1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 *
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 */
10
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15
16 #include "sas_internal.h"
17
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
28
29 /* ---------- SMP task management ---------- */
30
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
33
smp_execute_task_sg(struct domain_device * dev,struct scatterlist * req,struct scatterlist * resp)34 static int smp_execute_task_sg(struct domain_device *dev,
35 struct scatterlist *req, struct scatterlist *resp)
36 {
37 int res, retry;
38 struct sas_task *task = NULL;
39 struct sas_internal *i =
40 to_sas_internal(dev->port->ha->core.shost->transportt);
41 struct sas_ha_struct *ha = dev->port->ha;
42
43 pm_runtime_get_sync(ha->dev);
44 mutex_lock(&dev->ex_dev.cmd_mutex);
45 for (retry = 0; retry < 3; retry++) {
46 if (test_bit(SAS_DEV_GONE, &dev->state)) {
47 res = -ECOMM;
48 break;
49 }
50
51 task = sas_alloc_slow_task(GFP_KERNEL);
52 if (!task) {
53 res = -ENOMEM;
54 break;
55 }
56 task->dev = dev;
57 task->task_proto = dev->tproto;
58 task->smp_task.smp_req = *req;
59 task->smp_task.smp_resp = *resp;
60
61 task->task_done = sas_task_internal_done;
62
63 task->slow_task->timer.function = sas_task_internal_timedout;
64 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65 add_timer(&task->slow_task->timer);
66
67 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68
69 if (res) {
70 del_timer_sync(&task->slow_task->timer);
71 pr_notice("executing SMP task failed:%d\n", res);
72 break;
73 }
74
75 wait_for_completion(&task->slow_task->completion);
76 res = -ECOMM;
77 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78 pr_notice("smp task timed out or aborted\n");
79 i->dft->lldd_abort_task(task);
80 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81 pr_notice("SMP task aborted and not done\n");
82 break;
83 }
84 }
85 if (task->task_status.resp == SAS_TASK_COMPLETE &&
86 task->task_status.stat == SAS_SAM_STAT_GOOD) {
87 res = 0;
88 break;
89 }
90 if (task->task_status.resp == SAS_TASK_COMPLETE &&
91 task->task_status.stat == SAS_DATA_UNDERRUN) {
92 /* no error, but return the number of bytes of
93 * underrun */
94 res = task->task_status.residual;
95 break;
96 }
97 if (task->task_status.resp == SAS_TASK_COMPLETE &&
98 task->task_status.stat == SAS_DATA_OVERRUN) {
99 res = -EMSGSIZE;
100 break;
101 }
102 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103 task->task_status.stat == SAS_DEVICE_UNKNOWN)
104 break;
105 else {
106 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107 __func__,
108 SAS_ADDR(dev->sas_addr),
109 task->task_status.resp,
110 task->task_status.stat);
111 sas_free_task(task);
112 task = NULL;
113 }
114 }
115 mutex_unlock(&dev->ex_dev.cmd_mutex);
116 pm_runtime_put_sync(ha->dev);
117
118 BUG_ON(retry == 3 && task != NULL);
119 sas_free_task(task);
120 return res;
121 }
122
smp_execute_task(struct domain_device * dev,void * req,int req_size,void * resp,int resp_size)123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124 void *resp, int resp_size)
125 {
126 struct scatterlist req_sg;
127 struct scatterlist resp_sg;
128
129 sg_init_one(&req_sg, req, req_size);
130 sg_init_one(&resp_sg, resp, resp_size);
131 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132 }
133
134 /* ---------- Allocations ---------- */
135
alloc_smp_req(int size)136 static inline void *alloc_smp_req(int size)
137 {
138 u8 *p = kzalloc(size, GFP_KERNEL);
139 if (p)
140 p[0] = SMP_REQUEST;
141 return p;
142 }
143
alloc_smp_resp(int size)144 static inline void *alloc_smp_resp(int size)
145 {
146 return kzalloc(size, GFP_KERNEL);
147 }
148
sas_route_char(struct domain_device * dev,struct ex_phy * phy)149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150 {
151 switch (phy->routing_attr) {
152 case TABLE_ROUTING:
153 if (dev->ex_dev.t2t_supp)
154 return 'U';
155 else
156 return 'T';
157 case DIRECT_ROUTING:
158 return 'D';
159 case SUBTRACTIVE_ROUTING:
160 return 'S';
161 default:
162 return '?';
163 }
164 }
165
to_dev_type(struct discover_resp * dr)166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
167 {
168 /* This is detecting a failure to transmit initial dev to host
169 * FIS as described in section J.5 of sas-2 r16
170 */
171 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173 return SAS_SATA_PENDING;
174 else
175 return dr->attached_dev_type;
176 }
177
sas_set_ex_phy(struct domain_device * dev,int phy_id,struct smp_disc_resp * disc_resp)178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
179 struct smp_disc_resp *disc_resp)
180 {
181 enum sas_device_type dev_type;
182 enum sas_linkrate linkrate;
183 u8 sas_addr[SAS_ADDR_SIZE];
184 struct discover_resp *dr = &disc_resp->disc;
185 struct sas_ha_struct *ha = dev->port->ha;
186 struct expander_device *ex = &dev->ex_dev;
187 struct ex_phy *phy = &ex->ex_phy[phy_id];
188 struct sas_rphy *rphy = dev->rphy;
189 bool new_phy = !phy->phy;
190 char *type;
191
192 if (new_phy) {
193 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194 return;
195 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196
197 /* FIXME: error_handling */
198 BUG_ON(!phy->phy);
199 }
200
201 switch (disc_resp->result) {
202 case SMP_RESP_PHY_VACANT:
203 phy->phy_state = PHY_VACANT;
204 break;
205 default:
206 phy->phy_state = PHY_NOT_PRESENT;
207 break;
208 case SMP_RESP_FUNC_ACC:
209 phy->phy_state = PHY_EMPTY; /* do not know yet */
210 break;
211 }
212
213 /* check if anything important changed to squelch debug */
214 dev_type = phy->attached_dev_type;
215 linkrate = phy->linkrate;
216 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217
218 /* Handle vacant phy - rest of dr data is not valid so skip it */
219 if (phy->phy_state == PHY_VACANT) {
220 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221 phy->attached_dev_type = SAS_PHY_UNUSED;
222 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223 phy->phy_id = phy_id;
224 goto skip;
225 } else
226 goto out;
227 }
228
229 phy->attached_dev_type = to_dev_type(dr);
230 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231 goto out;
232 phy->phy_id = phy_id;
233 phy->linkrate = dr->linkrate;
234 phy->attached_sata_host = dr->attached_sata_host;
235 phy->attached_sata_dev = dr->attached_sata_dev;
236 phy->attached_sata_ps = dr->attached_sata_ps;
237 phy->attached_iproto = dr->iproto << 1;
238 phy->attached_tproto = dr->tproto << 1;
239 /* help some expanders that fail to zero sas_address in the 'no
240 * device' case
241 */
242 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245 else
246 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247 phy->attached_phy_id = dr->attached_phy_id;
248 phy->phy_change_count = dr->change_count;
249 phy->routing_attr = dr->routing_attr;
250 phy->virtual = dr->virtual;
251 phy->last_da_index = -1;
252
253 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254 phy->phy->identify.device_type = dr->attached_dev_type;
255 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256 phy->phy->identify.target_port_protocols = phy->attached_tproto;
257 if (!phy->attached_tproto && dr->attached_sata_dev)
258 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259 phy->phy->identify.phy_identifier = phy_id;
260 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262 phy->phy->minimum_linkrate = dr->pmin_linkrate;
263 phy->phy->maximum_linkrate = dr->pmax_linkrate;
264 phy->phy->negotiated_linkrate = phy->linkrate;
265 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266
267 skip:
268 if (new_phy)
269 if (sas_phy_add(phy->phy)) {
270 sas_phy_free(phy->phy);
271 return;
272 }
273
274 out:
275 switch (phy->attached_dev_type) {
276 case SAS_SATA_PENDING:
277 type = "stp pending";
278 break;
279 case SAS_PHY_UNUSED:
280 type = "no device";
281 break;
282 case SAS_END_DEVICE:
