1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3 *
4 * Copyright (C) 2022 Marvell.
5 *
6 */
7
8 #include <linux/bitfield.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/firmware.h>
12 #include <linux/stddef.h>
13 #include <linux/debugfs.h>
14
15 #include "rvu_struct.h"
16 #include "rvu_reg.h"
17 #include "rvu.h"
18 #include "npc.h"
19 #include "cgx.h"
20 #include "rvu_npc_fs.h"
21 #include "rvu_npc_hash.h"
22
rvu_npc_wide_extract(const u64 input[],size_t start_bit,size_t width_bits)23 static u64 rvu_npc_wide_extract(const u64 input[], size_t start_bit,
24 size_t width_bits)
25 {
26 const u64 mask = ~(u64)((~(__uint128_t)0) << width_bits);
27 const size_t msb = start_bit + width_bits - 1;
28 const size_t lword = start_bit >> 6;
29 const size_t uword = msb >> 6;
30 size_t lbits;
31 u64 hi, lo;
32
33 if (lword == uword)
34 return (input[lword] >> (start_bit & 63)) & mask;
35
36 lbits = 64 - (start_bit & 63);
37 hi = input[uword];
38 lo = (input[lword] >> (start_bit & 63));
39 return ((hi << lbits) | lo) & mask;
40 }
41
rvu_npc_lshift_key(u64 * key,size_t key_bit_len)42 static void rvu_npc_lshift_key(u64 *key, size_t key_bit_len)
43 {
44 u64 prev_orig_word = 0;
45 u64 cur_orig_word = 0;
46 size_t extra = key_bit_len % 64;
47 size_t max_idx = key_bit_len / 64;
48 size_t i;
49
50 if (extra)
51 max_idx++;
52
53 for (i = 0; i < max_idx; i++) {
54 cur_orig_word = key[i];
55 key[i] = key[i] << 1;
56 key[i] |= ((prev_orig_word >> 63) & 0x1);
57 prev_orig_word = cur_orig_word;
58 }
59 }
60
rvu_npc_toeplitz_hash(const u64 * data,u64 * key,size_t data_bit_len,size_t key_bit_len)61 static u32 rvu_npc_toeplitz_hash(const u64 *data, u64 *key, size_t data_bit_len,
62 size_t key_bit_len)
63 {
64 u32 hash_out = 0;
65 u64 temp_data = 0;
66 int i;
67
68 for (i = data_bit_len - 1; i >= 0; i--) {
69 temp_data = (data[i / 64]);
70 temp_data = temp_data >> (i % 64);
71 temp_data &= 0x1;
72 if (temp_data)
73 hash_out ^= (u32)(rvu_npc_wide_extract(key, key_bit_len - 32, 32));
74
75 rvu_npc_lshift_key(key, key_bit_len);
76 }
77
78 return hash_out;
79 }
80
npc_field_hash_calc(u64 * ldata,struct npc_mcam_kex_hash * mkex_hash,u64 * secret_key,u8 intf,u8 hash_idx)81 u32 npc_field_hash_calc(u64 *ldata, struct npc_mcam_kex_hash *mkex_hash,
82 u64 *secret_key, u8 intf, u8 hash_idx)
83 {
84 u64 hash_key[3];
85 u64 data_padded[2];
86 u32 field_hash;
87
88 hash_key[0] = secret_key[1] << 31;
89 hash_key[0] |= secret_key[2];
90 hash_key[1] = secret_key[1] >> 33;
91 hash_key[1] |= secret_key[0] << 31;
92 hash_key[2] = secret_key[0] >> 33;
93
94 data_padded[0] = mkex_hash->hash_mask[intf][hash_idx][0] & ldata[0];
95 data_padded[1] = mkex_hash->hash_mask[intf][hash_idx][1] & ldata[1];
96 field_hash = rvu_npc_toeplitz_hash(data_padded, hash_key, 128, 159);
97
98 field_hash &= mkex_hash->hash_ctrl[intf][hash_idx] >> 32;
99 field_hash |= mkex_hash->hash_ctrl[intf][hash_idx];
100 return field_hash;
101 }
102
npc_update_use_hash(int lt,int ld)103 static u64 npc_update_use_hash(int lt, int ld)
104 {
105 u64 cfg = 0;
106
107 switch (lt) {
108 case NPC_LT_LC_IP6:
109 /* Update use_hash(bit-20) and bytesm1 (bit-16:19)
110 * in KEX_LD_CFG
111 */
112 cfg = KEX_LD_CFG_USE_HASH(0x1, 0x03,
113 ld ? 0x8 : 0x18,
114 0x1, 0x0, 0x10);
115 break;
116 }
117
118 return cfg;
119 }
120
npc_program_mkex_hash_rx(struct rvu * rvu,int blkaddr,u8 intf)121 static void npc_program_mkex_hash_rx(struct rvu *rvu, int blkaddr,
122 u8 intf)
123 {
124 struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
125 int lid, lt, ld, hash_cnt = 0;
126
127 if (is_npc_intf_tx(intf))
128 return;
129
130 /* Program HASH_CFG */
131 for (lid = 0; lid < NPC_MAX_LID; lid++) {
132 for (lt = 0; lt < NPC_MAX_LT; lt++) {
133 for (ld = 0; ld < NPC_MAX_LD; ld++) {
134 if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][ld]) {
135 u64 cfg = npc_update_use_hash(lt, ld);
136
137 hash_cnt++;
138 if (hash_cnt == NPC_MAX_HASH)
139 return;
140
141 /* Set updated KEX configuration */
142 SET_KEX_LD(intf, lid, lt, ld, cfg);
143 /* Set HASH configuration */
144 SET_KEX_LD_HASH(intf, ld,
145 mkex_hash->hash[intf][ld]);
146 SET_KEX_LD_HASH_MASK(intf, ld, 0,
147 mkex_hash->hash_mask[intf][ld][0]);
148 SET_KEX_LD_HASH_MASK(intf, ld, 1,
149 mkex_hash->hash_mask[intf][ld][1]);
150 SET_KEX_LD_HASH_CTRL(intf, ld,
151 mkex_hash->hash_ctrl[intf][ld]);
152 }
153 }
154 }
155 }
156 }
157
npc_program_mkex_hash_tx(struct rvu * rvu,int blkaddr,u8 intf)158 static void npc_program_mkex_hash_tx(struct rvu *rvu, int blkaddr,
159 u8 intf)
160 {
161 struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
162 int lid, lt, ld, hash_cnt = 0;
163
164 if (is_npc_intf_rx(intf))
165 return;
166
167 /* Program HASH_CFG */
168 for (lid = 0; lid < NPC_MAX_LID; lid++) {
169 for (lt = 0; lt < NPC_MAX_LT; lt++) {
170 for (ld = 0; ld < NPC_MAX_LD; ld++)
171 if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][ld]) {
172 u64 cfg = npc_update_use_hash(lt, ld);
173
174 hash_cnt++;
175 if (hash_cnt == NPC_MAX_HASH)
176 return;
177
178 /* Set updated KEX configuration */
179 SET_KEX_LD(intf, lid, lt, ld, cfg);
180 /* Set HASH configuration */
181 SET_KEX_LD_HASH(intf, ld,
182 mkex_hash->hash[intf][ld]);
183 SET_KEX_LD_HASH_MASK(intf, ld, 0,
184 mkex_hash->hash_mask[intf][ld][0]);
185 SET_KEX_LD_HASH_MASK(intf, ld, 1,
186 mkex_hash->hash_mask[intf][ld][1]);
187 SET_KEX_LD_HASH_CTRL(intf, ld,
188 mkex_hash->hash_ctrl[intf][ld]);
189 hash_cnt++;
190 if (hash_cnt == NPC_MAX_HASH)
191 return;
192 }
193 }
194 }
195 }
196
npc_config_secret_key(struct rvu * rvu,int blkaddr)197 void npc_config_secret_key(struct rvu *rvu, int blkaddr)
198 {
199 struct hw_cap *hwcap = &rvu->hw->cap;
200 struct rvu_hwinfo *hw = rvu->hw;
201 u8 intf;
202
203 if (!hwcap->npc_hash_extract)
204 return;
205
206 for (intf = 0; intf < hw->npc_intfs; intf++) {
207 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY0(intf),
208 RVU_NPC_HASH_SECRET_KEY0);
209 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY1(intf),
210 RVU_NPC_HASH_SECRET_KEY1);
211 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY2(intf),
212 RVU_NPC_HASH_SECRET_KEY2);
213 }
214 }
215
npc_program_mkex_hash(struct rvu * rvu,int blkaddr)216 void npc_program_mkex_hash(struct rvu *rvu, int blkaddr)
217 {
218 struct hw_cap *hwcap = &rvu->hw->cap;
219 struct rvu_hwinfo *hw = rvu->hw;
220 u8 intf;
221
222 if (!hwcap->npc_hash_extract)
223 return;
224
225 for (intf = 0; intf < hw->npc_intfs; intf++) {
226 npc_program_mkex_hash_rx(rvu, blkaddr, intf);
227 npc_program_mkex_hash_tx(rvu, blkaddr, intf);
228 }
229 }
230
npc_update_field_hash(struct rvu * rvu,u8 intf,struct mcam_entry * entry,int blkaddr,u64 features,struct flow_msg * pkt,struct flow_msg * mask,struct flow_msg * opkt,struct flow_msg * omask)231 void npc_update_field_hash(struct rvu *rvu, u8 intf,
232 struct mcam_entry *entry,
233 int blkaddr,
234 u64 features,
235 struct flow_msg *pkt,
236 struct flow_msg *mask,
237 struct flow_msg *opkt,
238 struct flow_msg *omask)
239 {
240 struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
241 struct npc_get_secret_key_req req;
242 struct npc_get_secret_key_rsp rsp;
243 u64 ldata[2], cfg;
244 u32 field_hash;
245 u8 hash_idx;
246
247 if (!rvu->hw->cap.npc_hash_extract) {
248 dev_dbg(rvu->dev, "%s: Field hash extract feature is not supported\n", __func__);
249 return;
250 }
251
252 req.intf = intf;
253 rvu_mbox_handler_npc_get_secret_key(rvu, &req, &rsp);
254
255 for (hash_idx = 0; hash_idx < NPC_MAX_HASH; hash_idx++) {
256 cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_HASHX_CFG(intf, hash_idx));
257 if ((cfg & BIT_ULL(11)) && (cfg & BIT_ULL(12))) {
258 u8 lid = (cfg & GENMASK_ULL(10, 8)) >> 8;
259 u8 ltype = (cfg & GENMASK_ULL(7, 4)) >> 4;
260 u8 ltype_mask = cfg & GENMASK_ULL(3, 0);
261
262 if (mkex_hash->lid_lt_ld_hash_en[intf][lid][ltype][hash_idx]) {
263 switch (ltype & ltype_mask) {
264 /* If hash extract enabled is supported for IPv6 then
265 * 128 bit IPv6 source and destination addressed
266 * is hashed to 32 bit value.
