1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define SCSI_INLINE_PROT_SG_CNT 0
50 #define SCSI_INLINE_SG_CNT 0
51 #else
52 #define SCSI_INLINE_PROT_SG_CNT 1
53 #define SCSI_INLINE_SG_CNT 2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 int ret = 0;
64
65 mutex_lock(&scsi_sense_cache_mutex);
66 if (!scsi_sense_cache) {
67 scsi_sense_cache =
68 kmem_cache_create_usercopy("scsi_sense_cache",
69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 0, SCSI_SENSE_BUFFERSIZE, NULL);
71 if (!scsi_sense_cache)
72 ret = -ENOMEM;
73 }
74 mutex_unlock(&scsi_sense_cache_mutex);
75 return ret;
76 }
77
78 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 struct Scsi_Host *host = cmd->device->host;
82 struct scsi_device *device = cmd->device;
83 struct scsi_target *starget = scsi_target(device);
84
85 /*
86 * Set the appropriate busy bit for the device/host.
87 *
88 * If the host/device isn't busy, assume that something actually
89 * completed, and that we should be able to queue a command now.
90 *
91 * Note that the prior mid-layer assumption that any host could
92 * always queue at least one command is now broken. The mid-layer
93 * will implement a user specifiable stall (see
94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 * if a command is requeued with no other commands outstanding
96 * either for the device or for the host.
97 */
98 switch (reason) {
99 case SCSI_MLQUEUE_HOST_BUSY:
100 atomic_set(&host->host_blocked, host->max_host_blocked);
101 break;
102 case SCSI_MLQUEUE_DEVICE_BUSY:
103 case SCSI_MLQUEUE_EH_RETRY:
104 atomic_set(&device->device_blocked,
105 device->max_device_blocked);
106 break;
107 case SCSI_MLQUEUE_TARGET_BUSY:
108 atomic_set(&starget->target_blocked,
109 starget->max_target_blocked);
110 break;
111 }
112 }
113
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 struct request *rq = scsi_cmd_to_rq(cmd);
117
118 if (rq->rq_flags & RQF_DONTPREP) {
119 rq->rq_flags &= ~RQF_DONTPREP;
120 scsi_mq_uninit_cmd(cmd);
121 } else {
122 WARN_ON_ONCE(true);
123 }
124
125 if (msecs) {
126 blk_mq_requeue_request(rq, false);
127 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 } else
129 blk_mq_requeue_request(rq, true);
130 }
131
132 /**
133 * __scsi_queue_insert - private queue insertion
134 * @cmd: The SCSI command being requeued
135 * @reason: The reason for the requeue
136 * @unbusy: Whether the queue should be unbusied
137 *
138 * This is a private queue insertion. The public interface
139 * scsi_queue_insert() always assumes the queue should be unbusied
140 * because it's always called before the completion. This function is
141 * for a requeue after completion, which should only occur in this
142 * file.
143 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
145 {
146 struct scsi_device *device = cmd->device;
147
148 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149 "Inserting command %p into mlqueue\n", cmd));
150
151 scsi_set_blocked(cmd, reason);
152
153 /*
154 * Decrement the counters, since these commands are no longer
155 * active on the host/device.
156 */
157 if (unbusy)
158 scsi_device_unbusy(device, cmd);
159
160 /*
161 * Requeue this command. It will go before all other commands
162 * that are already in the queue. Schedule requeue work under
163 * lock such that the kblockd_schedule_work() call happens
164 * before blk_mq_destroy_queue() finishes.
165 */
166 cmd->result = 0;
167
168 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
169 }
170
171 /**
172 * scsi_queue_insert - Reinsert a command in the queue.
173 * @cmd: command that we are adding to queue.
174 * @reason: why we are inserting command to queue.
175 *
176 * We do this for one of two cases. Either the host is busy and it cannot accept
177 * any more commands for the time being, or the device returned QUEUE_FULL and
178 * can accept no more commands.
179 *
180 * Context: This could be called either from an interrupt context or a normal
181 * process context.
182 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
184 {
185 __scsi_queue_insert(cmd, reason, true);
186 }
187
188 /**
189 * scsi_execute_cmd - insert request and wait for the result
190 * @sdev: scsi_device
191 * @cmd: scsi command
192 * @opf: block layer request cmd_flags
193 * @buffer: data buffer
194 * @bufflen: len of buffer
195 * @timeout: request timeout in HZ
196 * @retries: number of times to retry request
197 * @args: Optional args. See struct definition for field descriptions
198 *
199 * Returns the scsi_cmnd result field if a command was executed, or a negative
200 * Linux error code if we didn't get that far.
201 */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int retries,const struct scsi_exec_args * args)202 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
203 blk_opf_t opf, void *buffer, unsigned int bufflen,
204 int timeout, int retries,
205 const struct scsi_exec_args *args)
206 {
207 static const struct scsi_exec_args default_args;
208 struct request *req;
209 struct scsi_cmnd *scmd;
210 int ret;
211
212 if (!args)
213 args = &default_args;
214 else if (WARN_ON_ONCE(args->sense &&
215 args->sense_len != SCSI_SENSE_BUFFERSIZE))
216 return -EINVAL;
217
218 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
219 if (IS_ERR(req))
220 return PTR_ERR(req);
221
222 if (bufflen) {
223 ret = blk_rq_map_kern(sdev->request_queue, req,
224 buffer, bufflen, GFP_NOIO);
225 if (ret)
226 goto out;
227 }
228 scmd = blk_mq_rq_to_pdu(req);
229 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
230 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
231 scmd->allowed = retries;
232 scmd->flags |= args->scmd_flags;
233 req->timeout = timeout;
234 req->rq_flags |= RQF_QUIET;
235
236 /*
237 * head injection *required* here otherwise quiesce won't work
238 */
239 blk_execute_rq(req, true);
240
241 /*
242 * Some devices (USB mass-storage in particular) may transfer
243 * garbage data together with a residue indicating that the data
244 * is invalid. Prevent the garbage from being misinterpreted
245 * and prevent security leaks by zeroing out the excess data.
246 */
247 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
248 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
249
250 if (args->resid)
251 *args->resid = scmd->resid_len;
252 if (args->sense)
253 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
254 if (args->sshdr)
255 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
256 args->sshdr);
257
258 ret = scmd->result;
259 out:
260 blk_mq_free_request(req);
261
262 return ret;
263 }
264 EXPORT_SYMBOL(scsi_execute_cmd);
265
266 /*
267 * Wake up the error handler if necessary. Avoid as follows that the error
268 * handler is not woken up if host in-flight requests number ==
269 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
270 * with an RCU read lock in this function to ensure that this function in
271 * its entirety either finishes before scsi_eh_scmd_add() increases the
272 * host_failed counter or that it notices the shost state change made by
273 * scsi_eh_scmd_add().
274 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
276 {
277 unsigned long flags;
278
279 rcu_read_lock();
280 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
281 if (unlikely(scsi_host_in_recovery(shost))) {
282 spin_lock_irqsave(shost->host_lock, flags);
283 if (shost->host_failed || shost->host_eh_scheduled)
284 scsi_eh_wakeup(shost);
285 spin_unlock_irqrestore(shost->host_lock, flags);
286 }
287 rcu_read_unlock();
288 }
289
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)290 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
291 {
292 struct Scsi_Host *shost = sdev->host;
293 struct scsi_target *starget = scsi_target(sdev);
294
295 scsi_dec_host_busy(shost, cmd);
296
297 if (starget->can_queue > 0)
298 atomic_dec(&starget->target_busy);
299
300 sbitmap_put(&sdev->budget_map, cmd->budget_token);
301 cmd->budget_token = -1;
302 }
303
scsi_kick_queue(struct request_queue * q)304 static void scsi_kick_queue(struct request_queue *q)
305 {
306 blk_mq_run_hw_queues(q, false);
307 }
308
309 /*
310 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
311 * interrupts disabled.
312 */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)313 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
314 {
315 struct scsi_device *current_sdev = data;
316
317 if (sdev != current_sdev)
318 blk_mq_run_hw_queues(sdev->request_queue, true);
319 }
320
321 /*
322 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
323 * and call blk_run_queue for all the scsi_devices on the target -
324 * including current_sdev first.
325 *
326 * Called with *no* scsi locks held.
327 */
scsi_single_lun_run(struct scsi_device * current_sdev)328 static void scsi_single_lun_run(struct scsi_device *current_sdev)
329 {
330 struct Scsi_Host *shost = current_sdev->host;
331 struct scsi_target *starget = scsi_target(current_sdev);
332 unsigned long flags;
333
334 spin_lock_irqsave(shost->host_lock, flags);
335 starget->starget_sdev_user = NULL;
336 spin_unlock_irqrestore(shost->host_lock, flags);
337
338 /*
339 * Call blk_run_queue for all LUNs on the target, starting with
340 * current_sdev. We race with others (to set starget_sdev_user),
341 * but in most cases, we will be first. Ideally, each LU on the
342 * target would get some limited time or requests on the target.
343 */
344 scsi_kick_queue(current_sdev->request_queue);
345
346 spin_lock_irqsave(shost->host_lock, flags);
347 if (!starget->starget_sdev_user)
348 __starget_for_each_device(starget, current_sdev,
349 scsi_kick_sdev_queue);
350 spin_unlock_irqrestore(shost->host_lock, flags);
351 }
352
scsi_device_is_busy(struct scsi_device * sdev)353 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
354 {
355 if (scsi_device_busy(sdev) >= sdev->queue_depth)
356 return true;
357 if (atomic_read(&sdev->device_blocked) > 0)
358 return true;
359 return false;
360 }
361
scsi_target_is_busy(struct scsi_target * starget)362 static inline bool scsi_target_is_busy(struct scsi_target *starget)
363 {
364 if (starget->can_queue > 0) {
365 if (atomic_read(&starget->target_busy) >= starget->can_queue)
366 return true;
367 if (atomic_read(&starget->target_blocked) > 0)
368 return true;
369 }
370 return false;
371 }
372
scsi_host_is_busy(struct Scsi_Host * shost)373 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
374 {
375 if (atomic_read(&shost->host_blocked) > 0)
376 return true;
377 if (shost->host_self_blocked)
378 return true;
379 return false;
380 }
381
scsi_starved_list_run(struct Scsi_Host * shost)382 static void scsi_starved_list_run(struct Scsi_Host *shost)
383 {
384 LIST_HEAD(starved_list);
385 struct scsi_device *sdev;
386 unsigned long flags;
387
388 spin_lock_irqsave(shost->host_lock, flags);
389 list_splice_init(&shost->starved_list, &starved_list);
390
391 while (!list_empty(&starved_list)) {
392 struct request_queue *slq;
393
394 /*
395 * As long as shost is accepting commands and we have
396 * starved queues, call blk_run_queue. scsi_request_fn
397 * drops the queue_lock and can add us back to the
398 * starved_list.
399 *
400 * host_lock protects the starved_list and starved_entry.
401 * scsi_request_fn must get the host_lock before checking
402 * or modifying starved_list or starved_entry.
403 */
404 if (scsi_host_is_busy(shost))
405 break;
406
407 sdev = list_entry(starved_list.next,
408 struct scsi_device, starved_entry);
409 list_del_init(&sdev->starved_entry);
410 if (scsi_target_is_busy(scsi_target(sdev))) {
411 list_move_tail(&sdev->starved_entry,
412 &shost->starved_list);
413 continue;
414 }
415
416 /*
417 * Once we drop the host lock, a racing scsi_remove_device()
418 * call may remove the sdev from the starved list and destroy
419 * it and the queue. Mitigate by taking a reference to the
420 * queue and never touching the sdev again after we drop the
421 * host lock. Note: if __scsi_remove_device() invokes
422 * blk_mq_destroy_queue() before the queue is run from this
423 * function then blk_run_queue() will return immediately since
424 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
425 */
426 slq = sdev->request_queue;
427 if (!blk_get_queue(slq))
428 continue;
429 spin_unlock_irqrestore(shost->host_lock, flags);
430
431 scsi_kick_queue(slq);
432 blk_put_queue(slq);
433
434 spin_lock_irqsave(shost->host_lock, flags);
435 }
436 /* put any unprocessed entries back */
437 list_splice(&starved_list, &shost->starved_list);
438 spin_unlock_irqrestore(shost->host_lock, flags);
439 }
440
441 /**
442 * scsi_run_queue - Select a proper request queue to serve next.
443 * @q: last request's queue
444 *
445 * The previous command was completely finished, start a new one if possible.
