_CONNECTOR);
1693 u32 base, size, end;
1694
1695 /*
1696 * If this token doesn't correspond to a function the kernel
1697 * understands, you're not allowed to call it.
1698 */
1699 func = rtas_token_to_function(token);
1700 if (!func)
1701 goto err;
1702 /*
1703 * And only functions with filters attached are allowed.
1704 */
1705 f = func->filter;
1706 if (!f)
1707 goto err;
1708 /*
1709 * And some functions aren't allowed on LE.
1710 */
1711 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1712 goto err;
1713
1714 if (f->buf_idx1 != -1) {
1715 base = be32_to_cpu(args->args[f->buf_idx1]);
1716 if (f->size_idx1 != -1)
1717 size = be32_to_cpu(args->args[f->size_idx1]);
1718 else if (f->fixed_size)
1719 size = f->fixed_size;
1720 else
1721 size = 1;
1722
1723 end = base + size - 1;
1724
1725 /*
1726 * Special case for ibm,platform-dump - NULL buffer
1727 * address is used to indicate end of dump processing
1728 */
1729 if (is_platform_dump && base == 0)
1730 return false;
1731
1732 if (!in_rmo_buf(base, end))
1733 goto err;
1734 }
1735
1736 if (f->buf_idx2 != -1) {
1737 base = be32_to_cpu(args->args[f->buf_idx2]);
1738 if (f->size_idx2 != -1)
1739 size = be32_to_cpu(args->args[f->size_idx2]);
1740 else if (f->fixed_size)
1741 size = f->fixed_size;
1742 else
1743 size = 1;
1744 end = base + size - 1;
1745
1746 /*
1747 * Special case for ibm,configure-connector where the
1748 * address can be 0
1749 */
1750 if (is_config_conn && base == 0)
1751 return false;
1752
1753 if (!in_rmo_buf(base, end))
1754 goto err;
1755 }
1756
1757 return false;
1758 err:
1759 pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1760 pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n",
1761 token, nargs, current->comm);
1762 return true;
1763 }
1764
1765 /* We assume to be passed big endian arguments */
SYSCALL_DEFINE1(rtas,struct rtas_args __user *,uargs)1766 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1767 {
1768 struct rtas_args args;
1769 unsigned long flags;
1770 char *buff_copy, *errbuf = NULL;
1771 int nargs, nret, token;
1772
1773 if (!capable(CAP_SYS_ADMIN))
1774 return -EPERM;
1775
1776 if (!rtas.entry)
1777 return -EINVAL;
1778
1779 if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1780 return -EFAULT;
1781
1782 nargs = be32_to_cpu(args.nargs);
1783 nret = be32_to_cpu(args.nret);
1784 token = be32_to_cpu(args.token);
1785
1786 if (nargs >= ARRAY_SIZE(args.args)
1787 || nret > ARRAY_SIZE(args.args)
1788 || nargs + nret > ARRAY_SIZE(args.args))
1789 return -EINVAL;
1790
1791 /* Copy in args. */
1792 if (copy_from_user(args.args, uargs->args,
1793 nargs * sizeof(rtas_arg_t)) != 0)
1794 return -EFAULT;
1795
1796 if (token == RTAS_UNKNOWN_SERVICE)
1797 return -EINVAL;
1798
1799 args.rets = &args.args[nargs];
1800 memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1801
1802 if (block_rtas_call(token, nargs, &args))
1803 return -EINVAL;
1804
1805 if (token_is_restricted_errinjct(token)) {
1806 int err;
1807
1808 err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1809 if (err)
1810 return err;
1811 }
1812
1813 /* Need to handle ibm,suspend_me call specially */
1814 if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1815
1816 /*
1817 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1818 * endian, or at least the hcall within it requires it.
1819 */
1820 int rc = 0;
1821 u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1822 | be32_to_cpu(args.args[1]);
1823 rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1824 if (rc == -EAGAIN)
1825 args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1826 else if (rc == -EIO)
1827 args.rets[0] = cpu_to_be32(-1);
1828 else if (rc)
1829 return rc;
1830 goto copy_return;
1831 }
1832
1833 buff_copy = get_errorlog_buffer();
1834
1835 raw_spin_lock_irqsave(&rtas_lock, flags);
1836
1837 rtas_args = args;
1838 do_enter_rtas(&rtas_args);
1839 args = rtas_args;
1840
1841 /* A -1 return code indicates that the last command couldn't
1842 be completed due to a hardware error. */
1843 if (be32_to_cpu(args.rets[0]) == -1)
1844 errbuf = __fetch_rtas_last_error(buff_copy);
1845
1846 raw_spin_unlock_irqrestore(&rtas_lock, flags);
1847
1848 if (buff_copy) {
1849 if (errbuf)
1850 log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1851 kfree(buff_copy);
1852 }
1853
1854 copy_return:
1855 /* Copy out args. */
1856 if (copy_to_user(uargs->args + nargs,
1857 args.args + nargs,
1858 nret * sizeof(rtas_arg_t)) != 0)
1859 return -EFAULT;
1860
1861 return 0;
1862 }
1863
rtas_function_table_init(void)1864 static void __init rtas_function_table_init(void)
1865 {
1866 struct property *prop;
1867
1868 for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
1869 struct rtas_function *curr = &rtas_function_table[i];
1870 struct rtas_function *prior;
1871 int cmp;
1872
1873 curr->token = RTAS_UNKNOWN_SERVICE;
1874
1875 if (i == 0)
1876 continue;
1877 /*
1878 * Ensure table is sorted correctly for binary search
1879 * on function names.