267 */
268 case NPC_LT_LC_IP6:
269 if (features & BIT_ULL(NPC_SIP_IPV6)) {
270 u32 src_ip[IPV6_WORDS];
271
272 be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);
273 ldata[0] = (u64)src_ip[0] << 32 | src_ip[1];
274 ldata[1] = (u64)src_ip[2] << 32 | src_ip[3];
275 field_hash = npc_field_hash_calc(ldata,
276 mkex_hash,
277 rsp.secret_key,
278 intf,
279 hash_idx);
280 npc_update_entry(rvu, NPC_SIP_IPV6, entry,
281 field_hash, 0, 32, 0, intf);
282 memcpy(&opkt->ip6src, &pkt->ip6src,
283 sizeof(pkt->ip6src));
284 memcpy(&omask->ip6src, &mask->ip6src,
285 sizeof(mask->ip6src));
286 break;
287 }
288
289 if (features & BIT_ULL(NPC_DIP_IPV6)) {
290 u32 dst_ip[IPV6_WORDS];
291
292 be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);
293 ldata[0] = (u64)dst_ip[0] << 32 | dst_ip[1];
294 ldata[1] = (u64)dst_ip[2] << 32 | dst_ip[3];
295 field_hash = npc_field_hash_calc(ldata,
296 mkex_hash,
297 rsp.secret_key,
298 intf,
299 hash_idx);
300 npc_update_entry(rvu, NPC_DIP_IPV6, entry,
301 field_hash, 0, 32, 0, intf);
302 memcpy(&opkt->ip6dst, &pkt->ip6dst,
303 sizeof(pkt->ip6dst));
304 memcpy(&omask->ip6dst, &mask->ip6dst,
305 sizeof(mask->ip6dst));
306 }
307 break;
308 }
309 }
310 }
311 }
312 }
313
rvu_mbox_handler_npc_get_secret_key(struct rvu * rvu,struct npc_get_secret_key_req * req,struct npc_get_secret_key_rsp * rsp)314 int rvu_mbox_handler_npc_get_secret_key(struct rvu *rvu,
315 struct npc_get_secret_key_req *req,
316 struct npc_get_secret_key_rsp *rsp)
317 {
318 u64 *secret_key = rsp->secret_key;
319 u8 intf = req->intf;
320 int blkaddr;
321
322 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
323 if (blkaddr < 0) {
324 dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
325 return -EINVAL;
326 }
327
328 secret_key[0] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY0(intf));
329 secret_key[1] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY1(intf));
330 secret_key[2] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY2(intf));
331
332 return 0;
333 }
334
335 /**
336 * rvu_npc_exact_mac2u64 - utility function to convert mac address to u64.
337 * @mac_addr: MAC address.
338 * Return: mdata for exact match table.
339 */
rvu_npc_exact_mac2u64(u8 * mac_addr)340 static u64 rvu_npc_exact_mac2u64(u8 *mac_addr)
341 {
342 u64 mac = 0;
343 int index;
344
345 for (index = ETH_ALEN - 1; index >= 0; index--)
346 mac |= ((u64)*mac_addr++) << (8 * index);
347
348 return mac;
349 }
350
351 /**
352 * rvu_exact_prepare_mdata - Make mdata for mcam entry
353 * @mac: MAC address
354 * @chan: Channel number.
355 * @ctype: Channel Type.
356 * @mask: LDATA mask.
357 * Return: Meta data
358 */
rvu_exact_prepare_mdata(u8 * mac,u16 chan,u16 ctype,u64 mask)359 static u64 rvu_exact_prepare_mdata(u8 *mac, u16 chan, u16 ctype, u64 mask)
360 {
361 u64 ldata = rvu_npc_exact_mac2u64(mac);
362
363 /* Please note that mask is 48bit which excludes chan and ctype.
364 * Increase mask bits if we need to include them as well.
365 */
366 ldata |= ((u64)chan << 48);
367 ldata |= ((u64)ctype << 60);
368 ldata &= mask;
369 ldata = ldata << 2;
370
371 return ldata;
372 }
373
374 /**
375 * rvu_exact_calculate_hash - calculate hash index to mem table.
376 * @rvu: resource virtualization unit.
377 * @chan: Channel number
378 * @ctype: Channel type.
379 * @mac: MAC address
380 * @mask: HASH mask.
381 * @table_depth: Depth of table.
382 * Return: Hash value
383 */
rvu_exact_calculate_hash(struct rvu * rvu,u16 chan,u16 ctype,u8 * mac,u64 mask,u32 table_depth)384 static u32 rvu_exact_calculate_hash(struct rvu *rvu, u16 chan, u16 ctype, u8 *mac,
385 u64 mask, u32 table_depth)
386 {
387 struct npc_exact_table *table = rvu->hw->table;
388 u64 hash_key[2];
389 u64 key_in[2];
390 u64 ldata;
391 u32 hash;
392
393 key_in[0] = RVU_NPC_HASH_SECRET_KEY0;
394 key_in[1] = RVU_NPC_HASH_SECRET_KEY2;
395
396 hash_key[0] = key_in[0] << 31;
397 hash_key[0] |= key_in[1];
398 hash_key[1] = key_in[0] >> 33;
399
400 ldata = rvu_exact_prepare_mdata(mac, chan, ctype, mask);
401
402 dev_dbg(rvu->dev, "%s: ldata=0x%llx hash_key0=0x%llx hash_key2=0x%llx\n", __func__,
403 ldata, hash_key[1], hash_key[0]);
404 hash = rvu_npc_toeplitz_hash(&ldata, (u64 *)hash_key, 64, 95);
405
406 hash &= table->mem_table.hash_mask;
407 hash += table->mem_table.hash_offset;
408 dev_dbg(rvu->dev, "%s: hash=%x\n", __func__, hash);
409
410 return hash;
411 }
412
413 /**
414 * rvu_npc_exact_alloc_mem_table_entry - find free entry in 4 way table.
415 * @rvu: resource virtualization unit.
416 * @way: Indicate way to table.
417 * @index: Hash index to 4 way table.
418 * @hash: Hash value.
419 *
420 * Searches 4 way table using hash index. Returns 0 on success.
421 * Return: 0 upon success.
422 */
rvu_npc_exact_alloc_mem_table_entry(struct rvu * rvu,u8 * way,u32 * index,unsigned int hash)423 static int rvu_npc_exact_alloc_mem_table_entry(struct rvu *rvu, u8 *way,
424 u32 *index, unsigned int hash)
425 {
426 struct npc_exact_table *table;
427 int depth, i;
428
429 table = rvu->hw->table;
430 depth = table->mem_table.depth;
431
432 /* Check all the 4 ways for a free slot. */
433 mutex_lock(&table->lock);
434 for (i = 0; i < table->mem_table.ways; i++) {
435 if (test_bit(hash + i * depth, table->mem_table.bmap))
436 continue;
437
438 set_bit(hash + i * depth, table->mem_table.bmap);
439 mutex_unlock(&table->lock);
440
441 dev_dbg(rvu->dev, "%s: mem table entry alloc success (way=%d index=%d)\n",
442 __func__, i, hash);
443
444 *way = i;
445 *index = hash;
446 return 0;
447 }
448 mutex_unlock(&table->lock);
449
450 dev_dbg(rvu->dev, "%s: No space in 4 way exact way, weight=%u\n", __func__,
451 bitmap_weight(table->mem_table.bmap, table->mem_table.depth));
452 return -ENOSPC;
453 }
454
455 /**
456 * rvu_npc_exact_free_id - Free seq id from bitmat.
457 * @rvu: Resource virtualization unit.
458 * @seq_id: Sequence identifier to be freed.
459 */
rvu_npc_exact_free_id(struct rvu * rvu,u32 seq_id)460 static void rvu_npc_exact_free_id(struct rvu *rvu, u32 seq_id)
461 {
462 struct npc_exact_table *table;
463
464 table = rvu->hw->table;
465 mutex_lock(&table->lock);
466 clear_bit(seq_id, table->id_bmap);
467 mutex_unlock(&table->lock);
468 dev_dbg(rvu->dev, "%s: freed id %d\n", __func__, seq_id);
469 }
470
471 /**
472 * rvu_npc_exact_alloc_id - Alloc seq id from bitmap.
473 * @rvu: Resource virtualization unit.
474 * @seq_id: Sequence identifier.
475 * Return: True or false.
476 */
rvu_npc_exact_alloc_id(struct rvu * rvu,u32 * seq_id)477 static bool rvu_npc_exact_alloc_id(struct rvu *rvu, u32 *seq_id)
478 {
479 struct npc_exact_table *table;
480 u32 idx;
481
482 table = rvu->hw->table;
483
484 mutex_lock(&table->lock);
485 idx = find_first_zero_bit(table->id_bmap, table->tot_ids);
486 if (idx == table->tot_ids) {
487 mutex_unlock(&table->lock);
488 dev_err(rvu->dev, "%s: No space in id bitmap (%d)\n",
489 __func__, table->tot_ids);
490
491 return false;
492 }
493
494 /* Mark bit map to indicate that slot is used.*/
495 set_bit(idx, table->id_bmap);
496 mutex_unlock(&table->lock);
497
498 *seq_id = idx;
499 dev_dbg(rvu->dev, "%s: Allocated id (%d)\n", __func__, *seq_id);
500
501 return true;
502 }
503
504 /**
505 * rvu_npc_exact_alloc_cam_table_entry - find free slot in fully associative table.
506 * @rvu: resource virtualization unit.
507 * @index: Index to exact CAM table.
508 * Return: 0 upon success; else error number.
