1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp-sev.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/misc_cgroup.h>
19 #include <linux/processor.h>
20 #include <linux/trace_events.h>
21
22 #include <asm/pkru.h>
23 #include <asm/trapnr.h>
24 #include <asm/fpu/xcr.h>
25
26 #include "mmu.h"
27 #include "x86.h"
28 #include "svm.h"
29 #include "svm_ops.h"
30 #include "cpuid.h"
31 #include "trace.h"
32
33 #ifndef CONFIG_KVM_AMD_SEV
34 /*
35 * When this config is not defined, SEV feature is not supported and APIs in
36 * this file are not used but this file still gets compiled into the KVM AMD
37 * module.
38 *
39 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
40 * misc_res_type {} defined in linux/misc_cgroup.h.
41 *
42 * Below macros allow compilation to succeed.
43 */
44 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
45 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
46 #endif
47
48 #ifdef CONFIG_KVM_AMD_SEV
49 /* enable/disable SEV support */
50 static bool sev_enabled = true;
51 module_param_named(sev, sev_enabled, bool, 0444);
52
53 /* enable/disable SEV-ES support */
54 static bool sev_es_enabled = true;
55 module_param_named(sev_es, sev_es_enabled, bool, 0444);
56 #else
57 #define sev_enabled false
58 #define sev_es_enabled false
59 #endif /* CONFIG_KVM_AMD_SEV */
60
61 static u8 sev_enc_bit;
62 static DECLARE_RWSEM(sev_deactivate_lock);
63 static DEFINE_MUTEX(sev_bitmap_lock);
64 unsigned int max_sev_asid;
65 static unsigned int min_sev_asid;
66 static unsigned long sev_me_mask;
67 static unsigned int nr_asids;
68 static unsigned long *sev_asid_bitmap;
69 static unsigned long *sev_reclaim_asid_bitmap;
70
71 struct enc_region {
72 struct list_head list;
73 unsigned long npages;
74 struct page **pages;
75 unsigned long uaddr;
76 unsigned long size;
77 };
78
79 /* Called with the sev_bitmap_lock held, or on shutdown */
sev_flush_asids(int min_asid,int max_asid)80 static int sev_flush_asids(int min_asid, int max_asid)
81 {
82 int ret, asid, error = 0;
83
84 /* Check if there are any ASIDs to reclaim before performing a flush */
85 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
86 if (asid > max_asid)
87 return -EBUSY;
88
89 /*
90 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
91 * so it must be guarded.
92 */
93 down_write(&sev_deactivate_lock);
94
95 wbinvd_on_all_cpus();
96 ret = sev_guest_df_flush(&error);
97
98 up_write(&sev_deactivate_lock);
99
100 if (ret)
101 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
102
103 return ret;
104 }
105
is_mirroring_enc_context(struct kvm * kvm)106 static inline bool is_mirroring_enc_context(struct kvm *kvm)
107 {
108 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
109 }
110
111 /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(int min_asid,int max_asid)112 static bool __sev_recycle_asids(int min_asid, int max_asid)
113 {
114 if (sev_flush_asids(min_asid, max_asid))
115 return false;
116
117 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
118 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
119 nr_asids);
120 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
121
122 return true;
123 }
124
sev_misc_cg_try_charge(struct kvm_sev_info * sev)125 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
126 {
127 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
128 return misc_cg_try_charge(type, sev->misc_cg, 1);
129 }
130
sev_misc_cg_uncharge(struct kvm_sev_info * sev)131 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
132 {
133 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
134 misc_cg_uncharge(type, sev->misc_cg, 1);
135 }
136
sev_asid_new(struct kvm_sev_info * sev)137 static int sev_asid_new(struct kvm_sev_info *sev)
138 {
139 int asid, min_asid, max_asid, ret;
140 bool retry = true;
141
142 WARN_ON(sev->misc_cg);
143 sev->misc_cg = get_current_misc_cg();
144 ret = sev_misc_cg_try_charge(sev);
145 if (ret) {
146 put_misc_cg(sev->misc_cg);
147 sev->misc_cg = NULL;
148 return ret;
149 }
150
151 mutex_lock(&sev_bitmap_lock);
152
153 /*
154 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
155 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
156 */
157 min_asid = sev->es_active ? 1 : min_sev_asid;
158 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
159 again:
160 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
161 if (asid > max_asid) {
162 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
163 retry = false;
164 goto again;
165 }
166 mutex_unlock(&sev_bitmap_lock);
167 ret = -EBUSY;
168 goto e_uncharge;
169 }
170
171 __set_bit(asid, sev_asid_bitmap);
172
173 mutex_unlock(&sev_bitmap_lock);
174
175 return asid;
176 e_uncharge:
177 sev_misc_cg_uncharge(sev);
178 put_misc_cg(sev->misc_cg);
179 sev->misc_cg = NULL;
180 return ret;
181 }
182
sev_get_asid(struct kvm * kvm)183 static int sev_get_asid(struct kvm *kvm)
184 {
185 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
186
187 return sev->asid;
188 }
189
sev_asid_free(struct kvm_sev_info * sev)190 static void sev_asid_free(struct kvm_sev_info *sev)
191 {
192 struct svm_cpu_data *sd;
193 int cpu;
194
195 mutex_lock(&sev_bitmap_lock);
196
197 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
198
199 for_each_possible_cpu(cpu) {
200 sd = per_cpu_ptr(&svm_data, cpu);
201 sd->sev_vmcbs[sev->asid] = NULL;
202 }
203
204 mutex_unlock(&sev_bitmap_lock);
205
206 sev_misc_cg_uncharge(sev);
207 put_misc_cg(sev->misc_cg);
208 sev->misc_cg = NULL;
209 }
210
sev_decommission(unsigned int handle)211 static void sev_decommission(unsigned int handle)
212 {
213 struct sev_data_decommission decommission;
214
215 if (!handle)
216 return;
217
218 decommission.handle = handle;
219 sev_guest_decommission(&decommission, NULL);
220 }
221
sev_unbind_asid(struct kvm * kvm,unsigned int handle)222 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
223 {
224 struct sev_data_deactivate deactivate;
225
226 if (!handle)
227 return;
228
229 deactivate.handle = handle;
230
231 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
232 down_read(&sev_deactivate_lock);
233 sev_guest_deactivate(&deactivate, NULL);
234 up_read(&sev_deactivate_lock);
235
236 sev_decommission(handle);
237 }
238
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)239 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
240 {
241 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
242 int asid, ret;
243
244 if (kvm->created_vcpus)
245 return -EINVAL;
246
247 ret = -EBUSY;
248 if (unlikely(sev->active))
249 return ret;
250
251 sev->active = true;
252 sev->es_active = argp->id == KVM_SEV_ES_INIT;
253 asid = sev_asid_new(sev);
254 if (asid < 0)
255 goto e_no_asid;
256 sev->asid = asid;
257
258 ret = sev_platform_init(&argp->error);
259 if (ret)
260 goto e_free;
261
262 INIT_LIST_HEAD(&sev->regions_list);
263 INIT_LIST_HEAD(&sev->mirror_vms);
264
265 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
266
267 return 0;
268
269 e_free:
270 sev_asid_free(sev);
271 sev->asid = 0;
272 e_no_asid:
273 sev->es_active = false;
274 sev->active = false;
275 return ret;
276 }
277
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)278 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
279 {
280 struct sev_data_activate activate;
281 int asid = sev_get_asid(kvm);
282 int ret;
283
284 /* activate ASID on the given handle */
285 activate.handle = handle;
286 activate.asid = asid;
287 ret = sev_guest_activate(&activate, error);
288
289 return ret;
290 }
291
__sev_issue_cmd(int fd,int id,void * data,int * error)292 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
293 {
294 struct fd f;
295 int ret;
296
297 f = fdget(fd);
298 if (!f.file)
299 return -EBADF;
300
301 ret = sev_issue_cmd_external_user(f.file, id, data, error);
302
303 fdput(f);
304 return ret;
305 }
306
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)307 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
308 {
309 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
310
311 return __sev_issue_cmd(sev->fd, id, data, error);
312 }
313
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)314 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
315 {
316 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
317 struct sev_data_launch_start start;
318 struct kvm_sev_launch_start params;
319 void *dh_blob, *session_blob;
320 int *error = &argp->error;
321 int ret;
322
323 if (!sev_guest(kvm))
324 return -ENOTTY;
325
326 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
327 return -EFAULT;
328
329 memset(&start, 0, sizeof(start));
330
331 dh_blob = NULL;
332 if (params.dh_uaddr) {
333 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
334 if (IS_ERR(dh_blob))
335 return PTR_ERR(dh_blob);
336
337 start.dh_cert_address = __sme_set(__pa(dh_blob));
338 start.dh_cert_len = params.dh_len;
339 }
340
341 session_blob = NULL;
342 if (params.session_uaddr) {
343 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
344 if (IS_ERR(session_blob)) {
345 ret = PTR_ERR(session_blob);
346 goto e_free_dh;
347 }
348
349 start.session_address = __sme_set(__pa(session_blob));
350 start.session_len = params.session_len;
351 }
352
353 start.handle = params.handle;
354 start.policy = params.policy;
355
356 /* create memory encryption context */
357 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
358 if (ret)
359 goto e_free_session;
360
361 /* Bind ASID to this guest */
362 ret = sev_bind_asid(kvm, start.handle, error);
363 if (ret) {
364 sev_decommission(start.handle);
365 goto e_free_session;
366 }
367
368 /* return handle to userspace */
369 params.handle = start.handle;
370 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
371 sev_unbind_asid(kvm, start.handle);
372 ret = -EFAULT;
373 goto e_free_session;
374 }
375
376 sev->handle = start.handle;
377 sev->fd = argp->sev_fd;
378
379 e_free_session:
380 kfree(session_blob);
381 e_free_dh:
382 kfree(dh_blob);
383 return ret;
384 }
385
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,int write)386 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
387 unsigned long ulen, unsigned long *n,
388 int write)
389 {
390 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
391 unsigned long npages, size;
392 int npinned;
393 unsigned long locked, lock_limit;
394 struct page **pages;
395 unsigned long first, last;
396 int ret;
397
398 lockdep_assert_held(&kvm->lock);
399
400 if (ulen == 0 || uaddr + ulen < uaddr)
401 return ERR_PTR(-EINVAL);
402
403 /* Calculate number of pages. */
404 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
405 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
406 npages = (last - first + 1);
407
408 locked = sev->pages_locked + npages;
409 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
410 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
411 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
412 return ERR_PTR(-ENOMEM);
413 }
414
415 if (WARN_ON_ONCE(npages > INT_MAX))
416 return ERR_PTR(-EINVAL);
417
418 /* Avoid using vmalloc for smaller buffers. */
419 size = npages * sizeof(struct page *);
420 if (size > PAGE_SIZE)
421 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
422 else
423 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
424
425 if (!pages)
426 return ERR_PTR(-ENOMEM);
427
428 /* Pin the user virtual address. */
429 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
430 if (npinned != npages) {
431 pr_err("SEV: Failure locking %lu pages.\n", npages);
432 ret = -ENOMEM;
433 goto err;
434 }
435
436 *n = npages;
437 sev->pages_locked = locked;
438
439 return pages;
440
441 err:
442 if (npinned > 0)
443 unpin_user_pages(pages, npinned);
444
445 kvfree(pages);
446 return ERR_PTR(ret);
447 }
448
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)449 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
450 unsigned long npages)
451 {
452 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
453
454 unpin_user_pages(pages, npages);
455 kvfree(pages);
456 sev->pages_locked -= npages;
457 }
458
sev_clflush_pages(struct page * pages[],unsigned long npages)459 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
460 {
461 uint8_t *page_virtual;
462 unsigned long i;
463
464 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
465 pages == NULL)
466 return;
467
468 for (i = 0; i < npages; i++) {
469 page_virtual = kmap_local_page(pages[i]);
470 clflush_cache_range(page_virtual, PAGE_SIZE);
471 kunmap_local(page_virtual);
472 cond_resched();
473 }
474 }
475
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)476 static unsigned long get_num_contig_pages(unsigned long idx,
477 struct page **inpages, unsigned long npages)
478 {
479 unsigned long paddr, next_paddr;
480 unsigned long i = idx + 1, pages = 1;
481
482 /* find the number of contiguous pages starting from idx */
483 paddr = __sme_page_pa(inpages[idx]);
484 while (i < npages) {
485 next_paddr = __sme_page_pa(inpages[i++]);
486 if ((paddr + PAGE_SIZE) == next_paddr) {
487 pages++;
488 paddr = next_paddr;
489 continue;
490 }
491 break;
492 }
493
494 return pages;
495 }
496
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)497 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
498 {
499 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
500 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
501 struct kvm_sev_launch_update_data params;
502 struct sev_data_launch_update_data data;
503 struct page **inpages;
504 int ret;
505
506 if (!sev_guest(kvm))
507 return -ENOTTY;
508
509 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
510 return -EFAULT;
511
512 vaddr = params.uaddr;
513 size = params.len;
514 vaddr_end = vaddr + size;
515
516 /* Lock the user memory. */
517 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
518 if (IS_ERR(inpages))
519 return PTR_ERR(inpages);
520
521 /*
522 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
523 * place; the cache may contain the data that was written unencrypted.