446 */
scsi_run_queue(struct request_queue * q)447 static void scsi_run_queue(struct request_queue *q)
448 {
449 struct scsi_device *sdev = q->queuedata;
450
451 if (scsi_target(sdev)->single_lun)
452 scsi_single_lun_run(sdev);
453 if (!list_empty(&sdev->host->starved_list))
454 scsi_starved_list_run(sdev->host);
455
456 blk_mq_run_hw_queues(q, false);
457 }
458
scsi_requeue_run_queue(struct work_struct * work)459 void scsi_requeue_run_queue(struct work_struct *work)
460 {
461 struct scsi_device *sdev;
462 struct request_queue *q;
463
464 sdev = container_of(work, struct scsi_device, requeue_work);
465 q = sdev->request_queue;
466 scsi_run_queue(q);
467 }
468
scsi_run_host_queues(struct Scsi_Host * shost)469 void scsi_run_host_queues(struct Scsi_Host *shost)
470 {
471 struct scsi_device *sdev;
472
473 shost_for_each_device(sdev, shost)
474 scsi_run_queue(sdev->request_queue);
475 }
476
scsi_uninit_cmd(struct scsi_cmnd * cmd)477 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
478 {
479 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
480 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
481
482 if (drv->uninit_command)
483 drv->uninit_command(cmd);
484 }
485 }
486
scsi_free_sgtables(struct scsi_cmnd * cmd)487 void scsi_free_sgtables(struct scsi_cmnd *cmd)
488 {
489 if (cmd->sdb.table.nents)
490 sg_free_table_chained(&cmd->sdb.table,
491 SCSI_INLINE_SG_CNT);
492 if (scsi_prot_sg_count(cmd))
493 sg_free_table_chained(&cmd->prot_sdb->table,
494 SCSI_INLINE_PROT_SG_CNT);
495 }
496 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
497
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)498 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
499 {
500 scsi_free_sgtables(cmd);
501 scsi_uninit_cmd(cmd);
502 }
503
scsi_run_queue_async(struct scsi_device * sdev)504 static void scsi_run_queue_async(struct scsi_device *sdev)
505 {
506 if (scsi_target(sdev)->single_lun ||
507 !list_empty(&sdev->host->starved_list)) {
508 kblockd_schedule_work(&sdev->requeue_work);
509 } else {
510 /*
511 * smp_mb() present in sbitmap_queue_clear() or implied in
512 * .end_io is for ordering writing .device_busy in
513 * scsi_device_unbusy() and reading sdev->restarts.
514 */
515 int old = atomic_read(&sdev->restarts);
516
517 /*
518 * ->restarts has to be kept as non-zero if new budget
519 * contention occurs.
520 *
521 * No need to run queue when either another re-run
522 * queue wins in updating ->restarts or a new budget
523 * contention occurs.
524 */
525 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
526 blk_mq_run_hw_queues(sdev->request_queue, true);
527 }
528 }
529
530 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)531 static bool scsi_end_request(struct request *req, blk_status_t error,
532 unsigned int bytes)
533 {
534 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
535 struct scsi_device *sdev = cmd->device;
536 struct request_queue *q = sdev->request_queue;
537
538 if (blk_update_request(req, error, bytes))
539 return true;
540
541 // XXX:
542 if (blk_queue_add_random(q))
543 add_disk_randomness(req->q->disk);
544
545 if (!blk_rq_is_passthrough(req)) {
546 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
547 cmd->flags &= ~SCMD_INITIALIZED;
548 }
549
550 /*
551 * Calling rcu_barrier() is not necessary here because the
552 * SCSI error handler guarantees that the function called by
553 * call_rcu() has been called before scsi_end_request() is
554 * called.
555 */
556 destroy_rcu_head(&cmd->rcu);
557
558 /*
559 * In the MQ case the command gets freed by __blk_mq_end_request,
560 * so we have to do all cleanup that depends on it earlier.
561 *
562 * We also can't kick the queues from irq context, so we
563 * will have to defer it to a workqueue.
564 */
565 scsi_mq_uninit_cmd(cmd);
566
567 /*
568 * queue is still alive, so grab the ref for preventing it
569 * from being cleaned up during running queue.
570 */
571 percpu_ref_get(&q->q_usage_counter);
572
573 __blk_mq_end_request(req, error);
574
575 scsi_run_queue_async(sdev);
576
577 percpu_ref_put(&q->q_usage_counter);
578 return false;
579 }
580
get_scsi_ml_byte(int result)581 static inline u8 get_scsi_ml_byte(int result)
582 {
583 return (result >> 8) & 0xff;
584 }
585
586 /**
587 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
588 * @result: scsi error code
589 *
590 * Translate a SCSI result code into a blk_status_t value.
591 */
scsi_result_to_blk_status(int result)592 static blk_status_t scsi_result_to_blk_status(int result)
593 {
594 /*
595 * Check the scsi-ml byte first in case we converted a host or status
596 * byte.
597 */
598 switch (get_scsi_ml_byte(result)) {
599 case SCSIML_STAT_OK:
600 break;
601 case SCSIML_STAT_RESV_CONFLICT:
602 return BLK_STS_NEXUS;
603 case SCSIML_STAT_NOSPC:
604 return BLK_STS_NOSPC;
605 case SCSIML_STAT_MED_ERROR:
606 return BLK_STS_MEDIUM;
607 case SCSIML_STAT_TGT_FAILURE:
608 return BLK_STS_TARGET;
609 }
610
611 switch (host_byte(result)) {
612 case DID_OK:
613 if (scsi_status_is_good(result))
614 return BLK_STS_OK;
615 return BLK_STS_IOERR;
616 case DID_TRANSPORT_FAILFAST:
617 case DID_TRANSPORT_MARGINAL:
618 return BLK_STS_TRANSPORT;
619 default:
620 return BLK_STS_IOERR;
621 }
622 }
623
624 /**
625 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
626 * @rq: request to examine
627 *
628 * Description:
629 * A request could be merge of IOs which require different failure
630 * handling. This function determines the number of bytes which
631 * can be failed from the beginning of the request without
632 * crossing into area which need to be retried further.
633 *
634 * Return:
635 * The number of bytes to fail.
636 */
scsi_rq_err_bytes(const struct request * rq)637 static unsigned int scsi_rq_err_bytes(const struct request *rq)
638 {
639 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
640 unsigned int bytes = 0;
641 struct bio *bio;
642
643 if (!(rq->rq_flags & RQF_MIXED_MERGE))
644 return blk_rq_bytes(rq);
645
646 /*
647 * Currently the only 'mixing' which can happen is between
648 * different fastfail types. We can safely fail portions
649 * which have all the failfast bits that the first one has -
650 * the ones which are at least as eager to fail as the first
651 * one.
652 */
653 for (bio = rq->bio; bio; bio = bio->bi_next) {
654 if ((bio->bi_opf & ff) != ff)
655 break;
656 bytes += bio->bi_iter.bi_size;
657 }
658
659 /* this could lead to infinite loop */
660 BUG_ON(blk_rq_bytes(rq) && !bytes);
661 return bytes;
662 }
663
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)664 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
665 {
666 struct request *req = scsi_cmd_to_rq(cmd);
667 unsigned long wait_for;
668
669 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
670 return false;
671
672 wait_for = (cmd->allowed + 1) * req->timeout;
673 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
674 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
675 wait_for/HZ);
676 return true;
677 }
678 return false;
679 }
680
681 /*
682 * When ALUA transition state is returned, reprep the cmd to
683 * use the ALUA handler's transition timeout. Delay the reprep
684 * 1 sec to avoid aggressive retries of the target in that
685 * state.
686 */
687 #define ALUA_TRANSITION_REPREP_DELAY 1000
688
689 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)690 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
691 {
692 struct request *req = scsi_cmd_to_rq(cmd);
693 int level = 0;
694 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
695 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
696 struct scsi_sense_hdr sshdr;
697 bool sense_valid;
698 bool sense_current = true; /* false implies "deferred sense" */
699 blk_status_t blk_stat;
700
701 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
702 if (sense_valid)
703 sense_current = !scsi_sense_is_deferred(&sshdr);
704
705 blk_stat = scsi_result_to_blk_status(result);
706
707 if (host_byte(result) == DID_RESET) {
708 /* Third party bus reset or reset for error recovery
709 * reasons. Just retry the command and see what
710 * happens.
711 */
712 action = ACTION_RETRY;
713 } else if (sense_valid && sense_current) {
714 switch (sshdr.sense_key) {
715 case UNIT_ATTENTION:
716 if (cmd->device->removable) {
717 /* Detected disc change. Set a bit
718 * and quietly refuse further access.
719 */
720 cmd->device->changed = 1;
721 action = ACTION_FAIL;
722 } else {
723 /* Must have been a power glitch, or a
724 * bus reset. Could not have been a
725 * media change, so we just retry the
726 * command and see what happens.
727 */
728 action = ACTION_RETRY;
729 }
730 break;
731 case ILLEGAL_REQUEST:
732 /* If we had an ILLEGAL REQUEST returned, then
733 * we may have performed an unsupported
734 * command. The only thing this should be
735 * would be a ten byte read where only a six
736 * byte read was supported. Also, on a system
737 * where READ CAPACITY failed, we may have
738 * read past the end of the disk.
739 */
740 if ((cmd->device->use_10_for_rw &&
741 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
742 (cmd->cmnd[0] == READ_10 ||
743 cmd->cmnd[0] == WRITE_10)) {
744 /* This will issue a new 6-byte command. */
745 cmd->device->use_10_for_rw = 0;
746 action = ACTION_REPREP;
747 } else if (sshdr.asc == 0x10) /* DIX */ {
748 action = ACTION_FAIL;
749 blk_stat = BLK_STS_PROTECTION;
750 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
751 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
752 action = ACTION_FAIL;
753 blk_stat = BLK_STS_TARGET;
754 } else
755 action = ACTION_FAIL;
756 break;
757 case ABORTED_COMMAND:
758 action = ACTION_FAIL;
759 if (sshdr.asc == 0x10) /* DIF */
760 blk_stat = BLK_STS_PROTECTION;
761 break;
762 case NOT_READY:
763 /* If the device is in the process of becoming
764 * ready, or has a temporary blockage, retry.
765 */
766 if (sshdr.asc == 0x04) {
767 switch (sshdr.ascq) {
768 case 0x01: /* becoming ready */
769 case 0x04: /* format in progress */
770 case 0x05: /* rebuild in progress */
771 case 0x06: /* recalculation in progress */
772 case 0x07: /* operation in progress */
773 case 0x08: /* Long write in progress */
774 case 0x09: /* self test in progress */
775 case 0x11: /* notify (enable spinup) required */
776 case 0x14: /* space allocation in progress */
777 case 0x1a: /* start stop unit in progress */
778 case 0x1b: /* sanitize in progress */
779 case 0x1d: /* configuration in progress */
780 case 0x24: /* depopulation in progress */
781 action = ACTION_DELAYED_RETRY;
782 break;
783 case 0x0a: /* ALUA state transition */
784 action = ACTION_DELAYED_REPREP;
785 break;
786 default:
787 action = ACTION_FAIL;
788 break;
789 }
790 } else
791 action = ACTION_FAIL;
792 break;
793 case VOLUME_OVERFLOW:
794 /* See SSC3rXX or current. */
795 action = ACTION_FAIL;
796 break;
797 case DATA_PROTECT:
798 action = ACTION_FAIL;
799 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
800 (sshdr.asc == 0x55 &&
801 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
802 /* Insufficient zone resources */
803 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
804 }
805 break;
806 default:
807 action = ACTION_FAIL;
808 break;
809 }
810 } else
811 action = ACTION_FAIL;
812
813 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
814 action = ACTION_FAIL;
815
816 switch (action) {
817 case ACTION_FAIL:
818 /* Give up and fail the remainder of the request */
819 if (!(req->rq_flags & RQF_QUIET)) {
820 static DEFINE_RATELIMIT_STATE(_rs,
821 DEFAULT_RATELIMIT_INTERVAL,
822 DEFAULT_RATELIMIT_BURST);
823
824 if (unlikely(scsi_logging_level))
825 level =
826 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
827 SCSI_LOG_MLCOMPLETE_BITS);
828
829 /*
830 * if logging is enabled the failure will be printed
831 * in scsi_log_completion(), so avoid duplicate messages
832 */
833 if (!level && __ratelimit(&_rs)) {
834 scsi_print_result(cmd, NULL, FAILED);
835 if (sense_valid)
836 scsi_print_sense(cmd);
837 scsi_print_command(cmd);
838 }
839 }
840 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
841 return;
842 fallthrough;
843 case ACTION_REPREP:
844 scsi_mq_requeue_cmd(cmd, 0);
845 break;
846 case ACTION_DELAYED_REPREP:
847 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
848 break;
849 case ACTION_RETRY:
850 /* Retry the same command immediately */
851 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
852 break;
853 case ACTION_DELAYED_RETRY:
854 /* Retry the same command after a delay */
855 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
856 break;
857 }
858 }
859
860 /*
861 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
862 * new result that may suppress further error checking. Also modifies
863 * *blk_statp in some cases.