509 */
rvu_npc_exact_alloc_cam_table_entry(struct rvu * rvu,int * index)510 static int rvu_npc_exact_alloc_cam_table_entry(struct rvu *rvu, int *index)
511 {
512 struct npc_exact_table *table;
513 u32 idx;
514
515 table = rvu->hw->table;
516
517 mutex_lock(&table->lock);
518 idx = find_first_zero_bit(table->cam_table.bmap, table->cam_table.depth);
519 if (idx == table->cam_table.depth) {
520 mutex_unlock(&table->lock);
521 dev_info(rvu->dev, "%s: No space in exact cam table, weight=%u\n", __func__,
522 bitmap_weight(table->cam_table.bmap, table->cam_table.depth));
523 return -ENOSPC;
524 }
525
526 /* Mark bit map to indicate that slot is used.*/
527 set_bit(idx, table->cam_table.bmap);
528 mutex_unlock(&table->lock);
529
530 *index = idx;
531 dev_dbg(rvu->dev, "%s: cam table entry alloc success (index=%d)\n",
532 __func__, idx);
533 return 0;
534 }
535
536 /**
537 * rvu_exact_prepare_table_entry - Data for exact match table entry.
538 * @rvu: Resource virtualization unit.
539 * @enable: Enable/Disable entry
540 * @ctype: Software defined channel type. Currently set as 0.
541 * @chan: Channel number.
542 * @mac_addr: Destination mac address.
543 * Return: mdata for exact match table.
544 */
rvu_exact_prepare_table_entry(struct rvu * rvu,bool enable,u8 ctype,u16 chan,u8 * mac_addr)545 static u64 rvu_exact_prepare_table_entry(struct rvu *rvu, bool enable,
546 u8 ctype, u16 chan, u8 *mac_addr)
547
548 {
549 u64 ldata = rvu_npc_exact_mac2u64(mac_addr);
550
551 /* Enable or disable */
552 u64 mdata = FIELD_PREP(GENMASK_ULL(63, 63), enable ? 1 : 0);
553
554 /* Set Ctype */
555 mdata |= FIELD_PREP(GENMASK_ULL(61, 60), ctype);
556
557 /* Set chan */
558 mdata |= FIELD_PREP(GENMASK_ULL(59, 48), chan);
559
560 /* MAC address */
561 mdata |= FIELD_PREP(GENMASK_ULL(47, 0), ldata);
562
563 return mdata;
564 }
565
566 /**
567 * rvu_exact_config_secret_key - Configure secret key.
568 * @rvu: Resource virtualization unit.
569 */
rvu_exact_config_secret_key(struct rvu * rvu)570 static void rvu_exact_config_secret_key(struct rvu *rvu)
571 {
572 int blkaddr;
573
574 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
575 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET0(NIX_INTF_RX),
576 RVU_NPC_HASH_SECRET_KEY0);
577
578 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET1(NIX_INTF_RX),
579 RVU_NPC_HASH_SECRET_KEY1);
580
581 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET2(NIX_INTF_RX),
582 RVU_NPC_HASH_SECRET_KEY2);
583 }
584
585 /**
586 * rvu_exact_config_search_key - Configure search key
587 * @rvu: Resource virtualization unit.
588 */
rvu_exact_config_search_key(struct rvu * rvu)589 static void rvu_exact_config_search_key(struct rvu *rvu)
590 {
591 int blkaddr;
592 u64 reg_val;
593
594 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
595
596 /* HDR offset */
597 reg_val = FIELD_PREP(GENMASK_ULL(39, 32), 0);
598
599 /* BYTESM1, number of bytes - 1 */
600 reg_val |= FIELD_PREP(GENMASK_ULL(18, 16), ETH_ALEN - 1);
601
602 /* Enable LID and set LID to NPC_LID_LA */
603 reg_val |= FIELD_PREP(GENMASK_ULL(11, 11), 1);
604 reg_val |= FIELD_PREP(GENMASK_ULL(10, 8), NPC_LID_LA);
605
606 /* Clear layer type based extraction */
607
608 /* Disable LT_EN */
609 reg_val |= FIELD_PREP(GENMASK_ULL(12, 12), 0);
610
611 /* Set LTYPE_MATCH to 0 */
612 reg_val |= FIELD_PREP(GENMASK_ULL(7, 4), 0);
613
614 /* Set LTYPE_MASK to 0 */
615 reg_val |= FIELD_PREP(GENMASK_ULL(3, 0), 0);
616
617 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_CFG(NIX_INTF_RX), reg_val);
618 }
619
620 /**
621 * rvu_exact_config_result_ctrl - Set exact table hash control
622 * @rvu: Resource virtualization unit.
623 * @depth: Depth of Exact match table.
624 *
625 * Sets mask and offset for hash for mem table.
626 */
rvu_exact_config_result_ctrl(struct rvu * rvu,uint32_t depth)627 static void rvu_exact_config_result_ctrl(struct rvu *rvu, uint32_t depth)
628 {
629 int blkaddr;
630 u64 reg = 0;
631
632 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
633
634 /* Set mask. Note that depth is a power of 2 */
635 rvu->hw->table->mem_table.hash_mask = (depth - 1);
636 reg |= FIELD_PREP(GENMASK_ULL(42, 32), (depth - 1));
637
638 /* Set offset as 0 */
639 rvu->hw->table->mem_table.hash_offset = 0;
640 reg |= FIELD_PREP(GENMASK_ULL(10, 0), 0);
641
642 /* Set reg for RX */
643 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_RESULT_CTL(NIX_INTF_RX), reg);
644 /* Store hash mask and offset for s/w algorithm */
645 }
646
647 /**
648 * rvu_exact_config_table_mask - Set exact table mask.
649 * @rvu: Resource virtualization unit.
650 */
rvu_exact_config_table_mask(struct rvu * rvu)651 static void rvu_exact_config_table_mask(struct rvu *rvu)
652 {
653 int blkaddr;
654 u64 mask = 0;
655
656 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
657
658 /* Don't use Ctype */
659 mask |= FIELD_PREP(GENMASK_ULL(61, 60), 0);
660
661 /* Set chan */
662 mask |= GENMASK_ULL(59, 48);
663
664 /* Full ldata */
665 mask |= GENMASK_ULL(47, 0);
666
667 /* Store mask for s/w hash calcualtion */
668 rvu->hw->table->mem_table.mask = mask;
669
670 /* Set mask for RX.*/
671 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_MASK(NIX_INTF_RX), mask);
672 }
673
674 /**
675 * rvu_npc_exact_get_max_entries - Get total number of entries in table.
676 * @rvu: resource virtualization unit.
677 * Return: Maximum table entries possible.
678 */
rvu_npc_exact_get_max_entries(struct rvu * rvu)679 u32 rvu_npc_exact_get_max_entries(struct rvu *rvu)
680 {
681 struct npc_exact_table *table;
682
683 table = rvu->hw->table;
684 return table->tot_ids;
685 }
686
687 /**
688 * rvu_npc_exact_has_match_table - Checks support for exact match.
689 * @rvu: resource virtualization unit.
690 * Return: True if exact match table is supported/enabled.
691 */
rvu_npc_exact_has_match_table(struct rvu * rvu)692 bool rvu_npc_exact_has_match_table(struct rvu *rvu)
693 {
694 return rvu->hw->cap.npc_exact_match_enabled;
695 }
696
697 /**
698 * __rvu_npc_exact_find_entry_by_seq_id - find entry by id
699 * @rvu: resource virtualization unit.
700 * @seq_id: Sequence identifier.
701 *
702 * Caller should acquire the lock.
703 * Return: Pointer to table entry.
704 */
705 static struct npc_exact_table_entry *
__rvu_npc_exact_find_entry_by_seq_id(struct rvu * rvu,u32 seq_id)706 __rvu_npc_exact_find_entry_by_seq_id(struct rvu *rvu, u32 seq_id)
707 {
708 struct npc_exact_table *table = rvu->hw->table;
709 struct npc_exact_table_entry *entry = NULL;
710 struct list_head *lhead;
711
712 lhead = &table->lhead_gbl;
713
714 /* traverse to find the matching entry */
715 list_for_each_entry(entry, lhead, glist) {
716 if (entry->seq_id != seq_id)
717 continue;
718
719 return entry;
720 }
721
722 return NULL;
723 }
724
725 /**
726 * rvu_npc_exact_add_to_list - Add entry to list
727 * @rvu: resource virtualization unit.
728 * @opc_type: OPCODE to select MEM/CAM table.
729 * @ways: MEM table ways.
730 * @index: Index in MEM/CAM table.
731 * @cgx_id: CGX identifier.
732 * @lmac_id: LMAC identifier.
733 * @mac_addr: MAC address.
734 * @chan: Channel number.
735 * @ctype: Channel Type.
736 * @seq_id: Sequence identifier
737 * @cmd: True if function is called by ethtool cmd
738 * @mcam_idx: NPC mcam index of DMAC entry in NPC mcam.
739 * @pcifunc: pci function
740 * Return: 0 upon success.