524 */
525 sev_clflush_pages(inpages, npages);
526
527 data.reserved = 0;
528 data.handle = sev->handle;
529
530 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
531 int offset, len;
532
533 /*
534 * If the user buffer is not page-aligned, calculate the offset
535 * within the page.
536 */
537 offset = vaddr & (PAGE_SIZE - 1);
538
539 /* Calculate the number of pages that can be encrypted in one go. */
540 pages = get_num_contig_pages(i, inpages, npages);
541
542 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
543
544 data.len = len;
545 data.address = __sme_page_pa(inpages[i]) + offset;
546 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
547 if (ret)
548 goto e_unpin;
549
550 size -= len;
551 next_vaddr = vaddr + len;
552 }
553
554 e_unpin:
555 /* content of memory is updated, mark pages dirty */
556 for (i = 0; i < npages; i++) {
557 set_page_dirty_lock(inpages[i]);
558 mark_page_accessed(inpages[i]);
559 }
560 /* unlock the user pages */
561 sev_unpin_memory(kvm, inpages, npages);
562 return ret;
563 }
564
sev_es_sync_vmsa(struct vcpu_svm * svm)565 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
566 {
567 struct sev_es_save_area *save = svm->sev_es.vmsa;
568
569 /* Check some debug related fields before encrypting the VMSA */
570 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
571 return -EINVAL;
572
573 /*
574 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
575 * the traditional VMSA that is part of the VMCB. Copy the
576 * traditional VMSA as it has been built so far (in prep
577 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
578 */
579 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
580
581 /* Sync registgers */
582 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
583 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
584 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
585 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
586 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
587 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
588 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
589 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
590 #ifdef CONFIG_X86_64
591 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
592 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
593 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
594 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
595 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
596 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
597 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
598 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
599 #endif
600 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
601
602 /* Sync some non-GPR registers before encrypting */
603 save->xcr0 = svm->vcpu.arch.xcr0;
604 save->pkru = svm->vcpu.arch.pkru;
605 save->xss = svm->vcpu.arch.ia32_xss;
606 save->dr6 = svm->vcpu.arch.dr6;
607
608 pr_debug("Virtual Machine Save Area (VMSA):\n");
609 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
610
611 return 0;
612 }
613
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)614 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
615 int *error)
616 {
617 struct sev_data_launch_update_vmsa vmsa;
618 struct vcpu_svm *svm = to_svm(vcpu);
619 int ret;
620
621 /* Perform some pre-encryption checks against the VMSA */
622 ret = sev_es_sync_vmsa(svm);
623 if (ret)
624 return ret;
625
626 /*
627 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
628 * the VMSA memory content (i.e it will write the same memory region
629 * with the guest's key), so invalidate it first.
630 */
631 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
632
633 vmsa.reserved = 0;
634 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
635 vmsa.address = __sme_pa(svm->sev_es.vmsa);
636 vmsa.len = PAGE_SIZE;
637 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
638 if (ret)
639 return ret;
640
641 vcpu->arch.guest_state_protected = true;
642 return 0;
643 }
644
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)645 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
646 {
647 struct kvm_vcpu *vcpu;
648 unsigned long i;
649 int ret;
650
651 if (!sev_es_guest(kvm))
652 return -ENOTTY;
653
654 kvm_for_each_vcpu(i, vcpu, kvm) {
655 ret = mutex_lock_killable(&vcpu->mutex);
656 if (ret)
657 return ret;
658
659 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
660
661 mutex_unlock(&vcpu->mutex);
662 if (ret)
663 return ret;
664 }
665
666 return 0;
667 }
668
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)669 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
670 {
671 void __user *measure = (void __user *)(uintptr_t)argp->data;
672 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
673 struct sev_data_launch_measure data;
674 struct kvm_sev_launch_measure params;
675 void __user *p = NULL;
676 void *blob = NULL;
677 int ret;
678
679 if (!sev_guest(kvm))
680 return -ENOTTY;
681
682 if (copy_from_user(¶ms, measure, sizeof(params)))
683 return -EFAULT;
684
685 memset(&data, 0, sizeof(data));
686
687 /* User wants to query the blob length */
688 if (!params.len)
689 goto cmd;
690
691 p = (void __user *)(uintptr_t)params.uaddr;
692 if (p) {
693 if (params.len > SEV_FW_BLOB_MAX_SIZE)
694 return -EINVAL;
695
696 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
697 if (!blob)
698 return -ENOMEM;
699
700 data.address = __psp_pa(blob);
701 data.len = params.len;
702 }
703
704 cmd:
705 data.handle = sev->handle;
706 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
707
708 /*
709 * If we query the session length, FW responded with expected data.
710 */
711 if (!params.len)
712 goto done;
713
714 if (ret)
715 goto e_free_blob;
716
717 if (blob) {
718 if (copy_to_user(p, blob, params.len))
719 ret = -EFAULT;
720 }
721
722 done:
723 params.len = data.len;
724 if (copy_to_user(measure, ¶ms, sizeof(params)))
725 ret = -EFAULT;
726 e_free_blob:
727 kfree(blob);
728 return ret;
729 }
730
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)731 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
732 {
733 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
734 struct sev_data_launch_finish data;
735
736 if (!sev_guest(kvm))
737 return -ENOTTY;
738
739 data.handle = sev->handle;
740 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
741 }
742
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)743 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
744 {
745 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
746 struct kvm_sev_guest_status params;
747 struct sev_data_guest_status data;
748 int ret;
749
750 if (!sev_guest(kvm))
751 return -ENOTTY;
752
753 memset(&data, 0, sizeof(data));
754
755 data.handle = sev->handle;
756 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
757 if (ret)
758 return ret;
759
760 params.policy = data.policy;
761 params.state = data.state;
762 params.handle = data.handle;
763
764 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
765 ret = -EFAULT;
766
767 return ret;
768 }
769
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)770 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
771 unsigned long dst, int size,
772 int *error, bool enc)
773 {
774 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
775 struct sev_data_dbg data;
776
777 data.reserved = 0;
778 data.handle = sev->handle;
779 data.dst_addr = dst;
780 data.src_addr = src;
781 data.len = size;
782
783 return sev_issue_cmd(kvm,
784 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
785 &data, error);
786 }
787
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)788 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
789 unsigned long dst_paddr, int sz, int *err)
790 {
791 int offset;
792
793 /*
794 * Its safe to read more than we are asked, caller should ensure that
795 * destination has enough space.
796 */
797 offset = src_paddr & 15;
798 src_paddr = round_down(src_paddr, 16);
799 sz = round_up(sz + offset, 16);
800
801 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
802 }
803
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)804 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
805 void __user *dst_uaddr,
806 unsigned long dst_paddr,
807 int size, int *err)
808 {
809 struct page *tpage = NULL;
810 int ret, offset;
811
812 /* if inputs are not 16-byte then use intermediate buffer */
813 if (!IS_ALIGNED(dst_paddr, 16) ||
814 !IS_ALIGNED(paddr, 16) ||
815 !IS_ALIGNED(size, 16)) {
816 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
817 if (!tpage)
818 return -ENOMEM;
819
820 dst_paddr = __sme_page_pa(tpage);
821 }
822
823 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
824 if (ret)
825 goto e_free;
826
827 if (tpage) {
828 offset = paddr & 15;
829 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
830 ret = -EFAULT;
831 }
832
833 e_free:
834 if (tpage)
835 __free_page(tpage);
836
837 return ret;
838 }
839
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)840 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
841 void __user *vaddr,
842 unsigned long dst_paddr,
843 void __user *dst_vaddr,
844 int size, int *error)
845 {
846 struct page *src_tpage = NULL;
847 struct page *dst_tpage = NULL;
848 int ret, len = size;
849
850 /* If source buffer is not aligned then use an intermediate buffer */
851 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
852 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
853 if (!src_tpage)
854 return -ENOMEM;
855
856 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
857 __free_page(src_tpage);
858 return -EFAULT;
859 }
860
861 paddr = __sme_page_pa(src_tpage);
862 }
863
864 /*
865 * If destination buffer or length is not aligned then do read-modify-write:
866 * - decrypt destination in an intermediate buffer
867 * - copy the source buffer in an intermediate buffer
868 * - use the intermediate buffer as source buffer
869 */
870 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
871 int dst_offset;
872
873 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
874 if (!dst_tpage) {
875 ret = -ENOMEM;
876 goto e_free;
877 }
878
879 ret = __sev_dbg_decrypt(kvm, dst_paddr,
880 __sme_page_pa(dst_tpage), size, error);
881 if (ret)
882 goto e_free;
883
884 /*
885 * If source is kernel buffer then use memcpy() otherwise
886 * copy_from_user().
