1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/kref.h>
4 #include <linux/list.h>
5 #include <linux/mutex.h>
6 #include <linux/phylink.h>
7 #include <linux/property.h>
8 #include <linux/rtnetlink.h>
9 #include <linux/slab.h>
10
11 #include "sfp.h"
12
13 /**
14 * struct sfp_bus - internal representation of a sfp bus
15 */
16 struct sfp_bus {
17 /* private: */
18 struct kref kref;
19 struct list_head node;
20 struct fwnode_handle *fwnode;
21
22 const struct sfp_socket_ops *socket_ops;
23 struct device *sfp_dev;
24 struct sfp *sfp;
25 const struct sfp_quirk *sfp_quirk;
26
27 const struct sfp_upstream_ops *upstream_ops;
28 void *upstream;
29 struct phy_device *phydev;
30
31 bool registered;
32 bool started;
33 };
34
35 /**
36 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
37 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
38 * @id: a pointer to the module's &struct sfp_eeprom_id
39 * @support: optional pointer to an array of unsigned long for the
40 * ethtool support mask
41 *
42 * Parse the EEPROM identification given in @id, and return one of
43 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
44 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
45 * the connector type.
46 *
47 * If the port type is not known, returns %PORT_OTHER.
48 */
sfp_parse_port(struct sfp_bus * bus,const struct sfp_eeprom_id * id,unsigned long * support)49 int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
50 unsigned long *support)
51 {
52 int port;
53
54 /* port is the physical connector, set this from the connector field. */
55 switch (id->base.connector) {
56 case SFF8024_CONNECTOR_SC:
57 case SFF8024_CONNECTOR_FIBERJACK:
58 case SFF8024_CONNECTOR_LC:
59 case SFF8024_CONNECTOR_MT_RJ:
60 case SFF8024_CONNECTOR_MU:
61 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
62 case SFF8024_CONNECTOR_MPO_1X12:
63 case SFF8024_CONNECTOR_MPO_2X16:
64 port = PORT_FIBRE;
65 break;
66
67 case SFF8024_CONNECTOR_RJ45:
68 port = PORT_TP;
69 break;
70
71 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
72 port = PORT_DA;
73 break;
74
75 case SFF8024_CONNECTOR_UNSPEC:
76 if (id->base.e1000_base_t) {
77 port = PORT_TP;
78 break;
79 }
80 fallthrough;
81 case SFF8024_CONNECTOR_SG: /* guess */
82 case SFF8024_CONNECTOR_HSSDC_II:
83 case SFF8024_CONNECTOR_NOSEPARATE:
84 case SFF8024_CONNECTOR_MXC_2X16:
85 port = PORT_OTHER;
86 break;
87 default:
88 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
89 id->base.connector);
90 port = PORT_OTHER;
91 break;
92 }
93
94 if (support) {
95 switch (port) {
96 case PORT_FIBRE:
97 phylink_set(support, FIBRE);
98 break;
99
100 case PORT_TP:
101 phylink_set(support, TP);
102 break;
103 }
104 }
105
106 return port;
107 }
108 EXPORT_SYMBOL_GPL(sfp_parse_port);
109
110 /**
111 * sfp_may_have_phy() - indicate whether the module may have a PHY
112 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
113 * @id: a pointer to the module's &struct sfp_eeprom_id
114 *
115 * Parse the EEPROM identification given in @id, and return whether
116 * this module may have a PHY.
117 */
sfp_may_have_phy(struct sfp_bus * bus,const struct sfp_eeprom_id * id)118 bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
119 {
120 if (id->base.e1000_base_t)
121 return true;
122
123 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
124 switch (id->base.extended_cc) {
125 case SFF8024_ECC_10GBASE_T_SFI:
126 case SFF8024_ECC_10GBASE_T_SR:
127 case SFF8024_ECC_5GBASE_T:
128 case SFF8024_ECC_2_5GBASE_T:
129 return true;
130 }
131 }
132
133 return false;
134 }
135 EXPORT_SYMBOL_GPL(sfp_may_have_phy);
136
137 /**
138 * sfp_parse_support() - Parse the eeprom id for supported link modes
139 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
140 * @id: a pointer to the module's &struct sfp_eeprom_id
141 * @support: pointer to an array of unsigned long for the ethtool support mask
142 * @interfaces: pointer to an array of unsigned long for phy interface modes
143 * mask
144 *
145 * Parse the EEPROM identification information and derive the supported
146 * ethtool link modes for the module.