741 */
rvu_npc_exact_add_to_list(struct rvu * rvu,enum npc_exact_opc_type opc_type,u8 ways,u32 index,u8 cgx_id,u8 lmac_id,u8 * mac_addr,u16 chan,u8 ctype,u32 * seq_id,bool cmd,u32 mcam_idx,u16 pcifunc)742 static int rvu_npc_exact_add_to_list(struct rvu *rvu, enum npc_exact_opc_type opc_type, u8 ways,
743 u32 index, u8 cgx_id, u8 lmac_id, u8 *mac_addr, u16 chan,
744 u8 ctype, u32 *seq_id, bool cmd, u32 mcam_idx, u16 pcifunc)
745 {
746 struct npc_exact_table_entry *entry, *tmp, *iter;
747 struct npc_exact_table *table = rvu->hw->table;
748 struct list_head *lhead, *pprev;
749
750 WARN_ON(ways >= NPC_EXACT_TBL_MAX_WAYS);
751
752 if (!rvu_npc_exact_alloc_id(rvu, seq_id)) {
753 dev_err(rvu->dev, "%s: Generate seq id failed\n", __func__);
754 return -EFAULT;
755 }
756
757 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
758 if (!entry) {
759 rvu_npc_exact_free_id(rvu, *seq_id);
760 dev_err(rvu->dev, "%s: Memory allocation failed\n", __func__);
761 return -ENOMEM;
762 }
763
764 mutex_lock(&table->lock);
765 switch (opc_type) {
766 case NPC_EXACT_OPC_CAM:
767 lhead = &table->lhead_cam_tbl_entry;
768 table->cam_tbl_entry_cnt++;
769 break;
770
771 case NPC_EXACT_OPC_MEM:
772 lhead = &table->lhead_mem_tbl_entry[ways];
773 table->mem_tbl_entry_cnt++;
774 break;
775
776 default:
777 mutex_unlock(&table->lock);
778 kfree(entry);
779 rvu_npc_exact_free_id(rvu, *seq_id);
780
781 dev_err(rvu->dev, "%s: Unknown opc type%d\n", __func__, opc_type);
782 return -EINVAL;
783 }
784
785 /* Add to global list */
786 INIT_LIST_HEAD(&entry->glist);
787 list_add_tail(&entry->glist, &table->lhead_gbl);
788 INIT_LIST_HEAD(&entry->list);
789 entry->index = index;
790 entry->ways = ways;
791 entry->opc_type = opc_type;
792
793 entry->pcifunc = pcifunc;
794
795 ether_addr_copy(entry->mac, mac_addr);
796 entry->chan = chan;
797 entry->ctype = ctype;
798 entry->cgx_id = cgx_id;
799 entry->lmac_id = lmac_id;
800
801 entry->seq_id = *seq_id;
802
803 entry->mcam_idx = mcam_idx;
804 entry->cmd = cmd;
805
806 pprev = lhead;
807
808 /* Insert entry in ascending order of index */
809 list_for_each_entry_safe(iter, tmp, lhead, list) {
810 if (index < iter->index)
811 break;
812
813 pprev = &iter->list;
814 }
815
816 /* Add to each table list */
817 list_add(&entry->list, pprev);
818 mutex_unlock(&table->lock);
819 return 0;
820 }
821
822 /**
823 * rvu_npc_exact_mem_table_write - Wrapper for register write
824 * @rvu: resource virtualization unit.
825 * @blkaddr: Block address
826 * @ways: ways for MEM table.
827 * @index: Index in MEM
828 * @mdata: Meta data to be written to register.
829 */
rvu_npc_exact_mem_table_write(struct rvu * rvu,int blkaddr,u8 ways,u32 index,u64 mdata)830 static void rvu_npc_exact_mem_table_write(struct rvu *rvu, int blkaddr, u8 ways,
831 u32 index, u64 mdata)
832 {
833 rvu_write64(rvu, blkaddr, NPC_AF_EXACT_MEM_ENTRY(ways, index), mdata);
834 }
835
836 /**
837 * rvu_npc_exact_cam_table_write - Wrapper for register write
838 * @rvu: resource virtualization unit.
839 * @blkaddr: Block address
840 * @index: Index in MEM
841 * @mdata: Meta data to be written to register.
842 */
rvu_npc_exact_cam_table_write(struct rvu * rvu,int blkaddr,u32 index,u64 mdata)843 static void rvu_npc_exact_cam_table_write(struct rvu *rvu, int blkaddr,
844 u32 index, u64 mdata)
845 {
846 rvu_write64(rvu, blkaddr, NPC_AF_EXACT_CAM_ENTRY(index), mdata);
847 }
848
849 /**
850 * rvu_npc_exact_dealloc_table_entry - dealloc table entry
851 * @rvu: resource virtualization unit.
852 * @opc_type: OPCODE for selection of table(MEM or CAM)
853 * @ways: ways if opc_type is MEM table.
854 * @index: Index of MEM or CAM table.
855 * Return: 0 upon success.
856 */
rvu_npc_exact_dealloc_table_entry(struct rvu * rvu,enum npc_exact_opc_type opc_type,u8 ways,u32 index)857 static int rvu_npc_exact_dealloc_table_entry(struct rvu *rvu, enum npc_exact_opc_type opc_type,
858 u8 ways, u32 index)
859 {
860 int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
861 struct npc_exact_table *table;
862 u8 null_dmac[6] = { 0 };
863 int depth;
864
865 /* Prepare entry with all fields set to zero */
866 u64 null_mdata = rvu_exact_prepare_table_entry(rvu, false, 0, 0, null_dmac);
867
868 table = rvu->hw->table;
869 depth = table->mem_table.depth;
870
871 mutex_lock(&table->lock);
872
873 switch (opc_type) {
874 case NPC_EXACT_OPC_CAM:
875
876 /* Check whether entry is used already */
877 if (!test_bit(index, table->cam_table.bmap)) {
878 mutex_unlock(&table->lock);
879 dev_err(rvu->dev, "%s: Trying to free an unused entry ways=%d index=%d\n",
880 __func__, ways, index);
881 return -EINVAL;
882 }
883
884 rvu_npc_exact_cam_table_write(rvu, blkaddr, index, null_mdata);
885 clear_bit(index, table->cam_table.bmap);
886 break;
887
888 case NPC_EXACT_OPC_MEM:
889
890 /* Check whether entry is used already */
891 if (!test_bit(index + ways * depth, table->mem_table.bmap)) {
892 mutex_unlock(&table->lock);
893 dev_err(rvu->dev, "%s: Trying to free an unused entry index=%d\n",
894 __func__, index);
895 return -EINVAL;
896 }
897
898 rvu_npc_exact_mem_table_write(rvu, blkaddr, ways, index, null_mdata);
899 clear_bit(index + ways * depth, table->mem_table.bmap);
900 break;
901
902 default:
903 mutex_unlock(&table->lock);
904 dev_err(rvu->dev, "%s: invalid opc type %d", __func__, opc_type);
905 return -ENOSPC;
906 }
907
908 mutex_unlock(&table->lock);
909
910 dev_dbg(rvu->dev, "%s: Successfully deleted entry (index=%d, ways=%d opc_type=%d\n",
911 __func__, index, ways, opc_type);
912
913 return 0;
914 }
915
916 /**
917 * rvu_npc_exact_alloc_table_entry - Allociate an entry
918 * @rvu: resource virtualization unit.
919 * @mac: MAC address.
920 * @chan: Channel number.
921 * @ctype: Channel Type.
922 * @index: Index of MEM table or CAM table.
923 * @ways: Ways. Only valid for MEM table.
924 * @opc_type: OPCODE to select table (MEM or CAM)
925 *
926 * Try allocating a slot from MEM table. If all 4 ways
927 * slot are full for a hash index, check availability in
928 * 32-entry CAM table for allocation.
929 * Return: 0 upon success.
930 */
rvu_npc_exact_alloc_table_entry(struct rvu * rvu,char * mac,u16 chan,u8 ctype,u32 * index,u8 * ways,enum npc_exact_opc_type * opc_type)931 static int rvu_npc_exact_alloc_table_entry(struct rvu *rvu, char *mac, u16 chan, u8 ctype,
932 u32 *index, u8 *ways, enum npc_exact_opc_type *opc_type)
933 {
934 struct npc_exact_table *table;
935 unsigned int hash;
936 int err;
937
938 table = rvu->hw->table;
939
940 /* Check in 4-ways mem entry for free slote */
941 hash = rvu_exact_calculate_hash(rvu, chan, ctype, mac, table->mem_table.mask,
942 table->mem_table.depth);
943 err = rvu_npc_exact_alloc_mem_table_entry(rvu, ways, index, hash);
944 if (!err) {
945 *opc_type = NPC_EXACT_OPC_MEM;
946 dev_dbg(rvu->dev, "%s: inserted in 4 ways hash table ways=%d, index=%d\n",
947 __func__, *ways, *index);
948 return 0;
949 }
950
951 dev_dbg(rvu->dev, "%s: failed to insert in 4 ways hash table\n", __func__);
952
953 /* wayss is 0 for cam table */
954 *ways = 0;
955 err = rvu_npc_exact_alloc_cam_table_entry(rvu, index);
956 if (!err) {
957 *opc_type = NPC_EXACT_OPC_CAM;
958 dev_dbg(rvu->dev, "%s: inserted in fully associative hash table index=%u\n",
959 __func__, *index);
960 return 0;
961 }
962
963 dev_err(rvu->dev, "%s: failed to insert in fully associative hash table\n", __func__);
964 return -ENOSPC;
965 }
966
967 /**
968 * rvu_npc_exact_save_drop_rule_chan_and_mask - Save drop rules info in data base.
969 * @rvu: resource virtualization unit.
970 * @drop_mcam_idx: Drop rule index in NPC mcam.
971 * @chan_val: Channel value.
972 * @chan_mask: Channel Mask.
973 * @pcifunc: pcifunc of interface.
974 * Return: True upon success.
975 */
rvu_npc_exact_save_drop_rule_chan_and_mask(struct rvu * rvu,int drop_mcam_idx,u64 chan_val,u64 chan_mask,u16 pcifunc)976 static bool rvu_npc_exact_save_drop_rule_chan_and_mask(struct rvu *rvu, int drop_mcam_idx,
977 u64 chan_val, u64 chan_mask, u16 pcifunc)
978 {
979 struct npc_exact_table *table;
980 int i;
981
982 table = rvu->hw->table;
983
984 for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) {
985 if (!table->drop_rule_map[i].valid)
986 break;
987
988 if (table->drop_rule_map[i].chan_val != (u16)chan_val)
989 continue;
990
991 if (table->drop_rule_map[i].chan_mask != (u16)chan_mask)
992 continue;
993
994 return false;
995 }
996
997 if (i == NPC_MCAM_DROP_RULE_MAX)
998 return false;
999
1000 table->drop_rule_map[i].drop_rule_idx = drop_mcam_idx;
1001 table->drop_rule_map[i].chan_val = (u16)chan_val;
1002 table->drop_rule_map[i].chan_mask = (u16)chan_mask;
1003 table->drop_rule_map[i].pcifunc = pcifunc;
1004 table->drop_rule_map[i].valid = true;
1005 return true;
1006 }
1007
1008 /**
1009 * rvu_npc_exact_calc_drop_rule_chan_and_mask - Calculate Channel number and mask.
1010 * @rvu: resource virtualization unit.
1011 * @intf_type: Interface type (SDK, LBK or CGX)
1012 * @cgx_id: CGX identifier.
1013 * @lmac_id: LAMC identifier.
1014 * @val: Channel number.
1015 * @mask: Channel mask.
1016 * Return: True upon success.