283 if (phy->attached_iproto) {
284 if (phy->attached_tproto)
285 type = "host+target";
286 else
287 type = "host";
288 } else {
289 if (dr->attached_sata_dev)
290 type = "stp";
291 else
292 type = "ssp";
293 }
294 break;
295 case SAS_EDGE_EXPANDER_DEVICE:
296 case SAS_FANOUT_EXPANDER_DEVICE:
297 type = "smp";
298 break;
299 default:
300 type = "unknown";
301 }
302
303 /* this routine is polled by libata error recovery so filter
304 * unimportant messages
305 */
306 if (new_phy || phy->attached_dev_type != dev_type ||
307 phy->linkrate != linkrate ||
308 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309 /* pass */;
310 else
311 return;
312
313 /* if the attached device type changed and ata_eh is active,
314 * make sure we run revalidation when eh completes (see:
315 * sas_enable_revalidation)
316 */
317 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319
320 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322 SAS_ADDR(dev->sas_addr), phy->phy_id,
323 sas_route_char(dev, phy), phy->linkrate,
324 SAS_ADDR(phy->attached_sas_addr), type);
325 }
326
327 /* check if we have an existing attached ata device on this expander phy */
sas_ex_to_ata(struct domain_device * ex_dev,int phy_id)328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329 {
330 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331 struct domain_device *dev;
332 struct sas_rphy *rphy;
333
334 if (!ex_phy->port)
335 return NULL;
336
337 rphy = ex_phy->port->rphy;
338 if (!rphy)
339 return NULL;
340
341 dev = sas_find_dev_by_rphy(rphy);
342
343 if (dev && dev_is_sata(dev))
344 return dev;
345
346 return NULL;
347 }
348
349 #define DISCOVER_REQ_SIZE 16
350 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
351
sas_ex_phy_discover_helper(struct domain_device * dev,u8 * disc_req,struct smp_disc_resp * disc_resp,int single)352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353 struct smp_disc_resp *disc_resp,
354 int single)
355 {
356 struct discover_resp *dr = &disc_resp->disc;
357 int res;
358
359 disc_req[9] = single;
360
361 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
362 disc_resp, DISCOVER_RESP_SIZE);
363 if (res)
364 return res;
365 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366 pr_notice("Found loopback topology, just ignore it!\n");
367 return 0;
368 }
369 sas_set_ex_phy(dev, single, disc_resp);
370 return 0;
371 }
372
sas_ex_phy_discover(struct domain_device * dev,int single)373 int sas_ex_phy_discover(struct domain_device *dev, int single)
374 {
375 struct expander_device *ex = &dev->ex_dev;
376 int res = 0;
377 u8 *disc_req;
378 struct smp_disc_resp *disc_resp;
379
380 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381 if (!disc_req)
382 return -ENOMEM;
383
384 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385 if (!disc_resp) {
386 kfree(disc_req);
387 return -ENOMEM;
388 }
389
390 disc_req[1] = SMP_DISCOVER;
391
392 if (0 <= single && single < ex->num_phys) {
393 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394 } else {
395 int i;
396
397 for (i = 0; i < ex->num_phys; i++) {
398 res = sas_ex_phy_discover_helper(dev, disc_req,
399 disc_resp, i);
400 if (res)
401 goto out_err;
402 }
403 }
404 out_err:
405 kfree(disc_resp);
406 kfree(disc_req);
407 return res;
408 }
409
sas_expander_discover(struct domain_device * dev)410 static int sas_expander_discover(struct domain_device *dev)
411 {
412 struct expander_device *ex = &dev->ex_dev;
413 int res;
414
415 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416 if (!ex->ex_phy)
417 return -ENOMEM;
418
419 res = sas_ex_phy_discover(dev, -1);
420 if (res)
421 goto out_err;
422
423 return 0;
424 out_err:
425 kfree(ex->ex_phy);
426 ex->ex_phy = NULL;
427 return res;
428 }
429
430 #define MAX_EXPANDER_PHYS 128
431
432 #define RG_REQ_SIZE 8
433 #define RG_RESP_SIZE sizeof(struct smp_rg_resp)
434
sas_ex_general(struct domain_device * dev)435 static int sas_ex_general(struct domain_device *dev)
436 {
437 u8 *rg_req;
438 struct smp_rg_resp *rg_resp;
439 struct report_general_resp *rg;
440 int res;
441 int i;
442
443 rg_req = alloc_smp_req(RG_REQ_SIZE);
444 if (!rg_req)
445 return -ENOMEM;
446
447 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
448 if (!rg_resp) {
449 kfree(rg_req);
450 return -ENOMEM;
451 }
452
453 rg_req[1] = SMP_REPORT_GENERAL;
454
455 for (i = 0; i < 5; i++) {
456 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
457 RG_RESP_SIZE);
458
459 if (res) {
460 pr_notice("RG to ex %016llx failed:0x%x\n",
461 SAS_ADDR(dev->sas_addr), res);
462 goto out;
463 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
464 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
465 SAS_ADDR(dev->sas_addr), rg_resp->result);
466 res = rg_resp->result;
467 goto out;
468 }
469
470 rg = &rg_resp->rg;
471 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
472 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
473 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
474 dev->ex_dev.t2t_supp = rg->t2t_supp;
475 dev->ex_dev.conf_route_table = rg->conf_route_table;
476 dev->ex_dev.configuring = rg->configuring;
477 memcpy(dev->ex_dev.enclosure_logical_id,
478 rg->enclosure_logical_id, 8);
479
480 if (dev->ex_dev.configuring) {
481 pr_debug("RG: ex %016llx self-configuring...\n",
482 SAS_ADDR(dev->sas_addr));
483 schedule_timeout_interruptible(5*HZ);
484 } else
485 break;
486 }
487 out:
488 kfree(rg_req);
489 kfree(rg_resp);
490 return res;
491 }
492
ex_assign_manuf_info(struct domain_device * dev,void * _mi_resp)493 static void ex_assign_manuf_info(struct domain_device *dev, void
494 *_mi_resp)
495 {
496 u8 *mi_resp = _mi_resp;
497 struct sas_rphy *rphy = dev->rphy;
498 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
499
500 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
501 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
502 memcpy(edev->product_rev, mi_resp + 36,
503 SAS_EXPANDER_PRODUCT_REV_LEN);
504
505 if (mi_resp[8] & 1) {
506 memcpy(edev->component_vendor_id, mi_resp + 40,
507 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
508 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
509 edev->component_revision_id = mi_resp[50];
510 }
511 }
512
513 #define MI_REQ_SIZE 8
514 #define MI_RESP_SIZE 64
515
sas_ex_manuf_info(struct domain_device * dev)516 static int sas_ex_manuf_info(struct domain_device *dev)
517 {
518 u8 *mi_req;
519 u8 *mi_resp;
520 int res;
521
522 mi_req = alloc_smp_req(MI_REQ_SIZE);
523 if (!mi_req)
524 return -ENOMEM;
525
526 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
527 if (!mi_resp) {
528 kfree(mi_req);
529 return -ENOMEM;
530 }
531
532 mi_req[1] = SMP_REPORT_MANUF_INFO;
533
534 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
535 if (res) {
536 pr_notice("MI: ex %016llx failed:0x%x\n",
537 SAS_ADDR(dev->sas_addr), res);
538 goto out;
539 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
540 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
541 SAS_ADDR(dev->sas_addr), mi_resp[2]);
542 goto out;
543 }
544
545 ex_assign_manuf_info(dev, mi_resp);
546 out:
547 kfree(mi_req);
548 kfree(mi_resp);
549 return res;
550 }
551
552 #define PC_REQ_SIZE 44
553 #define PC_RESP_SIZE 8
554
sas_smp_phy_control(struct domain_device * dev,int phy_id,enum phy_func phy_func,struct sas_phy_linkrates * rates)555 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
556 enum phy_func phy_func,
557 struct sas_phy_linkrates *rates)
558 {
559 u8 *pc_req;
560 u8 *pc_resp;
561 int res;
562
563 pc_req = alloc_smp_req(PC_REQ_SIZE);
564 if (!pc_req)
565 return -ENOMEM;
566
567 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
568 if (!pc_resp) {
569 kfree(pc_req);
570 return -ENOMEM;
571 }
572
573 pc_req[1] = SMP_PHY_CONTROL;
574 pc_req[9] = phy_id;
575 pc_req[10] = phy_func;
576 if (rates) {
577 pc_req[32] = rates->minimum_linkrate << 4;
578 pc_req[33] = rates->maximum_linkrate << 4;