147 */
sfp_parse_support(struct sfp_bus * bus,const struct sfp_eeprom_id * id,unsigned long * support,unsigned long * interfaces)148 void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
149 unsigned long *support, unsigned long *interfaces)
150 {
151 unsigned int br_min, br_nom, br_max;
152 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
153
154 /* Decode the bitrate information to MBd */
155 br_min = br_nom = br_max = 0;
156 if (id->base.br_nominal) {
157 if (id->base.br_nominal != 255) {
158 br_nom = id->base.br_nominal * 100;
159 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
160 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
161 } else if (id->ext.br_max) {
162 br_nom = 250 * id->ext.br_max;
163 br_max = br_nom + br_nom * id->ext.br_min / 100;
164 br_min = br_nom - br_nom * id->ext.br_min / 100;
165 }
166
167 /* When using passive cables, in case neither BR,min nor BR,max
168 * are specified, set br_min to 0 as the nominal value is then
169 * used as the maximum.
170 */
171 if (br_min == br_max && id->base.sfp_ct_passive)
172 br_min = 0;
173 }
174
175 /* Set ethtool support from the compliance fields. */
176 if (id->base.e10g_base_sr) {
177 phylink_set(modes, 10000baseSR_Full);
178 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
179 }
180 if (id->base.e10g_base_lr) {
181 phylink_set(modes, 10000baseLR_Full);
182 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
183 }
184 if (id->base.e10g_base_lrm) {
185 phylink_set(modes, 10000baseLRM_Full);
186 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
187 }
188 if (id->base.e10g_base_er) {
189 phylink_set(modes, 10000baseER_Full);
190 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
191 }
192 if (id->base.e1000_base_sx ||
193 id->base.e1000_base_lx ||
194 id->base.e1000_base_cx) {
195 phylink_set(modes, 1000baseX_Full);
196 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
197 }
198 if (id->base.e1000_base_t) {
199 phylink_set(modes, 1000baseT_Half);
200 phylink_set(modes, 1000baseT_Full);
201 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
202 __set_bit(PHY_INTERFACE_MODE_SGMII, interfaces);
203 }
204
205 /* 1000Base-PX or 1000Base-BX10 */
206 if ((id->base.e_base_px || id->base.e_base_bx10) &&
207 br_min <= 1300 && br_max >= 1200) {
208 phylink_set(modes, 1000baseX_Full);
209 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
210 }
211
212 /* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
213 if (id->base.e100_base_fx || id->base.e100_base_lx) {
214 phylink_set(modes, 100baseFX_Full);
215 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
216 }
217 if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) {
218 phylink_set(modes, 100baseFX_Full);
219 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
220 }
221
222 /* For active or passive cables, select the link modes
223 * based on the bit rates and the cable compliance bytes.