887 */
888 dst_offset = dst_paddr & 15;
889
890 if (src_tpage)
891 memcpy(page_address(dst_tpage) + dst_offset,
892 page_address(src_tpage), size);
893 else {
894 if (copy_from_user(page_address(dst_tpage) + dst_offset,
895 vaddr, size)) {
896 ret = -EFAULT;
897 goto e_free;
898 }
899 }
900
901 paddr = __sme_page_pa(dst_tpage);
902 dst_paddr = round_down(dst_paddr, 16);
903 len = round_up(size, 16);
904 }
905
906 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
907
908 e_free:
909 if (src_tpage)
910 __free_page(src_tpage);
911 if (dst_tpage)
912 __free_page(dst_tpage);
913 return ret;
914 }
915
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)916 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
917 {
918 unsigned long vaddr, vaddr_end, next_vaddr;
919 unsigned long dst_vaddr;
920 struct page **src_p, **dst_p;
921 struct kvm_sev_dbg debug;
922 unsigned long n;
923 unsigned int size;
924 int ret;
925
926 if (!sev_guest(kvm))
927 return -ENOTTY;
928
929 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
930 return -EFAULT;
931
932 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
933 return -EINVAL;
934 if (!debug.dst_uaddr)
935 return -EINVAL;
936
937 vaddr = debug.src_uaddr;
938 size = debug.len;
939 vaddr_end = vaddr + size;
940 dst_vaddr = debug.dst_uaddr;
941
942 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
943 int len, s_off, d_off;
944
945 /* lock userspace source and destination page */
946 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
947 if (IS_ERR(src_p))
948 return PTR_ERR(src_p);
949
950 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
951 if (IS_ERR(dst_p)) {
952 sev_unpin_memory(kvm, src_p, n);
953 return PTR_ERR(dst_p);
954 }
955
956 /*
957 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
958 * the pages; flush the destination too so that future accesses do not
959 * see stale data.
960 */
961 sev_clflush_pages(src_p, 1);
962 sev_clflush_pages(dst_p, 1);
963
964 /*
965 * Since user buffer may not be page aligned, calculate the
966 * offset within the page.
967 */
968 s_off = vaddr & ~PAGE_MASK;
969 d_off = dst_vaddr & ~PAGE_MASK;
970 len = min_t(size_t, (PAGE_SIZE - s_off), size);
971
972 if (dec)
973 ret = __sev_dbg_decrypt_user(kvm,
974 __sme_page_pa(src_p[0]) + s_off,
975 (void __user *)dst_vaddr,
976 __sme_page_pa(dst_p[0]) + d_off,
977 len, &argp->error);
978 else
979 ret = __sev_dbg_encrypt_user(kvm,
980 __sme_page_pa(src_p[0]) + s_off,
981 (void __user *)vaddr,
982 __sme_page_pa(dst_p[0]) + d_off,
983 (void __user *)dst_vaddr,
984 len, &argp->error);
985
986 sev_unpin_memory(kvm, src_p, n);
987 sev_unpin_memory(kvm, dst_p, n);
988
989 if (ret)
990 goto err;
991
992 next_vaddr = vaddr + len;
993 dst_vaddr = dst_vaddr + len;
994 size -= len;
995 }
996 err:
997 return ret;
998 }
999
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)1000 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1001 {
1002 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1003 struct sev_data_launch_secret data;
1004 struct kvm_sev_launch_secret params;
1005 struct page **pages;
1006 void *blob, *hdr;
1007 unsigned long n, i;
1008 int ret, offset;
1009
1010 if (!sev_guest(kvm))
1011 return -ENOTTY;
1012
1013 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1014 return -EFAULT;
1015
1016 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1017 if (IS_ERR(pages))
1018 return PTR_ERR(pages);
1019
1020 /*
1021 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1022 * place; the cache may contain the data that was written unencrypted.
1023 */
1024 sev_clflush_pages(pages, n);
1025
1026 /*
1027 * The secret must be copied into contiguous memory region, lets verify
1028 * that userspace memory pages are contiguous before we issue command.
1029 */
1030 if (get_num_contig_pages(0, pages, n) != n) {
1031 ret = -EINVAL;
1032 goto e_unpin_memory;
1033 }
1034
1035 memset(&data, 0, sizeof(data));
1036
1037 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1038 data.guest_address = __sme_page_pa(pages[0]) + offset;
1039 data.guest_len = params.guest_len;
1040
1041 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1042 if (IS_ERR(blob)) {
1043 ret = PTR_ERR(blob);
1044 goto e_unpin_memory;
1045 }
1046
1047 data.trans_address = __psp_pa(blob);
1048 data.trans_len = params.trans_len;
1049
1050 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1051 if (IS_ERR(hdr)) {
1052 ret = PTR_ERR(hdr);
1053 goto e_free_blob;
1054 }
1055 data.hdr_address = __psp_pa(hdr);
1056 data.hdr_len = params.hdr_len;
1057
1058 data.handle = sev->handle;
1059 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1060
1061 kfree(hdr);
1062
1063 e_free_blob:
1064 kfree(blob);
1065 e_unpin_memory:
1066 /* content of memory is updated, mark pages dirty */
1067 for (i = 0; i < n; i++) {
1068 set_page_dirty_lock(pages[i]);
1069 mark_page_accessed(pages[i]);
1070 }
1071 sev_unpin_memory(kvm, pages, n);
1072 return ret;
1073 }
1074
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1075 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1076 {
1077 void __user *report = (void __user *)(uintptr_t)argp->data;
1078 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1079 struct sev_data_attestation_report data;
1080 struct kvm_sev_attestation_report params;
1081 void __user *p;
1082 void *blob = NULL;
1083 int ret;
1084
1085 if (!sev_guest(kvm))
1086 return -ENOTTY;
1087
1088 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1089 return -EFAULT;
1090
1091 memset(&data, 0, sizeof(data));
1092
1093 /* User wants to query the blob length */
1094 if (!params.len)
1095 goto cmd;
1096
1097 p = (void __user *)(uintptr_t)params.uaddr;
1098 if (p) {
1099 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1100 return -EINVAL;
1101
1102 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1103 if (!blob)
1104 return -ENOMEM;
1105
1106 data.address = __psp_pa(blob);
1107 data.len = params.len;
1108 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1109 }
1110 cmd:
1111 data.handle = sev->handle;
1112 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1113 /*
1114 * If we query the session length, FW responded with expected data.
1115 */
1116 if (!params.len)
1117 goto done;
1118
1119 if (ret)
1120 goto e_free_blob;
1121
1122 if (blob) {
1123 if (copy_to_user(p, blob, params.len))
1124 ret = -EFAULT;
1125 }
1126
1127 done:
1128 params.len = data.len;
1129 if (copy_to_user(report, ¶ms, sizeof(params)))
1130 ret = -EFAULT;
1131 e_free_blob:
1132 kfree(blob);
1133 return ret;
1134 }
1135
1136 /* Userspace wants to query session length. */
1137 static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1138 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1139 struct kvm_sev_send_start *params)
1140 {
1141 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1142 struct sev_data_send_start data;
1143 int ret;
1144
1145 memset(&data, 0, sizeof(data));
1146 data.handle = sev->handle;
1147 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1148
1149 params->session_len = data.session_len;
1150 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1151 sizeof(struct kvm_sev_send_start)))
1152 ret = -EFAULT;
1153
1154 return ret;
1155 }
1156
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1157 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1158 {
1159 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1160 struct sev_data_send_start data;
1161 struct kvm_sev_send_start params;
1162 void *amd_certs, *session_data;
1163 void *pdh_cert, *plat_certs;
1164 int ret;
1165
1166 if (!sev_guest(kvm))
1167 return -ENOTTY;
1168
1169 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1170 sizeof(struct kvm_sev_send_start)))
1171 return -EFAULT;
1172
1173 /* if session_len is zero, userspace wants to query the session length */
1174 if (!params.session_len)
1175 return __sev_send_start_query_session_length(kvm, argp,
1176 ¶ms);
1177
1178 /* some sanity checks */
1179 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1180 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1181 return -EINVAL;
1182
1183 /* allocate the memory to hold the session data blob */
1184 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1185 if (!session_data)
1186 return -ENOMEM;
1187
1188 /* copy the certificate blobs from userspace */
1189 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1190 params.pdh_cert_len);
1191 if (IS_ERR(pdh_cert)) {
1192 ret = PTR_ERR(pdh_cert);
1193 goto e_free_session;
1194 }
1195
1196 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1197 params.plat_certs_len);
1198 if (IS_ERR(plat_certs)) {
1199 ret = PTR_ERR(plat_certs);
1200 goto e_free_pdh;
1201 }
1202
1203 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1204 params.amd_certs_len);
1205 if (IS_ERR(amd_certs)) {
1206 ret = PTR_ERR(amd_certs);
1207 goto e_free_plat_cert;
1208 }
1209
1210 /* populate the FW SEND_START field with system physical address */
1211 memset(&data, 0, sizeof(data));
1212 data.pdh_cert_address = __psp_pa(pdh_cert);
1213 data.pdh_cert_len = params.pdh_cert_len;
1214 data.plat_certs_address = __psp_pa(plat_certs);
1215 data.plat_certs_len = params.plat_certs_len;
1216 data.amd_certs_address = __psp_pa(amd_certs);
1217 data.amd_certs_len = params.amd_certs_len;
1218 data.session_address = __psp_pa(session_data);
1219 data.session_len = params.session_len;
1220 data.handle = sev->handle;
1221
1222 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1223
1224 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1225 session_data, params.session_len)) {
1226 ret = -EFAULT;
1227 goto e_free_amd_cert;
1228 }
1229
1230 params.policy = data.policy;
1231 params.session_len = data.session_len;
1232 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms,
1233 sizeof(struct kvm_sev_send_start)))
1234 ret = -EFAULT;
1235
1236 e_free_amd_cert:
1237 kfree(amd_certs);
1238 e_free_plat_cert:
1239 kfree(plat_certs);
1240 e_free_pdh:
1241 kfree(pdh_cert);
1242 e_free_session:
1243 kfree(session_data);
1244 return ret;
1245 }
1246
1247 /* Userspace wants to query either header or trans length. */
1248 static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1249 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1250 struct kvm_sev_send_update_data *params)
1251 {
1252 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1253 struct sev_data_send_update_data data;
1254 int ret;
1255
1256 memset(&data, 0, sizeof(data));
1257 data.handle = sev->handle;
1258 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1259
1260 params->hdr_len = data.hdr_len;
1261 params->trans_len = data.trans_len;
1262
1263 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1264 sizeof(struct kvm_sev_send_update_data)))
1265 ret = -EFAULT;
1266
1267 return ret;
1268 }
1269
