1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #include <net/page_pool.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason.h>
41
42 /**
43 * DOC: skb checksums
44 *
45 * The interface for checksum offload between the stack and networking drivers
46 * is as follows...
47 *
48 * IP checksum related features
49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50 *
51 * Drivers advertise checksum offload capabilities in the features of a device.
52 * From the stack's point of view these are capabilities offered by the driver.
53 * A driver typically only advertises features that it is capable of offloading
54 * to its device.
55 *
56 * .. flat-table:: Checksum related device features
57 * :widths: 1 10
58 *
59 * * - %NETIF_F_HW_CSUM
60 * - The driver (or its device) is able to compute one
61 * IP (one's complement) checksum for any combination
62 * of protocols or protocol layering. The checksum is
63 * computed and set in a packet per the CHECKSUM_PARTIAL
64 * interface (see below).
65 *
66 * * - %NETIF_F_IP_CSUM
67 * - Driver (device) is only able to checksum plain
68 * TCP or UDP packets over IPv4. These are specifically
69 * unencapsulated packets of the form IPv4|TCP or
70 * IPv4|UDP where the Protocol field in the IPv4 header
71 * is TCP or UDP. The IPv4 header may contain IP options.
72 * This feature cannot be set in features for a device
73 * with NETIF_F_HW_CSUM also set. This feature is being
74 * DEPRECATED (see below).
75 *
76 * * - %NETIF_F_IPV6_CSUM
77 * - Driver (device) is only able to checksum plain
78 * TCP or UDP packets over IPv6. These are specifically
79 * unencapsulated packets of the form IPv6|TCP or
80 * IPv6|UDP where the Next Header field in the IPv6
81 * header is either TCP or UDP. IPv6 extension headers
82 * are not supported with this feature. This feature
83 * cannot be set in features for a device with
84 * NETIF_F_HW_CSUM also set. This feature is being
85 * DEPRECATED (see below).
86 *
87 * * - %NETIF_F_RXCSUM
88 * - Driver (device) performs receive checksum offload.
89 * This flag is only used to disable the RX checksum
90 * feature for a device. The stack will accept receive
91 * checksum indication in packets received on a device
92 * regardless of whether NETIF_F_RXCSUM is set.
93 *
94 * Checksumming of received packets by device
95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96 *
97 * Indication of checksum verification is set in &sk_buff.ip_summed.
98 * Possible values are:
99 *
100 * - %CHECKSUM_NONE
101 *
102 * Device did not checksum this packet e.g. due to lack of capabilities.
103 * The packet contains full (though not verified) checksum in packet but
104 * not in skb->csum. Thus, skb->csum is undefined in this case.
105 *
106 * - %CHECKSUM_UNNECESSARY
107 *
108 * The hardware you're dealing with doesn't calculate the full checksum
109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111 * if their checksums are okay. &sk_buff.csum is still undefined in this case
112 * though. A driver or device must never modify the checksum field in the
113 * packet even if checksum is verified.
114 *
115 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
116 *
117 * - TCP: IPv6 and IPv4.
118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119 * zero UDP checksum for either IPv4 or IPv6, the networking stack
120 * may perform further validation in this case.
121 * - GRE: only if the checksum is present in the header.
122 * - SCTP: indicates the CRC in SCTP header has been validated.
123 * - FCOE: indicates the CRC in FC frame has been validated.
124 *
125 * &sk_buff.csum_level indicates the number of consecutive checksums found in
126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128 * and a device is able to verify the checksums for UDP (possibly zero),
129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130 * two. If the device were only able to verify the UDP checksum and not
131 * GRE, either because it doesn't support GRE checksum or because GRE
132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133 * not considered in this case).
134 *
135 * - %CHECKSUM_COMPLETE
136 *
137 * This is the most generic way. The device supplied checksum of the _whole_
138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139 * hardware doesn't need to parse L3/L4 headers to implement this.
140 *
141 * Notes:
142 *
143 * - Even if device supports only some protocols, but is able to produce
144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146 *
147 * - %CHECKSUM_PARTIAL
148 *
149 * A checksum is set up to be offloaded to a device as described in the
150 * output description for CHECKSUM_PARTIAL. This may occur on a packet
151 * received directly from another Linux OS, e.g., a virtualized Linux kernel
152 * on the same host, or it may be set in the input path in GRO or remote
153 * checksum offload. For the purposes of checksum verification, the checksum
154 * referred to by skb->csum_start + skb->csum_offset and any preceding
155 * checksums in the packet are considered verified. Any checksums in the
156 * packet that are after the checksum being offloaded are not considered to
157 * be verified.