579 }
580
581 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
582 if (res) {
583 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
584 SAS_ADDR(dev->sas_addr), phy_id, res);
585 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
586 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
587 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
588 res = pc_resp[2];
589 }
590 kfree(pc_resp);
591 kfree(pc_req);
592 return res;
593 }
594
sas_ex_disable_phy(struct domain_device * dev,int phy_id)595 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
596 {
597 struct expander_device *ex = &dev->ex_dev;
598 struct ex_phy *phy = &ex->ex_phy[phy_id];
599
600 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
601 phy->linkrate = SAS_PHY_DISABLED;
602 }
603
sas_ex_disable_port(struct domain_device * dev,u8 * sas_addr)604 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
605 {
606 struct expander_device *ex = &dev->ex_dev;
607 int i;
608
609 for (i = 0; i < ex->num_phys; i++) {
610 struct ex_phy *phy = &ex->ex_phy[i];
611
612 if (phy->phy_state == PHY_VACANT ||
613 phy->phy_state == PHY_NOT_PRESENT)
614 continue;
615
616 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
617 sas_ex_disable_phy(dev, i);
618 }
619 }
620
sas_dev_present_in_domain(struct asd_sas_port * port,u8 * sas_addr)621 static int sas_dev_present_in_domain(struct asd_sas_port *port,
622 u8 *sas_addr)
623 {
624 struct domain_device *dev;
625
626 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
627 return 1;
628 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
629 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
630 return 1;
631 }
632 return 0;
633 }
634
635 #define RPEL_REQ_SIZE 16
636 #define RPEL_RESP_SIZE 32
sas_smp_get_phy_events(struct sas_phy * phy)637 int sas_smp_get_phy_events(struct sas_phy *phy)
638 {
639 int res;
640 u8 *req;
641 u8 *resp;
642 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
643 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
644
645 req = alloc_smp_req(RPEL_REQ_SIZE);
646 if (!req)
647 return -ENOMEM;
648
649 resp = alloc_smp_resp(RPEL_RESP_SIZE);
650 if (!resp) {
651 kfree(req);
652 return -ENOMEM;
653 }
654
655 req[1] = SMP_REPORT_PHY_ERR_LOG;
656 req[9] = phy->number;
657
658 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
659 resp, RPEL_RESP_SIZE);
660
661 if (res)
662 goto out;
663
664 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
665 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
666 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
667 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
668
669 out:
670 kfree(req);
671 kfree(resp);
672 return res;
673
674 }
675
676 #ifdef CONFIG_SCSI_SAS_ATA
677
678 #define RPS_REQ_SIZE 16
679 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
680
sas_get_report_phy_sata(struct domain_device * dev,int phy_id,struct smp_rps_resp * rps_resp)681 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
682 struct smp_rps_resp *rps_resp)
683 {
684 int res;
685 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
686 u8 *resp = (u8 *)rps_resp;
687
688 if (!rps_req)
689 return -ENOMEM;
690
691 rps_req[1] = SMP_REPORT_PHY_SATA;
692 rps_req[9] = phy_id;
693
694 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
695 rps_resp, RPS_RESP_SIZE);
696
697 /* 0x34 is the FIS type for the D2H fis. There's a potential
698 * standards cockup here. sas-2 explicitly specifies the FIS
699 * should be encoded so that FIS type is in resp[24].
700 * However, some expanders endian reverse this. Undo the
701 * reversal here */
702 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
703 int i;
704
705 for (i = 0; i < 5; i++) {
706 int j = 24 + (i*4);
707 u8 a, b;
708 a = resp[j + 0];
709 b = resp[j + 1];
710 resp[j + 0] = resp[j + 3];
711 resp[j + 1] = resp[j + 2];
712 resp[j + 2] = b;
713 resp[j + 3] = a;
714 }
715 }
716
717 kfree(rps_req);
718 return res;
719 }
720 #endif
721
sas_ex_get_linkrate(struct domain_device * parent,struct domain_device * child,struct ex_phy * parent_phy)722 static void sas_ex_get_linkrate(struct domain_device *parent,
723 struct domain_device *child,
724 struct ex_phy *parent_phy)
725 {
726 struct expander_device *parent_ex = &parent->ex_dev;
727 struct sas_port *port;
728 int i;
729
730 child->pathways = 0;
731
732 port = parent_phy->port;
733
734 for (i = 0; i < parent_ex->num_phys; i++) {
735 struct ex_phy *phy = &parent_ex->ex_phy[i];
736
737 if (phy->phy_state == PHY_VACANT ||
738 phy->phy_state == PHY_NOT_PRESENT)
739 continue;
740
741 if (sas_phy_match_dev_addr(child, phy)) {
742 child->min_linkrate = min(parent->min_linkrate,
743 phy->linkrate);
744 child->max_linkrate = max(parent->max_linkrate,
745 phy->linkrate);
746 child->pathways++;
747 sas_port_add_phy(port, phy->phy);
748 }
749 }
750 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
751 child->pathways = min(child->pathways, parent->pathways);
752 }
753
sas_ex_add_dev(struct domain_device * parent,struct ex_phy * phy,struct domain_device * child,int phy_id)754 static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
755 struct domain_device *child, int phy_id)
756 {
757 struct sas_rphy *rphy;
758 int res;
759
760 child->dev_type = SAS_END_DEVICE;
761 rphy = sas_end_device_alloc(phy->port);
762 if (!rphy)
763 return -ENOMEM;
764
765 child->tproto = phy->attached_tproto;
766 sas_init_dev(child);
767
768 child->rphy = rphy;
769 get_device(&rphy->dev);
770 rphy->identify.phy_identifier = phy_id;
771 sas_fill_in_rphy(child, rphy);
772
773 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
774
775 res = sas_notify_lldd_dev_found(child);
776 if (res) {
777 pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
778 SAS_ADDR(child->sas_addr),
779 SAS_ADDR(parent->sas_addr), phy_id, res);
780 sas_rphy_free(child->rphy);
781 list_del(&child->disco_list_node);
782 return res;
783 }
784
785 return 0;
786 }
787
sas_ex_discover_end_dev(struct domain_device * parent,int phy_id)788 static struct domain_device *sas_ex_discover_end_dev(
789 struct domain_device *parent, int phy_id)
790 {
791 struct expander_device *parent_ex = &parent->ex_dev;
792 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
793 struct domain_device *child = NULL;
794 int res;
795
796 if (phy->attached_sata_host || phy->attached_sata_ps)
797 return NULL;
798
799 child = sas_alloc_device();
800 if (!child)
801 return NULL;
802
803 kref_get(&parent->kref);
804 child->parent = parent;
805 child->port = parent->port;
806 child->iproto = phy->attached_iproto;
807 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
808 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
809 if (!phy->port) {
810 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
811 if (unlikely(!phy->port))
812 goto out_err;
813 if (unlikely(sas_port_add(phy->port) != 0)) {
814 sas_port_free(phy->port);
815 goto out_err;
816 }
817 }
818 sas_ex_get_linkrate(parent, child, phy);
819 sas_device_set_phy(child, phy->port);
820
821 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
822 res = sas_ata_add_dev(parent, phy, child, phy_id);
823 } else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
824 res = sas_ex_add_dev(parent, phy, child, phy_id);
825 } else {
826 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
827 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
828 phy_id);
829 res = -ENODEV;
830 }
831
832 if (res)
833 goto out_free;
834
835 list_add_tail(&child->siblings, &parent_ex->children);
836 return child;
837
838 out_free:
839 sas_port_delete(phy->port);
840 out_err:
841 phy->port = NULL;
842 sas_put_device(child);
843 return NULL;
844 }
845
846 /* See if this phy is part of a wide port */
sas_ex_join_wide_port(struct domain_device * parent,int phy_id)847 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
848 {
849 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