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1270 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1271 {
1272 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1273 struct sev_data_send_update_data data;
1274 struct kvm_sev_send_update_data params;
1275 void *hdr, *trans_data;
1276 struct page **guest_page;
1277 unsigned long n;
1278 int ret, offset;
1279
1280 if (!sev_guest(kvm))
1281 return -ENOTTY;
1282
1283 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1284 sizeof(struct kvm_sev_send_update_data)))
1285 return -EFAULT;
1286
1287 /* userspace wants to query either header or trans length */
1288 if (!params.trans_len || !params.hdr_len)
1289 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms);
1290
1291 if (!params.trans_uaddr || !params.guest_uaddr ||
1292 !params.guest_len || !params.hdr_uaddr)
1293 return -EINVAL;
1294
1295 /* Check if we are crossing the page boundary */
1296 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1297 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1298 return -EINVAL;
1299
1300 /* Pin guest memory */
1301 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1302 PAGE_SIZE, &n, 0);
1303 if (IS_ERR(guest_page))
1304 return PTR_ERR(guest_page);
1305
1306 /* allocate memory for header and transport buffer */
1307 ret = -ENOMEM;
1308 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1309 if (!hdr)
1310 goto e_unpin;
1311
1312 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1313 if (!trans_data)
1314 goto e_free_hdr;
1315
1316 memset(&data, 0, sizeof(data));
1317 data.hdr_address = __psp_pa(hdr);
1318 data.hdr_len = params.hdr_len;
1319 data.trans_address = __psp_pa(trans_data);
1320 data.trans_len = params.trans_len;
1321
1322 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1323 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1324 data.guest_address |= sev_me_mask;
1325 data.guest_len = params.guest_len;
1326 data.handle = sev->handle;
1327
1328 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1329
1330 if (ret)
1331 goto e_free_trans_data;
1332
1333 /* copy transport buffer to user space */
1334 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1335 trans_data, params.trans_len)) {
1336 ret = -EFAULT;
1337 goto e_free_trans_data;
1338 }
1339
1340 /* Copy packet header to userspace. */
1341 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1342 params.hdr_len))
1343 ret = -EFAULT;
1344
1345 e_free_trans_data:
1346 kfree(trans_data);
1347 e_free_hdr:
1348 kfree(hdr);
1349 e_unpin:
1350 sev_unpin_memory(kvm, guest_page, n);
1351
1352 return ret;
1353 }
1354
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1355 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1356 {
1357 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1358 struct sev_data_send_finish data;
1359
1360 if (!sev_guest(kvm))
1361 return -ENOTTY;
1362
1363 data.handle = sev->handle;
1364 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1365 }
1366
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1367 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1368 {
1369 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1370 struct sev_data_send_cancel data;
1371
1372 if (!sev_guest(kvm))
1373 return -ENOTTY;
1374
1375 data.handle = sev->handle;
1376 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1377 }
1378
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1379 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1380 {
1381 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1382 struct sev_data_receive_start start;
1383 struct kvm_sev_receive_start params;
1384 int *error = &argp->error;
1385 void *session_data;
1386 void *pdh_data;
1387 int ret;
1388
1389 if (!sev_guest(kvm))
1390 return -ENOTTY;
1391
1392 /* Get parameter from the userspace */
1393 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1394 sizeof(struct kvm_sev_receive_start)))
1395 return -EFAULT;
1396
1397 /* some sanity checks */
1398 if (!params.pdh_uaddr || !params.pdh_len ||
1399 !params.session_uaddr || !params.session_len)
1400 return -EINVAL;
1401
1402 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1403 if (IS_ERR(pdh_data))
1404 return PTR_ERR(pdh_data);
1405
1406 session_data = psp_copy_user_blob(params.session_uaddr,
1407 params.session_len);
1408 if (IS_ERR(session_data)) {
1409 ret = PTR_ERR(session_data);
1410 goto e_free_pdh;
1411 }
1412
1413 memset(&start, 0, sizeof(start));
1414 start.handle = params.handle;
1415 start.policy = params.policy;
1416 start.pdh_cert_address = __psp_pa(pdh_data);
1417 start.pdh_cert_len = params.pdh_len;
1418 start.session_address = __psp_pa(session_data);
1419 start.session_len = params.session_len;
1420
1421 /* create memory encryption context */
1422 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1423 error);
1424 if (ret)
1425 goto e_free_session;
1426
1427 /* Bind ASID to this guest */
1428 ret = sev_bind_asid(kvm, start.handle, error);
1429 if (ret) {
1430 sev_decommission(start.handle);
1431 goto e_free_session;
1432 }
1433
1434 params.handle = start.handle;
1435 if (copy_to_user((void __user *)(uintptr_t)argp->data,
1436 ¶ms, sizeof(struct kvm_sev_receive_start))) {
1437 ret = -EFAULT;
1438 sev_unbind_asid(kvm, start.handle);
1439 goto e_free_session;
1440 }
1441
1442 sev->handle = start.handle;
1443 sev->fd = argp->sev_fd;
1444
1445 e_free_session:
1446 kfree(session_data);
1447 e_free_pdh:
1448 kfree(pdh_data);
1449
1450 return ret;
1451 }
1452
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1453 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1454 {
1455 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1456 struct kvm_sev_receive_update_data params;
1457 struct sev_data_receive_update_data data;
1458 void *hdr = NULL, *trans = NULL;
1459 struct page **guest_page;
1460 unsigned long n;
1461 int ret, offset;
1462
1463 if (!sev_guest(kvm))
1464 return -EINVAL;
1465
1466 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1467 sizeof(struct kvm_sev_receive_update_data)))
1468 return -EFAULT;
1469
1470 if (!params.hdr_uaddr || !params.hdr_len ||
1471 !params.guest_uaddr || !params.guest_len ||
1472 !params.trans_uaddr || !params.trans_len)
1473 return -EINVAL;
1474
1475 /* Check if we are crossing the page boundary */
1476 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1477 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1478 return -EINVAL;
1479
1480 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1481 if (IS_ERR(hdr))
1482 return PTR_ERR(hdr);
1483
1484 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1485 if (IS_ERR(trans)) {
1486 ret = PTR_ERR(trans);
1487 goto e_free_hdr;
1488 }
1489
1490 memset(&data, 0, sizeof(data));
1491 data.hdr_address = __psp_pa(hdr);
1492 data.hdr_len = params.hdr_len;
1493 data.trans_address = __psp_pa(trans);
1494 data.trans_len = params.trans_len;
1495
1496 /* Pin guest memory */
1497 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1498 PAGE_SIZE, &n, 1);
1499 if (IS_ERR(guest_page)) {
1500 ret = PTR_ERR(guest_page);
1501 goto e_free_trans;
1502 }
1503
1504 /*
1505 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1506 * encrypts the written data with the guest's key, and the cache may
1507 * contain dirty, unencrypted data.
1508 */
1509 sev_clflush_pages(guest_page, n);
1510
1511 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1512 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1513 data.guest_address |= sev_me_mask;
1514 data.guest_len = params.guest_len;
1515 data.handle = sev->handle;
1516
1517 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1518 &argp->error);
1519
1520 sev_unpin_memory(kvm, guest_page, n);
1521
1522 e_free_trans:
1523 kfree(trans);
1524 e_free_hdr:
1525 kfree(hdr);
1526
1527 return ret;
1528 }
1529
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1530 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1531 {
1532 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1533 struct sev_data_receive_finish data;
1534
1535 if (!sev_guest(kvm))
1536 return -ENOTTY;
1537
1538 data.handle = sev->handle;
1539 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1540 }
1541
is_cmd_allowed_from_mirror(u32 cmd_id)1542 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1543 {
1544 /*
1545 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1546 * active mirror VMs. Also allow the debugging and status commands.
1547 */
1548 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1549 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1550 cmd_id == KVM_SEV_DBG_ENCRYPT)
1551 return true;
1552
1553 return false;
1554 }
1555
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1556 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1557 {
1558 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1559 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1560 int r = -EBUSY;
1561
1562 if (dst_kvm == src_kvm)
1563 return -EINVAL;
1564
1565 /*
1566 * Bail if these VMs are already involved in a migration to avoid
1567 * deadlock between two VMs trying to migrate to/from each other.
1568 */
1569 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1570 return -EBUSY;
1571
1572 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1573 goto release_dst;
1574
1575 r = -EINTR;
1576 if (mutex_lock_killable(&dst_kvm->lock))
1577 goto release_src;
1578 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1579 goto unlock_dst;
1580 return 0;
1581
1582 unlock_dst:
1583 mutex_unlock(&dst_kvm->lock);
1584 release_src:
1585 atomic_set_release(&src_sev->migration_in_progress, 0);
1586 release_dst:
1587 atomic_set_release(&dst_sev->migration_in_progress, 0);
1588 return r;
1589 }
1590
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1591 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1592 {
1593 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1594 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1595
1596 mutex_unlock(&dst_kvm->lock);
1597 mutex_unlock(&src_kvm->lock);
1598 atomic_set_release(&dst_sev->migration_in_progress, 0);
1599 atomic_set_release(&src_sev->migration_in_progress, 0);
1600 }
1601
1602 /* vCPU mutex subclasses. */
1603 enum sev_migration_role {
1604 SEV_MIGRATION_SOURCE = 0,
1605 SEV_MIGRATION_TARGET,
1606 SEV_NR_MIGRATION_ROLES,
1607 };
1608
sev_lock_vcpus_for_migration(struct kvm * kvm,enum sev_migration_role role)1609 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1610 enum sev_migration_role role)
1611 {
1612 struct kvm_vcpu *vcpu;
1613 unsigned long i, j;
1614
1615 kvm_for_each_vcpu(i, vcpu, kvm) {
1616 if (mutex_lock_killable_nested(&vcpu->mutex, role))
1617 goto out_unlock;
1618
1619 #ifdef CONFIG_PROVE_LOCKING
1620 if (!i)
1621 /*
1622 * Reset the role to one that avoids colliding with
1623 * the role used for the first vcpu mutex.