864 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)865 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
866 blk_status_t *blk_statp)
867 {
868 bool sense_valid;
869 bool sense_current = true; /* false implies "deferred sense" */
870 struct request *req = scsi_cmd_to_rq(cmd);
871 struct scsi_sense_hdr sshdr;
872
873 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
874 if (sense_valid)
875 sense_current = !scsi_sense_is_deferred(&sshdr);
876
877 if (blk_rq_is_passthrough(req)) {
878 if (sense_valid) {
879 /*
880 * SG_IO wants current and deferred errors
881 */
882 cmd->sense_len = min(8 + cmd->sense_buffer[7],
883 SCSI_SENSE_BUFFERSIZE);
884 }
885 if (sense_current)
886 *blk_statp = scsi_result_to_blk_status(result);
887 } else if (blk_rq_bytes(req) == 0 && sense_current) {
888 /*
889 * Flush commands do not transfers any data, and thus cannot use
890 * good_bytes != blk_rq_bytes(req) as the signal for an error.
891 * This sets *blk_statp explicitly for the problem case.
892 */
893 *blk_statp = scsi_result_to_blk_status(result);
894 }
895 /*
896 * Recovered errors need reporting, but they're always treated as
897 * success, so fiddle the result code here. For passthrough requests
898 * we already took a copy of the original into sreq->result which
899 * is what gets returned to the user
900 */
901 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
902 bool do_print = true;
903 /*
904 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
905 * skip print since caller wants ATA registers. Only occurs
906 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
907 */
908 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
909 do_print = false;
910 else if (req->rq_flags & RQF_QUIET)
911 do_print = false;
912 if (do_print)
913 scsi_print_sense(cmd);
914 result = 0;
915 /* for passthrough, *blk_statp may be set */
916 *blk_statp = BLK_STS_OK;
917 }
918 /*
919 * Another corner case: the SCSI status byte is non-zero but 'good'.
920 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
921 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
922 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
923 * intermediate statuses (both obsolete in SAM-4) as good.
924 */
925 if ((result & 0xff) && scsi_status_is_good(result)) {
926 result = 0;
927 *blk_statp = BLK_STS_OK;
928 }
929 return result;
930 }
931
932 /**
933 * scsi_io_completion - Completion processing for SCSI commands.
934 * @cmd: command that is finished.
935 * @good_bytes: number of processed bytes.
936 *
937 * We will finish off the specified number of sectors. If we are done, the
938 * command block will be released and the queue function will be goosed. If we
939 * are not done then we have to figure out what to do next:
940 *
941 * a) We can call scsi_mq_requeue_cmd(). The request will be
942 * unprepared and put back on the queue. Then a new command will
943 * be created for it. This should be used if we made forward
944 * progress, or if we want to switch from READ(10) to READ(6) for
945 * example.
946 *
947 * b) We can call scsi_io_completion_action(). The request will be
948 * put back on the queue and retried using the same command as
949 * before, possibly after a delay.
950 *
951 * c) We can call scsi_end_request() with blk_stat other than
952 * BLK_STS_OK, to fail the remainder of the request.
953 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)954 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
955 {
956 int result = cmd->result;
957 struct request *req = scsi_cmd_to_rq(cmd);
958 blk_status_t blk_stat = BLK_STS_OK;
959
960 if (unlikely(result)) /* a nz result may or may not be an error */
961 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
962
963 /*
964 * Next deal with any sectors which we were able to correctly
965 * handle.
966 */
967 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
968 "%u sectors total, %d bytes done.\n",
969 blk_rq_sectors(req), good_bytes));
970
971 /*
972 * Failed, zero length commands always need to drop down
973 * to retry code. Fast path should return in this block.
974 */
975 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
976 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
977 return; /* no bytes remaining */
978 }
979
980 /* Kill remainder if no retries. */
981 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
982 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
983 WARN_ONCE(true,
984 "Bytes remaining after failed, no-retry command");
985 return;
986 }
987
988 /*
989 * If there had been no error, but we have leftover bytes in the
990 * request just queue the command up again.
991 */
992 if (likely(result == 0))
993 scsi_mq_requeue_cmd(cmd, 0);
994 else
995 scsi_io_completion_action(cmd, result);
996 }
997
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)998 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
999 struct request *rq)
1000 {
1001 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1002 !op_is_write(req_op(rq)) &&
1003 sdev->host->hostt->dma_need_drain(rq);
1004 }
1005
1006 /**
1007 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1008 * @cmd: SCSI command data structure to initialize.
1009 *
1010 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1011 * for @cmd.
1012 *
1013 * Returns:
1014 * * BLK_STS_OK - on success
1015 * * BLK_STS_RESOURCE - if the failure is retryable
1016 * * BLK_STS_IOERR - if the failure is fatal
1017 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1018 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1019 {
1020 struct scsi_device *sdev = cmd->device;
1021 struct request *rq = scsi_cmd_to_rq(cmd);
1022 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1023 struct scatterlist *last_sg = NULL;
1024 blk_status_t ret;
1025 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1026 int count;
1027
1028 if (WARN_ON_ONCE(!nr_segs))
1029 return BLK_STS_IOERR;
1030
1031 /*
1032 * Make sure there is space for the drain. The driver must adjust
1033 * max_hw_segments to be prepared for this.
1034 */
1035 if (need_drain)
1036 nr_segs++;
1037
1038 /*
1039 * If sg table allocation fails, requeue request later.
1040 */
1041 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1042 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1043 return BLK_STS_RESOURCE;
1044
1045 /*
1046 * Next, walk the list, and fill in the addresses and sizes of
1047 * each segment.
1048 */
1049 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1050
1051 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1052 unsigned int pad_len =
1053 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1054
1055 last_sg->length += pad_len;
1056 cmd->extra_len += pad_len;
1057 }
1058
1059 if (need_drain) {
1060 sg_unmark_end(last_sg);
1061 last_sg = sg_next(last_sg);
1062 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1063 sg_mark_end(last_sg);
1064
1065 cmd->extra_len += sdev->dma_drain_len;
1066 count++;
1067 }
1068
1069 BUG_ON(count > cmd->sdb.table.nents);
1070 cmd->sdb.table.nents = count;
1071 cmd->sdb.length = blk_rq_payload_bytes(rq);
1072
1073 if (blk_integrity_rq(rq)) {
1074 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1075 int ivecs;
1076
1077 if (WARN_ON_ONCE(!prot_sdb)) {
1078 /*
1079 * This can happen if someone (e.g. multipath)
1080 * queues a command to a device on an adapter
1081 * that does not support DIX.
1082 */
1083 ret = BLK_STS_IOERR;
1084 goto out_free_sgtables;
1085 }
1086
1087 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1088
1089 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1090 prot_sdb->table.sgl,
1091 SCSI_INLINE_PROT_SG_CNT)) {
1092 ret = BLK_STS_RESOURCE;
1093 goto out_free_sgtables;
1094 }
1095
1096 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1097 prot_sdb->table.sgl);
1098 BUG_ON(count > ivecs);
1099 BUG_ON(count > queue_max_integrity_segments(rq->q));
1100
1101 cmd->prot_sdb = prot_sdb;
1102 cmd->prot_sdb->table.nents = count;
1103 }
1104
1105 return BLK_STS_OK;
1106 out_free_sgtables:
1107 scsi_free_sgtables(cmd);
1108 return ret;
1109 }
1110 EXPORT_SYMBOL(scsi_alloc_sgtables);
1111
1112 /**
1113 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1114 * @rq: Request associated with the SCSI command to be initialized.
1115 *
1116 * This function initializes the members of struct scsi_cmnd that must be
1117 * initialized before request processing starts and that won't be
1118 * reinitialized if a SCSI command is requeued.
1119 */
scsi_initialize_rq(struct request * rq)1120 static void scsi_initialize_rq(struct request *rq)
1121 {
1122 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1123
1124 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1125 cmd->cmd_len = MAX_COMMAND_SIZE;
1126 cmd->sense_len = 0;
1127 init_rcu_head(&cmd->rcu);
1128 cmd->jiffies_at_alloc = jiffies;
1129 cmd->retries = 0;
1130 }
1131
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1132 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1133 blk_mq_req_flags_t flags)
1134 {
1135 struct request *rq;
1136
1137 rq = blk_mq_alloc_request(q, opf, flags);
1138 if (!IS_ERR(rq))
1139 scsi_initialize_rq(rq);
1140 return rq;
1141 }
1142 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1143
1144 /*
1145 * Only called when the request isn't completed by SCSI, and not freed by
1146 * SCSI
1147 */
scsi_cleanup_rq(struct request * rq)1148 static void scsi_cleanup_rq(struct request *rq)
1149 {
1150 if (rq->rq_flags & RQF_DONTPREP) {
1151 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1152 rq->rq_flags &= ~RQF_DONTPREP;
1153 }
1154 }
1155
1156 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1157 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1158 {
1159 struct request *rq = scsi_cmd_to_rq(cmd);
1160
1161 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1162 cmd->flags |= SCMD_INITIALIZED;
1163 scsi_initialize_rq(rq);
1164 }
1165
1166 cmd->device = dev;
1167 INIT_LIST_HEAD(&cmd->eh_entry);
1168 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1169 }
1170
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1171 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1172 struct request *req)
1173 {
1174 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1175
1176 /*
1177 * Passthrough requests may transfer data, in which case they must
1178 * a bio attached to them. Or they might contain a SCSI command
1179 * that does not transfer data, in which case they may optionally
1180 * submit a request without an attached bio.
1181 */
1182 if (req->bio) {
1183 blk_status_t ret = scsi_alloc_sgtables(cmd);
1184 if (unlikely(ret != BLK_STS_OK))
1185 return ret;
1186 } else {
1187 BUG_ON(blk_rq_bytes(req));
1188
1189 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1190 }
1191
1192 cmd->transfersize = blk_rq_bytes(req);
1193 return BLK_STS_OK;
1194 }
1195
1196 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1197 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1198 {
1199 switch (sdev->sdev_state) {
1200 case SDEV_CREATED:
1201 return BLK_STS_OK;
1202 case SDEV_OFFLINE:
1203 case SDEV_TRANSPORT_OFFLINE:
1204 /*
1205 * If the device is offline we refuse to process any
1206 * commands. The device must be brought online
1207 * before trying any recovery commands.
1208 */
1209 if (!sdev->offline_already) {
1210 sdev->offline_already = true;
1211 sdev_printk(KERN_ERR, sdev,
1212 "rejecting I/O to offline device\n");
1213 }
1214 return BLK_STS_IOERR;
1215 case SDEV_DEL:
1216 /*
1217 * If the device is fully deleted, we refuse to
1218 * process any commands as well.
1219 */
1220 sdev_printk(KERN_ERR, sdev,
1221 "rejecting I/O to dead device\n");
1222 return BLK_STS_IOERR;
1223 case SDEV_BLOCK:
1224 case SDEV_CREATED_BLOCK:
1225 return BLK_STS_RESOURCE;
1226 case SDEV_QUIESCE:
1227 /*
1228 * If the device is blocked we only accept power management
1229 * commands.
1230 */
1231 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1232 return BLK_STS_RESOURCE;
1233 return BLK_STS_OK;
1234 default:
1235 /*
1236 * For any other not fully online state we only allow
1237 * power management commands.
1238 */
1239 if (req && !(req->rq_flags & RQF_PM))
1240 return BLK_STS_OFFLINE;
1241 return BLK_STS_OK;
1242 }
1243 }
1244
1245 /*
1246 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1247 * and return the token else return -1.
1248 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1249 static inline int scsi_dev_queue_ready(struct request_queue *q,
1250 struct scsi_device *sdev)
1251 {
1252 int token;
1253
1254 token = sbitmap_get(&sdev->budget_map);
1255 if (atomic_read(&sdev->device_blocked)) {
1256 if (token < 0)
1257 goto out;
1258
1259 if (scsi_device_busy(sdev) > 1)
1260 goto out_dec;
1261
1262 /*
1263 * unblock after device_blocked iterates to zero
1264 */
1265 if (atomic_dec_return(&sdev->device_blocked) > 0)
1266 goto out_dec;
1267 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1268 "unblocking device at zero depth\n"));
1269 }
1270
1271 return token;
1272 out_dec:
1273 if (token >= 0)
1274 sbitmap_put(&sdev->budget_map, token);
1275 out:
1276 return -1;
1277 }
1278
1279 /*
1280 * scsi_target_queue_ready: checks if there we can send commands to target
1281 * @sdev: scsi device on starget to check.