224 */
225 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
226 /* This may look odd, but some manufacturers use 12000MBd */
227 if (br_min <= 12000 && br_max >= 10300) {
228 phylink_set(modes, 10000baseCR_Full);
229 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
230 }
231 if (br_min <= 3200 && br_max >= 3100) {
232 phylink_set(modes, 2500baseX_Full);
233 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
234 }
235 if (br_min <= 1300 && br_max >= 1200) {
236 phylink_set(modes, 1000baseX_Full);
237 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
238 }
239 }
240 if (id->base.sfp_ct_passive) {
241 if (id->base.passive.sff8431_app_e) {
242 phylink_set(modes, 10000baseCR_Full);
243 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
244 }
245 }
246 if (id->base.sfp_ct_active) {
247 if (id->base.active.sff8431_app_e ||
248 id->base.active.sff8431_lim) {
249 phylink_set(modes, 10000baseCR_Full);
250 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
251 }
252 }
253
254 switch (id->base.extended_cc) {
255 case SFF8024_ECC_UNSPEC:
256 break;
257 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
258 phylink_set(modes, 100000baseSR4_Full);
259 phylink_set(modes, 25000baseSR_Full);
260 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
261 break;
262 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
263 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
264 phylink_set(modes, 100000baseLR4_ER4_Full);
265 break;
266 case SFF8024_ECC_100GBASE_CR4:
267 phylink_set(modes, 100000baseCR4_Full);
268 fallthrough;
269 case SFF8024_ECC_25GBASE_CR_S:
270 case SFF8024_ECC_25GBASE_CR_N:
271 phylink_set(modes, 25000baseCR_Full);
272 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
273 break;
274 case SFF8024_ECC_10GBASE_T_SFI:
275 case SFF8024_ECC_10GBASE_T_SR:
276 phylink_set(modes, 10000baseT_Full);
277 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
278 break;
279 case SFF8024_ECC_5GBASE_T:
280 phylink_set(modes, 5000baseT_Full);
281 __set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces);
282 break;
283 case SFF8024_ECC_2_5GBASE_T:
284 phylink_set(modes, 2500baseT_Full);
285 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
286 break;
287 default:
288 dev_warn(bus->sfp_dev,
289 "Unknown/unsupported extended compliance code: 0x%02x\n",
290 id->base.extended_cc);
291 break;
292 }
293
294 /* For fibre channel SFP, derive possible BaseX modes */
295 if (id->base.fc_speed_100 ||
296 id->base.fc_speed_200 ||
297 id->base.fc_speed_400) {
298 if (id->base.br_nominal >= 31) {
299 phylink_set(modes, 2500baseX_Full);
300 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
301 }
302 if (id->base.br_nominal >= 12) {
303 phylink_set(modes, 1000baseX_Full);
304 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
305 }
306 }
307
308 /* If we haven't discovered any modes that this module supports, try
309 * the bitrate to determine supported modes. Some BiDi modules (eg,
310 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
311 * wavelengths, so do not set any transceiver bits.
312 *
313 * Do the same for modules supporting 2500BASE-X. Note that some
314 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
315 * 2500BASE-X, so we allow some slack here.
316 */
317 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS) && br_nom) {
318 if (br_min <= 1300 && br_max >= 1200) {
319 phylink_set(modes, 1000baseX_Full);
320 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
321 }
322 if (br_min <= 3200 && br_max >= 2500) {
323 phylink_set(modes, 2500baseX_Full);
324 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
325 }
326 }
327
328 if (bus->sfp_quirk && bus->sfp_quirk->modes)
329 bus->sfp_quirk->modes(id, modes, interfaces);
330
331 linkmode_or(support, support, modes);
332
333 phylink_set(support, Autoneg);
334 phylink_set(support, Pause);
335 phylink_set(support, Asym_Pause);
336 }
337 EXPORT_SYMBOL_GPL(sfp_parse_support);
338
339 /**
340 * sfp_select_interface() - Select appropriate phy_interface_t mode
341 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
342 * @link_modes: ethtool link modes mask
343 *
344 * Derive the phy_interface_t mode for the SFP module from the link
345 * modes mask.