1624 */
1625 role = SEV_NR_MIGRATION_ROLES;
1626 else
1627 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1628 #endif
1629 }
1630
1631 return 0;
1632
1633 out_unlock:
1634
1635 kvm_for_each_vcpu(j, vcpu, kvm) {
1636 if (i == j)
1637 break;
1638
1639 #ifdef CONFIG_PROVE_LOCKING
1640 if (j)
1641 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1642 #endif
1643
1644 mutex_unlock(&vcpu->mutex);
1645 }
1646 return -EINTR;
1647 }
1648
sev_unlock_vcpus_for_migration(struct kvm * kvm)1649 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1650 {
1651 struct kvm_vcpu *vcpu;
1652 unsigned long i;
1653 bool first = true;
1654
1655 kvm_for_each_vcpu(i, vcpu, kvm) {
1656 if (first)
1657 first = false;
1658 else
1659 mutex_acquire(&vcpu->mutex.dep_map,
1660 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1661
1662 mutex_unlock(&vcpu->mutex);
1663 }
1664 }
1665
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1666 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1667 {
1668 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1669 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1670 struct kvm_vcpu *dst_vcpu, *src_vcpu;
1671 struct vcpu_svm *dst_svm, *src_svm;
1672 struct kvm_sev_info *mirror;
1673 unsigned long i;
1674
1675 dst->active = true;
1676 dst->asid = src->asid;
1677 dst->handle = src->handle;
1678 dst->pages_locked = src->pages_locked;
1679 dst->enc_context_owner = src->enc_context_owner;
1680 dst->es_active = src->es_active;
1681
1682 src->asid = 0;
1683 src->active = false;
1684 src->handle = 0;
1685 src->pages_locked = 0;
1686 src->enc_context_owner = NULL;
1687 src->es_active = false;
1688
1689 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1690
1691 /*
1692 * If this VM has mirrors, "transfer" each mirror's refcount of the
1693 * source to the destination (this KVM). The caller holds a reference
1694 * to the source, so there's no danger of use-after-free.
1695 */
1696 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1697 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1698 kvm_get_kvm(dst_kvm);
1699 kvm_put_kvm(src_kvm);
1700 mirror->enc_context_owner = dst_kvm;
1701 }
1702
1703 /*
1704 * If this VM is a mirror, remove the old mirror from the owners list
1705 * and add the new mirror to the list.
1706 */
1707 if (is_mirroring_enc_context(dst_kvm)) {
1708 struct kvm_sev_info *owner_sev_info =
1709 &to_kvm_svm(dst->enc_context_owner)->sev_info;
1710
1711 list_del(&src->mirror_entry);
1712 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1713 }
1714
1715 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1716 dst_svm = to_svm(dst_vcpu);
1717
1718 sev_init_vmcb(dst_svm);
1719
1720 if (!dst->es_active)
1721 continue;
1722
1723 /*
1724 * Note, the source is not required to have the same number of
1725 * vCPUs as the destination when migrating a vanilla SEV VM.
1726 */
1727 src_vcpu = kvm_get_vcpu(dst_kvm, i);
1728 src_svm = to_svm(src_vcpu);
1729
1730 /*
1731 * Transfer VMSA and GHCB state to the destination. Nullify and
1732 * clear source fields as appropriate, the state now belongs to
1733 * the destination.
1734 */
1735 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1736 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1737 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1738 dst_vcpu->arch.guest_state_protected = true;
1739
1740 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1741 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1742 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1743 src_vcpu->arch.guest_state_protected = false;
1744 }
1745 }
1746
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)1747 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1748 {
1749 struct kvm_vcpu *src_vcpu;
1750 unsigned long i;
1751
1752 if (!sev_es_guest(src))
1753 return 0;
1754
1755 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1756 return -EINVAL;
1757
1758 kvm_for_each_vcpu(i, src_vcpu, src) {
1759 if (!src_vcpu->arch.guest_state_protected)
1760 return -EINVAL;
1761 }
1762
1763 return 0;
1764 }
1765
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)1766 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1767 {
1768 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1769 struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1770 struct file *source_kvm_file;
1771 struct kvm *source_kvm;
1772 bool charged = false;
1773 int ret;
1774
1775 source_kvm_file = fget(source_fd);
1776 if (!file_is_kvm(source_kvm_file)) {
1777 ret = -EBADF;
1778 goto out_fput;
1779 }
1780
1781 source_kvm = source_kvm_file->private_data;
1782 ret = sev_lock_two_vms(kvm, source_kvm);
1783 if (ret)
1784 goto out_fput;
1785
1786 if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1787 ret = -EINVAL;
1788 goto out_unlock;
1789 }
1790
1791 src_sev = &to_kvm_svm(source_kvm)->sev_info;
1792
1793 dst_sev->misc_cg = get_current_misc_cg();
1794 cg_cleanup_sev = dst_sev;
1795 if (dst_sev->misc_cg != src_sev->misc_cg) {
1796 ret = sev_misc_cg_try_charge(dst_sev);
1797 if (ret)
1798 goto out_dst_cgroup;
1799 charged = true;
1800 }
1801
1802 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1803 if (ret)
1804 goto out_dst_cgroup;
1805 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1806 if (ret)
1807 goto out_dst_vcpu;
1808
1809 ret = sev_check_source_vcpus(kvm, source_kvm);
1810 if (ret)
1811 goto out_source_vcpu;
1812
1813 sev_migrate_from(kvm, source_kvm);
1814 kvm_vm_dead(source_kvm);
1815 cg_cleanup_sev = src_sev;
1816 ret = 0;
1817
1818 out_source_vcpu:
1819 sev_unlock_vcpus_for_migration(source_kvm);
1820 out_dst_vcpu:
1821 sev_unlock_vcpus_for_migration(kvm);
1822 out_dst_cgroup:
1823 /* Operates on the source on success, on the destination on failure. */
1824 if (charged)
1825 sev_misc_cg_uncharge(cg_cleanup_sev);
1826 put_misc_cg(cg_cleanup_sev->misc_cg);
1827 cg_cleanup_sev->misc_cg = NULL;
1828 out_unlock:
1829 sev_unlock_two_vms(kvm, source_kvm);
1830 out_fput:
1831 if (source_kvm_file)
1832 fput(source_kvm_file);
1833 return ret;
1834 }
1835
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)1836 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1837 {
1838 struct kvm_sev_cmd sev_cmd;
1839 int r;
1840
1841 if (!sev_enabled)
1842 return -ENOTTY;
1843
1844 if (!argp)
1845 return 0;
1846
1847 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1848 return -EFAULT;
1849
1850 mutex_lock(&kvm->lock);
1851
1852 /* Only the enc_context_owner handles some memory enc operations. */
1853 if (is_mirroring_enc_context(kvm) &&
1854 !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1855 r = -EINVAL;
1856 goto out;
1857 }
1858
1859 switch (sev_cmd.id) {
1860 case KVM_SEV_ES_INIT:
1861 if (!sev_es_enabled) {
1862 r = -ENOTTY;
1863 goto out;
1864 }
1865 fallthrough;
1866 case KVM_SEV_INIT:
1867 r = sev_guest_init(kvm, &sev_cmd);
1868 break;
1869 case KVM_SEV_LAUNCH_START:
1870 r = sev_launch_start(kvm, &sev_cmd);
1871 break;
1872 case KVM_SEV_LAUNCH_UPDATE_DATA:
1873 r = sev_launch_update_data(kvm, &sev_cmd);
1874 break;
1875 case KVM_SEV_LAUNCH_UPDATE_VMSA:
1876 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1877 break;
1878 case KVM_SEV_LAUNCH_MEASURE:
1879 r = sev_launch_measure(kvm, &sev_cmd);
1880 break;
1881 case KVM_SEV_LAUNCH_FINISH:
1882 r = sev_launch_finish(kvm, &sev_cmd);
1883 break;
1884 case KVM_SEV_GUEST_STATUS:
1885 r = sev_guest_status(kvm, &sev_cmd);
1886 break;
1887 case KVM_SEV_DBG_DECRYPT:
1888 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1889 break;
1890 case KVM_SEV_DBG_ENCRYPT:
1891 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1892 break;
1893 case KVM_SEV_LAUNCH_SECRET:
1894 r = sev_launch_secret(kvm, &sev_cmd);
1895 break;
1896 case KVM_SEV_GET_ATTESTATION_REPORT:
1897 r = sev_get_attestation_report(kvm, &sev_cmd);
1898 break;
1899 case KVM_SEV_SEND_START:
1900 r = sev_send_start(kvm, &sev_cmd);
1901 break;
1902 case KVM_SEV_SEND_UPDATE_DATA:
1903 r = sev_send_update_data(kvm, &sev_cmd);
1904 break;
1905 case KVM_SEV_SEND_FINISH:
1906 r = sev_send_finish(kvm, &sev_cmd);
1907 break;
1908 case KVM_SEV_SEND_CANCEL:
1909 r = sev_send_cancel(kvm, &sev_cmd);
1910 break;
1911 case KVM_SEV_RECEIVE_START:
1912 r = sev_receive_start(kvm, &sev_cmd);
1913 break;
1914 case KVM_SEV_RECEIVE_UPDATE_DATA:
1915 r = sev_receive_update_data(kvm, &sev_cmd);
1916 break;
1917 case KVM_SEV_RECEIVE_FINISH:
1918 r = sev_receive_finish(kvm, &sev_cmd);
1919 break;
1920 default:
1921 r = -EINVAL;
1922 goto out;
1923 }
1924
1925 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1926 r = -EFAULT;
1927
1928 out:
1929 mutex_unlock(&kvm->lock);
1930 return r;
1931 }
1932
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)1933 int sev_mem_enc_register_region(struct kvm *kvm,
1934 struct kvm_enc_region *range)
1935 {
1936 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1937 struct enc_region *region;
1938 int ret = 0;
1939
1940 if (!sev_guest(kvm))
1941 return -ENOTTY;
1942
1943 /* If kvm is mirroring encryption context it isn't responsible for it */
1944 if (is_mirroring_enc_context(kvm))
1945 return -EINVAL;
1946
1947 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1948 return -EINVAL;
1949
1950 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1951 if (!region)
1952 return -ENOMEM;
1953
1954 mutex_lock(&kvm->lock);
1955 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
1956 if (IS_ERR(region->pages)) {
1957 ret = PTR_ERR(region->pages);
1958 mutex_unlock(&kvm->lock);
1959 goto e_free;
1960 }
1961
1962 region->uaddr = range->addr;
1963 region->size = range->size;
1964
1965 list_add_tail(®ion->list, &sev->regions_list);
1966 mutex_unlock(&kvm->lock);
1967
1968 /*
1969 * The guest may change the memory encryption attribute from C=0 -> C=1
1970 * or vice versa for this memory range. Lets make sure caches are
1971 * flushed to ensure that guest data gets written into memory with
1972 * correct C-bit.