1282 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1283 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1284 struct scsi_device *sdev)
1285 {
1286 struct scsi_target *starget = scsi_target(sdev);
1287 unsigned int busy;
1288
1289 if (starget->single_lun) {
1290 spin_lock_irq(shost->host_lock);
1291 if (starget->starget_sdev_user &&
1292 starget->starget_sdev_user != sdev) {
1293 spin_unlock_irq(shost->host_lock);
1294 return 0;
1295 }
1296 starget->starget_sdev_user = sdev;
1297 spin_unlock_irq(shost->host_lock);
1298 }
1299
1300 if (starget->can_queue <= 0)
1301 return 1;
1302
1303 busy = atomic_inc_return(&starget->target_busy) - 1;
1304 if (atomic_read(&starget->target_blocked) > 0) {
1305 if (busy)
1306 goto starved;
1307
1308 /*
1309 * unblock after target_blocked iterates to zero
1310 */
1311 if (atomic_dec_return(&starget->target_blocked) > 0)
1312 goto out_dec;
1313
1314 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1315 "unblocking target at zero depth\n"));
1316 }
1317
1318 if (busy >= starget->can_queue)
1319 goto starved;
1320
1321 return 1;
1322
1323 starved:
1324 spin_lock_irq(shost->host_lock);
1325 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1326 spin_unlock_irq(shost->host_lock);
1327 out_dec:
1328 if (starget->can_queue > 0)
1329 atomic_dec(&starget->target_busy);
1330 return 0;
1331 }
1332
1333 /*
1334 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1335 * return 0. We must end up running the queue again whenever 0 is
1336 * returned, else IO can hang.
1337 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1338 static inline int scsi_host_queue_ready(struct request_queue *q,
1339 struct Scsi_Host *shost,
1340 struct scsi_device *sdev,
1341 struct scsi_cmnd *cmd)
1342 {
1343 if (atomic_read(&shost->host_blocked) > 0) {
1344 if (scsi_host_busy(shost) > 0)
1345 goto starved;
1346
1347 /*
1348 * unblock after host_blocked iterates to zero
1349 */
1350 if (atomic_dec_return(&shost->host_blocked) > 0)
1351 goto out_dec;
1352
1353 SCSI_LOG_MLQUEUE(3,
1354 shost_printk(KERN_INFO, shost,
1355 "unblocking host at zero depth\n"));
1356 }
1357
1358 if (shost->host_self_blocked)
1359 goto starved;
1360
1361 /* We're OK to process the command, so we can't be starved */
1362 if (!list_empty(&sdev->starved_entry)) {
1363 spin_lock_irq(shost->host_lock);
1364 if (!list_empty(&sdev->starved_entry))
1365 list_del_init(&sdev->starved_entry);
1366 spin_unlock_irq(shost->host_lock);
1367 }
1368
1369 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1370
1371 return 1;
1372
1373 starved:
1374 spin_lock_irq(shost->host_lock);
1375 if (list_empty(&sdev->starved_entry))
1376 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1377 spin_unlock_irq(shost->host_lock);
1378 out_dec:
1379 scsi_dec_host_busy(shost, cmd);
1380 return 0;
1381 }
1382
1383 /*
1384 * Busy state exporting function for request stacking drivers.
1385 *
1386 * For efficiency, no lock is taken to check the busy state of
1387 * shost/starget/sdev, since the returned value is not guaranteed and
1388 * may be changed after request stacking drivers call the function,
1389 * regardless of taking lock or not.
1390 *
1391 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1392 * needs to return 'not busy'. Otherwise, request stacking drivers
1393 * may hold requests forever.
1394 */
scsi_mq_lld_busy(struct request_queue * q)1395 static bool scsi_mq_lld_busy(struct request_queue *q)
1396 {
1397 struct scsi_device *sdev = q->queuedata;
1398 struct Scsi_Host *shost;
1399
1400 if (blk_queue_dying(q))
1401 return false;
1402
1403 shost = sdev->host;
1404
1405 /*
1406 * Ignore host/starget busy state.
1407 * Since block layer does not have a concept of fairness across
1408 * multiple queues, congestion of host/starget needs to be handled
1409 * in SCSI layer.
1410 */
1411 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1412 return true;
1413
1414 return false;
1415 }
1416
1417 /*
1418 * Block layer request completion callback. May be called from interrupt
1419 * context.
1420 */
scsi_complete(struct request * rq)1421 static void scsi_complete(struct request *rq)
1422 {
1423 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1424 enum scsi_disposition disposition;
1425
1426 INIT_LIST_HEAD(&cmd->eh_entry);
1427
1428 atomic_inc(&cmd->device->iodone_cnt);
1429 if (cmd->result)
1430 atomic_inc(&cmd->device->ioerr_cnt);
1431
1432 disposition = scsi_decide_disposition(cmd);
1433 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1434 disposition = SUCCESS;
1435
1436 scsi_log_completion(cmd, disposition);
1437
1438 switch (disposition) {
1439 case SUCCESS:
1440 scsi_finish_command(cmd);
1441 break;
1442 case NEEDS_RETRY:
1443 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1444 break;
1445 case ADD_TO_MLQUEUE:
1446 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1447 break;
1448 default:
1449 scsi_eh_scmd_add(cmd);
1450 break;
1451 }
1452 }
1453
1454 /**
1455 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1456 * @cmd: command block we are dispatching.
1457 *
1458 * Return: nonzero return request was rejected and device's queue needs to be
1459 * plugged.
1460 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1461 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1462 {
1463 struct Scsi_Host *host = cmd->device->host;
1464 int rtn = 0;
1465
1466 /* check if the device is still usable */
1467 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1468 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1469 * returns an immediate error upwards, and signals
1470 * that the device is no longer present */
1471 cmd->result = DID_NO_CONNECT << 16;
1472 goto done;
1473 }
1474
1475 /* Check to see if the scsi lld made this device blocked. */
1476 if (unlikely(scsi_device_blocked(cmd->device))) {
1477 /*
1478 * in blocked state, the command is just put back on
1479 * the device queue. The suspend state has already
1480 * blocked the queue so future requests should not
1481 * occur until the device transitions out of the
1482 * suspend state.
1483 */
1484 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1485 "queuecommand : device blocked\n"));
1486 return SCSI_MLQUEUE_DEVICE_BUSY;
1487 }
1488
1489 /* Store the LUN value in cmnd, if needed. */
1490 if (cmd->device->lun_in_cdb)
1491 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1492 (cmd->device->lun << 5 & 0xe0);
1493
1494 scsi_log_send(cmd);
1495
1496 /*
1497 * Before we queue this command, check if the command
1498 * length exceeds what the host adapter can handle.
1499 */
1500 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1501 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1502 "queuecommand : command too long. "
1503 "cdb_size=%d host->max_cmd_len=%d\n",
1504 cmd->cmd_len, cmd->device->host->max_cmd_len));
1505 cmd->result = (DID_ABORT << 16);
1506 goto done;
1507 }
1508
1509 if (unlikely(host->shost_state == SHOST_DEL)) {
1510 cmd->result = (DID_NO_CONNECT << 16);
1511 goto done;
1512
1513 }
1514
1515 trace_scsi_dispatch_cmd_start(cmd);
1516 rtn = host->hostt->queuecommand(host, cmd);
1517 if (rtn) {
1518 trace_scsi_dispatch_cmd_error(cmd, rtn);
1519 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1520 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1521 rtn = SCSI_MLQUEUE_HOST_BUSY;
1522
1523 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1524 "queuecommand : request rejected\n"));
1525 }
1526
1527 return rtn;
1528 done:
1529 scsi_done(cmd);
1530 return 0;
1531 }
1532
1533 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1534 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1535 {
1536 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1537 sizeof(struct scatterlist);
1538 }
1539
scsi_prepare_cmd(struct request * req)1540 static blk_status_t scsi_prepare_cmd(struct request *req)
1541 {
1542 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1543 struct scsi_device *sdev = req->q->queuedata;
1544 struct Scsi_Host *shost = sdev->host;
1545 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1546 struct scatterlist *sg;
1547
1548 scsi_init_command(sdev, cmd);
1549
1550 cmd->eh_eflags = 0;
1551 cmd->prot_type = 0;
1552 cmd->prot_flags = 0;
1553 cmd->submitter = 0;
1554 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1555 cmd->underflow = 0;
1556 cmd->transfersize = 0;
1557 cmd->host_scribble = NULL;
1558 cmd->result = 0;
1559 cmd->extra_len = 0;
1560 cmd->state = 0;
1561 if (in_flight)
1562 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1563
1564 /*
1565 * Only clear the driver-private command data if the LLD does not supply
1566 * a function to initialize that data.
1567 */
1568 if (!shost->hostt->init_cmd_priv)
1569 memset(cmd + 1, 0, shost->hostt->cmd_size);
1570
1571 cmd->prot_op = SCSI_PROT_NORMAL;
1572 if (blk_rq_bytes(req))
1573 cmd->sc_data_direction = rq_dma_dir(req);
1574 else
1575 cmd->sc_data_direction = DMA_NONE;
1576
1577 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1578 cmd->sdb.table.sgl = sg;
1579
1580 if (scsi_host_get_prot(shost)) {
1581 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1582
1583 cmd->prot_sdb->table.sgl =
1584 (struct scatterlist *)(cmd->prot_sdb + 1);
1585 }
1586
1587 /*
1588 * Special handling for passthrough commands, which don't go to the ULP
1589 * at all:
1590 */
1591 if (blk_rq_is_passthrough(req))
1592 return scsi_setup_scsi_cmnd(sdev, req);
1593
1594 if (sdev->handler && sdev->handler->prep_fn) {
1595 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1596
1597 if (ret != BLK_STS_OK)
1598 return ret;
1599 }
1600
1601 /* Usually overridden by the ULP */
1602 cmd->allowed = 0;
1603 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1604 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1605 }
1606
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1607 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1608 {
1609 struct request *req = scsi_cmd_to_rq(cmd);
1610
1611 switch (cmd->submitter) {
1612 case SUBMITTED_BY_BLOCK_LAYER:
1613 break;
1614 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1615 return scsi_eh_done(cmd);
1616 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1617 return;
1618 }
1619
1620 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1621 return;
1622 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1623 return;
1624 trace_scsi_dispatch_cmd_done(cmd);
1625
1626 if (complete_directly)
1627 blk_mq_complete_request_direct(req, scsi_complete);
1628 else
1629 blk_mq_complete_request(req);
1630 }
1631
scsi_done(struct scsi_cmnd * cmd)1632 void scsi_done(struct scsi_cmnd *cmd)
1633 {
1634 scsi_done_internal(cmd, false);
1635 }
1636 EXPORT_SYMBOL(scsi_done);
1637
scsi_done_direct(struct scsi_cmnd * cmd)1638 void scsi_done_direct(struct scsi_cmnd *cmd)
1639 {
1640 scsi_done_internal(cmd, true);
1641 }
1642 EXPORT_SYMBOL(scsi_done_direct);
1643
scsi_mq_put_budget(struct request_queue * q,int budget_token)1644 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1645 {
1646 struct scsi_device *sdev = q->queuedata;
1647
1648 sbitmap_put(&sdev->budget_map, budget_token);
1649 }
1650
1651 /*
1652 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1653 * not change behaviour from the previous unplug mechanism, experimentation
1654 * may prove this needs changing.
1655 */
1656 #define SCSI_QUEUE_DELAY 3
1657
scsi_mq_get_budget(struct request_queue * q)1658 static int scsi_mq_get_budget(struct request_queue *q)
1659 {
1660 struct scsi_device *sdev = q->queuedata;
1661 int token = scsi_dev_queue_ready(q, sdev);
1662
1663 if (token >= 0)
1664 return token;
1665
1666 atomic_inc(&sdev->restarts);
1667
1668 /*
1669 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1670 * .restarts must be incremented before .device_busy is read because the
1671 * code in scsi_run_queue_async() depends on the order of these operations.
1672 */
1673 smp_mb__after_atomic();
1674
1675 /*
1676 * If all in-flight requests originated from this LUN are completed
1677 * before reading .device_busy, sdev->device_busy will be observed as
1678 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1679 * soon. Otherwise, completion of one of these requests will observe
1680 * the .restarts flag, and the request queue will be run for handling
1681 * this request, see scsi_end_request().