158 *
159 * Checksumming on transmit for non-GSO
160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161 *
162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163 * Values are:
164 *
165 * - %CHECKSUM_PARTIAL
166 *
167 * The driver is required to checksum the packet as seen by hard_start_xmit()
168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
169 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
170 * A driver may verify that the
171 * csum_start and csum_offset values are valid values given the length and
172 * offset of the packet, but it should not attempt to validate that the
173 * checksum refers to a legitimate transport layer checksum -- it is the
174 * purview of the stack to validate that csum_start and csum_offset are set
175 * correctly.
176 *
177 * When the stack requests checksum offload for a packet, the driver MUST
178 * ensure that the checksum is set correctly. A driver can either offload the
179 * checksum calculation to the device, or call skb_checksum_help (in the case
180 * that the device does not support offload for a particular checksum).
181 *
182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184 * checksum offload capability.
185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186 * on network device checksumming capabilities: if a packet does not match
187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188 * &sk_buff.csum_not_inet, see :ref:`crc`)
189 * is called to resolve the checksum.
190 *
191 * - %CHECKSUM_NONE
192 *
193 * The skb was already checksummed by the protocol, or a checksum is not
194 * required.
195 *
196 * - %CHECKSUM_UNNECESSARY
197 *
198 * This has the same meaning as CHECKSUM_NONE for checksum offload on
199 * output.
200 *
201 * - %CHECKSUM_COMPLETE
202 *
203 * Not used in checksum output. If a driver observes a packet with this value
204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205 *
206 * .. _crc:
207 *
208 * Non-IP checksum (CRC) offloads
209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210 *
211 * .. flat-table::
212 * :widths: 1 10
213 *
214 * * - %NETIF_F_SCTP_CRC
215 * - This feature indicates that a device is capable of
216 * offloading the SCTP CRC in a packet. To perform this offload the stack
217 * will set csum_start and csum_offset accordingly, set ip_summed to
218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220 * A driver that supports both IP checksum offload and SCTP CRC32c offload
221 * must verify which offload is configured for a packet by testing the
222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224 *
225 * * - %NETIF_F_FCOE_CRC
226 * - This feature indicates that a device is capable of offloading the FCOE
227 * CRC in a packet. To perform this offload the stack will set ip_summed
228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229 * accordingly. Note that there is no indication in the skbuff that the
230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231 * both IP checksum offload and FCOE CRC offload must verify which offload
232 * is configured for a packet, presumably by inspecting packet headers.
233 *
234 * Checksumming on output with GSO
235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236 *
237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240 * part of the GSO operation is implied. If a checksum is being offloaded
241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242 * csum_offset are set to refer to the outermost checksum being offloaded
243 * (two offloaded checksums are possible with UDP encapsulation).
244 */
245
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE 0
248 #define CHECKSUM_UNNECESSARY 1
249 #define CHECKSUM_COMPLETE 2
250 #define CHECKSUM_PARTIAL 3
251
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL 3
254
255 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X) \
257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258
259 /* For X bytes available in skb->head, what is the minimal
260 * allocation needed, knowing struct skb_shared_info needs
261 * to be aligned.
262 */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265
266 #define SKB_MAX_ORDER(X, ORDER) \
267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
270
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) + \
273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 enum {
290 BRNF_PROTO_UNCHANGED,
291 BRNF_PROTO_8021Q,
292 BRNF_PROTO_PPPOE
293 } orig_proto:8;
294 u8 pkt_otherhost:1;
295 u8 in_prerouting:1;
296 u8 bridged_dnat:1;
297 __u16 frag_max_size;
298 struct net_device *physindev;
299
300 /* always valid & non-NULL from FORWARD on, for physdev match */
301 struct net_device *physoutdev;
302 union {
303 /* prerouting: detect dnat in orig/reply direction */
304 __be32 ipv4_daddr;
305 struct in6_addr ipv6_daddr;
306
307 /* after prerouting + nat detected: store original source
308 * mac since neigh resolution overwrites it, only used while
309 * skb is out in neigh layer.