1017 */
rvu_npc_exact_calc_drop_rule_chan_and_mask(struct rvu * rvu,u8 intf_type,u8 cgx_id,u8 lmac_id,u64 * val,u64 * mask)1018 static bool rvu_npc_exact_calc_drop_rule_chan_and_mask(struct rvu *rvu, u8 intf_type,
1019 u8 cgx_id, u8 lmac_id,
1020 u64 *val, u64 *mask)
1021 {
1022 u16 chan_val, chan_mask;
1023
1024 /* No support for SDP and LBK */
1025 if (intf_type != NIX_INTF_TYPE_CGX)
1026 return false;
1027
1028 chan_val = rvu_nix_chan_cgx(rvu, cgx_id, lmac_id, 0);
1029 chan_mask = 0xfff;
1030
1031 if (val)
1032 *val = chan_val;
1033
1034 if (mask)
1035 *mask = chan_mask;
1036
1037 return true;
1038 }
1039
1040 /**
1041 * rvu_npc_exact_drop_rule_to_pcifunc - Retrieve pcifunc
1042 * @rvu: resource virtualization unit.
1043 * @drop_rule_idx: Drop rule index in NPC mcam.
1044 *
1045 * Debugfs (exact_drop_cnt) entry displays pcifunc for interface
1046 * by retrieving the pcifunc value from data base.
1047 * Return: Drop rule index.
1048 */
rvu_npc_exact_drop_rule_to_pcifunc(struct rvu * rvu,u32 drop_rule_idx)1049 u16 rvu_npc_exact_drop_rule_to_pcifunc(struct rvu *rvu, u32 drop_rule_idx)
1050 {
1051 struct npc_exact_table *table;
1052 int i;
1053
1054 table = rvu->hw->table;
1055
1056 for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) {
1057 if (!table->drop_rule_map[i].valid)
1058 break;
1059
1060 if (table->drop_rule_map[i].drop_rule_idx != drop_rule_idx)
1061 continue;
1062
1063 return table->drop_rule_map[i].pcifunc;
1064 }
1065
1066 dev_err(rvu->dev, "%s: drop mcam rule index (%d) >= NPC_MCAM_DROP_RULE_MAX\n",
1067 __func__, drop_rule_idx);
1068 return -1;
1069 }
1070
1071 /**
1072 * rvu_npc_exact_get_drop_rule_info - Get drop rule information.
1073 * @rvu: resource virtualization unit.
1074 * @intf_type: Interface type (CGX, SDP or LBK)
1075 * @cgx_id: CGX identifier.
1076 * @lmac_id: LMAC identifier.
1077 * @drop_mcam_idx: NPC mcam drop rule index.
1078 * @val: Channel value.
1079 * @mask: Channel mask.
1080 * @pcifunc: pcifunc of interface corresponding to the drop rule.
1081 * Return: True upon success.
1082 */
rvu_npc_exact_get_drop_rule_info(struct rvu * rvu,u8 intf_type,u8 cgx_id,u8 lmac_id,u32 * drop_mcam_idx,u64 * val,u64 * mask,u16 * pcifunc)1083 static bool rvu_npc_exact_get_drop_rule_info(struct rvu *rvu, u8 intf_type, u8 cgx_id,
1084 u8 lmac_id, u32 *drop_mcam_idx, u64 *val,
1085 u64 *mask, u16 *pcifunc)
1086 {
1087 struct npc_exact_table *table;
1088 u64 chan_val, chan_mask;
1089 bool rc;
1090 int i;
1091
1092 table = rvu->hw->table;
1093
1094 if (intf_type != NIX_INTF_TYPE_CGX) {
1095 dev_err(rvu->dev, "%s: No drop rule for LBK/SDP mode\n", __func__);
1096 return false;
1097 }
1098
1099 rc = rvu_npc_exact_calc_drop_rule_chan_and_mask(rvu, intf_type, cgx_id,
1100 lmac_id, &chan_val, &chan_mask);
1101 if (!rc)
1102 return false;
1103
1104 for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) {
1105 if (!table->drop_rule_map[i].valid)
1106 break;
1107
1108 if (table->drop_rule_map[i].chan_val != (u16)chan_val)
1109 continue;
1110
1111 if (val)
1112 *val = table->drop_rule_map[i].chan_val;
1113 if (mask)
1114 *mask = table->drop_rule_map[i].chan_mask;
1115 if (pcifunc)
1116 *pcifunc = table->drop_rule_map[i].pcifunc;
1117
1118 *drop_mcam_idx = i;
1119 return true;
1120 }
1121
1122 if (i == NPC_MCAM_DROP_RULE_MAX) {
1123 dev_err(rvu->dev, "%s: drop mcam rule index (%d) >= NPC_MCAM_DROP_RULE_MAX\n",
1124 __func__, *drop_mcam_idx);
1125 return false;
1126 }
1127
1128 dev_err(rvu->dev, "%s: Could not retrieve for cgx=%d, lmac=%d\n",
1129 __func__, cgx_id, lmac_id);
1130 return false;
1131 }
1132
1133 /**
1134 * __rvu_npc_exact_cmd_rules_cnt_update - Update number dmac rules against a drop rule.
1135 * @rvu: resource virtualization unit.
1136 * @drop_mcam_idx: NPC mcam drop rule index.
1137 * @val: +1 or -1.
1138 * @enable_or_disable_cam: If no exact match rules against a drop rule, disable it.
1139 *
1140 * when first exact match entry against a drop rule is added, enable_or_disable_cam
1141 * is set to true. When last exact match entry against a drop rule is deleted,
1142 * enable_or_disable_cam is set to true.
1143 * Return: Number of rules
1144 */
__rvu_npc_exact_cmd_rules_cnt_update(struct rvu * rvu,int drop_mcam_idx,int val,bool * enable_or_disable_cam)1145 static u16 __rvu_npc_exact_cmd_rules_cnt_update(struct rvu *rvu, int drop_mcam_idx,
1146 int val, bool *enable_or_disable_cam)
1147 {
1148 struct npc_exact_table *table;
1149 u16 *cnt, old_cnt;
1150 bool promisc;
1151
1152 table = rvu->hw->table;
1153 promisc = table->promisc_mode[drop_mcam_idx];
1154
1155 cnt = &table->cnt_cmd_rules[drop_mcam_idx];
1156 old_cnt = *cnt;
1157
1158 *cnt += val;
1159
1160 if (!enable_or_disable_cam)
1161 goto done;
1162
1163 *enable_or_disable_cam = false;
1164
1165 if (promisc)
1166 goto done;
1167
1168 /* If all rules are deleted and not already in promisc mode; disable cam */
1169 if (!*cnt && val < 0) {
1170 *enable_or_disable_cam = true;
1171 goto done;
1172 }
1173
1174 /* If rule got added and not already in promisc mode; enable cam */
1175 if (!old_cnt && val > 0) {
1176 *enable_or_disable_cam = true;
1177 goto done;
1178 }
1179
1180 done:
1181 return *cnt;
1182 }
1183
1184 /**
1185 * rvu_npc_exact_del_table_entry_by_id - Delete and free table entry.
1186 * @rvu: resource virtualization unit.
1187 * @seq_id: Sequence identifier of the entry.
1188 *
1189 * Deletes entry from linked lists and free up slot in HW MEM or CAM
1190 * table.
1191 * Return: 0 upon success.
1192 */
rvu_npc_exact_del_table_entry_by_id(struct rvu * rvu,u32 seq_id)1193 static int rvu_npc_exact_del_table_entry_by_id(struct rvu *rvu, u32 seq_id)
1194 {
1195 struct npc_exact_table_entry *entry = NULL;
1196 struct npc_exact_table *table;
1197 bool disable_cam = false;
1198 u32 drop_mcam_idx = -1;
1199 int *cnt;
1200 bool rc;
1201
1202 table = rvu->hw->table;
1203
1204 mutex_lock(&table->lock);
1205
1206 /* Lookup for entry which needs to be updated */
1207 entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, seq_id);
1208 if (!entry) {
1209 dev_dbg(rvu->dev, "%s: failed to find entry for id=%d\n", __func__, seq_id);
1210 mutex_unlock(&table->lock);
1211 return -ENODATA;
1212 }
1213
1214 cnt = (entry->opc_type == NPC_EXACT_OPC_CAM) ? &table->cam_tbl_entry_cnt :
1215 &table->mem_tbl_entry_cnt;
1216
1217 /* delete from lists */
1218 list_del_init(&entry->list);
1219 list_del_init(&entry->glist);
1220
1221 (*cnt)--;
1222
1223 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, entry->cgx_id,
1224 entry->lmac_id, &drop_mcam_idx, NULL, NULL, NULL);
1225 if (!rc) {
1226 dev_dbg(rvu->dev, "%s: failed to retrieve drop info for id=0x%x\n",
1227 __func__, seq_id);
1228 mutex_unlock(&table->lock);
1229 return -ENODATA;
1230 }
1231
1232 if (entry->cmd)
1233 __rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, -1, &disable_cam);
1234
1235 /* No dmac filter rules; disable drop on hit rule */
1236 if (disable_cam) {
1237 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, false);
1238 dev_dbg(rvu->dev, "%s: Disabling mcam idx %d\n",
1239 __func__, drop_mcam_idx);
1240 }
1241
1242 mutex_unlock(&table->lock);
1243
1244 rvu_npc_exact_dealloc_table_entry(rvu, entry->opc_type, entry->ways, entry->index);
1245
1246 rvu_npc_exact_free_id(rvu, seq_id);
1247
1248 dev_dbg(rvu->dev, "%s: delete entry success for id=0x%x, mca=%pM\n",
1249 __func__, seq_id, entry->mac);
1250 kfree(entry);
1251
1252 return 0;
1253 }
1254
1255 /**
1256 * rvu_npc_exact_add_table_entry - Adds a table entry
1257 * @rvu: resource virtualization unit.
1258 * @cgx_id: cgx identifier.
1259 * @lmac_id: lmac identifier.
1260 * @mac: MAC address.
1261 * @chan: Channel number.
1262 * @ctype: Channel Type.
1263 * @seq_id: Sequence number.
1264 * @cmd: Whether it is invoked by ethtool cmd.
1265 * @mcam_idx: NPC mcam index corresponding to MAC
1266 * @pcifunc: PCI func.
1267 *
1268 * Creates a new exact match table entry in either CAM or
1269 * MEM table.
1270 * Return: 0 upon success.