1682 */
1683 if (unlikely(scsi_device_busy(sdev) == 0 &&
1684 !scsi_device_blocked(sdev)))
1685 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1686 return -1;
1687 }
1688
scsi_mq_set_rq_budget_token(struct request * req,int token)1689 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1690 {
1691 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1692
1693 cmd->budget_token = token;
1694 }
1695
scsi_mq_get_rq_budget_token(struct request * req)1696 static int scsi_mq_get_rq_budget_token(struct request *req)
1697 {
1698 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1699
1700 return cmd->budget_token;
1701 }
1702
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1703 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1704 const struct blk_mq_queue_data *bd)
1705 {
1706 struct request *req = bd->rq;
1707 struct request_queue *q = req->q;
1708 struct scsi_device *sdev = q->queuedata;
1709 struct Scsi_Host *shost = sdev->host;
1710 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1711 blk_status_t ret;
1712 int reason;
1713
1714 WARN_ON_ONCE(cmd->budget_token < 0);
1715
1716 /*
1717 * If the device is not in running state we will reject some or all
1718 * commands.
1719 */
1720 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1721 ret = scsi_device_state_check(sdev, req);
1722 if (ret != BLK_STS_OK)
1723 goto out_put_budget;
1724 }
1725
1726 ret = BLK_STS_RESOURCE;
1727 if (!scsi_target_queue_ready(shost, sdev))
1728 goto out_put_budget;
1729 if (unlikely(scsi_host_in_recovery(shost))) {
1730 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1731 ret = BLK_STS_OFFLINE;
1732 goto out_dec_target_busy;
1733 }
1734 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1735 goto out_dec_target_busy;
1736
1737 if (!(req->rq_flags & RQF_DONTPREP)) {
1738 ret = scsi_prepare_cmd(req);
1739 if (ret != BLK_STS_OK)
1740 goto out_dec_host_busy;
1741 req->rq_flags |= RQF_DONTPREP;
1742 } else {
1743 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1744 }
1745
1746 cmd->flags &= SCMD_PRESERVED_FLAGS;
1747 if (sdev->simple_tags)
1748 cmd->flags |= SCMD_TAGGED;
1749 if (bd->last)
1750 cmd->flags |= SCMD_LAST;
1751
1752 scsi_set_resid(cmd, 0);
1753 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1754 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1755
1756 blk_mq_start_request(req);
1757 reason = scsi_dispatch_cmd(cmd);
1758 if (reason) {
1759 scsi_set_blocked(cmd, reason);
1760 ret = BLK_STS_RESOURCE;
1761 goto out_dec_host_busy;
1762 }
1763
1764 atomic_inc(&cmd->device->iorequest_cnt);
1765 return BLK_STS_OK;
1766
1767 out_dec_host_busy:
1768 scsi_dec_host_busy(shost, cmd);
1769 out_dec_target_busy:
1770 if (scsi_target(sdev)->can_queue > 0)
1771 atomic_dec(&scsi_target(sdev)->target_busy);
1772 out_put_budget:
1773 scsi_mq_put_budget(q, cmd->budget_token);
1774 cmd->budget_token = -1;
1775 switch (ret) {
1776 case BLK_STS_OK:
1777 break;
1778 case BLK_STS_RESOURCE:
1779 case BLK_STS_ZONE_RESOURCE:
1780 if (scsi_device_blocked(sdev))
1781 ret = BLK_STS_DEV_RESOURCE;
1782 break;
1783 case BLK_STS_AGAIN:
1784 cmd->result = DID_BUS_BUSY << 16;
1785 if (req->rq_flags & RQF_DONTPREP)
1786 scsi_mq_uninit_cmd(cmd);
1787 break;
1788 default:
1789 if (unlikely(!scsi_device_online(sdev)))
1790 cmd->result = DID_NO_CONNECT << 16;
1791 else
1792 cmd->result = DID_ERROR << 16;
1793 /*
1794 * Make sure to release all allocated resources when
1795 * we hit an error, as we will never see this command
1796 * again.
1797 */
1798 if (req->rq_flags & RQF_DONTPREP)
1799 scsi_mq_uninit_cmd(cmd);
1800 scsi_run_queue_async(sdev);
1801 break;
1802 }
1803 return ret;
1804 }
1805
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1806 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1807 unsigned int hctx_idx, unsigned int numa_node)
1808 {
1809 struct Scsi_Host *shost = set->driver_data;
1810 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1811 struct scatterlist *sg;
1812 int ret = 0;
1813
1814 cmd->sense_buffer =
1815 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1816 if (!cmd->sense_buffer)
1817 return -ENOMEM;
1818
1819 if (scsi_host_get_prot(shost)) {
1820 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1821 shost->hostt->cmd_size;
1822 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1823 }
1824
1825 if (shost->hostt->init_cmd_priv) {
1826 ret = shost->hostt->init_cmd_priv(shost, cmd);
1827 if (ret < 0)
1828 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1829 }
1830
1831 return ret;
1832 }
1833
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1834 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1835 unsigned int hctx_idx)
1836 {
1837 struct Scsi_Host *shost = set->driver_data;
1838 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1839
1840 if (shost->hostt->exit_cmd_priv)
1841 shost->hostt->exit_cmd_priv(shost, cmd);
1842 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1843 }
1844
1845
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1846 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1847 {
1848 struct Scsi_Host *shost = hctx->driver_data;
1849
1850 if (shost->hostt->mq_poll)
1851 return shost->hostt->mq_poll(shost, hctx->queue_num);
1852
1853 return 0;
1854 }
1855
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1856 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1857 unsigned int hctx_idx)
1858 {
1859 struct Scsi_Host *shost = data;
1860
1861 hctx->driver_data = shost;
1862 return 0;
1863 }
1864
scsi_map_queues(struct blk_mq_tag_set * set)1865 static void scsi_map_queues(struct blk_mq_tag_set *set)
1866 {
1867 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1868
1869 if (shost->hostt->map_queues)
1870 return shost->hostt->map_queues(shost);
1871 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1872 }
1873
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1874 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1875 {
1876 struct device *dev = shost->dma_dev;
1877
1878 /*
1879 * this limit is imposed by hardware restrictions
1880 */
1881 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1882 SG_MAX_SEGMENTS));
1883
1884 if (scsi_host_prot_dma(shost)) {
1885 shost->sg_prot_tablesize =
1886 min_not_zero(shost->sg_prot_tablesize,
1887 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1888 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1889 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1890 }
1891
1892 blk_queue_max_hw_sectors(q, shost->max_sectors);
1893 blk_queue_segment_boundary(q, shost->dma_boundary);
1894 dma_set_seg_boundary(dev, shost->dma_boundary);
1895
1896 blk_queue_max_segment_size(q, shost->max_segment_size);
1897 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1898 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1899
1900 /*
1901 * Set a reasonable default alignment: The larger of 32-byte (dword),
1902 * which is a common minimum for HBAs, and the minimum DMA alignment,
1903 * which is set by the platform.
1904 *
1905 * Devices that require a bigger alignment can increase it later.
1906 */
1907 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1908 }
1909 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1910
1911 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1912 .get_budget = scsi_mq_get_budget,
1913 .put_budget = scsi_mq_put_budget,
1914 .queue_rq = scsi_queue_rq,
1915 .complete = scsi_complete,
1916 .timeout = scsi_timeout,
1917 #ifdef CONFIG_BLK_DEBUG_FS
1918 .show_rq = scsi_show_rq,
1919 #endif
1920 .init_request = scsi_mq_init_request,
1921 .exit_request = scsi_mq_exit_request,
1922 .cleanup_rq = scsi_cleanup_rq,
1923 .busy = scsi_mq_lld_busy,
1924 .map_queues = scsi_map_queues,
1925 .init_hctx = scsi_init_hctx,
1926 .poll = scsi_mq_poll,
1927 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1928 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1929 };
1930
1931
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1932 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1933 {
1934 struct Scsi_Host *shost = hctx->driver_data;
1935
1936 shost->hostt->commit_rqs(shost, hctx->queue_num);
1937 }
1938
1939 static const struct blk_mq_ops scsi_mq_ops = {
1940 .get_budget = scsi_mq_get_budget,
1941 .put_budget = scsi_mq_put_budget,
1942 .queue_rq = scsi_queue_rq,
1943 .commit_rqs = scsi_commit_rqs,
1944 .complete = scsi_complete,
1945 .timeout = scsi_timeout,
1946 #ifdef CONFIG_BLK_DEBUG_FS
1947 .show_rq = scsi_show_rq,
1948 #endif
1949 .init_request = scsi_mq_init_request,
1950 .exit_request = scsi_mq_exit_request,
1951 .cleanup_rq = scsi_cleanup_rq,
1952 .busy = scsi_mq_lld_busy,
1953 .map_queues = scsi_map_queues,
1954 .init_hctx = scsi_init_hctx,
1955 .poll = scsi_mq_poll,
1956 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1957 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1958 };
1959
scsi_mq_setup_tags(struct Scsi_Host * shost)1960 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1961 {
1962 unsigned int cmd_size, sgl_size;
1963 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1964
1965 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1966 scsi_mq_inline_sgl_size(shost));
1967 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1968 if (scsi_host_get_prot(shost))
1969 cmd_size += sizeof(struct scsi_data_buffer) +
1970 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1971
1972 memset(tag_set, 0, sizeof(*tag_set));
1973 if (shost->hostt->commit_rqs)
1974 tag_set->ops = &scsi_mq_ops;
1975 else
1976 tag_set->ops = &scsi_mq_ops_no_commit;
1977 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1978 tag_set->nr_maps = shost->nr_maps ? : 1;
1979 tag_set->queue_depth = shost->can_queue;
1980 tag_set->cmd_size = cmd_size;
1981 tag_set->numa_node = dev_to_node(shost->dma_dev);
1982 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1983 tag_set->flags |=
1984 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1985 tag_set->driver_data = shost;
1986 if (shost->host_tagset)
1987 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1988
1989 return blk_mq_alloc_tag_set(tag_set);
1990 }
1991
scsi_mq_free_tags(struct kref * kref)1992 void scsi_mq_free_tags(struct kref *kref)
1993 {
1994 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1995 tagset_refcnt);
1996
1997 blk_mq_free_tag_set(&shost->tag_set);
1998 complete(&shost->tagset_freed);
1999 }
2000
2001 /**
2002 * scsi_device_from_queue - return sdev associated with a request_queue
2003 * @q: The request queue to return the sdev from
2004 *
2005 * Return the sdev associated with a request queue or NULL if the
2006 * request_queue does not reference a SCSI device.
2007 */
scsi_device_from_queue(struct request_queue * q)2008 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2009 {
2010 struct scsi_device *sdev = NULL;
2011
2012 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2013 q->mq_ops == &scsi_mq_ops)
2014 sdev = q->queuedata;
2015 if (!sdev || !get_device(&sdev->sdev_gendev))
2016 sdev = NULL;
2017
2018 return sdev;
2019 }
2020 /*
2021 * pktcdvd should have been integrated into the SCSI layers, but for historical
2022 * reasons like the old IDE driver it isn't. This export allows it to safely
2023 * probe if a given device is a SCSI one and only attach to that.
2024 */
2025 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2026 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2027 #endif
2028
2029 /**
2030 * scsi_block_requests - Utility function used by low-level drivers to prevent
2031 * further commands from being queued to the device.
2032 * @shost: host in question
2033 *
2034 * There is no timer nor any other means by which the requests get unblocked
2035 * other than the low-level driver calling scsi_unblock_requests().
2036 */
scsi_block_requests(struct Scsi_Host * shost)2037 void scsi_block_requests(struct Scsi_Host *shost)
2038 {
2039 shost->host_self_blocked = 1;
2040 }
2041 EXPORT_SYMBOL(scsi_block_requests);
2042
2043 /**
2044 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2045 * further commands to be queued to the device.
2046 * @shost: host in question
2047 *
2048 * There is no timer nor any other means by which the requests get unblocked
2049 * other than the low-level driver calling scsi_unblock_requests(). This is done
2050 * as an API function so that changes to the internals of the scsi mid-layer
2051 * won't require wholesale changes to drivers that use this feature.
2052 */
scsi_unblock_requests(struct Scsi_Host * shost)2053 void scsi_unblock_requests(struct Scsi_Host *shost)
2054 {
2055 shost->host_self_blocked = 0;
2056 scsi_run_host_queues(shost);
2057 }
2058 EXPORT_SYMBOL(scsi_unblock_requests);
2059
scsi_exit_queue(void)2060 void scsi_exit_queue(void)
2061 {
2062 kmem_cache_destroy(scsi_sense_cache);
2063 }
2064
2065 /**
2066 * scsi_mode_select - issue a mode select
2067 * @sdev: SCSI device to be queried
2068 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2069 * @sp: Save page bit (0 == don't save, 1 == save)
2070 * @buffer: request buffer (may not be smaller than eight bytes)
2071 * @len: length of request buffer.
2072 * @timeout: command timeout
2073 * @retries: number of retries before failing
2074 * @data: returns a structure abstracting the mode header data
2075 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2076 * must be SCSI_SENSE_BUFFERSIZE big.