1973 */
1974 sev_clflush_pages(region->pages, region->npages);
1975
1976 return ret;
1977
1978 e_free:
1979 kfree(region);
1980 return ret;
1981 }
1982
1983 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)1984 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1985 {
1986 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1987 struct list_head *head = &sev->regions_list;
1988 struct enc_region *i;
1989
1990 list_for_each_entry(i, head, list) {
1991 if (i->uaddr == range->addr &&
1992 i->size == range->size)
1993 return i;
1994 }
1995
1996 return NULL;
1997 }
1998
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)1999 static void __unregister_enc_region_locked(struct kvm *kvm,
2000 struct enc_region *region)
2001 {
2002 sev_unpin_memory(kvm, region->pages, region->npages);
2003 list_del(®ion->list);
2004 kfree(region);
2005 }
2006
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2007 int sev_mem_enc_unregister_region(struct kvm *kvm,
2008 struct kvm_enc_region *range)
2009 {
2010 struct enc_region *region;
2011 int ret;
2012
2013 /* If kvm is mirroring encryption context it isn't responsible for it */
2014 if (is_mirroring_enc_context(kvm))
2015 return -EINVAL;
2016
2017 mutex_lock(&kvm->lock);
2018
2019 if (!sev_guest(kvm)) {
2020 ret = -ENOTTY;
2021 goto failed;
2022 }
2023
2024 region = find_enc_region(kvm, range);
2025 if (!region) {
2026 ret = -EINVAL;
2027 goto failed;
2028 }
2029
2030 /*
2031 * Ensure that all guest tagged cache entries are flushed before
2032 * releasing the pages back to the system for use. CLFLUSH will
2033 * not do this, so issue a WBINVD.
2034 */
2035 wbinvd_on_all_cpus();
2036
2037 __unregister_enc_region_locked(kvm, region);
2038
2039 mutex_unlock(&kvm->lock);
2040 return 0;
2041
2042 failed:
2043 mutex_unlock(&kvm->lock);
2044 return ret;
2045 }
2046
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2047 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2048 {
2049 struct file *source_kvm_file;
2050 struct kvm *source_kvm;
2051 struct kvm_sev_info *source_sev, *mirror_sev;
2052 int ret;
2053
2054 source_kvm_file = fget(source_fd);
2055 if (!file_is_kvm(source_kvm_file)) {
2056 ret = -EBADF;
2057 goto e_source_fput;
2058 }
2059
2060 source_kvm = source_kvm_file->private_data;
2061 ret = sev_lock_two_vms(kvm, source_kvm);
2062 if (ret)
2063 goto e_source_fput;
2064
2065 /*
2066 * Mirrors of mirrors should work, but let's not get silly. Also
2067 * disallow out-of-band SEV/SEV-ES init if the target is already an
2068 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
2069 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2070 */
2071 if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2072 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2073 ret = -EINVAL;
2074 goto e_unlock;
2075 }
2076
2077 /*
2078 * The mirror kvm holds an enc_context_owner ref so its asid can't
2079 * disappear until we're done with it
2080 */
2081 source_sev = &to_kvm_svm(source_kvm)->sev_info;
2082 kvm_get_kvm(source_kvm);
2083 mirror_sev = &to_kvm_svm(kvm)->sev_info;
2084 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2085
2086 /* Set enc_context_owner and copy its encryption context over */
2087 mirror_sev->enc_context_owner = source_kvm;
2088 mirror_sev->active = true;
2089 mirror_sev->asid = source_sev->asid;
2090 mirror_sev->fd = source_sev->fd;
2091 mirror_sev->es_active = source_sev->es_active;
2092 mirror_sev->handle = source_sev->handle;
2093 INIT_LIST_HEAD(&mirror_sev->regions_list);
2094 INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2095 ret = 0;
2096
2097 /*
2098 * Do not copy ap_jump_table. Since the mirror does not share the same
2099 * KVM contexts as the original, and they may have different
2100 * memory-views.
2101 */
2102
2103 e_unlock:
2104 sev_unlock_two_vms(kvm, source_kvm);
2105 e_source_fput:
2106 if (source_kvm_file)
2107 fput(source_kvm_file);
2108 return ret;
2109 }
2110
sev_vm_destroy(struct kvm * kvm)2111 void sev_vm_destroy(struct kvm *kvm)
2112 {
2113 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2114 struct list_head *head = &sev->regions_list;
2115 struct list_head *pos, *q;
2116
2117 if (!sev_guest(kvm))
2118 return;
2119
2120 WARN_ON(!list_empty(&sev->mirror_vms));
2121
2122 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2123 if (is_mirroring_enc_context(kvm)) {
2124 struct kvm *owner_kvm = sev->enc_context_owner;
2125
2126 mutex_lock(&owner_kvm->lock);
2127 list_del(&sev->mirror_entry);
2128 mutex_unlock(&owner_kvm->lock);
2129 kvm_put_kvm(owner_kvm);
2130 return;
2131 }
2132
2133 /*
2134 * Ensure that all guest tagged cache entries are flushed before
2135 * releasing the pages back to the system for use. CLFLUSH will
2136 * not do this, so issue a WBINVD.
2137 */
2138 wbinvd_on_all_cpus();
2139
2140 /*
2141 * if userspace was terminated before unregistering the memory regions
2142 * then lets unpin all the registered memory.
2143 */
2144 if (!list_empty(head)) {
2145 list_for_each_safe(pos, q, head) {
2146 __unregister_enc_region_locked(kvm,
2147 list_entry(pos, struct enc_region, list));
2148 cond_resched();
2149 }
2150 }
2151
2152 sev_unbind_asid(kvm, sev->handle);
2153 sev_asid_free(sev);
2154 }
2155
sev_set_cpu_caps(void)2156 void __init sev_set_cpu_caps(void)
2157 {
2158 if (!sev_enabled)
2159 kvm_cpu_cap_clear(X86_FEATURE_SEV);
2160 if (!sev_es_enabled)
2161 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2162 }
2163
sev_hardware_setup(void)2164 void __init sev_hardware_setup(void)
2165 {
2166 #ifdef CONFIG_KVM_AMD_SEV
2167 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2168 bool sev_es_supported = false;
2169 bool sev_supported = false;
2170
2171 if (!sev_enabled || !npt_enabled)
2172 goto out;
2173
2174 /*
2175 * SEV must obviously be supported in hardware. Sanity check that the
2176 * CPU supports decode assists, which is mandatory for SEV guests to
2177 * support instruction emulation.
2178 */
2179 if (!boot_cpu_has(X86_FEATURE_SEV) ||
2180 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2181 goto out;
2182
2183 /* Retrieve SEV CPUID information */
2184 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2185
2186 /* Set encryption bit location for SEV-ES guests */
2187 sev_enc_bit = ebx & 0x3f;
2188
2189 /* Maximum number of encrypted guests supported simultaneously */
2190 max_sev_asid = ecx;
2191 if (!max_sev_asid)
2192 goto out;
2193
2194 /* Minimum ASID value that should be used for SEV guest */
2195 min_sev_asid = edx;
2196 sev_me_mask = 1UL << (ebx & 0x3f);
2197
2198 /*
2199 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2200 * even though it's never used, so that the bitmap is indexed by the
2201 * actual ASID.
2202 */
2203 nr_asids = max_sev_asid + 1;
2204 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2205 if (!sev_asid_bitmap)
2206 goto out;
2207
2208 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2209 if (!sev_reclaim_asid_bitmap) {
2210 bitmap_free(sev_asid_bitmap);
2211 sev_asid_bitmap = NULL;
2212 goto out;
2213 }
2214
2215 sev_asid_count = max_sev_asid - min_sev_asid + 1;
2216 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
2217 goto out;
2218
2219 pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
2220 sev_supported = true;
2221
2222 /* SEV-ES support requested? */
2223 if (!sev_es_enabled)
2224 goto out;
2225
2226 /*
2227 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2228 * instruction stream, i.e. can't emulate in response to a #NPF and
2229 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2230 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2231 */
2232 if (!enable_mmio_caching)
2233 goto out;
2234
2235 /* Does the CPU support SEV-ES? */
2236 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2237 goto out;
2238
2239 /* Has the system been allocated ASIDs for SEV-ES? */
2240 if (min_sev_asid == 1)
2241 goto out;
2242
2243 sev_es_asid_count = min_sev_asid - 1;
2244 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
2245 goto out;
2246
2247 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
2248 sev_es_supported = true;
2249
2250 out:
2251 sev_enabled = sev_supported;
2252 sev_es_enabled = sev_es_supported;
2253 #endif
2254 }
2255
sev_hardware_unsetup(void)2256 void sev_hardware_unsetup(void)
2257 {
2258 if (!sev_enabled)
2259 return;
2260
2261 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2262 sev_flush_asids(1, max_sev_asid);
2263
2264 bitmap_free(sev_asid_bitmap);
2265 bitmap_free(sev_reclaim_asid_bitmap);
2266
2267 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2268 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2269 }
2270
sev_cpu_init(struct svm_cpu_data * sd)2271 int sev_cpu_init(struct svm_cpu_data *sd)
2272 {
2273 if (!sev_enabled)
2274 return 0;
2275
2276 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2277 if (!sd->sev_vmcbs)
2278 return -ENOMEM;
2279
2280 return 0;
2281 }
2282
2283 /*
2284 * Pages used by hardware to hold guest encrypted state must be flushed before
2285 * returning them to the system.
2286 */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)2287 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2288 {
2289 int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2290
2291 /*
2292 * Note! The address must be a kernel address, as regular page walk
2293 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2294 * address is non-deterministic and unsafe. This function deliberately
2295 * takes a pointer to deter passing in a user address.
2296 */
2297 unsigned long addr = (unsigned long)va;
2298
2299 /*
2300 * If CPU enforced cache coherency for encrypted mappings of the
2301 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2302 * flush is still needed in order to work properly with DMA devices.
2303 */
2304 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2305 clflush_cache_range(va, PAGE_SIZE);
2306 return;
2307 }
2308
2309 /*
2310 * VM Page Flush takes a host virtual address and a guest ASID. Fall
2311 * back to WBINVD if this faults so as not to make any problems worse
2312 * by leaving stale encrypted data in the cache.
2313 */
2314 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2315 goto do_wbinvd;
2316
2317 return;
2318
2319 do_wbinvd:
2320 wbinvd_on_all_cpus();
2321 }
2322
sev_guest_memory_reclaimed(struct kvm * kvm)2323 void sev_guest_memory_reclaimed(struct kvm *kvm)
2324 {
2325 if (!sev_guest(kvm))
2326 return;
2327
2328 wbinvd_on_all_cpus();
2329 }
2330
sev_free_vcpu(struct kvm_vcpu * vcpu)2331 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2332 {
2333 struct vcpu_svm *svm;
2334
2335 if (!sev_es_guest(vcpu->kvm))
2336 return;
2337
2338 svm = to_svm(vcpu);
2339
2340 if (vcpu->arch.guest_state_protected)
2341 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2342
2343 __free_page(virt_to_page(svm->sev_es.vmsa));
2344
2345 if (svm->sev_es.ghcb_sa_free)
2346 kvfree(svm->sev_es.ghcb_sa);
2347 }
2348
dump_ghcb(struct vcpu_svm * svm)2349 static void dump_ghcb(struct vcpu_svm *svm)
2350 {
2351 struct ghcb *ghcb = svm->sev_es.ghcb;
2352 unsigned int nbits;
2353
2354 /* Re-use the dump_invalid_vmcb module parameter */
2355 if (!dump_invalid_vmcb) {
2356 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2357 return;
2358 }
2359
2360 nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2361
2362 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2363 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2364 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2365 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2366 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2367 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2368 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2369 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2370 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2371 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2372 }
2373
sev_es_sync_to_ghcb(struct vcpu_svm * svm)2374 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2375 {
2376 struct kvm_vcpu *vcpu = &svm->vcpu;
2377 struct ghcb *ghcb = svm->sev_es.ghcb;
2378
2379 /*
2380 * The GHCB protocol so far allows for the following data
2381 * to be returned:
2382 * GPRs RAX, RBX, RCX, RDX
2383 *
2384 * Copy their values, even if they may not have been written during the
2385 * VM-Exit. It's the guest's responsibility to not consume random data.