850 int i;
851
852 for (i = 0; i < parent->ex_dev.num_phys; i++) {
853 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
854
855 if (ephy == phy)
856 continue;
857
858 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
859 SAS_ADDR_SIZE) && ephy->port) {
860 sas_port_add_phy(ephy->port, phy->phy);
861 phy->port = ephy->port;
862 phy->phy_state = PHY_DEVICE_DISCOVERED;
863 return true;
864 }
865 }
866
867 return false;
868 }
869
sas_ex_discover_expander(struct domain_device * parent,int phy_id)870 static struct domain_device *sas_ex_discover_expander(
871 struct domain_device *parent, int phy_id)
872 {
873 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
874 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
875 struct domain_device *child = NULL;
876 struct sas_rphy *rphy;
877 struct sas_expander_device *edev;
878 struct asd_sas_port *port;
879 int res;
880
881 if (phy->routing_attr == DIRECT_ROUTING) {
882 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
883 SAS_ADDR(parent->sas_addr), phy_id,
884 SAS_ADDR(phy->attached_sas_addr),
885 phy->attached_phy_id);
886 return NULL;
887 }
888 child = sas_alloc_device();
889 if (!child)
890 return NULL;
891
892 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
893 /* FIXME: better error handling */
894 BUG_ON(sas_port_add(phy->port) != 0);
895
896
897 switch (phy->attached_dev_type) {
898 case SAS_EDGE_EXPANDER_DEVICE:
899 rphy = sas_expander_alloc(phy->port,
900 SAS_EDGE_EXPANDER_DEVICE);
901 break;
902 case SAS_FANOUT_EXPANDER_DEVICE:
903 rphy = sas_expander_alloc(phy->port,
904 SAS_FANOUT_EXPANDER_DEVICE);
905 break;
906 default:
907 rphy = NULL; /* shut gcc up */
908 BUG();
909 }
910 port = parent->port;
911 child->rphy = rphy;
912 get_device(&rphy->dev);
913 edev = rphy_to_expander_device(rphy);
914 child->dev_type = phy->attached_dev_type;
915 kref_get(&parent->kref);
916 child->parent = parent;
917 child->port = port;
918 child->iproto = phy->attached_iproto;
919 child->tproto = phy->attached_tproto;
920 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
921 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
922 sas_ex_get_linkrate(parent, child, phy);
923 edev->level = parent_ex->level + 1;
924 parent->port->disc.max_level = max(parent->port->disc.max_level,
925 edev->level);
926 sas_init_dev(child);
927 sas_fill_in_rphy(child, rphy);
928 sas_rphy_add(rphy);
929
930 spin_lock_irq(&parent->port->dev_list_lock);
931 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
932 spin_unlock_irq(&parent->port->dev_list_lock);
933
934 res = sas_discover_expander(child);
935 if (res) {
936 sas_rphy_delete(rphy);
937 spin_lock_irq(&parent->port->dev_list_lock);
938 list_del(&child->dev_list_node);
939 spin_unlock_irq(&parent->port->dev_list_lock);
940 sas_put_device(child);
941 sas_port_delete(phy->port);
942 phy->port = NULL;
943 return NULL;
944 }
945 list_add_tail(&child->siblings, &parent->ex_dev.children);
946 return child;
947 }
948
sas_ex_discover_dev(struct domain_device * dev,int phy_id)949 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
950 {
951 struct expander_device *ex = &dev->ex_dev;
952 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
953 struct domain_device *child = NULL;
954 int res = 0;
955
956 /* Phy state */
957 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
958 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
959 res = sas_ex_phy_discover(dev, phy_id);
960 if (res)
961 return res;
962 }
963
964 /* Parent and domain coherency */
965 if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
966 sas_add_parent_port(dev, phy_id);
967 return 0;
968 }
969 if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
970 sas_add_parent_port(dev, phy_id);
971 if (ex_phy->routing_attr == TABLE_ROUTING)
972 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
973 return 0;
974 }
975
976 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
977 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
978
979 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
980 if (ex_phy->routing_attr == DIRECT_ROUTING) {
981 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
982 sas_configure_routing(dev, ex_phy->attached_sas_addr);
983 }
984 return 0;
985 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
986 return 0;
987
988 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
989 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
990 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
991 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
992 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
993 ex_phy->attached_dev_type,
994 SAS_ADDR(dev->sas_addr),
995 phy_id);
996 return 0;
997 }
998
999 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1000 if (res) {
1001 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1002 SAS_ADDR(ex_phy->attached_sas_addr), res);
1003 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1004 return res;
1005 }
1006
1007 if (sas_ex_join_wide_port(dev, phy_id)) {
1008 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1009 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1010 return res;
1011 }
1012
1013 switch (ex_phy->attached_dev_type) {
1014 case SAS_END_DEVICE:
1015 case SAS_SATA_PENDING:
1016 child = sas_ex_discover_end_dev(dev, phy_id);
1017 break;
1018 case SAS_FANOUT_EXPANDER_DEVICE:
1019 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1020 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1021 SAS_ADDR(ex_phy->attached_sas_addr),
1022 ex_phy->attached_phy_id,
1023 SAS_ADDR(dev->sas_addr),
1024 phy_id);
1025 sas_ex_disable_phy(dev, phy_id);
1026 return res;
1027 } else
1028 memcpy(dev->port->disc.fanout_sas_addr,
1029 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1030 fallthrough;
1031 case SAS_EDGE_EXPANDER_DEVICE:
1032 child = sas_ex_discover_expander(dev, phy_id);
1033 break;
1034 default:
1035 break;
1036 }
1037
1038 if (!child)
1039 pr_notice("ex %016llx phy%02d failed to discover\n",
1040 SAS_ADDR(dev->sas_addr), phy_id);
1041 return res;
1042 }
1043
sas_find_sub_addr(struct domain_device * dev,u8 * sub_addr)1044 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1045 {
1046 struct expander_device *ex = &dev->ex_dev;
1047 int i;
1048
1049 for (i = 0; i < ex->num_phys; i++) {
1050 struct ex_phy *phy = &ex->ex_phy[i];
1051
1052 if (phy->phy_state == PHY_VACANT ||
1053 phy->phy_state == PHY_NOT_PRESENT)
1054 continue;
1055
1056 if (dev_is_expander(phy->attached_dev_type) &&
1057 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1058
1059 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1060
1061 return 1;
1062 }
1063 }
1064 return 0;
1065 }
1066
sas_check_level_subtractive_boundary(struct domain_device * dev)1067 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1068 {
1069 struct expander_device *ex = &dev->ex_dev;
1070 struct domain_device *child;
1071 u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1072
1073 list_for_each_entry(child, &ex->children, siblings) {
1074 if (!dev_is_expander(child->dev_type))
1075 continue;
1076 if (sub_addr[0] == 0) {
1077 sas_find_sub_addr(child, sub_addr);
1078 continue;
1079 } else {
1080 u8 s2[SAS_ADDR_SIZE];
1081
1082 if (sas_find_sub_addr(child, s2) &&
1083 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1084
1085 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1086 SAS_ADDR(dev->sas_addr),
1087 SAS_ADDR(child->sas_addr),
1088 SAS_ADDR(s2),
1089 SAS_ADDR(sub_addr));
1090
1091 sas_ex_disable_port(child, s2);
1092 }
1093 }
1094 }
1095 return 0;
1096 }
1097 /**
1098 * sas_ex_discover_devices - discover devices attached to this expander
1099 * @dev: pointer to the expander domain device
1100 * @single: if you want to do a single phy, else set to -1;
1101 *
1102 * Configure this expander for use with its devices and register the
1103 * devices of this expander.