2077 *
2078 * Returns zero if successful; negative error number or scsi
2079 * status on error
2080 *
2081 */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2082 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2083 unsigned char *buffer, int len, int timeout, int retries,
2084 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2085 {
2086 unsigned char cmd[10];
2087 unsigned char *real_buffer;
2088 const struct scsi_exec_args exec_args = {
2089 .sshdr = sshdr,
2090 };
2091 int ret;
2092
2093 memset(cmd, 0, sizeof(cmd));
2094 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2095
2096 /*
2097 * Use MODE SELECT(10) if the device asked for it or if the mode page
2098 * and the mode select header cannot fit within the maximumm 255 bytes
2099 * of the MODE SELECT(6) command.
2100 */
2101 if (sdev->use_10_for_ms ||
2102 len + 4 > 255 ||
2103 data->block_descriptor_length > 255) {
2104 if (len > 65535 - 8)
2105 return -EINVAL;
2106 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2107 if (!real_buffer)
2108 return -ENOMEM;
2109 memcpy(real_buffer + 8, buffer, len);
2110 len += 8;
2111 real_buffer[0] = 0;
2112 real_buffer[1] = 0;
2113 real_buffer[2] = data->medium_type;
2114 real_buffer[3] = data->device_specific;
2115 real_buffer[4] = data->longlba ? 0x01 : 0;
2116 real_buffer[5] = 0;
2117 put_unaligned_be16(data->block_descriptor_length,
2118 &real_buffer[6]);
2119
2120 cmd[0] = MODE_SELECT_10;
2121 put_unaligned_be16(len, &cmd[7]);
2122 } else {
2123 if (data->longlba)
2124 return -EINVAL;
2125
2126 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2127 if (!real_buffer)
2128 return -ENOMEM;
2129 memcpy(real_buffer + 4, buffer, len);
2130 len += 4;
2131 real_buffer[0] = 0;
2132 real_buffer[1] = data->medium_type;
2133 real_buffer[2] = data->device_specific;
2134 real_buffer[3] = data->block_descriptor_length;
2135
2136 cmd[0] = MODE_SELECT;
2137 cmd[4] = len;
2138 }
2139
2140 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2141 timeout, retries, &exec_args);
2142 kfree(real_buffer);
2143 return ret;
2144 }
2145 EXPORT_SYMBOL_GPL(scsi_mode_select);
2146
2147 /**
2148 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2149 * @sdev: SCSI device to be queried
2150 * @dbd: set to prevent mode sense from returning block descriptors
2151 * @modepage: mode page being requested
2152 * @buffer: request buffer (may not be smaller than eight bytes)
2153 * @len: length of request buffer.
2154 * @timeout: command timeout
2155 * @retries: number of retries before failing
2156 * @data: returns a structure abstracting the mode header data
2157 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2158 * must be SCSI_SENSE_BUFFERSIZE big.
2159 *
2160 * Returns zero if successful, or a negative error number on failure
2161 */
2162 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2163 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2164 unsigned char *buffer, int len, int timeout, int retries,
2165 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2166 {
2167 unsigned char cmd[12];
2168 int use_10_for_ms;
2169 int header_length;
2170 int result, retry_count = retries;
2171 struct scsi_sense_hdr my_sshdr;
2172 const struct scsi_exec_args exec_args = {
2173 /* caller might not be interested in sense, but we need it */
2174 .sshdr = sshdr ? : &my_sshdr,
2175 };
2176
2177 memset(data, 0, sizeof(*data));
2178 memset(&cmd[0], 0, 12);
2179
2180 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2181 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2182 cmd[2] = modepage;
2183
2184 sshdr = exec_args.sshdr;
2185
2186 retry:
2187 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2188
2189 if (use_10_for_ms) {
2190 if (len < 8 || len > 65535)
2191 return -EINVAL;
2192
2193 cmd[0] = MODE_SENSE_10;
2194 put_unaligned_be16(len, &cmd[7]);
2195 header_length = 8;
2196 } else {
2197 if (len < 4)
2198 return -EINVAL;
2199
2200 cmd[0] = MODE_SENSE;
2201 cmd[4] = len;
2202 header_length = 4;
2203 }
2204
2205 memset(buffer, 0, len);
2206
2207 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2208 timeout, retries, &exec_args);
2209 if (result < 0)
2210 return result;
2211
2212 /* This code looks awful: what it's doing is making sure an
2213 * ILLEGAL REQUEST sense return identifies the actual command
2214 * byte as the problem. MODE_SENSE commands can return
2215 * ILLEGAL REQUEST if the code page isn't supported */
2216
2217 if (!scsi_status_is_good(result)) {
2218 if (scsi_sense_valid(sshdr)) {
2219 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2220 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2221 /*
2222 * Invalid command operation code: retry using
2223 * MODE SENSE(6) if this was a MODE SENSE(10)
2224 * request, except if the request mode page is
2225 * too large for MODE SENSE single byte
2226 * allocation length field.
2227 */
2228 if (use_10_for_ms) {
2229 if (len > 255)
2230 return -EIO;
2231 sdev->use_10_for_ms = 0;
2232 goto retry;
2233 }
2234 }
2235 if (scsi_status_is_check_condition(result) &&
2236 sshdr->sense_key == UNIT_ATTENTION &&
2237 retry_count) {
2238 retry_count--;
2239 goto retry;
2240 }
2241 }
2242 return -EIO;
2243 }
2244 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2245 (modepage == 6 || modepage == 8))) {
2246 /* Initio breakage? */
2247 header_length = 0;
2248 data->length = 13;
2249 data->medium_type = 0;
2250 data->device_specific = 0;
2251 data->longlba = 0;
2252 data->block_descriptor_length = 0;
2253 } else if (use_10_for_ms) {
2254 data->length = get_unaligned_be16(&buffer[0]) + 2;
2255 data->medium_type = buffer[2];
2256 data->device_specific = buffer[3];
2257 data->longlba = buffer[4] & 0x01;
2258 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2259 } else {
2260 data->length = buffer[0] + 1;
2261 data->medium_type = buffer[1];
2262 data->device_specific = buffer[2];
2263 data->block_descriptor_length = buffer[3];
2264 }
2265 data->header_length = header_length;
2266
2267 return 0;
2268 }
2269 EXPORT_SYMBOL(scsi_mode_sense);
2270
2271 /**
2272 * scsi_test_unit_ready - test if unit is ready
2273 * @sdev: scsi device to change the state of.
2274 * @timeout: command timeout
2275 * @retries: number of retries before failing
2276 * @sshdr: outpout pointer for decoded sense information.
2277 *
2278 * Returns zero if unsuccessful or an error if TUR failed. For
2279 * removable media, UNIT_ATTENTION sets ->changed flag.
2280 **/
2281 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2282 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2283 struct scsi_sense_hdr *sshdr)
2284 {
2285 char cmd[] = {
2286 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2287 };
2288 const struct scsi_exec_args exec_args = {
2289 .sshdr = sshdr,
2290 };
2291 int result;
2292
2293 /* try to eat the UNIT_ATTENTION if there are enough retries */
2294 do {
2295 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2296 timeout, 1, &exec_args);
2297 if (sdev->removable && scsi_sense_valid(sshdr) &&
2298 sshdr->sense_key == UNIT_ATTENTION)
2299 sdev->changed = 1;
2300 } while (scsi_sense_valid(sshdr) &&
2301 sshdr->sense_key == UNIT_ATTENTION && --retries);
2302
2303 return result;
2304 }
2305 EXPORT_SYMBOL(scsi_test_unit_ready);
2306
2307 /**
2308 * scsi_device_set_state - Take the given device through the device state model.
2309 * @sdev: scsi device to change the state of.
2310 * @state: state to change to.
2311 *
2312 * Returns zero if successful or an error if the requested
2313 * transition is illegal.
2314 */
2315 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2316 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2317 {
2318 enum scsi_device_state oldstate = sdev->sdev_state;
2319
2320 if (state == oldstate)
2321 return 0;
2322
2323 switch (state) {
2324 case SDEV_CREATED:
2325 switch (oldstate) {
2326 case SDEV_CREATED_BLOCK:
2327 break;
2328 default:
2329 goto illegal;
2330 }
2331 break;
2332
2333 case SDEV_RUNNING:
2334 switch (oldstate) {
2335 case SDEV_CREATED:
2336 case SDEV_OFFLINE:
2337 case SDEV_TRANSPORT_OFFLINE:
2338 case SDEV_QUIESCE:
2339 case SDEV_BLOCK:
2340 break;
2341 default:
2342 goto illegal;
2343 }
2344 break;
2345
2346 case SDEV_QUIESCE:
2347 switch (oldstate) {
2348 case SDEV_RUNNING:
2349 case SDEV_OFFLINE:
2350 case SDEV_TRANSPORT_OFFLINE:
2351 break;
2352 default:
2353 goto illegal;
2354 }
2355 break;
2356
2357 case SDEV_OFFLINE:
2358 case SDEV_TRANSPORT_OFFLINE:
2359 switch (oldstate) {
2360 case SDEV_CREATED:
2361 case SDEV_RUNNING:
2362 case SDEV_QUIESCE:
2363 case SDEV_BLOCK:
2364 break;
2365 default:
2366 goto illegal;
2367 }
2368 break;
2369
2370 case SDEV_BLOCK:
2371 switch (oldstate) {
2372 case SDEV_RUNNING:
2373 case SDEV_CREATED_BLOCK:
2374 case SDEV_QUIESCE:
2375 case SDEV_OFFLINE:
2376 break;
2377 default:
2378 goto illegal;
2379 }
2380 break;
2381
2382 case SDEV_CREATED_BLOCK:
2383 switch (oldstate) {
2384 case SDEV_CREATED:
2385 break;
2386 default:
2387 goto illegal;
2388 }
2389 break;
2390
2391 case SDEV_CANCEL:
2392 switch (oldstate) {
2393 case SDEV_CREATED:
2394 case SDEV_RUNNING:
2395 case SDEV_QUIESCE:
2396 case SDEV_OFFLINE:
2397 case SDEV_TRANSPORT_OFFLINE:
2398 break;
2399 default:
2400 goto illegal;
2401 }
2402 break;
2403
2404 case SDEV_DEL:
2405 switch (oldstate) {
2406 case SDEV_CREATED:
2407 case SDEV_RUNNING:
2408 case SDEV_OFFLINE:
2409 case SDEV_TRANSPORT_OFFLINE:
2410 case SDEV_CANCEL:
2411 case SDEV_BLOCK:
2412 case SDEV_CREATED_BLOCK:
2413 break;
2414 default:
2415 goto illegal;
2416 }
2417 break;
2418
2419 }
2420 sdev->offline_already = false;
2421 sdev->sdev_state = state;
2422 return 0;
2423
2424 illegal:
2425 SCSI_LOG_ERROR_RECOVERY(1,
2426 sdev_printk(KERN_ERR, sdev,
2427 "Illegal state transition %s->%s",
2428 scsi_device_state_name(oldstate),
2429 scsi_device_state_name(state))
2430 );
2431 return -EINVAL;
2432 }
2433 EXPORT_SYMBOL(scsi_device_set_state);
2434
2435 /**
2436 * scsi_evt_emit - emit a single SCSI device uevent
2437 * @sdev: associated SCSI device
2438 * @evt: event to emit
2439 *
2440 * Send a single uevent (scsi_event) to the associated scsi_device.
2441 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2442 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2443 {
2444 int idx = 0;
2445 char *envp[3];
2446
2447 switch (evt->evt_type) {
2448 case SDEV_EVT_MEDIA_CHANGE:
2449 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2450 break;
2451 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2452 scsi_rescan_device(&sdev->sdev_gendev);
2453 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2454 break;
2455 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2456 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2457 break;
2458 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2459 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2460 break;
2461 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2462 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2463 break;
2464 case SDEV_EVT_LUN_CHANGE_REPORTED:
2465 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2466 break;
2467 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2468 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2469 break;
2470 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2471 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2472 break;
2473 default:
2474 /* do nothing */
2475 break;
2476 }
2477
2478 envp[idx++] = NULL;
2479
2480 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2481 }
2482
2483 /**
2484 * scsi_evt_thread - send a uevent for each scsi event
2485 * @work: work struct for scsi_device
2486 *
2487 * Dispatch queued events to their associated scsi_device kobjects
2488 * as uevents.