2386 */
2387 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2388 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2389 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2390 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2391 }
2392
sev_es_sync_from_ghcb(struct vcpu_svm * svm)2393 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2394 {
2395 struct vmcb_control_area *control = &svm->vmcb->control;
2396 struct kvm_vcpu *vcpu = &svm->vcpu;
2397 struct ghcb *ghcb = svm->sev_es.ghcb;
2398 u64 exit_code;
2399
2400 /*
2401 * The GHCB protocol so far allows for the following data
2402 * to be supplied:
2403 * GPRs RAX, RBX, RCX, RDX
2404 * XCR0
2405 * CPL
2406 *
2407 * VMMCALL allows the guest to provide extra registers. KVM also
2408 * expects RSI for hypercalls, so include that, too.
2409 *
2410 * Copy their values to the appropriate location if supplied.
2411 */
2412 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2413
2414 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2415 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2416 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2417 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2418 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2419
2420 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2421
2422 if (ghcb_xcr0_is_valid(ghcb)) {
2423 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2424 kvm_update_cpuid_runtime(vcpu);
2425 }
2426
2427 /* Copy the GHCB exit information into the VMCB fields */
2428 exit_code = ghcb_get_sw_exit_code(ghcb);
2429 control->exit_code = lower_32_bits(exit_code);
2430 control->exit_code_hi = upper_32_bits(exit_code);
2431 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2432 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2433
2434 /* Clear the valid entries fields */
2435 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2436 }
2437
sev_es_validate_vmgexit(struct vcpu_svm * svm)2438 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2439 {
2440 struct kvm_vcpu *vcpu;
2441 struct ghcb *ghcb;
2442 u64 exit_code;
2443 u64 reason;
2444
2445 ghcb = svm->sev_es.ghcb;
2446
2447 /*
2448 * Retrieve the exit code now even though it may not be marked valid
2449 * as it could help with debugging.
2450 */
2451 exit_code = ghcb_get_sw_exit_code(ghcb);
2452
2453 /* Only GHCB Usage code 0 is supported */
2454 if (ghcb->ghcb_usage) {
2455 reason = GHCB_ERR_INVALID_USAGE;
2456 goto vmgexit_err;
2457 }
2458
2459 reason = GHCB_ERR_MISSING_INPUT;
2460
2461 if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2462 !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2463 !ghcb_sw_exit_info_2_is_valid(ghcb))
2464 goto vmgexit_err;
2465
2466 switch (ghcb_get_sw_exit_code(ghcb)) {
2467 case SVM_EXIT_READ_DR7:
2468 break;
2469 case SVM_EXIT_WRITE_DR7:
2470 if (!ghcb_rax_is_valid(ghcb))
2471 goto vmgexit_err;
2472 break;
2473 case SVM_EXIT_RDTSC:
2474 break;
2475 case SVM_EXIT_RDPMC:
2476 if (!ghcb_rcx_is_valid(ghcb))
2477 goto vmgexit_err;
2478 break;
2479 case SVM_EXIT_CPUID:
2480 if (!ghcb_rax_is_valid(ghcb) ||
2481 !ghcb_rcx_is_valid(ghcb))
2482 goto vmgexit_err;
2483 if (ghcb_get_rax(ghcb) == 0xd)
2484 if (!ghcb_xcr0_is_valid(ghcb))
2485 goto vmgexit_err;
2486 break;
2487 case SVM_EXIT_INVD:
2488 break;
2489 case SVM_EXIT_IOIO:
2490 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2491 if (!ghcb_sw_scratch_is_valid(ghcb))
2492 goto vmgexit_err;
2493 } else {
2494 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2495 if (!ghcb_rax_is_valid(ghcb))
2496 goto vmgexit_err;
2497 }
2498 break;
2499 case SVM_EXIT_MSR:
2500 if (!ghcb_rcx_is_valid(ghcb))
2501 goto vmgexit_err;
2502 if (ghcb_get_sw_exit_info_1(ghcb)) {
2503 if (!ghcb_rax_is_valid(ghcb) ||
2504 !ghcb_rdx_is_valid(ghcb))
2505 goto vmgexit_err;
2506 }
2507 break;
2508 case SVM_EXIT_VMMCALL:
2509 if (!ghcb_rax_is_valid(ghcb) ||
2510 !ghcb_cpl_is_valid(ghcb))
2511 goto vmgexit_err;
2512 break;
2513 case SVM_EXIT_RDTSCP:
2514 break;
2515 case SVM_EXIT_WBINVD:
2516 break;
2517 case SVM_EXIT_MONITOR:
2518 if (!ghcb_rax_is_valid(ghcb) ||
2519 !ghcb_rcx_is_valid(ghcb) ||
2520 !ghcb_rdx_is_valid(ghcb))
2521 goto vmgexit_err;
2522 break;
2523 case SVM_EXIT_MWAIT:
2524 if (!ghcb_rax_is_valid(ghcb) ||
2525 !ghcb_rcx_is_valid(ghcb))
2526 goto vmgexit_err;
2527 break;
2528 case SVM_VMGEXIT_MMIO_READ:
2529 case SVM_VMGEXIT_MMIO_WRITE:
2530 if (!ghcb_sw_scratch_is_valid(ghcb))
2531 goto vmgexit_err;
2532 break;
2533 case SVM_VMGEXIT_NMI_COMPLETE:
2534 case SVM_VMGEXIT_AP_HLT_LOOP:
2535 case SVM_VMGEXIT_AP_JUMP_TABLE:
2536 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2537 break;
2538 default:
2539 reason = GHCB_ERR_INVALID_EVENT;
2540 goto vmgexit_err;
2541 }
2542
2543 return 0;
2544
2545 vmgexit_err:
2546 vcpu = &svm->vcpu;
2547
2548 if (reason == GHCB_ERR_INVALID_USAGE) {
2549 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2550 ghcb->ghcb_usage);
2551 } else if (reason == GHCB_ERR_INVALID_EVENT) {
2552 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2553 exit_code);
2554 } else {
2555 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2556 exit_code);
2557 dump_ghcb(svm);
2558 }
2559
2560 /* Clear the valid entries fields */
2561 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2562
2563 ghcb_set_sw_exit_info_1(ghcb, 2);
2564 ghcb_set_sw_exit_info_2(ghcb, reason);
2565
2566 /* Resume the guest to "return" the error code. */
2567 return 1;
2568 }
2569
sev_es_unmap_ghcb(struct vcpu_svm * svm)2570 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2571 {
2572 if (!svm->sev_es.ghcb)
2573 return;
2574
2575 if (svm->sev_es.ghcb_sa_free) {
2576 /*
2577 * The scratch area lives outside the GHCB, so there is a
2578 * buffer that, depending on the operation performed, may
2579 * need to be synced, then freed.
2580 */
2581 if (svm->sev_es.ghcb_sa_sync) {
2582 kvm_write_guest(svm->vcpu.kvm,
2583 ghcb_get_sw_scratch(svm->sev_es.ghcb),
2584 svm->sev_es.ghcb_sa,
2585 svm->sev_es.ghcb_sa_len);
2586 svm->sev_es.ghcb_sa_sync = false;
2587 }
2588
2589 kvfree(svm->sev_es.ghcb_sa);
2590 svm->sev_es.ghcb_sa = NULL;
2591 svm->sev_es.ghcb_sa_free = false;
2592 }
2593
2594 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2595
2596 sev_es_sync_to_ghcb(svm);
2597
2598 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2599 svm->sev_es.ghcb = NULL;
2600 }
2601
pre_sev_run(struct vcpu_svm * svm,int cpu)2602 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2603 {
2604 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2605 int asid = sev_get_asid(svm->vcpu.kvm);
2606
2607 /* Assign the asid allocated with this SEV guest */
2608 svm->asid = asid;
2609
2610 /*
2611 * Flush guest TLB:
2612 *
2613 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2614 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2615 */
2616 if (sd->sev_vmcbs[asid] == svm->vmcb &&
2617 svm->vcpu.arch.last_vmentry_cpu == cpu)
2618 return;
2619
2620 sd->sev_vmcbs[asid] = svm->vmcb;
2621 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2622 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2623 }
2624
2625 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)2626 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2627 {
2628 struct vmcb_control_area *control = &svm->vmcb->control;
2629 struct ghcb *ghcb = svm->sev_es.ghcb;
2630 u64 ghcb_scratch_beg, ghcb_scratch_end;
2631 u64 scratch_gpa_beg, scratch_gpa_end;
2632 void *scratch_va;
2633
2634 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2635 if (!scratch_gpa_beg) {
2636 pr_err("vmgexit: scratch gpa not provided\n");
2637 goto e_scratch;
2638 }
2639
2640 scratch_gpa_end = scratch_gpa_beg + len;
2641 if (scratch_gpa_end < scratch_gpa_beg) {
2642 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2643 len, scratch_gpa_beg);
2644 goto e_scratch;
2645 }
2646
2647 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2648 /* Scratch area begins within GHCB */
2649 ghcb_scratch_beg = control->ghcb_gpa +
2650 offsetof(struct ghcb, shared_buffer);
2651 ghcb_scratch_end = control->ghcb_gpa +
2652 offsetof(struct ghcb, reserved_0xff0);
2653
2654 /*
2655 * If the scratch area begins within the GHCB, it must be
2656 * completely contained in the GHCB shared buffer area.
2657 */
2658 if (scratch_gpa_beg < ghcb_scratch_beg ||
2659 scratch_gpa_end > ghcb_scratch_end) {
2660 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2661 scratch_gpa_beg, scratch_gpa_end);
2662 goto e_scratch;
2663 }
2664
2665 scratch_va = (void *)svm->sev_es.ghcb;
2666 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2667 } else {
2668 /*
2669 * The guest memory must be read into a kernel buffer, so
2670 * limit the size
2671 */
2672 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2673 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2674 len, GHCB_SCRATCH_AREA_LIMIT);
2675 goto e_scratch;
2676 }
2677 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2678 if (!scratch_va)
2679 return -ENOMEM;
2680
2681 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2682 /* Unable to copy scratch area from guest */
2683 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2684
2685 kvfree(scratch_va);
2686 return -EFAULT;
2687 }
2688
2689 /*
2690 * The scratch area is outside the GHCB. The operation will
2691 * dictate whether the buffer needs to be synced before running
2692 * the vCPU next time (i.e. a read was requested so the data
2693 * must be written back to the guest memory).