310 */
311 char neigh_header[8];
312 };
313 };
314 #endif
315
316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
317 /* Chain in tc_skb_ext will be used to share the tc chain with
318 * ovs recirc_id. It will be set to the current chain by tc
319 * and read by ovs to recirc_id.
320 */
321 struct tc_skb_ext {
322 union {
323 u64 act_miss_cookie;
324 __u32 chain;
325 };
326 __u16 mru;
327 __u16 zone;
328 u8 post_ct:1;
329 u8 post_ct_snat:1;
330 u8 post_ct_dnat:1;
331 u8 act_miss:1; /* Set if act_miss_cookie is used */
332 };
333 #endif
334
335 struct sk_buff_head {
336 /* These two members must be first to match sk_buff. */
337 struct_group_tagged(sk_buff_list, list,
338 struct sk_buff *next;
339 struct sk_buff *prev;
340 );
341
342 __u32 qlen;
343 spinlock_t lock;
344 };
345
346 struct sk_buff;
347
348 /* To allow 64K frame to be packed as single skb without frag_list we
349 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
350 * buffers which do not start on a page boundary.
351 *
352 * Since GRO uses frags we allocate at least 16 regardless of page
353 * size.
354 */
355 #if (65536/PAGE_SIZE + 1) < 16
356 #define MAX_SKB_FRAGS 16UL
357 #else
358 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
359 #endif
360 extern int sysctl_max_skb_frags;
361
362 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
363 * segment using its current segmentation instead.
364 */
365 #define GSO_BY_FRAGS 0xFFFF
366
367 typedef struct bio_vec skb_frag_t;
368
369 /**
370 * skb_frag_size() - Returns the size of a skb fragment
371 * @frag: skb fragment
372 */
skb_frag_size(const skb_frag_t * frag)373 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
374 {
375 return frag->bv_len;
376 }
377
378 /**
379 * skb_frag_size_set() - Sets the size of a skb fragment
380 * @frag: skb fragment
381 * @size: size of fragment
382 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
384 {
385 frag->bv_len = size;
386 }
387
388 /**
389 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
390 * @frag: skb fragment
391 * @delta: value to add
392 */
skb_frag_size_add(skb_frag_t * frag,int delta)393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
394 {
395 frag->bv_len += delta;
396 }
397
398 /**
399 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
400 * @frag: skb fragment
401 * @delta: value to subtract
402 */
skb_frag_size_sub(skb_frag_t * frag,int delta)403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
404 {
405 frag->bv_len -= delta;
406 }
407
408 /**
409 * skb_frag_must_loop - Test if %p is a high memory page
410 * @p: fragment's page
411 */
skb_frag_must_loop(struct page * p)412 static inline bool skb_frag_must_loop(struct page *p)
413 {
414 #if defined(CONFIG_HIGHMEM)
415 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
416 return true;
417 #endif
418 return false;
419 }
420
421 /**
422 * skb_frag_foreach_page - loop over pages in a fragment
423 *
424 * @f: skb frag to operate on
425 * @f_off: offset from start of f->bv_page
426 * @f_len: length from f_off to loop over
427 * @p: (temp var) current page
428 * @p_off: (temp var) offset from start of current page,
429 * non-zero only on first page.
430 * @p_len: (temp var) length in current page,
431 * < PAGE_SIZE only on first and last page.
432 * @copied: (temp var) length so far, excluding current p_len.
433 *
434 * A fragment can hold a compound page, in which case per-page
435 * operations, notably kmap_atomic, must be called for each
436 * regular page.
437 */
438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
439 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
440 p_off = (f_off) & (PAGE_SIZE - 1), \
441 p_len = skb_frag_must_loop(p) ? \
442 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
443 copied = 0; \
444 copied < f_len; \
445 copied += p_len, p++, p_off = 0, \
446 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
447
448 #define HAVE_HW_TIME_STAMP
449
450 /**
451 * struct skb_shared_hwtstamps - hardware time stamps
452 * @hwtstamp: hardware time stamp transformed into duration
453 * since arbitrary point in time
454 * @netdev_data: address/cookie of network device driver used as
455 * reference to actual hardware time stamp
456 *
457 * Software time stamps generated by ktime_get_real() are stored in
458 * skb->tstamp.