346 */
sfp_select_interface(struct sfp_bus * bus,unsigned long * link_modes)347 phy_interface_t sfp_select_interface(struct sfp_bus *bus,
348 unsigned long *link_modes)
349 {
350 if (phylink_test(link_modes, 25000baseCR_Full) ||
351 phylink_test(link_modes, 25000baseKR_Full) ||
352 phylink_test(link_modes, 25000baseSR_Full))
353 return PHY_INTERFACE_MODE_25GBASER;
354
355 if (phylink_test(link_modes, 10000baseCR_Full) ||
356 phylink_test(link_modes, 10000baseSR_Full) ||
357 phylink_test(link_modes, 10000baseLR_Full) ||
358 phylink_test(link_modes, 10000baseLRM_Full) ||
359 phylink_test(link_modes, 10000baseER_Full) ||
360 phylink_test(link_modes, 10000baseT_Full))
361 return PHY_INTERFACE_MODE_10GBASER;
362
363 if (phylink_test(link_modes, 5000baseT_Full))
364 return PHY_INTERFACE_MODE_5GBASER;
365
366 if (phylink_test(link_modes, 2500baseX_Full))
367 return PHY_INTERFACE_MODE_2500BASEX;
368
369 if (phylink_test(link_modes, 1000baseT_Half) ||
370 phylink_test(link_modes, 1000baseT_Full))
371 return PHY_INTERFACE_MODE_SGMII;
372
373 if (phylink_test(link_modes, 1000baseX_Full))
374 return PHY_INTERFACE_MODE_1000BASEX;
375
376 if (phylink_test(link_modes, 100baseFX_Full))
377 return PHY_INTERFACE_MODE_100BASEX;
378
379 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
380
381 return PHY_INTERFACE_MODE_NA;
382 }
383 EXPORT_SYMBOL_GPL(sfp_select_interface);
384
385 static LIST_HEAD(sfp_buses);
386 static DEFINE_MUTEX(sfp_mutex);
387
sfp_get_upstream_ops(struct sfp_bus * bus)388 static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
389 {
390 return bus->registered ? bus->upstream_ops : NULL;
391 }
392
sfp_bus_get(struct fwnode_handle * fwnode)393 static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
394 {
395 struct sfp_bus *sfp, *new, *found = NULL;
396
397 new = kzalloc(sizeof(*new), GFP_KERNEL);
398
399 mutex_lock(&sfp_mutex);
400
401 list_for_each_entry(sfp, &sfp_buses, node) {
402 if (sfp->fwnode == fwnode) {
403 kref_get(&sfp->kref);
404 found = sfp;
405 break;
406 }
407 }
408
409 if (!found && new) {
410 kref_init(&new->kref);
411 new->fwnode = fwnode;
412 list_add(&new->node, &sfp_buses);
413 found = new;
414 new = NULL;
415 }
416
417 mutex_unlock(&sfp_mutex);
418
419 kfree(new);
420
421 return found;
422 }
423
sfp_bus_release(struct kref * kref)424 static void sfp_bus_release(struct kref *kref)
425 {
426 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
427
428 list_del(&bus->node);
429 mutex_unlock(&sfp_mutex);
430 kfree(bus);
431 }
432
433 /**
434 * sfp_bus_put() - put a reference on the &struct sfp_bus
435 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
436 *
437 * Put a reference on the &struct sfp_bus and free the underlying structure
438 * if this was the last reference.
439 */
sfp_bus_put(struct sfp_bus * bus)440 void sfp_bus_put(struct sfp_bus *bus)
441 {
442 if (bus)
443 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
444 }
445 EXPORT_SYMBOL_GPL(sfp_bus_put);
446
sfp_register_bus(struct sfp_bus * bus)447 static int sfp_register_bus(struct sfp_bus *bus)
448 {
449 const struct sfp_upstream_ops *ops = bus->upstream_ops;
450 int ret;
451
452 if (ops) {
453 if (ops->link_down)
454 ops->link_down(bus->upstream);
455 if (ops->connect_phy && bus->phydev) {
456 ret = ops->connect_phy(bus->upstream, bus->phydev);
457 if (ret)
458 return ret;
459 }
460 }
461 bus->registered = true;
462 bus->socket_ops->attach(bus->sfp);
463 if (bus->started)
464 bus->socket_ops->start(bus->sfp);
465 bus->upstream_ops->attach(bus->upstream, bus);
466 return 0;
467 }
468
sfp_unregister_bus(struct sfp_bus * bus)469 static void sfp_unregister_bus(struct sfp_bus *bus)
470 {
471 const struct sfp_upstream_ops *ops = bus->upstream_ops;
472
473 if (bus->registered) {
474 bus->upstream_ops->detach(bus->upstream, bus);
475 if (bus->started)
476 bus->socket_ops->stop(bus->sfp);
477 bus->socket_ops->detach(bus->sfp);
478 if (bus->phydev && ops && ops->disconnect_phy)
479 ops->disconnect_phy(bus->upstream);
480 }
481 bus->registered = false;
482 }
483
484 /**
485 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
486 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
487 * @modinfo: a &struct ethtool_modinfo
488 *
489 * Fill in the type and eeprom_len parameters in @modinfo for a module on
490 * the sfp bus specified by @bus.