1271 */
rvu_npc_exact_add_table_entry(struct rvu * rvu,u8 cgx_id,u8 lmac_id,u8 * mac,u16 chan,u8 ctype,u32 * seq_id,bool cmd,u32 mcam_idx,u16 pcifunc)1272 static int rvu_npc_exact_add_table_entry(struct rvu *rvu, u8 cgx_id, u8 lmac_id, u8 *mac,
1273 u16 chan, u8 ctype, u32 *seq_id, bool cmd,
1274 u32 mcam_idx, u16 pcifunc)
1275 {
1276 int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1277 enum npc_exact_opc_type opc_type;
1278 bool enable_cam = false;
1279 u32 drop_mcam_idx;
1280 u32 index;
1281 u64 mdata;
1282 bool rc;
1283 int err;
1284 u8 ways;
1285
1286 ctype = 0;
1287
1288 err = rvu_npc_exact_alloc_table_entry(rvu, mac, chan, ctype, &index, &ways, &opc_type);
1289 if (err) {
1290 dev_err(rvu->dev, "%s: Could not alloc in exact match table\n", __func__);
1291 return err;
1292 }
1293
1294 /* Write mdata to table */
1295 mdata = rvu_exact_prepare_table_entry(rvu, true, ctype, chan, mac);
1296
1297 if (opc_type == NPC_EXACT_OPC_CAM)
1298 rvu_npc_exact_cam_table_write(rvu, blkaddr, index, mdata);
1299 else
1300 rvu_npc_exact_mem_table_write(rvu, blkaddr, ways, index, mdata);
1301
1302 /* Insert entry to linked list */
1303 err = rvu_npc_exact_add_to_list(rvu, opc_type, ways, index, cgx_id, lmac_id,
1304 mac, chan, ctype, seq_id, cmd, mcam_idx, pcifunc);
1305 if (err) {
1306 rvu_npc_exact_dealloc_table_entry(rvu, opc_type, ways, index);
1307 dev_err(rvu->dev, "%s: could not add to exact match table\n", __func__);
1308 return err;
1309 }
1310
1311 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id,
1312 &drop_mcam_idx, NULL, NULL, NULL);
1313 if (!rc) {
1314 rvu_npc_exact_dealloc_table_entry(rvu, opc_type, ways, index);
1315 dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n",
1316 __func__, cgx_id, lmac_id);
1317 return -EINVAL;
1318 }
1319
1320 if (cmd)
1321 __rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, 1, &enable_cam);
1322
1323 /* First command rule; enable drop on hit rule */
1324 if (enable_cam) {
1325 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, true);
1326 dev_dbg(rvu->dev, "%s: Enabling mcam idx %d\n",
1327 __func__, drop_mcam_idx);
1328 }
1329
1330 dev_dbg(rvu->dev,
1331 "%s: Successfully added entry (index=%d, dmac=%pM, ways=%d opc_type=%d\n",
1332 __func__, index, mac, ways, opc_type);
1333
1334 return 0;
1335 }
1336
1337 /**
1338 * rvu_npc_exact_update_table_entry - Update exact match table.
1339 * @rvu: resource virtualization unit.
1340 * @cgx_id: CGX identifier.
1341 * @lmac_id: LMAC identifier.
1342 * @old_mac: Existing MAC address entry.
1343 * @new_mac: New MAC address entry.
1344 * @seq_id: Sequence identifier of the entry.
1345 *
1346 * Updates MAC address of an entry. If entry is in MEM table, new
1347 * hash value may not match with old one.
1348 * Return: 0 upon success.
1349 */
rvu_npc_exact_update_table_entry(struct rvu * rvu,u8 cgx_id,u8 lmac_id,u8 * old_mac,u8 * new_mac,u32 * seq_id)1350 static int rvu_npc_exact_update_table_entry(struct rvu *rvu, u8 cgx_id, u8 lmac_id,
1351 u8 *old_mac, u8 *new_mac, u32 *seq_id)
1352 {
1353 int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1354 struct npc_exact_table_entry *entry;
1355 struct npc_exact_table *table;
1356 u32 hash_index;
1357 u64 mdata;
1358
1359 table = rvu->hw->table;
1360
1361 mutex_lock(&table->lock);
1362
1363 /* Lookup for entry which needs to be updated */
1364 entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, *seq_id);
1365 if (!entry) {
1366 mutex_unlock(&table->lock);
1367 dev_dbg(rvu->dev,
1368 "%s: failed to find entry for cgx_id=%d lmac_id=%d old_mac=%pM\n",
1369 __func__, cgx_id, lmac_id, old_mac);
1370 return -ENODATA;
1371 }
1372
1373 /* If entry is in mem table and new hash index is different than old
1374 * hash index, we cannot update the entry. Fail in these scenarios.
1375 */
1376 if (entry->opc_type == NPC_EXACT_OPC_MEM) {
1377 hash_index = rvu_exact_calculate_hash(rvu, entry->chan, entry->ctype,
1378 new_mac, table->mem_table.mask,
1379 table->mem_table.depth);
1380 if (hash_index != entry->index) {
1381 dev_dbg(rvu->dev,
1382 "%s: Update failed due to index mismatch(new=0x%x, old=%x)\n",
1383 __func__, hash_index, entry->index);
1384 mutex_unlock(&table->lock);
1385 return -EINVAL;
1386 }
1387 }
1388
1389 mdata = rvu_exact_prepare_table_entry(rvu, true, entry->ctype, entry->chan, new_mac);
1390
1391 if (entry->opc_type == NPC_EXACT_OPC_MEM)
1392 rvu_npc_exact_mem_table_write(rvu, blkaddr, entry->ways, entry->index, mdata);
1393 else
1394 rvu_npc_exact_cam_table_write(rvu, blkaddr, entry->index, mdata);
1395
1396 /* Update entry fields */
1397 ether_addr_copy(entry->mac, new_mac);
1398 *seq_id = entry->seq_id;
1399
1400 dev_dbg(rvu->dev,
1401 "%s: Successfully updated entry (index=%d, dmac=%pM, ways=%d opc_type=%d\n",
1402 __func__, entry->index, entry->mac, entry->ways, entry->opc_type);
1403
1404 dev_dbg(rvu->dev, "%s: Successfully updated entry (old mac=%pM new_mac=%pM\n",
1405 __func__, old_mac, new_mac);
1406
1407 mutex_unlock(&table->lock);
1408 return 0;
1409 }
1410
1411 /**
1412 * rvu_npc_exact_promisc_disable - Disable promiscuous mode.
1413 * @rvu: resource virtualization unit.
1414 * @pcifunc: pcifunc
1415 *
1416 * Drop rule is against each PF. We dont support DMAC filter for
1417 * VF.
1418 * Return: 0 upon success
1419 */
1420
rvu_npc_exact_promisc_disable(struct rvu * rvu,u16 pcifunc)1421 int rvu_npc_exact_promisc_disable(struct rvu *rvu, u16 pcifunc)
1422 {
1423 struct npc_exact_table *table;
1424 int pf = rvu_get_pf(pcifunc);
1425 u8 cgx_id, lmac_id;
1426 u32 drop_mcam_idx;
1427 bool *promisc;
1428 bool rc;
1429 u32 cnt;
1430
1431 table = rvu->hw->table;
1432
1433 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1434 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id,
1435 &drop_mcam_idx, NULL, NULL, NULL);
1436 if (!rc) {
1437 dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n",
1438 __func__, cgx_id, lmac_id);
1439 return -EINVAL;
1440 }
1441
1442 mutex_lock(&table->lock);
1443 promisc = &table->promisc_mode[drop_mcam_idx];
1444
1445 if (!*promisc) {
1446 mutex_unlock(&table->lock);
1447 dev_dbg(rvu->dev, "%s: Err Already promisc mode disabled (cgx=%d lmac=%d)\n",
1448 __func__, cgx_id, lmac_id);
1449 return LMAC_AF_ERR_INVALID_PARAM;
1450 }
1451 *promisc = false;
1452 cnt = __rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, 0, NULL);
1453 mutex_unlock(&table->lock);
1454
1455 /* If no dmac filter entries configured, disable drop rule */
1456 if (!cnt)
1457 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, false);
1458 else
1459 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, !*promisc);
1460
1461 dev_dbg(rvu->dev, "%s: disabled promisc mode (cgx=%d lmac=%d, cnt=%d)\n",
1462 __func__, cgx_id, lmac_id, cnt);
1463 return 0;
1464 }
1465
1466 /**
1467 * rvu_npc_exact_promisc_enable - Enable promiscuous mode.
1468 * @rvu: resource virtualization unit.
1469 * @pcifunc: pcifunc.
1470 * Return: 0 upon success
1471 */
rvu_npc_exact_promisc_enable(struct rvu * rvu,u16 pcifunc)1472 int rvu_npc_exact_promisc_enable(struct rvu *rvu, u16 pcifunc)
1473 {
1474 struct npc_exact_table *table;
1475 int pf = rvu_get_pf(pcifunc);
1476 u8 cgx_id, lmac_id;
1477 u32 drop_mcam_idx;
1478 bool *promisc;
1479 bool rc;
1480 u32 cnt;
1481
1482 table = rvu->hw->table;
1483
1484 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1485 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id,
1486 &drop_mcam_idx, NULL, NULL, NULL);
1487 if (!rc) {
1488 dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n",
1489 __func__, cgx_id, lmac_id);
1490 return -EINVAL;
1491 }
1492
1493 mutex_lock(&table->lock);
1494 promisc = &table->promisc_mode[drop_mcam_idx];
1495
1496 if (*promisc) {
1497 mutex_unlock(&table->lock);
1498 dev_dbg(rvu->dev, "%s: Already in promisc mode (cgx=%d lmac=%d)\n",
1499 __func__, cgx_id, lmac_id);
1500 return LMAC_AF_ERR_INVALID_PARAM;
1501 }
1502 *promisc = true;
1503 cnt = __rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, 0, NULL);
1504 mutex_unlock(&table->lock);
1505
1506 /* If no dmac filter entries configured, disable drop rule */
1507 if (!cnt)
1508 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, false);
1509 else
1510 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, !*promisc);
1511
1512 dev_dbg(rvu->dev, "%s: Enabled promisc mode (cgx=%d lmac=%d cnt=%d)\n",
1513 __func__, cgx_id, lmac_id, cnt);
1514 return 0;
1515 }
1516
1517 /**
1518 * rvu_npc_exact_mac_addr_reset - Delete PF mac address.
1519 * @rvu: resource virtualization unit.
1520 * @req: Reset request
1521 * @rsp: Reset response.