459 *
460 * hwtstamps can only be compared against other hwtstamps from
461 * the same device.
462 *
463 * This structure is attached to packets as part of the
464 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
465 */
466 struct skb_shared_hwtstamps {
467 union {
468 ktime_t hwtstamp;
469 void *netdev_data;
470 };
471 };
472
473 /* Definitions for tx_flags in struct skb_shared_info */
474 enum {
475 /* generate hardware time stamp */
476 SKBTX_HW_TSTAMP = 1 << 0,
477
478 /* generate software time stamp when queueing packet to NIC */
479 SKBTX_SW_TSTAMP = 1 << 1,
480
481 /* device driver is going to provide hardware time stamp */
482 SKBTX_IN_PROGRESS = 1 << 2,
483
484 /* generate hardware time stamp based on cycles if supported */
485 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
486
487 /* generate wifi status information (where possible) */
488 SKBTX_WIFI_STATUS = 1 << 4,
489
490 /* determine hardware time stamp based on time or cycles */
491 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
492
493 /* generate software time stamp when entering packet scheduling */
494 SKBTX_SCHED_TSTAMP = 1 << 6,
495 };
496
497 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
498 SKBTX_SCHED_TSTAMP)
499 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
500 SKBTX_HW_TSTAMP_USE_CYCLES | \
501 SKBTX_ANY_SW_TSTAMP)
502
503 /* Definitions for flags in struct skb_shared_info */
504 enum {
505 /* use zcopy routines */
506 SKBFL_ZEROCOPY_ENABLE = BIT(0),
507
508 /* This indicates at least one fragment might be overwritten
509 * (as in vmsplice(), sendfile() ...)
510 * If we need to compute a TX checksum, we'll need to copy
511 * all frags to avoid possible bad checksum
512 */
513 SKBFL_SHARED_FRAG = BIT(1),
514
515 /* segment contains only zerocopy data and should not be
516 * charged to the kernel memory.
517 */
518 SKBFL_PURE_ZEROCOPY = BIT(2),
519
520 SKBFL_DONT_ORPHAN = BIT(3),
521
522 /* page references are managed by the ubuf_info, so it's safe to
523 * use frags only up until ubuf_info is released
524 */
525 SKBFL_MANAGED_FRAG_REFS = BIT(4),
526 };
527
528 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
529 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
530 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
531
532 /*
533 * The callback notifies userspace to release buffers when skb DMA is done in
534 * lower device, the skb last reference should be 0 when calling this.
535 * The zerocopy_success argument is true if zero copy transmit occurred,
536 * false on data copy or out of memory error caused by data copy attempt.
537 * The ctx field is used to track device context.
538 * The desc field is used to track userspace buffer index.
539 */
540 struct ubuf_info {
541 void (*callback)(struct sk_buff *, struct ubuf_info *,
542 bool zerocopy_success);
543 refcount_t refcnt;
544 u8 flags;
545 };
546
547 struct ubuf_info_msgzc {
548 struct ubuf_info ubuf;
549
550 union {
551 struct {
552 unsigned long desc;
553 void *ctx;
554 };
555 struct {
556 u32 id;
557 u16 len;
558 u16 zerocopy:1;
559 u32 bytelen;
560 };
561 };
562
563 struct mmpin {
564 struct user_struct *user;
565 unsigned int num_pg;
566 } mmp;
567 };
568
569 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
570 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
571 ubuf)
572
573 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
574 void mm_unaccount_pinned_pages(struct mmpin *mmp);
575
576 /* This data is invariant across clones and lives at
577 * the end of the header data, ie. at skb->end.