1104 */
sas_ex_discover_devices(struct domain_device * dev,int single)1105 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1106 {
1107 struct expander_device *ex = &dev->ex_dev;
1108 int i = 0, end = ex->num_phys;
1109 int res = 0;
1110
1111 if (0 <= single && single < end) {
1112 i = single;
1113 end = i+1;
1114 }
1115
1116 for ( ; i < end; i++) {
1117 struct ex_phy *ex_phy = &ex->ex_phy[i];
1118
1119 if (ex_phy->phy_state == PHY_VACANT ||
1120 ex_phy->phy_state == PHY_NOT_PRESENT ||
1121 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1122 continue;
1123
1124 switch (ex_phy->linkrate) {
1125 case SAS_PHY_DISABLED:
1126 case SAS_PHY_RESET_PROBLEM:
1127 case SAS_SATA_PORT_SELECTOR:
1128 continue;
1129 default:
1130 res = sas_ex_discover_dev(dev, i);
1131 if (res)
1132 break;
1133 continue;
1134 }
1135 }
1136
1137 if (!res)
1138 sas_check_level_subtractive_boundary(dev);
1139
1140 return res;
1141 }
1142
sas_check_ex_subtractive_boundary(struct domain_device * dev)1143 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1144 {
1145 struct expander_device *ex = &dev->ex_dev;
1146 int i;
1147 u8 *sub_sas_addr = NULL;
1148
1149 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1150 return 0;
1151
1152 for (i = 0; i < ex->num_phys; i++) {
1153 struct ex_phy *phy = &ex->ex_phy[i];
1154
1155 if (phy->phy_state == PHY_VACANT ||
1156 phy->phy_state == PHY_NOT_PRESENT)
1157 continue;
1158
1159 if (dev_is_expander(phy->attached_dev_type) &&
1160 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1161
1162 if (!sub_sas_addr)
1163 sub_sas_addr = &phy->attached_sas_addr[0];
1164 else if (SAS_ADDR(sub_sas_addr) !=
1165 SAS_ADDR(phy->attached_sas_addr)) {
1166
1167 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1168 SAS_ADDR(dev->sas_addr), i,
1169 SAS_ADDR(phy->attached_sas_addr),
1170 SAS_ADDR(sub_sas_addr));
1171 sas_ex_disable_phy(dev, i);
1172 }
1173 }
1174 }
1175 return 0;
1176 }
1177
sas_print_parent_topology_bug(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1178 static void sas_print_parent_topology_bug(struct domain_device *child,
1179 struct ex_phy *parent_phy,
1180 struct ex_phy *child_phy)
1181 {
1182 static const char *ex_type[] = {
1183 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1184 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1185 };
1186 struct domain_device *parent = child->parent;
1187
1188 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1189 ex_type[parent->dev_type],
1190 SAS_ADDR(parent->sas_addr),
1191 parent_phy->phy_id,
1192
1193 ex_type[child->dev_type],
1194 SAS_ADDR(child->sas_addr),
1195 child_phy->phy_id,
1196
1197 sas_route_char(parent, parent_phy),
1198 sas_route_char(child, child_phy));
1199 }
1200
sas_check_eeds(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1201 static int sas_check_eeds(struct domain_device *child,
1202 struct ex_phy *parent_phy,
1203 struct ex_phy *child_phy)
1204 {
1205 int res = 0;
1206 struct domain_device *parent = child->parent;
1207
1208 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1209 res = -ENODEV;
1210 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1211 SAS_ADDR(parent->sas_addr),
1212 parent_phy->phy_id,
1213 SAS_ADDR(child->sas_addr),
1214 child_phy->phy_id,
1215 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1216 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1217 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1218 SAS_ADDR_SIZE);
1219 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1220 SAS_ADDR_SIZE);
1221 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1222 SAS_ADDR(parent->sas_addr)) ||
1223 (SAS_ADDR(parent->port->disc.eeds_a) ==
1224 SAS_ADDR(child->sas_addr)))
1225 &&
1226 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1227 SAS_ADDR(parent->sas_addr)) ||
1228 (SAS_ADDR(parent->port->disc.eeds_b) ==
1229 SAS_ADDR(child->sas_addr))))
1230 ;
1231 else {
1232 res = -ENODEV;
1233 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1234 SAS_ADDR(parent->sas_addr),
1235 parent_phy->phy_id,
1236 SAS_ADDR(child->sas_addr),
1237 child_phy->phy_id);
1238 }
1239
1240 return res;
1241 }
1242
1243 /* Here we spill over 80 columns. It is intentional.
1244 */
sas_check_parent_topology(struct domain_device * child)1245 static int sas_check_parent_topology(struct domain_device *child)
1246 {
1247 struct expander_device *child_ex = &child->ex_dev;
1248 struct expander_device *parent_ex;
1249 int i;
1250 int res = 0;
1251
1252 if (!child->parent)
1253 return 0;
1254
1255 if (!dev_is_expander(child->parent->dev_type))
1256 return 0;
1257
1258 parent_ex = &child->parent->ex_dev;
1259
1260 for (i = 0; i < parent_ex->num_phys; i++) {
1261 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1262 struct ex_phy *child_phy;
1263
1264 if (parent_phy->phy_state == PHY_VACANT ||
1265 parent_phy->phy_state == PHY_NOT_PRESENT)
1266 continue;
1267
1268 if (!sas_phy_match_dev_addr(child, parent_phy))
1269 continue;
1270
1271 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1272
1273 switch (child->parent->dev_type) {
1274 case SAS_EDGE_EXPANDER_DEVICE:
1275 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1276 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1277 child_phy->routing_attr != TABLE_ROUTING) {
1278 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1279 res = -ENODEV;
1280 }
1281 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1282 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1283 res = sas_check_eeds(child, parent_phy, child_phy);
1284 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1285 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1286 res = -ENODEV;
1287 }
1288 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1289 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1290 (child_phy->routing_attr == TABLE_ROUTING &&
1291 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1292 /* All good */;
1293 } else {
1294 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1295 res = -ENODEV;
1296 }
1297 }
1298 break;
1299 case SAS_FANOUT_EXPANDER_DEVICE:
1300 if (parent_phy->routing_attr != TABLE_ROUTING ||
1301 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1302 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1303 res = -ENODEV;
1304 }
1305 break;
1306 default:
1307 break;
1308 }
1309 }
1310
1311 return res;
1312 }
1313
1314 #define RRI_REQ_SIZE 16
1315 #define RRI_RESP_SIZE 44
1316
sas_configure_present(struct domain_device * dev,int phy_id,u8 * sas_addr,int * index,int * present)1317 static int sas_configure_present(struct domain_device *dev, int phy_id,
1318 u8 *sas_addr, int *index, int *present)
1319 {
1320 int i, res = 0;
1321 struct expander_device *ex = &dev->ex_dev;
1322 struct ex_phy *phy = &ex->ex_phy[phy_id];
1323 u8 *rri_req;
1324 u8 *rri_resp;
1325
1326 *present = 0;
1327 *index = 0;
1328
1329 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1330 if (!rri_req)
1331 return -ENOMEM;
1332
1333 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1334 if (!rri_resp) {
1335 kfree(rri_req);
1336 return -ENOMEM;
1337 }
1338
1339 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1340 rri_req[9] = phy_id;
1341
1342 for (i = 0; i < ex->max_route_indexes ; i++) {
1343 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1344 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1345 RRI_RESP_SIZE);
1346 if (res)
1347 goto out;
1348 res = rri_resp[2];
1349 if (res == SMP_RESP_NO_INDEX) {
1350 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1351 SAS_ADDR(dev->sas_addr), phy_id, i);
1352 goto out;
1353 } else if (res != SMP_RESP_FUNC_ACC) {