491 *
492 * Returns 0 on success or a negative errno number.
493 */
sfp_get_module_info(struct sfp_bus * bus,struct ethtool_modinfo * modinfo)494 int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
495 {
496 return bus->socket_ops->module_info(bus->sfp, modinfo);
497 }
498 EXPORT_SYMBOL_GPL(sfp_get_module_info);
499
500 /**
501 * sfp_get_module_eeprom() - Read the SFP module EEPROM
502 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
503 * @ee: a &struct ethtool_eeprom
504 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
505 *
506 * Read the EEPROM as specified by the supplied @ee. See the documentation
507 * for &struct ethtool_eeprom for the region to be read.
508 *
509 * Returns 0 on success or a negative errno number.
510 */
sfp_get_module_eeprom(struct sfp_bus * bus,struct ethtool_eeprom * ee,u8 * data)511 int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
512 u8 *data)
513 {
514 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
515 }
516 EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
517
518 /**
519 * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM
520 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
521 * @page: a &struct ethtool_module_eeprom
522 * @extack: extack for reporting problems
523 *
524 * Read an EEPROM page as specified by the supplied @page. See the
525 * documentation for &struct ethtool_module_eeprom for the page to be read.
526 *
527 * Returns 0 on success or a negative errno number. More error
528 * information might be provided via extack
529 */
sfp_get_module_eeprom_by_page(struct sfp_bus * bus,const struct ethtool_module_eeprom * page,struct netlink_ext_ack * extack)530 int sfp_get_module_eeprom_by_page(struct sfp_bus *bus,
531 const struct ethtool_module_eeprom *page,
532 struct netlink_ext_ack *extack)
533 {
534 return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack);
535 }
536 EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page);
537
538 /**
539 * sfp_upstream_start() - Inform the SFP that the network device is up
540 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
541 *
542 * Inform the SFP socket that the network device is now up, so that the
543 * module can be enabled by allowing TX_DISABLE to be deasserted. This
544 * should be called from the network device driver's &struct net_device_ops
545 * ndo_open() method.
546 */
sfp_upstream_start(struct sfp_bus * bus)547 void sfp_upstream_start(struct sfp_bus *bus)
548 {
549 if (bus->registered)
550 bus->socket_ops->start(bus->sfp);
551 bus->started = true;
552 }
553 EXPORT_SYMBOL_GPL(sfp_upstream_start);
554
555 /**
556 * sfp_upstream_stop() - Inform the SFP that the network device is down
557 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
558 *
559 * Inform the SFP socket that the network device is now up, so that the
560 * module can be disabled by asserting TX_DISABLE, disabling the laser
561 * in optical modules. This should be called from the network device
562 * driver's &struct net_device_ops ndo_stop() method.
563 */
sfp_upstream_stop(struct sfp_bus * bus)564 void sfp_upstream_stop(struct sfp_bus *bus)
565 {
566 if (bus->registered)
567 bus->socket_ops->stop(bus->sfp);
568 bus->started = false;
569 }
570 EXPORT_SYMBOL_GPL(sfp_upstream_stop);
571
sfp_upstream_clear(struct sfp_bus * bus)572 static void sfp_upstream_clear(struct sfp_bus *bus)
573 {
574 bus->upstream_ops = NULL;
575 bus->upstream = NULL;
576 }
577
578 /**
579 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
580 * @fwnode: firmware node for the parent device (MAC or PHY)
581 *
582 * Parse the parent device's firmware node for a SFP bus, and locate
583 * the sfp_bus structure, incrementing its reference count. This must
584 * be put via sfp_bus_put() when done.