578 */
579 struct skb_shared_info {
580 __u8 flags;
581 __u8 meta_len;
582 __u8 nr_frags;
583 __u8 tx_flags;
584 unsigned short gso_size;
585 /* Warning: this field is not always filled in (UFO)! */
586 unsigned short gso_segs;
587 struct sk_buff *frag_list;
588 struct skb_shared_hwtstamps hwtstamps;
589 unsigned int gso_type;
590 u32 tskey;
591
592 /*
593 * Warning : all fields before dataref are cleared in __alloc_skb()
594 */
595 atomic_t dataref;
596 unsigned int xdp_frags_size;
597
598 /* Intermediate layers must ensure that destructor_arg
599 * remains valid until skb destructor */
600 void * destructor_arg;
601
602 /* must be last field, see pskb_expand_head() */
603 skb_frag_t frags[MAX_SKB_FRAGS];
604 };
605
606 /**
607 * DOC: dataref and headerless skbs
608 *
609 * Transport layers send out clones of payload skbs they hold for
610 * retransmissions. To allow lower layers of the stack to prepend their headers
611 * we split &skb_shared_info.dataref into two halves.
612 * The lower 16 bits count the overall number of references.
613 * The higher 16 bits indicate how many of the references are payload-only.
614 * skb_header_cloned() checks if skb is allowed to add / write the headers.
615 *
616 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
617 * (via __skb_header_release()). Any clone created from marked skb will get
618 * &sk_buff.hdr_len populated with the available headroom.
619 * If there's the only clone in existence it's able to modify the headroom
620 * at will. The sequence of calls inside the transport layer is::
621 *
622 * <alloc skb>
623 * skb_reserve()
624 * __skb_header_release()
625 * skb_clone()
626 * // send the clone down the stack
627 *
628 * This is not a very generic construct and it depends on the transport layers
629 * doing the right thing. In practice there's usually only one payload-only skb.
630 * Having multiple payload-only skbs with different lengths of hdr_len is not
631 * possible. The payload-only skbs should never leave their owner.
632 */
633 #define SKB_DATAREF_SHIFT 16
634 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
635
636
637 enum {
638 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
639 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
640 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
641 };
642
643 enum {
644 SKB_GSO_TCPV4 = 1 << 0,
645
646 /* This indicates the skb is from an untrusted source. */
647 SKB_GSO_DODGY = 1 << 1,
648
649 /* This indicates the tcp segment has CWR set. */
650 SKB_GSO_TCP_ECN = 1 << 2,
651
652 SKB_GSO_TCP_FIXEDID = 1 << 3,
653
654 SKB_GSO_TCPV6 = 1 << 4,
655
656 SKB_GSO_FCOE = 1 << 5,
657
658 SKB_GSO_GRE = 1 << 6,
659
660 SKB_GSO_GRE_CSUM = 1 << 7,
661
662 SKB_GSO_IPXIP4 = 1 << 8,
663
664 SKB_GSO_IPXIP6 = 1 << 9,
665
666 SKB_GSO_UDP_TUNNEL = 1 << 10,
667
668 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
669
670 SKB_GSO_PARTIAL = 1 << 12,
671
672 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
673
674 SKB_GSO_SCTP = 1 << 14,
675
676 SKB_GSO_ESP = 1 << 15,
677
678 SKB_GSO_UDP = 1 << 16,
679
680 SKB_GSO_UDP_L4 = 1 << 17,
681
682 SKB_GSO_FRAGLIST = 1 << 18,
683 };
684
685 #if BITS_PER_LONG > 32
686 #define NET_SKBUFF_DATA_USES_OFFSET 1
687 #endif
688
689 #ifdef NET_SKBUFF_DATA_USES_OFFSET
690 typedef unsigned int sk_buff_data_t;
691 #else
692 typedef unsigned char *sk_buff_data_t;
693 #endif
694
695 /**
696 * DOC: Basic sk_buff geometry
697 *
698 * struct sk_buff itself is a metadata structure and does not hold any packet
699 * data. All the data is held in associated buffers.
700 *
701 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
702 * into two parts:
703 *
704 * - data buffer, containing headers and sometimes payload;
705 * this is the part of the skb operated on by the common helpers
706 * such as skb_put() or skb_pull();
707 * - shared info (struct skb_shared_info) which holds an array of pointers
708 * to read-only data in the (page, offset, length) format.
709 *
710 * Optionally &skb_shared_info.frag_list may point to another skb.