2694 */
2695 svm->sev_es.ghcb_sa_sync = sync;
2696 svm->sev_es.ghcb_sa_free = true;
2697 }
2698
2699 svm->sev_es.ghcb_sa = scratch_va;
2700 svm->sev_es.ghcb_sa_len = len;
2701
2702 return 0;
2703
2704 e_scratch:
2705 ghcb_set_sw_exit_info_1(ghcb, 2);
2706 ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2707
2708 return 1;
2709 }
2710
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)2711 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2712 unsigned int pos)
2713 {
2714 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2715 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2716 }
2717
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)2718 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2719 {
2720 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2721 }
2722
set_ghcb_msr(struct vcpu_svm * svm,u64 value)2723 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2724 {
2725 svm->vmcb->control.ghcb_gpa = value;
2726 }
2727
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)2728 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2729 {
2730 struct vmcb_control_area *control = &svm->vmcb->control;
2731 struct kvm_vcpu *vcpu = &svm->vcpu;
2732 u64 ghcb_info;
2733 int ret = 1;
2734
2735 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2736
2737 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2738 control->ghcb_gpa);
2739
2740 switch (ghcb_info) {
2741 case GHCB_MSR_SEV_INFO_REQ:
2742 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2743 GHCB_VERSION_MIN,
2744 sev_enc_bit));
2745 break;
2746 case GHCB_MSR_CPUID_REQ: {
2747 u64 cpuid_fn, cpuid_reg, cpuid_value;
2748
2749 cpuid_fn = get_ghcb_msr_bits(svm,
2750 GHCB_MSR_CPUID_FUNC_MASK,
2751 GHCB_MSR_CPUID_FUNC_POS);
2752
2753 /* Initialize the registers needed by the CPUID intercept */
2754 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2755 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2756
2757 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2758 if (!ret) {
2759 /* Error, keep GHCB MSR value as-is */
2760 break;
2761 }
2762
2763 cpuid_reg = get_ghcb_msr_bits(svm,
2764 GHCB_MSR_CPUID_REG_MASK,
2765 GHCB_MSR_CPUID_REG_POS);
2766 if (cpuid_reg == 0)
2767 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2768 else if (cpuid_reg == 1)
2769 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2770 else if (cpuid_reg == 2)
2771 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2772 else
2773 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2774
2775 set_ghcb_msr_bits(svm, cpuid_value,
2776 GHCB_MSR_CPUID_VALUE_MASK,
2777 GHCB_MSR_CPUID_VALUE_POS);
2778
2779 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2780 GHCB_MSR_INFO_MASK,
2781 GHCB_MSR_INFO_POS);
2782 break;
2783 }
2784 case GHCB_MSR_TERM_REQ: {
2785 u64 reason_set, reason_code;
2786
2787 reason_set = get_ghcb_msr_bits(svm,
2788 GHCB_MSR_TERM_REASON_SET_MASK,
2789 GHCB_MSR_TERM_REASON_SET_POS);
2790 reason_code = get_ghcb_msr_bits(svm,
2791 GHCB_MSR_TERM_REASON_MASK,
2792 GHCB_MSR_TERM_REASON_POS);
2793 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2794 reason_set, reason_code);
2795
2796 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2797 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2798 vcpu->run->system_event.ndata = 1;
2799 vcpu->run->system_event.data[0] = control->ghcb_gpa;
2800
2801 return 0;
2802 }
2803 default:
2804 /* Error, keep GHCB MSR value as-is */
2805 break;
2806 }
2807
2808 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2809 control->ghcb_gpa, ret);
2810
2811 return ret;
2812 }
2813
sev_handle_vmgexit(struct kvm_vcpu * vcpu)2814 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2815 {
2816 struct vcpu_svm *svm = to_svm(vcpu);
2817 struct vmcb_control_area *control = &svm->vmcb->control;
2818 u64 ghcb_gpa, exit_code;
2819 struct ghcb *ghcb;
2820 int ret;
2821
2822 /* Validate the GHCB */
2823 ghcb_gpa = control->ghcb_gpa;
2824 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2825 return sev_handle_vmgexit_msr_protocol(svm);
2826
2827 if (!ghcb_gpa) {
2828 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2829
2830 /* Without a GHCB, just return right back to the guest */
2831 return 1;
2832 }
2833
2834 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2835 /* Unable to map GHCB from guest */
2836 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2837 ghcb_gpa);
2838
2839 /* Without a GHCB, just return right back to the guest */
2840 return 1;
2841 }
2842
2843 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2844 ghcb = svm->sev_es.ghcb_map.hva;
2845
2846 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2847
2848 exit_code = ghcb_get_sw_exit_code(ghcb);
2849
2850 ret = sev_es_validate_vmgexit(svm);
2851 if (ret)
2852 return ret;
2853
2854 sev_es_sync_from_ghcb(svm);
2855 ghcb_set_sw_exit_info_1(ghcb, 0);
2856 ghcb_set_sw_exit_info_2(ghcb, 0);
2857
2858 switch (exit_code) {
2859 case SVM_VMGEXIT_MMIO_READ:
2860 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2861 if (ret)
2862 break;
2863
2864 ret = kvm_sev_es_mmio_read(vcpu,
2865 control->exit_info_1,
2866 control->exit_info_2,
2867 svm->sev_es.ghcb_sa);
2868 break;
2869 case SVM_VMGEXIT_MMIO_WRITE:
2870 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2871 if (ret)
2872 break;
2873
2874 ret = kvm_sev_es_mmio_write(vcpu,
2875 control->exit_info_1,
2876 control->exit_info_2,
2877 svm->sev_es.ghcb_sa);
2878 break;
2879 case SVM_VMGEXIT_NMI_COMPLETE:
2880 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2881 break;
2882 case SVM_VMGEXIT_AP_HLT_LOOP:
2883 ret = kvm_emulate_ap_reset_hold(vcpu);
2884 break;
2885 case SVM_VMGEXIT_AP_JUMP_TABLE: {
2886 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2887
2888 switch (control->exit_info_1) {
2889 case 0:
2890 /* Set AP jump table address */
2891 sev->ap_jump_table = control->exit_info_2;
2892 break;
2893 case 1:
2894 /* Get AP jump table address */
2895 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2896 break;
2897 default:
2898 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2899 control->exit_info_1);
2900 ghcb_set_sw_exit_info_1(ghcb, 2);
2901 ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
2902 }
2903
2904 ret = 1;
2905 break;
2906 }
2907 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2908 vcpu_unimpl(vcpu,
2909 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2910 control->exit_info_1, control->exit_info_2);
2911 ret = -EINVAL;
2912 break;
2913 default:
2914 ret = svm_invoke_exit_handler(vcpu, exit_code);
2915 }
2916
2917 return ret;
2918 }
2919
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)2920 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2921 {
2922 int count;
2923 int bytes;
2924 int r;
2925
2926 if (svm->vmcb->control.exit_info_2 > INT_MAX)
2927 return -EINVAL;
2928
2929 count = svm->vmcb->control.exit_info_2;
2930 if (unlikely(check_mul_overflow(count, size, &bytes)))
2931 return -EINVAL;
2932
2933 r = setup_vmgexit_scratch(svm, in, bytes);
2934 if (r)
2935 return r;
2936
2937 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2938 count, in);
2939 }
2940
sev_es_init_vmcb(struct vcpu_svm * svm)2941 static void sev_es_init_vmcb(struct vcpu_svm *svm)
2942 {
2943 struct kvm_vcpu *vcpu = &svm->vcpu;
2944
2945 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2946 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2947
2948 /*
2949 * An SEV-ES guest requires a VMSA area that is a separate from the
2950 * VMCB page. Do not include the encryption mask on the VMSA physical
2951 * address since hardware will access it using the guest key.
2952 */
2953 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
2954
2955 /* Can't intercept CR register access, HV can't modify CR registers */
2956 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2957 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2958 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2959 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2960 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2961 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2962
2963 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2964
2965 /* Track EFER/CR register changes */
2966 svm_set_intercept(svm, TRAP_EFER_WRITE);
2967 svm_set_intercept(svm, TRAP_CR0_WRITE);
2968 svm_set_intercept(svm, TRAP_CR4_WRITE);
2969 svm_set_intercept(svm, TRAP_CR8_WRITE);
2970
2971 /* No support for enable_vmware_backdoor */
2972 clr_exception_intercept(svm, GP_VECTOR);
2973
2974 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2975 svm_clr_intercept(svm, INTERCEPT_XSETBV);
2976
2977 /* Clear intercepts on selected MSRs */
2978 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2979 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2980 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2981 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2982 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2983 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2984
2985 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) &&
2986 (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP) ||
2987 guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDPID))) {
2988 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, 1, 1);
2989 if (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP))
2990 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
2991 }
2992 }
2993
sev_init_vmcb(struct vcpu_svm * svm)2994 void sev_init_vmcb(struct vcpu_svm *svm)
2995 {
2996 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
2997 clr_exception_intercept(svm, UD_VECTOR);
2998
2999 if (sev_es_guest(svm->vcpu.kvm))
3000 sev_es_init_vmcb(svm);
3001 }
3002
sev_es_vcpu_reset(struct vcpu_svm * svm)3003 void sev_es_vcpu_reset(struct vcpu_svm *svm)
3004 {
3005 /*
3006 * Set the GHCB MSR value as per the GHCB specification when emulating
3007 * vCPU RESET for an SEV-ES guest.
3008 */
3009 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3010 GHCB_VERSION_MIN,
3011 sev_enc_bit));
3012 }
3013
sev_es_prepare_switch_to_guest(struct sev_es_save_area * hostsa)3014 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3015 {
3016 /*
3017 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
3018 * of which one step is to perform a VMLOAD. KVM performs the
3019 * corresponding VMSAVE in svm_prepare_guest_switch for both
3020 * traditional and SEV-ES guests.
3021 */
3022
3023 /* XCR0 is restored on VMEXIT, save the current host value */
3024 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3025
3026 /* PKRU is restored on VMEXIT, save the current host value */
3027 hostsa->pkru = read_pkru();
3028
3029 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
3030 hostsa->xss = host_xss;
3031 }
3032
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)3033 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3034 {
3035 struct vcpu_svm *svm = to_svm(vcpu);
3036
3037 /* First SIPI: Use the values as initially set by the VMM */
3038 if (!svm->sev_es.received_first_sipi) {
3039 svm->sev_es.received_first_sipi = true;
3040 return;
3041 }
3042
3043 /*
3044 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3045 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3046 * non-zero value.
3047 */
3048 if (!svm->sev_es.ghcb)
3049 return;
3050
3051 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3052 }
3053