1522 * Return: 0 upon success
1523 */
rvu_npc_exact_mac_addr_reset(struct rvu * rvu,struct cgx_mac_addr_reset_req * req,struct msg_rsp * rsp)1524 int rvu_npc_exact_mac_addr_reset(struct rvu *rvu, struct cgx_mac_addr_reset_req *req,
1525 struct msg_rsp *rsp)
1526 {
1527 int pf = rvu_get_pf(req->hdr.pcifunc);
1528 u32 seq_id = req->index;
1529 struct rvu_pfvf *pfvf;
1530 u8 cgx_id, lmac_id;
1531 int rc;
1532
1533 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1534
1535 pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
1536
1537 rc = rvu_npc_exact_del_table_entry_by_id(rvu, seq_id);
1538 if (rc) {
1539 /* TODO: how to handle this error case ? */
1540 dev_err(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", __func__, pfvf->mac_addr, pf);
1541 return 0;
1542 }
1543
1544 dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d success (seq_id=%u)\n",
1545 __func__, pfvf->mac_addr, pf, seq_id);
1546 return 0;
1547 }
1548
1549 /**
1550 * rvu_npc_exact_mac_addr_update - Update mac address field with new value.
1551 * @rvu: resource virtualization unit.
1552 * @req: Update request.
1553 * @rsp: Update response.
1554 * Return: 0 upon success
1555 */
rvu_npc_exact_mac_addr_update(struct rvu * rvu,struct cgx_mac_addr_update_req * req,struct cgx_mac_addr_update_rsp * rsp)1556 int rvu_npc_exact_mac_addr_update(struct rvu *rvu,
1557 struct cgx_mac_addr_update_req *req,
1558 struct cgx_mac_addr_update_rsp *rsp)
1559 {
1560 int pf = rvu_get_pf(req->hdr.pcifunc);
1561 struct npc_exact_table_entry *entry;
1562 struct npc_exact_table *table;
1563 struct rvu_pfvf *pfvf;
1564 u32 seq_id, mcam_idx;
1565 u8 old_mac[ETH_ALEN];
1566 u8 cgx_id, lmac_id;
1567 int rc;
1568
1569 if (!is_cgx_config_permitted(rvu, req->hdr.pcifunc))
1570 return LMAC_AF_ERR_PERM_DENIED;
1571
1572 dev_dbg(rvu->dev, "%s: Update request for seq_id=%d, mac=%pM\n",
1573 __func__, req->index, req->mac_addr);
1574
1575 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1576
1577 pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
1578
1579 table = rvu->hw->table;
1580
1581 mutex_lock(&table->lock);
1582
1583 /* Lookup for entry which needs to be updated */
1584 entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, req->index);
1585 if (!entry) {
1586 dev_err(rvu->dev, "%s: failed to find entry for id=0x%x\n", __func__, req->index);
1587 mutex_unlock(&table->lock);
1588 return LMAC_AF_ERR_EXACT_MATCH_TBL_LOOK_UP_FAILED;
1589 }
1590 ether_addr_copy(old_mac, entry->mac);
1591 seq_id = entry->seq_id;
1592 mcam_idx = entry->mcam_idx;
1593 mutex_unlock(&table->lock);
1594
1595 rc = rvu_npc_exact_update_table_entry(rvu, cgx_id, lmac_id, old_mac,
1596 req->mac_addr, &seq_id);
1597 if (!rc) {
1598 rsp->index = seq_id;
1599 dev_dbg(rvu->dev, "%s mac:%pM (pfvf:%pM default:%pM) update to PF=%d success\n",
1600 __func__, req->mac_addr, pfvf->mac_addr, pfvf->default_mac, pf);
1601 ether_addr_copy(pfvf->mac_addr, req->mac_addr);
1602 return 0;
1603 }
1604
1605 /* Try deleting and adding it again */
1606 rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index);
1607 if (rc) {
1608 /* This could be a new entry */
1609 dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", __func__,
1610 pfvf->mac_addr, pf);
1611 }
1612
1613 rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr,
1614 pfvf->rx_chan_base, 0, &seq_id, true,
1615 mcam_idx, req->hdr.pcifunc);
1616 if (rc) {
1617 dev_err(rvu->dev, "%s MAC (%pM) add PF=%d failed\n", __func__,
1618 req->mac_addr, pf);
1619 return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED;
1620 }
1621
1622 rsp->index = seq_id;
1623 dev_dbg(rvu->dev,
1624 "%s MAC (new:%pM, old=%pM default:%pM) del and add to PF=%d success (seq_id=%u)\n",
1625 __func__, req->mac_addr, pfvf->mac_addr, pfvf->default_mac, pf, seq_id);
1626
1627 ether_addr_copy(pfvf->mac_addr, req->mac_addr);
1628 return 0;
1629 }
1630
1631 /**
1632 * rvu_npc_exact_mac_addr_add - Adds MAC address to exact match table.
1633 * @rvu: resource virtualization unit.
1634 * @req: Add request.
1635 * @rsp: Add response.
1636 * Return: 0 upon success
1637 */
rvu_npc_exact_mac_addr_add(struct rvu * rvu,struct cgx_mac_addr_add_req * req,struct cgx_mac_addr_add_rsp * rsp)1638 int rvu_npc_exact_mac_addr_add(struct rvu *rvu,
1639 struct cgx_mac_addr_add_req *req,
1640 struct cgx_mac_addr_add_rsp *rsp)
1641 {
1642 int pf = rvu_get_pf(req->hdr.pcifunc);
1643 struct rvu_pfvf *pfvf;
1644 u8 cgx_id, lmac_id;
1645 int rc = 0;
1646 u32 seq_id;
1647
1648 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1649 pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
1650
1651 rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr,
1652 pfvf->rx_chan_base, 0, &seq_id,
1653 true, -1, req->hdr.pcifunc);
1654
1655 if (!rc) {
1656 rsp->index = seq_id;
1657 dev_dbg(rvu->dev, "%s MAC (%pM) add to PF=%d success (seq_id=%u)\n",
1658 __func__, req->mac_addr, pf, seq_id);
1659 return 0;
1660 }
1661
1662 dev_err(rvu->dev, "%s MAC (%pM) add to PF=%d failed\n", __func__,
1663 req->mac_addr, pf);
1664 return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED;
1665 }
1666
1667 /**
1668 * rvu_npc_exact_mac_addr_del - Delete DMAC filter
1669 * @rvu: resource virtualization unit.
1670 * @req: Delete request.
1671 * @rsp: Delete response.
1672 * Return: 0 upon success
1673 */
rvu_npc_exact_mac_addr_del(struct rvu * rvu,struct cgx_mac_addr_del_req * req,struct msg_rsp * rsp)1674 int rvu_npc_exact_mac_addr_del(struct rvu *rvu,
1675 struct cgx_mac_addr_del_req *req,
1676 struct msg_rsp *rsp)
1677 {
1678 int pf = rvu_get_pf(req->hdr.pcifunc);
1679 int rc;
1680
1681 rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index);
1682 if (!rc) {
1683 dev_dbg(rvu->dev, "%s del to PF=%d success (seq_id=%u)\n",
1684 __func__, pf, req->index);
1685 return 0;
1686 }
1687
1688 dev_err(rvu->dev, "%s del to PF=%d failed (seq_id=%u)\n",
1689 __func__, pf, req->index);
1690 return LMAC_AF_ERR_EXACT_MATCH_TBL_DEL_FAILED;
1691 }
1692
1693 /**
1694 * rvu_npc_exact_mac_addr_set - Add PF mac address to dmac filter.
1695 * @rvu: resource virtualization unit.
1696 * @req: Set request.
1697 * @rsp: Set response.
1698 * Return: 0 upon success
1699 */
rvu_npc_exact_mac_addr_set(struct rvu * rvu,struct cgx_mac_addr_set_or_get * req,struct cgx_mac_addr_set_or_get * rsp)1700 int rvu_npc_exact_mac_addr_set(struct rvu *rvu, struct cgx_mac_addr_set_or_get *req,
1701 struct cgx_mac_addr_set_or_get *rsp)
1702 {
1703 int pf = rvu_get_pf(req->hdr.pcifunc);
1704 u32 seq_id = req->index;
1705 struct rvu_pfvf *pfvf;
1706 u8 cgx_id, lmac_id;
1707 u32 mcam_idx = -1;
1708 int rc, nixlf;
1709
1710 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
1711
1712 pfvf = &rvu->pf[pf];
1713
1714 /* If table does not have an entry; both update entry and del table entry API
1715 * below fails. Those are not failure conditions.
1716 */
1717 rc = rvu_npc_exact_update_table_entry(rvu, cgx_id, lmac_id, pfvf->mac_addr,
1718 req->mac_addr, &seq_id);
1719 if (!rc) {
1720 rsp->index = seq_id;
1721 ether_addr_copy(pfvf->mac_addr, req->mac_addr);
1722 ether_addr_copy(rsp->mac_addr, req->mac_addr);
1723 dev_dbg(rvu->dev, "%s MAC (%pM) update to PF=%d success\n",
1724 __func__, req->mac_addr, pf);
1725 return 0;
1726 }
1727
1728 /* Try deleting and adding it again */
1729 rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index);
1730 if (rc) {
1731 dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d failed\n",
1732 __func__, pfvf->mac_addr, pf);
1733 }
1734
1735 /* find mcam entry if exist */
1736 rc = nix_get_nixlf(rvu, req->hdr.pcifunc, &nixlf, NULL);
1737 if (!rc) {
1738 mcam_idx = npc_get_nixlf_mcam_index(&rvu->hw->mcam, req->hdr.pcifunc,
1739 nixlf, NIXLF_UCAST_ENTRY);
1740 }
1741
1742 rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr,
1743 pfvf->rx_chan_base, 0, &seq_id,
1744 true, mcam_idx, req->hdr.pcifunc);
1745 if (rc) {
1746 dev_err(rvu->dev, "%s MAC (%pM) add PF=%d failed\n",
1747 __func__, req->mac_addr, pf);
1748 return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED;
1749 }
1750
1751 rsp->index = seq_id;
1752 ether_addr_copy(rsp->mac_addr, req->mac_addr);
1753 ether_addr_copy(pfvf->mac_addr, req->mac_addr);
1754 dev_dbg(rvu->dev,
1755 "%s MAC (%pM) del and add to PF=%d success (seq_id=%u)\n",
1756 __func__, req->mac_addr, pf, seq_id);
1757 return 0;
1758 }
1759
1760 /**
1761 * rvu_npc_exact_can_disable_feature - Check if feature can be disabled.