2489 */
scsi_evt_thread(struct work_struct * work)2490 void scsi_evt_thread(struct work_struct *work)
2491 {
2492 struct scsi_device *sdev;
2493 enum scsi_device_event evt_type;
2494 LIST_HEAD(event_list);
2495
2496 sdev = container_of(work, struct scsi_device, event_work);
2497
2498 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2499 if (test_and_clear_bit(evt_type, sdev->pending_events))
2500 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2501
2502 while (1) {
2503 struct scsi_event *evt;
2504 struct list_head *this, *tmp;
2505 unsigned long flags;
2506
2507 spin_lock_irqsave(&sdev->list_lock, flags);
2508 list_splice_init(&sdev->event_list, &event_list);
2509 spin_unlock_irqrestore(&sdev->list_lock, flags);
2510
2511 if (list_empty(&event_list))
2512 break;
2513
2514 list_for_each_safe(this, tmp, &event_list) {
2515 evt = list_entry(this, struct scsi_event, node);
2516 list_del(&evt->node);
2517 scsi_evt_emit(sdev, evt);
2518 kfree(evt);
2519 }
2520 }
2521 }
2522
2523 /**
2524 * sdev_evt_send - send asserted event to uevent thread
2525 * @sdev: scsi_device event occurred on
2526 * @evt: event to send
2527 *
2528 * Assert scsi device event asynchronously.
2529 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2530 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2531 {
2532 unsigned long flags;
2533
2534 #if 0
2535 /* FIXME: currently this check eliminates all media change events
2536 * for polled devices. Need to update to discriminate between AN
2537 * and polled events */
2538 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2539 kfree(evt);
2540 return;
2541 }
2542 #endif
2543
2544 spin_lock_irqsave(&sdev->list_lock, flags);
2545 list_add_tail(&evt->node, &sdev->event_list);
2546 schedule_work(&sdev->event_work);
2547 spin_unlock_irqrestore(&sdev->list_lock, flags);
2548 }
2549 EXPORT_SYMBOL_GPL(sdev_evt_send);
2550
2551 /**
2552 * sdev_evt_alloc - allocate a new scsi event
2553 * @evt_type: type of event to allocate
2554 * @gfpflags: GFP flags for allocation
2555 *
2556 * Allocates and returns a new scsi_event.
2557 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2558 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2559 gfp_t gfpflags)
2560 {
2561 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2562 if (!evt)
2563 return NULL;
2564
2565 evt->evt_type = evt_type;
2566 INIT_LIST_HEAD(&evt->node);
2567
2568 /* evt_type-specific initialization, if any */
2569 switch (evt_type) {
2570 case SDEV_EVT_MEDIA_CHANGE:
2571 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2572 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2573 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2574 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2575 case SDEV_EVT_LUN_CHANGE_REPORTED:
2576 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2577 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2578 default:
2579 /* do nothing */
2580 break;
2581 }
2582
2583 return evt;
2584 }
2585 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2586
2587 /**
2588 * sdev_evt_send_simple - send asserted event to uevent thread
2589 * @sdev: scsi_device event occurred on
2590 * @evt_type: type of event to send
2591 * @gfpflags: GFP flags for allocation
2592 *
2593 * Assert scsi device event asynchronously, given an event type.
2594 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2595 void sdev_evt_send_simple(struct scsi_device *sdev,
2596 enum scsi_device_event evt_type, gfp_t gfpflags)
2597 {
2598 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2599 if (!evt) {
2600 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2601 evt_type);
2602 return;
2603 }
2604
2605 sdev_evt_send(sdev, evt);
2606 }
2607 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2608
2609 /**
2610 * scsi_device_quiesce - Block all commands except power management.
2611 * @sdev: scsi device to quiesce.
2612 *
2613 * This works by trying to transition to the SDEV_QUIESCE state
2614 * (which must be a legal transition). When the device is in this
2615 * state, only power management requests will be accepted, all others will
2616 * be deferred.
2617 *
2618 * Must be called with user context, may sleep.
2619 *
2620 * Returns zero if unsuccessful or an error if not.
2621 */
2622 int
scsi_device_quiesce(struct scsi_device * sdev)2623 scsi_device_quiesce(struct scsi_device *sdev)
2624 {
2625 struct request_queue *q = sdev->request_queue;
2626 int err;
2627
2628 /*
2629 * It is allowed to call scsi_device_quiesce() multiple times from
2630 * the same context but concurrent scsi_device_quiesce() calls are
2631 * not allowed.
2632 */
2633 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2634
2635 if (sdev->quiesced_by == current)
2636 return 0;
2637
2638 blk_set_pm_only(q);
2639
2640 blk_mq_freeze_queue(q);
2641 /*
2642 * Ensure that the effect of blk_set_pm_only() will be visible
2643 * for percpu_ref_tryget() callers that occur after the queue
2644 * unfreeze even if the queue was already frozen before this function
2645 * was called. See also https://lwn.net/Articles/573497/.
2646 */
2647 synchronize_rcu();
2648 blk_mq_unfreeze_queue(q);
2649
2650 mutex_lock(&sdev->state_mutex);
2651 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2652 if (err == 0)
2653 sdev->quiesced_by = current;
2654 else
2655 blk_clear_pm_only(q);
2656 mutex_unlock(&sdev->state_mutex);
2657
2658 return err;
2659 }
2660 EXPORT_SYMBOL(scsi_device_quiesce);
2661
2662 /**
2663 * scsi_device_resume - Restart user issued commands to a quiesced device.
2664 * @sdev: scsi device to resume.
2665 *
2666 * Moves the device from quiesced back to running and restarts the
2667 * queues.
2668 *
2669 * Must be called with user context, may sleep.
2670 */
scsi_device_resume(struct scsi_device * sdev)2671 void scsi_device_resume(struct scsi_device *sdev)
2672 {
2673 /* check if the device state was mutated prior to resume, and if
2674 * so assume the state is being managed elsewhere (for example
2675 * device deleted during suspend)
2676 */
2677 mutex_lock(&sdev->state_mutex);
2678 if (sdev->sdev_state == SDEV_QUIESCE)
2679 scsi_device_set_state(sdev, SDEV_RUNNING);
2680 if (sdev->quiesced_by) {
2681 sdev->quiesced_by = NULL;
2682 blk_clear_pm_only(sdev->request_queue);
2683 }
2684 mutex_unlock(&sdev->state_mutex);
2685 }
2686 EXPORT_SYMBOL(scsi_device_resume);
2687
2688 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2689 device_quiesce_fn(struct scsi_device *sdev, void *data)
2690 {
2691 scsi_device_quiesce(sdev);
2692 }
2693
2694 void
scsi_target_quiesce(struct scsi_target * starget)2695 scsi_target_quiesce(struct scsi_target *starget)
2696 {
2697 starget_for_each_device(starget, NULL, device_quiesce_fn);
2698 }
2699 EXPORT_SYMBOL(scsi_target_quiesce);
2700
2701 static void
device_resume_fn(struct scsi_device * sdev,void * data)2702 device_resume_fn(struct scsi_device *sdev, void *data)
2703 {
2704 scsi_device_resume(sdev);
2705 }
2706
2707 void
scsi_target_resume(struct scsi_target * starget)2708 scsi_target_resume(struct scsi_target *starget)
2709 {
2710 starget_for_each_device(starget, NULL, device_resume_fn);
2711 }
2712 EXPORT_SYMBOL(scsi_target_resume);
2713
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2714 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2715 {
2716 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2717 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2718
2719 return 0;
2720 }
2721
scsi_start_queue(struct scsi_device * sdev)2722 void scsi_start_queue(struct scsi_device *sdev)
2723 {
2724 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2725 blk_mq_unquiesce_queue(sdev->request_queue);
2726 }
2727
scsi_stop_queue(struct scsi_device * sdev,bool nowait)2728 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2729 {
2730 /*
2731 * The atomic variable of ->queue_stopped covers that
2732 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2733 *
2734 * However, we still need to wait until quiesce is done
2735 * in case that queue has been stopped.
2736 */
2737 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2738 if (nowait)
2739 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2740 else
2741 blk_mq_quiesce_queue(sdev->request_queue);
2742 } else {
2743 if (!nowait)
2744 blk_mq_wait_quiesce_done(sdev->request_queue->tag_set);
2745 }
2746 }
2747
2748 /**
2749 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2750 * @sdev: device to block
2751 *
2752 * Pause SCSI command processing on the specified device. Does not sleep.
2753 *
2754 * Returns zero if successful or a negative error code upon failure.
2755 *
2756 * Notes:
2757 * This routine transitions the device to the SDEV_BLOCK state (which must be
2758 * a legal transition). When the device is in this state, command processing
2759 * is paused until the device leaves the SDEV_BLOCK state. See also
2760 * scsi_internal_device_unblock_nowait().
2761 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2762 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2763 {
2764 int ret = __scsi_internal_device_block_nowait(sdev);
2765
2766 /*
2767 * The device has transitioned to SDEV_BLOCK. Stop the
2768 * block layer from calling the midlayer with this device's
2769 * request queue.
2770 */
2771 if (!ret)
2772 scsi_stop_queue(sdev, true);
2773 return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2776
2777 /**
2778 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2779 * @sdev: device to block
2780 *
2781 * Pause SCSI command processing on the specified device and wait until all
2782 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2783 *
2784 * Returns zero if successful or a negative error code upon failure.
2785 *
2786 * Note:
2787 * This routine transitions the device to the SDEV_BLOCK state (which must be
2788 * a legal transition). When the device is in this state, command processing
2789 * is paused until the device leaves the SDEV_BLOCK state. See also
2790 * scsi_internal_device_unblock().
2791 */
scsi_internal_device_block(struct scsi_device * sdev)2792 static int scsi_internal_device_block(struct scsi_device *sdev)
2793 {
2794 int err;
2795
2796 mutex_lock(&sdev->state_mutex);
2797 err = __scsi_internal_device_block_nowait(sdev);
2798 if (err == 0)
2799 scsi_stop_queue(sdev, false);
2800 mutex_unlock(&sdev->state_mutex);
2801
2802 return err;
2803 }
2804
2805 /**
2806 * scsi_internal_device_unblock_nowait - resume a device after a block request
2807 * @sdev: device to resume
2808 * @new_state: state to set the device to after unblocking
2809 *
2810 * Restart the device queue for a previously suspended SCSI device. Does not
2811 * sleep.
2812 *
2813 * Returns zero if successful or a negative error code upon failure.
2814 *
2815 * Notes:
2816 * This routine transitions the device to the SDEV_RUNNING state or to one of
2817 * the offline states (which must be a legal transition) allowing the midlayer
2818 * to goose the queue for this device.
2819 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2820 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2821 enum scsi_device_state new_state)
2822 {
2823 switch (new_state) {
2824 case SDEV_RUNNING:
2825 case SDEV_TRANSPORT_OFFLINE:
2826 break;
2827 default:
2828 return -EINVAL;
2829 }
2830
2831 /*
2832 * Try to transition the scsi device to SDEV_RUNNING or one of the
2833 * offlined states and goose the device queue if successful.
2834 */
2835 switch (sdev->sdev_state) {
2836 case SDEV_BLOCK:
2837 case SDEV_TRANSPORT_OFFLINE:
2838 sdev->sdev_state = new_state;
2839 break;
2840 case SDEV_CREATED_BLOCK:
2841 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2842 new_state == SDEV_OFFLINE)
2843 sdev->sdev_state = new_state;
2844 else
2845 sdev->sdev_state = SDEV_CREATED;
2846 break;
2847 case SDEV_CANCEL:
2848 case SDEV_OFFLINE:
2849 break;
2850 default:
2851 return -EINVAL;
2852 }
2853 scsi_start_queue(sdev);
2854
2855 return 0;
2856 }
2857 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2858
2859 /**
2860 * scsi_internal_device_unblock - resume a device after a block request
2861 * @sdev: device to resume
2862 * @new_state: state to set the device to after unblocking
2863 *
2864 * Restart the device queue for a previously suspended SCSI device. May sleep.
2865 *
2866 * Returns zero if successful or a negative error code upon failure.
2867 *
2868 * Notes:
2869 * This routine transitions the device to the SDEV_RUNNING state or to one of
2870 * the offline states (which must be a legal transition) allowing the midlayer
2871 * to goose the queue for this device.