1354 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1355 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1356 i, res);
1357 goto out;
1358 }
1359 if (SAS_ADDR(sas_addr) != 0) {
1360 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1361 *index = i;
1362 if ((rri_resp[12] & 0x80) == 0x80)
1363 *present = 0;
1364 else
1365 *present = 1;
1366 goto out;
1367 } else if (SAS_ADDR(rri_resp+16) == 0) {
1368 *index = i;
1369 *present = 0;
1370 goto out;
1371 }
1372 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1373 phy->last_da_index < i) {
1374 phy->last_da_index = i;
1375 *index = i;
1376 *present = 0;
1377 goto out;
1378 }
1379 }
1380 res = -1;
1381 out:
1382 kfree(rri_req);
1383 kfree(rri_resp);
1384 return res;
1385 }
1386
1387 #define CRI_REQ_SIZE 44
1388 #define CRI_RESP_SIZE 8
1389
sas_configure_set(struct domain_device * dev,int phy_id,u8 * sas_addr,int index,int include)1390 static int sas_configure_set(struct domain_device *dev, int phy_id,
1391 u8 *sas_addr, int index, int include)
1392 {
1393 int res;
1394 u8 *cri_req;
1395 u8 *cri_resp;
1396
1397 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1398 if (!cri_req)
1399 return -ENOMEM;
1400
1401 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1402 if (!cri_resp) {
1403 kfree(cri_req);
1404 return -ENOMEM;
1405 }
1406
1407 cri_req[1] = SMP_CONF_ROUTE_INFO;
1408 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1409 cri_req[9] = phy_id;
1410 if (SAS_ADDR(sas_addr) == 0 || !include)
1411 cri_req[12] |= 0x80;
1412 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1413
1414 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1415 CRI_RESP_SIZE);
1416 if (res)
1417 goto out;
1418 res = cri_resp[2];
1419 if (res == SMP_RESP_NO_INDEX) {
1420 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1421 SAS_ADDR(dev->sas_addr), phy_id, index);
1422 }
1423 out:
1424 kfree(cri_req);
1425 kfree(cri_resp);
1426 return res;
1427 }
1428
sas_configure_phy(struct domain_device * dev,int phy_id,u8 * sas_addr,int include)1429 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1430 u8 *sas_addr, int include)
1431 {
1432 int index;
1433 int present;
1434 int res;
1435
1436 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1437 if (res)
1438 return res;
1439 if (include ^ present)
1440 return sas_configure_set(dev, phy_id, sas_addr, index,
1441 include);
1442
1443 return res;
1444 }
1445
1446 /**
1447 * sas_configure_parent - configure routing table of parent
1448 * @parent: parent expander
1449 * @child: child expander
1450 * @sas_addr: SAS port identifier of device directly attached to child
1451 * @include: whether or not to include @child in the expander routing table
1452 */
sas_configure_parent(struct domain_device * parent,struct domain_device * child,u8 * sas_addr,int include)1453 static int sas_configure_parent(struct domain_device *parent,
1454 struct domain_device *child,
1455 u8 *sas_addr, int include)
1456 {
1457 struct expander_device *ex_parent = &parent->ex_dev;
1458 int res = 0;
1459 int i;
1460
1461 if (parent->parent) {
1462 res = sas_configure_parent(parent->parent, parent, sas_addr,
1463 include);
1464 if (res)
1465 return res;
1466 }
1467
1468 if (ex_parent->conf_route_table == 0) {
1469 pr_debug("ex %016llx has self-configuring routing table\n",
1470 SAS_ADDR(parent->sas_addr));
1471 return 0;
1472 }
1473
1474 for (i = 0; i < ex_parent->num_phys; i++) {
1475 struct ex_phy *phy = &ex_parent->ex_phy[i];
1476
1477 if ((phy->routing_attr == TABLE_ROUTING) &&
1478 sas_phy_match_dev_addr(child, phy)) {
1479 res = sas_configure_phy(parent, i, sas_addr, include);
1480 if (res)
1481 return res;
1482 }
1483 }
1484
1485 return res;
1486 }
1487
1488 /**
1489 * sas_configure_routing - configure routing
1490 * @dev: expander device
1491 * @sas_addr: port identifier of device directly attached to the expander device
1492 */
sas_configure_routing(struct domain_device * dev,u8 * sas_addr)1493 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1494 {
1495 if (dev->parent)
1496 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1497 return 0;
1498 }
1499
sas_disable_routing(struct domain_device * dev,u8 * sas_addr)1500 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1501 {
1502 if (dev->parent)
1503 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1504 return 0;
1505 }
1506
1507 /**
1508 * sas_discover_expander - expander discovery
1509 * @dev: pointer to expander domain device
1510 *
1511 * See comment in sas_discover_sata().
1512 */
sas_discover_expander(struct domain_device * dev)1513 static int sas_discover_expander(struct domain_device *dev)
1514 {
1515 int res;
1516
1517 res = sas_notify_lldd_dev_found(dev);
1518 if (res)
1519 return res;
1520
1521 res = sas_ex_general(dev);
1522 if (res)
1523 goto out_err;
1524 res = sas_ex_manuf_info(dev);
1525 if (res)
1526 goto out_err;
1527
1528 res = sas_expander_discover(dev);
1529 if (res) {
1530 pr_warn("expander %016llx discovery failed(0x%x)\n",
1531 SAS_ADDR(dev->sas_addr), res);
1532 goto out_err;
1533 }
1534
1535 sas_check_ex_subtractive_boundary(dev);
1536 res = sas_check_parent_topology(dev);
1537 if (res)
1538 goto out_err;
1539 return 0;
1540 out_err:
1541 sas_notify_lldd_dev_gone(dev);
1542 return res;
1543 }
1544
sas_ex_level_discovery(struct asd_sas_port * port,const int level)1545 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1546 {
1547 int res = 0;
1548 struct domain_device *dev;
1549
1550 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1551 if (dev_is_expander(dev->dev_type)) {
1552 struct sas_expander_device *ex =
1553 rphy_to_expander_device(dev->rphy);
1554
1555 if (level == ex->level)
1556 res = sas_ex_discover_devices(dev, -1);
1557 else if (level > 0)
1558 res = sas_ex_discover_devices(port->port_dev, -1);
1559
1560 }
1561 }
1562
1563 return res;
1564 }
1565
sas_ex_bfs_disc(struct asd_sas_port * port)1566 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1567 {
1568 int res;
1569 int level;
1570
1571 do {
1572 level = port->disc.max_level;
1573 res = sas_ex_level_discovery(port, level);
1574 mb();
1575 } while (level < port->disc.max_level);
1576
1577 return res;
1578 }
1579
sas_discover_root_expander(struct domain_device * dev)1580 int sas_discover_root_expander(struct domain_device *dev)
1581 {
1582 int res;
1583 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1584
1585 res = sas_rphy_add(dev->rphy);
1586 if (res)
1587 goto out_err;
1588
1589 ex->level = dev->port->disc.max_level; /* 0 */
1590 res = sas_discover_expander(dev);
1591 if (res)
1592 goto out_err2;
1593
1594 sas_ex_bfs_disc(dev->port);
1595
1596 return res;
1597
1598 out_err2:
1599 sas_rphy_remove(dev->rphy);
1600 out_err:
1601 return res;
1602 }
1603
1604 /* ---------- Domain revalidation ---------- */
1605
sas_get_phy_discover(struct domain_device * dev,int phy_id,struct smp_disc_resp * disc_resp)1606 static int sas_get_phy_discover(struct domain_device *dev,
1607 int phy_id, struct smp_disc_resp *disc_resp)
1608 {
1609 int res;
1610 u8 *disc_req;
1611
1612 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1613 if (!disc_req)
1614 return -ENOMEM;
1615
1616 disc_req[1] = SMP_DISCOVER;
1617 disc_req[9] = phy_id;
1618
1619 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1620 disc_resp, DISCOVER_RESP_SIZE);
1621 if (res)
1622 goto out;
1623 if (disc_resp->result != SMP_RESP_FUNC_ACC)
1624 res = disc_resp->result;
1625 out:
1626 kfree(disc_req);
1627 return res;
1628 }
1629
sas_get_phy_change_count(struct domain_device * dev,int phy_id,int * pcc)1630 static int sas_get_phy_change_count(struct domain_device *dev,
1631 int phy_id, int *pcc)
1632 {
1633 int res;
1634 struct smp_disc_resp *disc_resp;
1635