1762 * @rvu: resource virtualization unit.
1763 * Return: True if exact match feature is supported.
1764 */
rvu_npc_exact_can_disable_feature(struct rvu * rvu)1765 bool rvu_npc_exact_can_disable_feature(struct rvu *rvu)
1766 {
1767 struct npc_exact_table *table = rvu->hw->table;
1768 bool empty;
1769
1770 if (!rvu->hw->cap.npc_exact_match_enabled)
1771 return false;
1772
1773 mutex_lock(&table->lock);
1774 empty = list_empty(&table->lhead_gbl);
1775 mutex_unlock(&table->lock);
1776
1777 return empty;
1778 }
1779
1780 /**
1781 * rvu_npc_exact_disable_feature - Disable feature.
1782 * @rvu: resource virtualization unit.
1783 */
rvu_npc_exact_disable_feature(struct rvu * rvu)1784 void rvu_npc_exact_disable_feature(struct rvu *rvu)
1785 {
1786 rvu->hw->cap.npc_exact_match_enabled = false;
1787 }
1788
1789 /**
1790 * rvu_npc_exact_reset - Delete and free all entry which match pcifunc.
1791 * @rvu: resource virtualization unit.
1792 * @pcifunc: PCI func to match.
1793 */
rvu_npc_exact_reset(struct rvu * rvu,u16 pcifunc)1794 void rvu_npc_exact_reset(struct rvu *rvu, u16 pcifunc)
1795 {
1796 struct npc_exact_table *table = rvu->hw->table;
1797 struct npc_exact_table_entry *tmp, *iter;
1798 u32 seq_id;
1799
1800 mutex_lock(&table->lock);
1801 list_for_each_entry_safe(iter, tmp, &table->lhead_gbl, glist) {
1802 if (pcifunc != iter->pcifunc)
1803 continue;
1804
1805 seq_id = iter->seq_id;
1806 dev_dbg(rvu->dev, "%s: resetting pcifun=%d seq_id=%u\n", __func__,
1807 pcifunc, seq_id);
1808
1809 mutex_unlock(&table->lock);
1810 rvu_npc_exact_del_table_entry_by_id(rvu, seq_id);
1811 mutex_lock(&table->lock);
1812 }
1813 mutex_unlock(&table->lock);
1814 }
1815
1816 /**
1817 * rvu_npc_exact_init - initialize exact match table
1818 * @rvu: resource virtualization unit.
1819 *
1820 * Initialize HW and SW resources to manage 4way-2K table and fully
1821 * associative 32-entry mcam table.
1822 * Return: 0 upon success.
1823 */
rvu_npc_exact_init(struct rvu * rvu)1824 int rvu_npc_exact_init(struct rvu *rvu)
1825 {
1826 u64 bcast_mcast_val, bcast_mcast_mask;
1827 struct npc_exact_table *table;
1828 u64 exact_val, exact_mask;
1829 u64 chan_val, chan_mask;
1830 u8 cgx_id, lmac_id;
1831 u32 *drop_mcam_idx;
1832 u16 max_lmac_cnt;
1833 u64 npc_const3;
1834 int table_size;
1835 int blkaddr;
1836 u16 pcifunc;
1837 int err, i;
1838 u64 cfg;
1839 bool rc;
1840
1841 /* Read NPC_AF_CONST3 and check for have exact
1842 * match functionality is present
1843 */
1844 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1845 if (blkaddr < 0) {
1846 dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1847 return -EINVAL;
1848 }
1849
1850 /* Check exact match feature is supported */
1851 npc_const3 = rvu_read64(rvu, blkaddr, NPC_AF_CONST3);
1852 if (!(npc_const3 & BIT_ULL(62)))
1853 return 0;
1854
1855 /* Check if kex profile has enabled EXACT match nibble */
1856 cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(NIX_INTF_RX));
1857 if (!(cfg & NPC_EXACT_NIBBLE_HIT))
1858 return 0;
1859
1860 /* Set capability to true */
1861 rvu->hw->cap.npc_exact_match_enabled = true;
1862
1863 table = kzalloc(sizeof(*table), GFP_KERNEL);
1864 if (!table)
1865 return -ENOMEM;
1866
1867 dev_dbg(rvu->dev, "%s: Memory allocation for table success\n", __func__);
1868 rvu->hw->table = table;
1869
1870 /* Read table size, ways and depth */
1871 table->mem_table.depth = FIELD_GET(GENMASK_ULL(31, 24), npc_const3);
1872 table->mem_table.ways = FIELD_GET(GENMASK_ULL(19, 16), npc_const3);
1873 table->cam_table.depth = FIELD_GET(GENMASK_ULL(15, 0), npc_const3);
1874
1875 dev_dbg(rvu->dev, "%s: NPC exact match 4way_2k table(ways=%d, depth=%d)\n",
1876 __func__, table->mem_table.ways, table->cam_table.depth);
1877
1878 /* Check if depth of table is not a sequre of 2
1879 * TODO: why _builtin_popcount() is not working ?
1880 */
1881 if ((table->mem_table.depth & (table->mem_table.depth - 1)) != 0) {
1882 dev_err(rvu->dev,
1883 "%s: NPC exact match 4way_2k table depth(%d) is not square of 2\n",
1884 __func__, table->mem_table.depth);
1885 return -EINVAL;
1886 }
1887
1888 table_size = table->mem_table.depth * table->mem_table.ways;
1889
1890 /* Allocate bitmap for 4way 2K table */
1891 table->mem_table.bmap = devm_bitmap_zalloc(rvu->dev, table_size,
1892 GFP_KERNEL);
1893 if (!table->mem_table.bmap)
1894 return -ENOMEM;
1895
1896 dev_dbg(rvu->dev, "%s: Allocated bitmap for 4way 2K entry table\n", __func__);
1897
1898 /* Allocate bitmap for 32 entry mcam */
1899 table->cam_table.bmap = devm_bitmap_zalloc(rvu->dev, 32, GFP_KERNEL);
1900
1901 if (!table->cam_table.bmap)
1902 return -ENOMEM;
1903
1904 dev_dbg(rvu->dev, "%s: Allocated bitmap for 32 entry cam\n", __func__);
1905
1906 table->tot_ids = table_size + table->cam_table.depth;
1907 table->id_bmap = devm_bitmap_zalloc(rvu->dev, table->tot_ids,
1908 GFP_KERNEL);
1909
1910 if (!table->id_bmap)
1911 return -ENOMEM;
1912
1913 dev_dbg(rvu->dev, "%s: Allocated bitmap for id map (total=%d)\n",
1914 __func__, table->tot_ids);
1915
1916 /* Initialize list heads for npc_exact_table entries.
1917 * This entry is used by debugfs to show entries in
1918 * exact match table.
1919 */
1920 for (i = 0; i < NPC_EXACT_TBL_MAX_WAYS; i++)
1921 INIT_LIST_HEAD(&table->lhead_mem_tbl_entry[i]);
1922
1923 INIT_LIST_HEAD(&table->lhead_cam_tbl_entry);
1924 INIT_LIST_HEAD(&table->lhead_gbl);
1925
1926 mutex_init(&table->lock);
1927
1928 rvu_exact_config_secret_key(rvu);
1929 rvu_exact_config_search_key(rvu);
1930
1931 rvu_exact_config_table_mask(rvu);
1932 rvu_exact_config_result_ctrl(rvu, table->mem_table.depth);
1933
1934 /* - No drop rule for LBK
1935 * - Drop rules for SDP and each LMAC.
1936 */
1937 exact_val = !NPC_EXACT_RESULT_HIT;
1938 exact_mask = NPC_EXACT_RESULT_HIT;
1939
1940 /* nibble - 3 2 1 0
1941 * L3B L3M L2B L2M
1942 */
1943 bcast_mcast_val = 0b0000;
1944 bcast_mcast_mask = 0b0011;
1945
1946 /* Install SDP drop rule */
1947 drop_mcam_idx = &table->num_drop_rules;
1948
1949 max_lmac_cnt = rvu->cgx_cnt_max * rvu->hw->lmac_per_cgx +
1950 PF_CGXMAP_BASE;
1951
1952 for (i = PF_CGXMAP_BASE; i < max_lmac_cnt; i++) {
1953 if (rvu->pf2cgxlmac_map[i] == 0xFF)
1954 continue;
1955
1956 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[i], &cgx_id, &lmac_id);
1957
1958 rc = rvu_npc_exact_calc_drop_rule_chan_and_mask(rvu, NIX_INTF_TYPE_CGX, cgx_id,
1959 lmac_id, &chan_val, &chan_mask);
1960 if (!rc) {
1961 dev_err(rvu->dev,
1962 "%s: failed, info chan_val=0x%llx chan_mask=0x%llx rule_id=%d\n",
1963 __func__, chan_val, chan_mask, *drop_mcam_idx);
1964 return -EINVAL;
1965 }
1966
1967 /* Filter rules are only for PF */
1968 pcifunc = RVU_PFFUNC(i, 0);
1969
1970 dev_dbg(rvu->dev,
1971 "%s:Drop rule cgx=%d lmac=%d chan(val=0x%llx, mask=0x%llx\n",
1972 __func__, cgx_id, lmac_id, chan_val, chan_mask);
1973
1974 rc = rvu_npc_exact_save_drop_rule_chan_and_mask(rvu, table->num_drop_rules,
1975 chan_val, chan_mask, pcifunc);
1976 if (!rc) {
1977 dev_err(rvu->dev,
1978 "%s: failed to set drop info for cgx=%d, lmac=%d, chan=%llx\n",
1979 __func__, cgx_id, lmac_id, chan_val);
1980 return -EINVAL;
1981 }
1982
1983 err = npc_install_mcam_drop_rule(rvu, *drop_mcam_idx,
1984 &table->counter_idx[*drop_mcam_idx],
1985 chan_val, chan_mask,
1986 exact_val, exact_mask,
1987 bcast_mcast_val, bcast_mcast_mask);
1988 if (err) {
1989 dev_err(rvu->dev,
1990 "failed to configure drop rule (cgx=%d lmac=%d)\n",
1991 cgx_id, lmac_id);
1992 return err;
1993 }
1994
1995 (*drop_mcam_idx)++;
1996 }
1997
1998 dev_info(rvu->dev, "initialized exact match table successfully\n");
1999 return 0;
2000 }
2001