1880 */
1881 prior = &rtas_function_table[i - 1];
1882
1883 cmp = strcmp(prior->name, curr->name);
1884 if (cmp < 0)
1885 continue;
1886
1887 if (cmp == 0) {
1888 pr_err("'%s' has duplicate function table entries\n",
1889 curr->name);
1890 } else {
1891 pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
1892 prior->name, curr->name);
1893 }
1894 }
1895
1896 for_each_property_of_node(rtas.dev, prop) {
1897 struct rtas_function *func;
1898
1899 if (prop->length != sizeof(u32))
1900 continue;
1901
1902 func = __rtas_name_to_function(prop->name);
1903 if (!func)
1904 continue;
1905
1906 func->token = be32_to_cpup((__be32 *)prop->value);
1907
1908 pr_debug("function %s has token %u\n", func->name, func->token);
1909 }
1910 }
1911
1912 /*
1913 * Call early during boot, before mem init, to retrieve the RTAS
1914 * information from the device-tree and allocate the RMO buffer for userland
1915 * accesses.
1916 */
rtas_initialize(void)1917 void __init rtas_initialize(void)
1918 {
1919 unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
1920 u32 base, size, entry;
1921 int no_base, no_size, no_entry;
1922
1923 /* Get RTAS dev node and fill up our "rtas" structure with infos
1924 * about it.
1925 */
1926 rtas.dev = of_find_node_by_name(NULL, "rtas");
1927 if (!rtas.dev)
1928 return;
1929
1930 no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
1931 no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
1932 if (no_base || no_size) {
1933 of_node_put(rtas.dev);
1934 rtas.dev = NULL;
1935 return;
1936 }
1937
1938 rtas.base = base;
1939 rtas.size = size;
1940 no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
1941 rtas.entry = no_entry ? rtas.base : entry;
1942
1943 init_error_log_max();
1944
1945 /* Must be called before any function token lookups */
1946 rtas_function_table_init();
1947
1948 /*
1949 * Discover this now to avoid a device tree lookup in the
1950 * panic path.
1951 */
1952 ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
1953
1954 /* If RTAS was found, allocate the RMO buffer for it and look for
1955 * the stop-self token if any
1956 */
1957 #ifdef CONFIG_PPC64
1958 if (firmware_has_feature(FW_FEATURE_LPAR))
1959 rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
1960 #endif
1961 rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
1962 0, rtas_region);
1963 if (!rtas_rmo_buf)
1964 panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
1965 PAGE_SIZE, &rtas_region);
1966
1967 rtas_work_area_reserve_arena(rtas_region);
1968 }
1969
early_init_dt_scan_rtas(unsigned long node,const char * uname,int depth,void * data)1970 int __init early_init_dt_scan_rtas(unsigned long node,
1971 const char *uname, int depth, void *data)
1972 {
1973 const u32 *basep, *entryp, *sizep;
1974
1975 if (depth != 1 || strcmp(uname, "rtas") != 0)
1976 return 0;
1977
1978 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1979 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1980 sizep = of_get_flat_dt_prop(node, "rtas-size", NULL);
1981
1982 #ifdef CONFIG_PPC64
1983 /* need this feature to decide the crashkernel offset */
1984 if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
1985 powerpc_firmware_features |= FW_FEATURE_LPAR;
1986 #endif
1987
1988 if (basep && entryp && sizep) {
1989 rtas.base = *basep;
1990 rtas.entry = *entryp;
1991 rtas.size = *sizep;
1992 }
1993
1994 #ifdef CONFIG_UDBG_RTAS_CONSOLE
1995 basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
1996 if (basep)
1997 rtas_putchar_token = *basep;
1998
1999 basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2000 if (basep)
2001 rtas_getchar_token = *basep;
2002
2003 if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2004 rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2005 udbg_init_rtas_console();
2006
2007 #endif
2008
2009 /* break now */
2010 return 1;
2011 }
2012
2013 static DEFINE_RAW_SPINLOCK(timebase_lock);
2014 static u64 timebase = 0;
2015
rtas_give_timebase(void)2016 void rtas_give_timebase(void)
2017 {
2018 unsigned long flags;
2019
2020 raw_spin_lock_irqsave(&timebase_lock, flags);
2021 hard_irq_disable();
2022 rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
2023 timebase = get_tb();
2024 raw_spin_unlock(&timebase_lock);
2025
2026 while (timebase)
2027 barrier();
2028 rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2029 local_irq_restore(flags);
2030 }
2031
rtas_take_timebase(void)2032 void rtas_take_timebase(void)
2033 {
2034 while (!timebase)
2035 barrier();
2036 raw_spin_lock(&timebase_lock);
2037 set_tb(timebase >> 32, timebase & 0xffffffff);
2038 timebase = 0;
2039 raw_spin_unlock(&timebase_lock);
2040 }
2041