1636 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1637 if (!disc_resp)
1638 return -ENOMEM;
1639
1640 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1641 if (!res)
1642 *pcc = disc_resp->disc.change_count;
1643
1644 kfree(disc_resp);
1645 return res;
1646 }
1647
sas_get_phy_attached_dev(struct domain_device * dev,int phy_id,u8 * sas_addr,enum sas_device_type * type)1648 int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1649 u8 *sas_addr, enum sas_device_type *type)
1650 {
1651 int res;
1652 struct smp_disc_resp *disc_resp;
1653
1654 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1655 if (!disc_resp)
1656 return -ENOMEM;
1657
1658 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1659 if (res == 0) {
1660 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1661 SAS_ADDR_SIZE);
1662 *type = to_dev_type(&disc_resp->disc);
1663 if (*type == 0)
1664 memset(sas_addr, 0, SAS_ADDR_SIZE);
1665 }
1666 kfree(disc_resp);
1667 return res;
1668 }
1669
sas_find_bcast_phy(struct domain_device * dev,int * phy_id,int from_phy,bool update)1670 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1671 int from_phy, bool update)
1672 {
1673 struct expander_device *ex = &dev->ex_dev;
1674 int res = 0;
1675 int i;
1676
1677 for (i = from_phy; i < ex->num_phys; i++) {
1678 int phy_change_count = 0;
1679
1680 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1681 switch (res) {
1682 case SMP_RESP_PHY_VACANT:
1683 case SMP_RESP_NO_PHY:
1684 continue;
1685 case SMP_RESP_FUNC_ACC:
1686 break;
1687 default:
1688 return res;
1689 }
1690
1691 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1692 if (update)
1693 ex->ex_phy[i].phy_change_count =
1694 phy_change_count;
1695 *phy_id = i;
1696 return 0;
1697 }
1698 }
1699 return 0;
1700 }
1701
sas_get_ex_change_count(struct domain_device * dev,int * ecc)1702 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1703 {
1704 int res;
1705 u8 *rg_req;
1706 struct smp_rg_resp *rg_resp;
1707
1708 rg_req = alloc_smp_req(RG_REQ_SIZE);
1709 if (!rg_req)
1710 return -ENOMEM;
1711
1712 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1713 if (!rg_resp) {
1714 kfree(rg_req);
1715 return -ENOMEM;
1716 }
1717
1718 rg_req[1] = SMP_REPORT_GENERAL;
1719
1720 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1721 RG_RESP_SIZE);
1722 if (res)
1723 goto out;
1724 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1725 res = rg_resp->result;
1726 goto out;
1727 }
1728
1729 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1730 out:
1731 kfree(rg_resp);
1732 kfree(rg_req);
1733 return res;
1734 }
1735 /**
1736 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1737 * @dev:domain device to be detect.
1738 * @src_dev: the device which originated BROADCAST(CHANGE).
1739 *
1740 * Add self-configuration expander support. Suppose two expander cascading,
1741 * when the first level expander is self-configuring, hotplug the disks in
1742 * second level expander, BROADCAST(CHANGE) will not only be originated
1743 * in the second level expander, but also be originated in the first level
1744 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1745 * expander changed count in two level expanders will all increment at least
1746 * once, but the phy which chang count has changed is the source device which
1747 * we concerned.
1748 */
1749
sas_find_bcast_dev(struct domain_device * dev,struct domain_device ** src_dev)1750 static int sas_find_bcast_dev(struct domain_device *dev,
1751 struct domain_device **src_dev)
1752 {
1753 struct expander_device *ex = &dev->ex_dev;
1754 int ex_change_count = -1;
1755 int phy_id = -1;
1756 int res;
1757 struct domain_device *ch;
1758
1759 res = sas_get_ex_change_count(dev, &ex_change_count);
1760 if (res)
1761 goto out;
1762 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1763 /* Just detect if this expander phys phy change count changed,
1764 * in order to determine if this expander originate BROADCAST,
1765 * and do not update phy change count field in our structure.
1766 */
1767 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1768 if (phy_id != -1) {
1769 *src_dev = dev;
1770 ex->ex_change_count = ex_change_count;
1771 pr_info("ex %016llx phy%02d change count has changed\n",
1772 SAS_ADDR(dev->sas_addr), phy_id);
1773 return res;
1774 } else
1775 pr_info("ex %016llx phys DID NOT change\n",
1776 SAS_ADDR(dev->sas_addr));
1777 }
1778 list_for_each_entry(ch, &ex->children, siblings) {
1779 if (dev_is_expander(ch->dev_type)) {
1780 res = sas_find_bcast_dev(ch, src_dev);
1781 if (*src_dev)
1782 return res;
1783 }
1784 }
1785 out:
1786 return res;
1787 }
1788
sas_unregister_ex_tree(struct asd_sas_port * port,struct domain_device * dev)1789 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1790 {
1791 struct expander_device *ex = &dev->ex_dev;
1792 struct domain_device *child, *n;
1793
1794 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1795 set_bit(SAS_DEV_GONE, &child->state);
1796 if (dev_is_expander(child->dev_type))
1797 sas_unregister_ex_tree(port, child);
1798 else
1799 sas_unregister_dev(port, child);
1800 }
1801 sas_unregister_dev(port, dev);
1802 }
1803
sas_unregister_devs_sas_addr(struct domain_device * parent,int phy_id,bool last)1804 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1805 int phy_id, bool last)
1806 {
1807 struct expander_device *ex_dev = &parent->ex_dev;
1808 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1809 struct domain_device *child, *n, *found = NULL;
1810 if (last) {
1811 list_for_each_entry_safe(child, n,
1812 &ex_dev->children, siblings) {
1813 if (sas_phy_match_dev_addr(child, phy)) {
1814 set_bit(SAS_DEV_GONE, &child->state);
1815 if (dev_is_expander(child->dev_type))
1816 sas_unregister_ex_tree(parent->port, child);
1817 else
1818 sas_unregister_dev(parent->port, child);
1819 found = child;
1820 break;
1821 }
1822 }
1823 sas_disable_routing(parent, phy->attached_sas_addr);
1824 }
1825 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1826 if (phy->port) {
1827 sas_port_delete_phy(phy->port, phy->phy);
1828 sas_device_set_phy(found, phy->port);
1829 if (phy->port->num_phys == 0)
1830 list_add_tail(&phy->port->del_list,
1831 &parent->port->sas_port_del_list);
1832 phy->port = NULL;
1833 }
1834 }
1835
sas_discover_bfs_by_root_level(struct domain_device * root,const int level)1836 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1837 const int level)
1838 {
1839 struct expander_device *ex_root = &root->ex_dev;
1840 struct domain_device *child;
1841 int res = 0;
1842
1843 list_for_each_entry(child, &ex_root->children, siblings) {
1844 if (dev_is_expander(child->dev_type)) {
1845 struct sas_expander_device *ex =
1846 rphy_to_expander_device(child->rphy);
1847
1848 if (level > ex->level)
1849 res = sas_discover_bfs_by_root_level(child,
1850 level);
1851 else if (level == ex->level)
1852 res = sas_ex_discover_devices(child, -1);
1853 }
1854 }
1855 return res;
1856 }
1857
sas_discover_bfs_by_root(struct domain_device * dev)1858 static int sas_discover_bfs_by_root(struct domain_device *dev)
1859 {
1860 int res;
1861 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1862 int level = ex->level+1;
1863
1864 res = sas_ex_discover_devices(dev, -1);
1865 if (res)
1866 goto out;
1867 do {
1868 res = sas_discover_bfs_by_root_level(dev, level);
1869 mb();
1870 level += 1;
1871 } while (level <= dev->port->disc.max_level);
1872 out:
1873 return res;
1874 }
1875
sas_discover_new(struct domain_device * dev,int phy_id)1876 static int sas_discover_new(struct domain_device *dev, int phy_id)
1877 {
1878 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1879 struct domain_device *child;
1880 int res;