2872 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2873 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2874 enum scsi_device_state new_state)
2875 {
2876 int ret;
2877
2878 mutex_lock(&sdev->state_mutex);
2879 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2880 mutex_unlock(&sdev->state_mutex);
2881
2882 return ret;
2883 }
2884
2885 static void
device_block(struct scsi_device * sdev,void * data)2886 device_block(struct scsi_device *sdev, void *data)
2887 {
2888 int ret;
2889
2890 ret = scsi_internal_device_block(sdev);
2891
2892 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2893 dev_name(&sdev->sdev_gendev), ret);
2894 }
2895
2896 static int
target_block(struct device * dev,void * data)2897 target_block(struct device *dev, void *data)
2898 {
2899 if (scsi_is_target_device(dev))
2900 starget_for_each_device(to_scsi_target(dev), NULL,
2901 device_block);
2902 return 0;
2903 }
2904
2905 void
scsi_target_block(struct device * dev)2906 scsi_target_block(struct device *dev)
2907 {
2908 if (scsi_is_target_device(dev))
2909 starget_for_each_device(to_scsi_target(dev), NULL,
2910 device_block);
2911 else
2912 device_for_each_child(dev, NULL, target_block);
2913 }
2914 EXPORT_SYMBOL_GPL(scsi_target_block);
2915
2916 static void
device_unblock(struct scsi_device * sdev,void * data)2917 device_unblock(struct scsi_device *sdev, void *data)
2918 {
2919 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2920 }
2921
2922 static int
target_unblock(struct device * dev,void * data)2923 target_unblock(struct device *dev, void *data)
2924 {
2925 if (scsi_is_target_device(dev))
2926 starget_for_each_device(to_scsi_target(dev), data,
2927 device_unblock);
2928 return 0;
2929 }
2930
2931 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2932 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2933 {
2934 if (scsi_is_target_device(dev))
2935 starget_for_each_device(to_scsi_target(dev), &new_state,
2936 device_unblock);
2937 else
2938 device_for_each_child(dev, &new_state, target_unblock);
2939 }
2940 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2941
2942 int
scsi_host_block(struct Scsi_Host * shost)2943 scsi_host_block(struct Scsi_Host *shost)
2944 {
2945 struct scsi_device *sdev;
2946 int ret = 0;
2947
2948 /*
2949 * Call scsi_internal_device_block_nowait so we can avoid
2950 * calling synchronize_rcu() for each LUN.
2951 */
2952 shost_for_each_device(sdev, shost) {
2953 mutex_lock(&sdev->state_mutex);
2954 ret = scsi_internal_device_block_nowait(sdev);
2955 mutex_unlock(&sdev->state_mutex);
2956 if (ret) {
2957 scsi_device_put(sdev);
2958 break;
2959 }
2960 }
2961
2962 /*
2963 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2964 * calling synchronize_rcu() once is enough.
2965 */
2966 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2967
2968 if (!ret)
2969 synchronize_rcu();
2970
2971 return ret;
2972 }
2973 EXPORT_SYMBOL_GPL(scsi_host_block);
2974
2975 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2976 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2977 {
2978 struct scsi_device *sdev;
2979 int ret = 0;
2980
2981 shost_for_each_device(sdev, shost) {
2982 ret = scsi_internal_device_unblock(sdev, new_state);
2983 if (ret) {
2984 scsi_device_put(sdev);
2985 break;
2986 }
2987 }
2988 return ret;
2989 }
2990 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2991
2992 /**
2993 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2994 * @sgl: scatter-gather list
2995 * @sg_count: number of segments in sg
2996 * @offset: offset in bytes into sg, on return offset into the mapped area
2997 * @len: bytes to map, on return number of bytes mapped
2998 *
2999 * Returns virtual address of the start of the mapped page
3000 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3001 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3002 size_t *offset, size_t *len)
3003 {
3004 int i;
3005 size_t sg_len = 0, len_complete = 0;
3006 struct scatterlist *sg;
3007 struct page *page;
3008
3009 WARN_ON(!irqs_disabled());
3010
3011 for_each_sg(sgl, sg, sg_count, i) {
3012 len_complete = sg_len; /* Complete sg-entries */
3013 sg_len += sg->length;
3014 if (sg_len > *offset)
3015 break;
3016 }
3017
3018 if (unlikely(i == sg_count)) {
3019 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3020 "elements %d\n",
3021 __func__, sg_len, *offset, sg_count);
3022 WARN_ON(1);
3023 return NULL;
3024 }
3025
3026 /* Offset starting from the beginning of first page in this sg-entry */
3027 *offset = *offset - len_complete + sg->offset;
3028
3029 /* Assumption: contiguous pages can be accessed as "page + i" */
3030 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3031 *offset &= ~PAGE_MASK;
3032
3033 /* Bytes in this sg-entry from *offset to the end of the page */
3034 sg_len = PAGE_SIZE - *offset;
3035 if (*len > sg_len)
3036 *len = sg_len;
3037
3038 return kmap_atomic(page);
3039 }
3040 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3041
3042 /**
3043 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3044 * @virt: virtual address to be unmapped
3045 */
scsi_kunmap_atomic_sg(void * virt)3046 void scsi_kunmap_atomic_sg(void *virt)
3047 {
3048 kunmap_atomic(virt);
3049 }
3050 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3051
sdev_disable_disk_events(struct scsi_device * sdev)3052 void sdev_disable_disk_events(struct scsi_device *sdev)
3053 {
3054 atomic_inc(&sdev->disk_events_disable_depth);
3055 }
3056 EXPORT_SYMBOL(sdev_disable_disk_events);
3057
sdev_enable_disk_events(struct scsi_device * sdev)3058 void sdev_enable_disk_events(struct scsi_device *sdev)
3059 {
3060 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3061 return;
3062 atomic_dec(&sdev->disk_events_disable_depth);
3063 }
3064 EXPORT_SYMBOL(sdev_enable_disk_events);
3065
designator_prio(const unsigned char * d)3066 static unsigned char designator_prio(const unsigned char *d)
3067 {
3068 if (d[1] & 0x30)
3069 /* not associated with LUN */
3070 return 0;
3071
3072 if (d[3] == 0)
3073 /* invalid length */
3074 return 0;
3075
3076 /*
3077 * Order of preference for lun descriptor:
3078 * - SCSI name string
3079 * - NAA IEEE Registered Extended
3080 * - EUI-64 based 16-byte
3081 * - EUI-64 based 12-byte
3082 * - NAA IEEE Registered
3083 * - NAA IEEE Extended
3084 * - EUI-64 based 8-byte
3085 * - SCSI name string (truncated)
3086 * - T10 Vendor ID
3087 * as longer descriptors reduce the likelyhood
3088 * of identification clashes.
3089 */
3090
3091 switch (d[1] & 0xf) {
3092 case 8:
3093 /* SCSI name string, variable-length UTF-8 */
3094 return 9;
3095 case 3:
3096 switch (d[4] >> 4) {
3097 case 6:
3098 /* NAA registered extended */
3099 return 8;
3100 case 5:
3101 /* NAA registered */
3102 return 5;
3103 case 4:
3104 /* NAA extended */
3105 return 4;
3106 case 3:
3107 /* NAA locally assigned */
3108 return 1;
3109 default:
3110 break;
3111 }
3112 break;
3113 case 2:
3114 switch (d[3]) {
3115 case 16:
3116 /* EUI64-based, 16 byte */
3117 return 7;
3118 case 12:
3119 /* EUI64-based, 12 byte */
3120 return 6;
3121 case 8:
3122 /* EUI64-based, 8 byte */
3123 return 3;
3124 default:
3125 break;
3126 }
3127 break;
3128 case 1:
3129 /* T10 vendor ID */
3130 return 1;
3131 default:
3132 break;
3133 }
3134
3135 return 0;
3136 }
3137
3138 /**
3139 * scsi_vpd_lun_id - return a unique device identification
3140 * @sdev: SCSI device
3141 * @id: buffer for the identification
3142 * @id_len: length of the buffer
3143 *
3144 * Copies a unique device identification into @id based
3145 * on the information in the VPD page 0x83 of the device.
3146 * The string will be formatted as a SCSI name string.
3147 *
3148 * Returns the length of the identification or error on failure.
3149 * If the identifier is longer than the supplied buffer the actual
3150 * identifier length is returned and the buffer is not zero-padded.
3151 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3152 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3153 {
3154 u8 cur_id_prio = 0;
3155 u8 cur_id_size = 0;
3156 const unsigned char *d, *cur_id_str;
3157 const struct scsi_vpd *vpd_pg83;
3158 int id_size = -EINVAL;
3159
3160 rcu_read_lock();
3161 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3162 if (!vpd_pg83) {
3163 rcu_read_unlock();
3164 return -ENXIO;
3165 }
3166
3167 /* The id string must be at least 20 bytes + terminating NULL byte */
3168 if (id_len < 21) {
3169 rcu_read_unlock();
3170 return -EINVAL;
3171 }
3172
3173 memset(id, 0, id_len);
3174 for (d = vpd_pg83->data + 4;
3175 d < vpd_pg83->data + vpd_pg83->len;
3176 d += d[3] + 4) {
3177 u8 prio = designator_prio(d);
3178
3179 if (prio == 0 || cur_id_prio > prio)
3180 continue;
3181
3182 switch (d[1] & 0xf) {
3183 case 0x1:
3184 /* T10 Vendor ID */
3185 if (cur_id_size > d[3])
3186 break;
3187 cur_id_prio = prio;
3188 cur_id_size = d[3];
3189 if (cur_id_size + 4 > id_len)
3190 cur_id_size = id_len - 4;
3191 cur_id_str = d + 4;
3192 id_size = snprintf(id, id_len, "t10.%*pE",
3193 cur_id_size, cur_id_str);
3194 break;
3195 case 0x2:
3196 /* EUI-64 */
3197 cur_id_prio = prio;
3198 cur_id_size = d[3];
3199 cur_id_str = d + 4;
3200 switch (cur_id_size) {
3201 case 8:
3202 id_size = snprintf(id, id_len,
3203 "eui.%8phN",
3204 cur_id_str);
3205 break;
3206 case 12:
3207 id_size = snprintf(id, id_len,
3208 "eui.%12phN",
3209 cur_id_str);
3210 break;
3211 case 16:
3212 id_size = snprintf(id, id_len,
3213 "eui.%16phN",
3214 cur_id_str);
3215 break;
3216 default:
3217 break;
3218 }
3219 break;
3220 case 0x3:
3221 /* NAA */
3222 cur_id_prio = prio;
3223 cur_id_size = d[3];
3224 cur_id_str = d + 4;
3225 switch (cur_id_size) {
3226 case 8:
3227 id_size = snprintf(id, id_len,
3228 "naa.%8phN",
3229 cur_id_str);
3230 break;
3231 case 16:
3232 id_size = snprintf(id, id_len,
3233 "naa.%16phN",
3234 cur_id_str);
3235 break;
3236 default:
3237 break;
3238 }
3239 break;
3240 case 0x8:
3241 /* SCSI name string */
3242 if (cur_id_size > d[3])
3243 break;
3244 /* Prefer others for truncated descriptor */
3245 if (d[3] > id_len) {
3246 prio = 2;
3247 if (cur_id_prio > prio)
3248 break;
3249 }
3250 cur_id_prio = prio;
3251 cur_id_size = id_size = d[3];
3252 cur_id_str = d + 4;
3253 if (cur_id_size >= id_len)
3254 cur_id_size = id_len - 1;
3255 memcpy(id, cur_id_str, cur_id_size);
3256 break;
3257 default:
3258 break;
3259 }
3260 }
3261 rcu_read_unlock();
3262
3263 return id_size;
3264 }
3265 EXPORT_SYMBOL(scsi_vpd_lun_id);
3266
3267 /*
3268 * scsi_vpd_tpg_id - return a target port group identifier
3269 * @sdev: SCSI device
3270 *
3271 * Returns the Target Port Group identifier from the information
3272 * froom VPD page 0x83 of the device.
3273 *
3274 * Returns the identifier or error on failure.
3275 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3276 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3277 {
3278 const unsigned char *d;
3279 const struct scsi_vpd *vpd_pg83;
3280 int group_id = -EAGAIN, rel_port = -1;
3281
3282 rcu_read_lock();
3283 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3284 if (!vpd_pg83) {
3285 rcu_read_unlock();
3286 return -ENXIO;
3287 }
3288
3289 d = vpd_pg83->data + 4;
3290 while (d < vpd_pg83->data + vpd_pg83->len) {
3291 switch (d[1] & 0xf) {
3292 case 0x4:
3293 /* Relative target port */
3294 rel_port = get_unaligned_be16(&d[6]);
3295 break;
3296 case 0x5:
3297 /* Target port group */
3298 group_id = get_unaligned_be16(&d[6]);
3299 break;
3300 default:
3301 break;
3302 }
3303 d += d[3] + 4;
3304 }
3305 rcu_read_unlock();
3306
3307 if (group_id >= 0 && rel_id && rel_port != -1)
3308 *rel_id = rel_port;
3309
3310 return group_id;
3311 }
3312 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3313
3314 /**
3315 * scsi_build_sense - build sense data for a command
3316 * @scmd: scsi command for which the sense should be formatted
3317 * @desc: Sense format (non-zero == descriptor format,
3318 * 0 == fixed format)
3319 * @key: Sense key
3320 * @asc: Additional sense code
3321 * @ascq: Additional sense code qualifier
3322 *
3323 **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3324 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3325 {
3326 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3327 scmd->result = SAM_STAT_CHECK_CONDITION;
3328 }
3329 EXPORT_SYMBOL_GPL(scsi_build_sense);
3330