585 *
586 * Returns:
587 * - on success, a pointer to the sfp_bus structure,
588 * - %NULL if no SFP is specified,
589 * - on failure, an error pointer value:
590 *
591 * - corresponding to the errors detailed for
592 * fwnode_property_get_reference_args().
593 * - %-ENOMEM if we failed to allocate the bus.
594 * - an error from the upstream's connect_phy() method.
595 */
sfp_bus_find_fwnode(struct fwnode_handle * fwnode)596 struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
597 {
598 struct fwnode_reference_args ref;
599 struct sfp_bus *bus;
600 int ret;
601
602 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
603 0, 0, &ref);
604 if (ret == -ENOENT)
605 return NULL;
606 else if (ret < 0)
607 return ERR_PTR(ret);
608
609 if (!fwnode_device_is_available(ref.fwnode)) {
610 fwnode_handle_put(ref.fwnode);
611 return NULL;
612 }
613
614 bus = sfp_bus_get(ref.fwnode);
615 fwnode_handle_put(ref.fwnode);
616 if (!bus)
617 return ERR_PTR(-ENOMEM);
618
619 return bus;
620 }
621 EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
622
623 /**
624 * sfp_bus_add_upstream() - parse and register the neighbouring device
625 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
626 * @upstream: the upstream private data
627 * @ops: the upstream's &struct sfp_upstream_ops
628 *
629 * Add upstream driver for the SFP bus, and if the bus is complete, register
630 * the SFP bus using sfp_register_upstream(). This takes a reference on the
631 * bus, so it is safe to put the bus after this call.
632 *
633 * Returns:
634 * - on success, a pointer to the sfp_bus structure,
635 * - %NULL if no SFP is specified,
636 * - on failure, an error pointer value:
637 *
638 * - corresponding to the errors detailed for
639 * fwnode_property_get_reference_args().
640 * - %-ENOMEM if we failed to allocate the bus.
641 * - an error from the upstream's connect_phy() method.
642 */
sfp_bus_add_upstream(struct sfp_bus * bus,void * upstream,const struct sfp_upstream_ops * ops)643 int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
644 const struct sfp_upstream_ops *ops)
645 {
646 int ret;
647
648 /* If no bus, return success */
649 if (!bus)
650 return 0;
651
652 rtnl_lock();
653 kref_get(&bus->kref);
654 bus->upstream_ops = ops;
655 bus->upstream = upstream;
656
657 if (bus->sfp) {
658 ret = sfp_register_bus(bus);
659 if (ret)
660 sfp_upstream_clear(bus);
661 } else {
662 ret = 0;
663 }
664 rtnl_unlock();
665
666 if (ret)
667 sfp_bus_put(bus);
668
669 return ret;
670 }
671 EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
672
673 /**
674 * sfp_bus_del_upstream() - Delete a sfp bus
675 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
676 *
677 * Delete a previously registered upstream connection for the SFP
678 * module. @bus should have been added by sfp_bus_add_upstream().