1881
1882 pr_debug("ex %016llx phy%02d new device attached\n",
1883 SAS_ADDR(dev->sas_addr), phy_id);
1884 res = sas_ex_phy_discover(dev, phy_id);
1885 if (res)
1886 return res;
1887
1888 if (sas_ex_join_wide_port(dev, phy_id))
1889 return 0;
1890
1891 res = sas_ex_discover_devices(dev, phy_id);
1892 if (res)
1893 return res;
1894 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1895 if (sas_phy_match_dev_addr(child, ex_phy)) {
1896 if (dev_is_expander(child->dev_type))
1897 res = sas_discover_bfs_by_root(child);
1898 break;
1899 }
1900 }
1901 return res;
1902 }
1903
dev_type_flutter(enum sas_device_type new,enum sas_device_type old)1904 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1905 {
1906 if (old == new)
1907 return true;
1908
1909 /* treat device directed resets as flutter, if we went
1910 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1911 */
1912 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1913 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1914 return true;
1915
1916 return false;
1917 }
1918
sas_rediscover_dev(struct domain_device * dev,int phy_id,bool last,int sibling)1919 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1920 bool last, int sibling)
1921 {
1922 struct expander_device *ex = &dev->ex_dev;
1923 struct ex_phy *phy = &ex->ex_phy[phy_id];
1924 enum sas_device_type type = SAS_PHY_UNUSED;
1925 u8 sas_addr[SAS_ADDR_SIZE];
1926 char msg[80] = "";
1927 int res;
1928
1929 if (!last)
1930 sprintf(msg, ", part of a wide port with phy%02d", sibling);
1931
1932 pr_debug("ex %016llx rediscovering phy%02d%s\n",
1933 SAS_ADDR(dev->sas_addr), phy_id, msg);
1934
1935 memset(sas_addr, 0, SAS_ADDR_SIZE);
1936 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1937 switch (res) {
1938 case SMP_RESP_NO_PHY:
1939 phy->phy_state = PHY_NOT_PRESENT;
1940 sas_unregister_devs_sas_addr(dev, phy_id, last);
1941 return res;
1942 case SMP_RESP_PHY_VACANT:
1943 phy->phy_state = PHY_VACANT;
1944 sas_unregister_devs_sas_addr(dev, phy_id, last);
1945 return res;
1946 case SMP_RESP_FUNC_ACC:
1947 break;
1948 case -ECOMM:
1949 break;
1950 default:
1951 return res;
1952 }
1953
1954 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
1955 phy->phy_state = PHY_EMPTY;
1956 sas_unregister_devs_sas_addr(dev, phy_id, last);
1957 /*
1958 * Even though the PHY is empty, for convenience we discover
1959 * the PHY to update the PHY info, like negotiated linkrate.
1960 */
1961 sas_ex_phy_discover(dev, phy_id);
1962 return res;
1963 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
1964 dev_type_flutter(type, phy->attached_dev_type)) {
1965 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
1966 char *action = "";
1967
1968 sas_ex_phy_discover(dev, phy_id);
1969
1970 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
1971 action = ", needs recovery";
1972 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
1973 SAS_ADDR(dev->sas_addr), phy_id, action);
1974 return res;
1975 }
1976
1977 /* we always have to delete the old device when we went here */
1978 pr_info("ex %016llx phy%02d replace %016llx\n",
1979 SAS_ADDR(dev->sas_addr), phy_id,
1980 SAS_ADDR(phy->attached_sas_addr));
1981 sas_unregister_devs_sas_addr(dev, phy_id, last);
1982
1983 return sas_discover_new(dev, phy_id);
1984 }
1985
1986 /**
1987 * sas_rediscover - revalidate the domain.
1988 * @dev:domain device to be detect.
1989 * @phy_id: the phy id will be detected.
1990 *
1991 * NOTE: this process _must_ quit (return) as soon as any connection
1992 * errors are encountered. Connection recovery is done elsewhere.
1993 * Discover process only interrogates devices in order to discover the
1994 * domain.For plugging out, we un-register the device only when it is
1995 * the last phy in the port, for other phys in this port, we just delete it
1996 * from the port.For inserting, we do discovery when it is the
1997 * first phy,for other phys in this port, we add it to the port to
1998 * forming the wide-port.
1999 */
sas_rediscover(struct domain_device * dev,const int phy_id)2000 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2001 {
2002 struct expander_device *ex = &dev->ex_dev;
2003 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2004 int res = 0;
2005 int i;
2006 bool last = true; /* is this the last phy of the port */
2007
2008 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2009 SAS_ADDR(dev->sas_addr), phy_id);
2010
2011 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2012 for (i = 0; i < ex->num_phys; i++) {
2013 struct ex_phy *phy = &ex->ex_phy[i];
2014
2015 if (i == phy_id)
2016 continue;
2017 if (sas_phy_addr_match(phy, changed_phy)) {
2018 last = false;
2019 break;
2020 }
2021 }
2022 res = sas_rediscover_dev(dev, phy_id, last, i);
2023 } else
2024 res = sas_discover_new(dev, phy_id);
2025 return res;
2026 }
2027
2028 /**
2029 * sas_ex_revalidate_domain - revalidate the domain
2030 * @port_dev: port domain device.
2031 *
2032 * NOTE: this process _must_ quit (return) as soon as any connection
2033 * errors are encountered. Connection recovery is done elsewhere.
2034 * Discover process only interrogates devices in order to discover the
2035 * domain.
2036 */
sas_ex_revalidate_domain(struct domain_device * port_dev)2037 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2038 {
2039 int res;
2040 struct domain_device *dev = NULL;
2041
2042 res = sas_find_bcast_dev(port_dev, &dev);
2043 if (res == 0 && dev) {
2044 struct expander_device *ex = &dev->ex_dev;
2045 int i = 0, phy_id;
2046
2047 do {
2048 phy_id = -1;
2049 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2050 if (phy_id == -1)
2051 break;
2052 res = sas_rediscover(dev, phy_id);
2053 i = phy_id + 1;
2054 } while (i < ex->num_phys);
2055 }
2056 return res;
2057 }
2058
sas_find_attached_phy_id(struct expander_device * ex_dev,struct domain_device * dev)2059 int sas_find_attached_phy_id(struct expander_device *ex_dev,
2060 struct domain_device *dev)
2061 {
2062 struct ex_phy *phy;
2063 int phy_id;
2064
2065 for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2066 phy = &ex_dev->ex_phy[phy_id];
2067 if (sas_phy_match_dev_addr(dev, phy))
2068 return phy_id;
2069 }
2070
2071 return -ENODEV;
2072 }
2073 EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2074
sas_smp_handler(struct bsg_job * job,struct Scsi_Host * shost,struct sas_rphy * rphy)2075 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2076 struct sas_rphy *rphy)
2077 {
2078 struct domain_device *dev;
2079 unsigned int rcvlen = 0;
2080 int ret = -EINVAL;
2081
2082 /* no rphy means no smp target support (ie aic94xx host) */
2083 if (!rphy)
2084 return sas_smp_host_handler(job, shost);
2085
2086 switch (rphy->identify.device_type) {
2087 case SAS_EDGE_EXPANDER_DEVICE:
2088 case SAS_FANOUT_EXPANDER_DEVICE:
2089 break;
2090 default:
2091 pr_err("%s: can we send a smp request to a device?\n",
2092 __func__);
2093 goto out;
2094 }
2095
2096 dev = sas_find_dev_by_rphy(rphy);
2097 if (!dev) {
2098 pr_err("%s: fail to find a domain_device?\n", __func__);
2099 goto out;
2100 }
2101
2102 /* do we need to support multiple segments? */
2103 if (job->request_payload.sg_cnt > 1 ||
2104 job->reply_payload.sg_cnt > 1) {
2105 pr_info("%s: multiple segments req %u, rsp %u\n",
2106 __func__, job->request_payload.payload_len,
2107 job->reply_payload.payload_len);
2108 goto out;
2109 }
2110
2111 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2112 job->reply_payload.sg_list);
2113 if (ret >= 0) {
2114 /* bsg_job_done() requires the length received */
2115 rcvlen = job->reply_payload.payload_len - ret;
2116 ret = 0;
2117 }
2118
2119 out:
2120 bsg_job_done(job, ret, rcvlen);
2121 }
2122