711 *
712 * Basic diagram may look like this::
713 *
714 * ---------------
715 * | sk_buff |
716 * ---------------
717 * ,--------------------------- + head
718 * / ,----------------- + data
719 * / / ,----------- + tail
720 * | | | , + end
721 * | | | |
722 * v v v v
723 * -----------------------------------------------
724 * | headroom | data | tailroom | skb_shared_info |
725 * -----------------------------------------------
726 * + [page frag]
727 * + [page frag]
728 * + [page frag]
729 * + [page frag] ---------
730 * + frag_list --> | sk_buff |
731 * ---------
732 *
733 */
734
735 /**
736 * struct sk_buff - socket buffer
737 * @next: Next buffer in list
738 * @prev: Previous buffer in list
739 * @tstamp: Time we arrived/left
740 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
741 * for retransmit timer
742 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
743 * @list: queue head
744 * @ll_node: anchor in an llist (eg socket defer_list)
745 * @sk: Socket we are owned by
746 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
747 * fragmentation management
748 * @dev: Device we arrived on/are leaving by
749 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
750 * @cb: Control buffer. Free for use by every layer. Put private vars here
751 * @_skb_refdst: destination entry (with norefcount bit)
752 * @sp: the security path, used for xfrm
753 * @len: Length of actual data
754 * @data_len: Data length
755 * @mac_len: Length of link layer header
756 * @hdr_len: writable header length of cloned skb
757 * @csum: Checksum (must include start/offset pair)
758 * @csum_start: Offset from skb->head where checksumming should start
759 * @csum_offset: Offset from csum_start where checksum should be stored
760 * @priority: Packet queueing priority
761 * @ignore_df: allow local fragmentation
762 * @cloned: Head may be cloned (check refcnt to be sure)
763 * @ip_summed: Driver fed us an IP checksum
764 * @nohdr: Payload reference only, must not modify header
765 * @pkt_type: Packet class
766 * @fclone: skbuff clone status
767 * @ipvs_property: skbuff is owned by ipvs
768 * @inner_protocol_type: whether the inner protocol is
769 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
770 * @remcsum_offload: remote checksum offload is enabled
771 * @offload_fwd_mark: Packet was L2-forwarded in hardware
772 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
773 * @tc_skip_classify: do not classify packet. set by IFB device
774 * @tc_at_ingress: used within tc_classify to distinguish in/egress
775 * @redirected: packet was redirected by packet classifier
776 * @from_ingress: packet was redirected from the ingress path
777 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
778 * @peeked: this packet has been seen already, so stats have been
779 * done for it, don't do them again
780 * @nf_trace: netfilter packet trace flag
781 * @protocol: Packet protocol from driver
782 * @destructor: Destruct function
783 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
784 * @_sk_redir: socket redirection information for skmsg
785 * @_nfct: Associated connection, if any (with nfctinfo bits)
786 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
787 * @skb_iif: ifindex of device we arrived on
788 * @tc_index: Traffic control index
789 * @hash: the packet hash
790 * @queue_mapping: Queue mapping for multiqueue devices
791 * @head_frag: skb was allocated from page fragments,
792 * not allocated by kmalloc() or vmalloc().
793 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
794 * @pp_recycle: mark the packet for recycling instead of freeing (implies
795 * page_pool support on driver)
796 * @active_extensions: active extensions (skb_ext_id types)
797 * @ndisc_nodetype: router type (from link layer)
798 * @ooo_okay: allow the mapping of a socket to a queue to be changed
799 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
800 * ports.
801 * @sw_hash: indicates hash was computed in software stack
802 * @wifi_acked_valid: wifi_acked was set
803 * @wifi_acked: whether frame was acked on wifi or not
804 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
805 * @encapsulation: indicates the inner headers in the skbuff are valid
806 * @encap_hdr_csum: software checksum is needed
807 * @csum_valid: checksum is already valid
808 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
809 * @csum_complete_sw: checksum was completed by software
810 * @csum_level: indicates the number of consecutive checksums found in
811 * the packet minus one that have been verified as
812 * CHECKSUM_UNNECESSARY (max 3)
813 * @scm_io_uring: SKB holds io_uring registered files
814 * @dst_pending_confirm: need to confirm neighbour
815 * @decrypted: Decrypted SKB
816 * @slow_gro: state present at GRO time, slower prepare step required
817 * @mono_delivery_time: When set, skb->tstamp has the
818 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
819 * skb->tstamp has the (rcv) timestamp at ingress and
820 * delivery_time at egress.
821 * @napi_id: id of the NAPI struct this skb came from
822 * @sender_cpu: (aka @napi_id) source CPU in XPS
823 * @alloc_cpu: CPU which did the skb allocation.