679 */
sfp_bus_del_upstream(struct sfp_bus * bus)680 void sfp_bus_del_upstream(struct sfp_bus *bus)
681 {
682 if (bus) {
683 rtnl_lock();
684 if (bus->sfp)
685 sfp_unregister_bus(bus);
686 sfp_upstream_clear(bus);
687 rtnl_unlock();
688
689 sfp_bus_put(bus);
690 }
691 }
692 EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
693
694 /* Socket driver entry points */
sfp_add_phy(struct sfp_bus * bus,struct phy_device * phydev)695 int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
696 {
697 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
698 int ret = 0;
699
700 if (ops && ops->connect_phy)
701 ret = ops->connect_phy(bus->upstream, phydev);
702
703 if (ret == 0)
704 bus->phydev = phydev;
705
706 return ret;
707 }
708 EXPORT_SYMBOL_GPL(sfp_add_phy);
709
sfp_remove_phy(struct sfp_bus * bus)710 void sfp_remove_phy(struct sfp_bus *bus)
711 {
712 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
713
714 if (ops && ops->disconnect_phy)
715 ops->disconnect_phy(bus->upstream);
716 bus->phydev = NULL;
717 }
718 EXPORT_SYMBOL_GPL(sfp_remove_phy);
719
sfp_link_up(struct sfp_bus * bus)720 void sfp_link_up(struct sfp_bus *bus)
721 {
722 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
723
724 if (ops && ops->link_up)
725 ops->link_up(bus->upstream);
726 }
727 EXPORT_SYMBOL_GPL(sfp_link_up);
728
sfp_link_down(struct sfp_bus * bus)729 void sfp_link_down(struct sfp_bus *bus)
730 {
731 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
732
733 if (ops && ops->link_down)
734 ops->link_down(bus->upstream);
735 }
736 EXPORT_SYMBOL_GPL(sfp_link_down);
737
sfp_module_insert(struct sfp_bus * bus,const struct sfp_eeprom_id * id,const struct sfp_quirk * quirk)738 int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
739 const struct sfp_quirk *quirk)
740 {
741 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
742 int ret = 0;
743
744 bus->sfp_quirk = quirk;
745
746 if (ops && ops->module_insert)
747 ret = ops->module_insert(bus->upstream, id);
748
749 return ret;
750 }
751 EXPORT_SYMBOL_GPL(sfp_module_insert);
752
sfp_module_remove(struct sfp_bus * bus)753 void sfp_module_remove(struct sfp_bus *bus)
754 {
755 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
756
757 if (ops && ops->module_remove)
758 ops->module_remove(bus->upstream);
759
760 bus->sfp_quirk = NULL;
761 }
762 EXPORT_SYMBOL_GPL(sfp_module_remove);
763
sfp_module_start(struct sfp_bus * bus)764 int sfp_module_start(struct sfp_bus *bus)
765 {
766 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
767 int ret = 0;
768
769 if (ops && ops->module_start)
770 ret = ops->module_start(bus->upstream);
771
772 return ret;
773 }
774 EXPORT_SYMBOL_GPL(sfp_module_start);
775
sfp_module_stop(struct sfp_bus * bus)776 void sfp_module_stop(struct sfp_bus *bus)
777 {
778 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
779
780 if (ops && ops->module_stop)
781 ops->module_stop(bus->upstream);
782 }
783 EXPORT_SYMBOL_GPL(sfp_module_stop);
784
sfp_socket_clear(struct sfp_bus * bus)785 static void sfp_socket_clear(struct sfp_bus *bus)
786 {
787 bus->sfp_dev = NULL;
788 bus->sfp = NULL;
789 bus->socket_ops = NULL;
790 }
791
sfp_register_socket(struct device * dev,struct sfp * sfp,const struct sfp_socket_ops * ops)792 struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
793 const struct sfp_socket_ops *ops)
794 {
795 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
796 int ret = 0;
797
798 if (bus) {
799 rtnl_lock();
800 bus->sfp_dev = dev;
801 bus->sfp = sfp;
802 bus->socket_ops = ops;
803
804 if (bus->upstream_ops) {
805 ret = sfp_register_bus(bus);
806 if (ret)
807 sfp_socket_clear(bus);
808 }
809 rtnl_unlock();
810 }
811
812 if (ret) {
813 sfp_bus_put(bus);
814 bus = NULL;
815 }
816
817 return bus;
818 }
819 EXPORT_SYMBOL_GPL(sfp_register_socket);
820
sfp_unregister_socket(struct sfp_bus * bus)821 void sfp_unregister_socket(struct sfp_bus *bus)
822 {
823 rtnl_lock();
824 if (bus->upstream_ops)
825 sfp_unregister_bus(bus);
826 sfp_socket_clear(bus);
827 rtnl_unlock();
828
829 sfp_bus_put(bus);
830 }
831 EXPORT_SYMBOL_GPL(sfp_unregister_socket);
832