824 * @secmark: security marking
825 * @mark: Generic packet mark
826 * @reserved_tailroom: (aka @mark) number of bytes of free space available
827 * at the tail of an sk_buff
828 * @vlan_all: vlan fields (proto & tci)
829 * @vlan_proto: vlan encapsulation protocol
830 * @vlan_tci: vlan tag control information
831 * @inner_protocol: Protocol (encapsulation)
832 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
833 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
834 * @inner_transport_header: Inner transport layer header (encapsulation)
835 * @inner_network_header: Network layer header (encapsulation)
836 * @inner_mac_header: Link layer header (encapsulation)
837 * @transport_header: Transport layer header
838 * @network_header: Network layer header
839 * @mac_header: Link layer header
840 * @kcov_handle: KCOV remote handle for remote coverage collection
841 * @tail: Tail pointer
842 * @end: End pointer
843 * @head: Head of buffer
844 * @data: Data head pointer
845 * @truesize: Buffer size
846 * @users: User count - see {datagram,tcp}.c
847 * @extensions: allocated extensions, valid if active_extensions is nonzero
848 */
849
850 struct sk_buff {
851 union {
852 struct {
853 /* These two members must be first to match sk_buff_head. */
854 struct sk_buff *next;
855 struct sk_buff *prev;
856
857 union {
858 struct net_device *dev;
859 /* Some protocols might use this space to store information,
860 * while device pointer would be NULL.
861 * UDP receive path is one user.
862 */
863 unsigned long dev_scratch;
864 };
865 };
866 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
867 struct list_head list;
868 struct llist_node ll_node;
869 };
870
871 union {
872 struct sock *sk;
873 int ip_defrag_offset;
874 };
875
876 union {
877 ktime_t tstamp;
878 u64 skb_mstamp_ns; /* earliest departure time */
879 };
880 /*
881 * This is the control buffer. It is free to use for every
882 * layer. Please put your private variables there. If you
883 * want to keep them across layers you have to do a skb_clone()
884 * first. This is owned by whoever has the skb queued ATM.
885 */
886 char cb[48] __aligned(8);
887
888 union {
889 struct {
890 unsigned long _skb_refdst;
891 void (*destructor)(struct sk_buff *skb);
892 };
893 struct list_head tcp_tsorted_anchor;
894 #ifdef CONFIG_NET_SOCK_MSG
895 unsigned long _sk_redir;
896 #endif
897 };
898
899 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
900 unsigned long _nfct;
901 #endif
902 unsigned int len,
903 data_len;
904 __u16 mac_len,
905 hdr_len;
906
907 /* Following fields are _not_ copied in __copy_skb_header()
908 * Note that queue_mapping is here mostly to fill a hole.
909 */
910 __u16 queue_mapping;
911
912 /* if you move cloned around you also must adapt those constants */
913 #ifdef __BIG_ENDIAN_BITFIELD
914 #define CLONED_MASK (1 << 7)
915 #else
916 #define CLONED_MASK 1
917 #endif
918 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
919
920 /* private: */
921 __u8 __cloned_offset[0];
922 /* public: */
923 __u8 cloned:1,
924 nohdr:1,
925 fclone:2,
926 peeked:1,
927 head_frag:1,
928 pfmemalloc:1,
929 pp_recycle:1; /* page_pool recycle indicator */
930 #ifdef CONFIG_SKB_EXTENSIONS
931 __u8 active_extensions;
932 #endif
933
934 /* Fields enclosed in headers group are copied
935 * using a single memcpy() in __copy_skb_header()
936 */
937 struct_group(headers,
938
939 /* private: */
940 __u8 __pkt_type_offset[0];
941 /* public: */
942 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
943 __u8 ignore_df:1;
944 __u8 nf_trace:1;
945 __u8 ip_summed:2;
946 __u8 ooo_okay:1;
947
948 __u8 l4_hash:1;
949 __u8 sw_hash:1;
950 __u8 wifi_acked_valid:1;
951 __u8 wifi_acked:1;
952 __u8 no_fcs:1;
953 /* Indicates the inner headers are valid in the skbuff. */
954 __u8 encapsulation:1;
955 __u8 encap_hdr_csum:1;
956 __u8 csum_valid:1;
957
958 /* private: */
959 __u8 __pkt_vlan_present_offset[0];
960 /* public: */
961 __u8 remcsum_offload:1;
962 __u8 csum_complete_sw:1;
963 __u8 csum_level:2;
964 __u8 dst_pending_confirm:1;
965 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
966 #ifdef CONFIG_NET_CLS_ACT
967 __u8 tc_skip_classify:1;
968 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
969 #endif
970 #ifdef CONFIG_IPV6_NDISC_NODETYPE
971 __u8 ndisc_nodetype:2;
972 #endif
973
974 __u8 ipvs_property:1;
975 __u8 inner_protocol_type:1;
976 #ifdef CONFIG_NET_SWITCHDEV
977 __u8 offload_fwd_mark:1;
978 __u8 offload_l3_fwd_mark:1;
979 #endif
980 __u8 redirected:1;
981 #ifdef CONFIG_NET_REDIRECT
982 __u8 from_ingress:1;
983 #endif
984 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
985 __u8 nf_skip_egress:1;
986 #endif
987 #ifdef CONFIG_TLS_DEVICE
988 __u8 decrypted:1;
989 #endif
990 __u8 slow_gro:1;
991 __u8 csum_not_inet:1;
992 __u8 scm_io_uring:1;
993
994 #ifdef CONFIG_NET_SCHED
995 __u16 tc_index; /* traffic control index */
996 #endif
997
998 union {
999 __wsum csum;
1000 struct {
1001 __u16 csum_start;
1002 __u16 csum_offset;
1003 };
1004 };
1005 __u32 priority;
1006 int skb_iif;
1007 __u32 hash;
1008 union {
1009 u32 vlan_all;
1010 struct {
1011 __be16 vlan_proto;
1012 __u16 vlan_tci;
1013 };
1014 };
1015 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1016 union {
1017 unsigned int napi_id;
1018 unsigned int sender_cpu;
1019 };
1020 #endif
1021 u16 alloc_cpu;
1022 #ifdef CONFIG_NETWORK_SECMARK
1023 __u32 secmark;
1024 #endif
1025
1026 union {
1027 __u32 mark;
1028 __u32 reserved_tailroom;
1029 };
1030
1031 union {
1032 __be16 inner_protocol;
1033 __u8 inner_ipproto;
1034 };
1035
1036 __u16 inner_transport_header;
1037 __u16 inner_network_header;
1038 __u16 inner_mac_header;
1039
1040 __be16 protocol;
1041 __u16 transport_header;
1042 __u16 network_header;
1043 __u16 mac_header;
1044
1045 #ifdef CONFIG_KCOV
1046 u64 kcov_handle;
1047 #endif
1048
1049 ); /* end headers group */
1050
1051 /* These elements must be at the end, see alloc_skb() for details. */
1052 sk_buff_data_t tail;
1053 sk_buff_data_t end;
1054 unsigned char *head,
1055 *data;
1056 unsigned int truesize;
1057 refcount_t users;
1058
1059 #ifdef CONFIG_SKB_EXTENSIONS
1060 /* only useable after checking ->active_extensions != 0 */
1061 struct skb_ext *extensions;
1062 #endif
1063 };
1064
1065 /* if you move pkt_type around you also must adapt those constants */
1066 #ifdef __BIG_ENDIAN_BITFIELD
1067 #define PKT_TYPE_MAX (7 << 5)
1068 #else
1069 #define PKT_TYPE_MAX 7
1070 #endif
1071 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1072
1073 /* if you move tc_at_ingress or mono_delivery_time
1074 * around, you also must adapt these constants.
1075 */
1076 #ifdef __BIG_ENDIAN_BITFIELD
1077 #define TC_AT_INGRESS_MASK (1 << 0)
1078 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2)
1079 #else
1080 #define TC_AT_INGRESS_MASK (1 << 7)
1081 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5)
1082 #endif
1083 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset)
1084
1085 #ifdef __KERNEL__
1086 /*
1087 * Handling routines are only of interest to the kernel
1088 */
1089
1090 #define SKB_ALLOC_FCLONE 0x01
1091 #define SKB_ALLOC_RX 0x02
1092 #define SKB_ALLOC_NAPI 0x04
1093
1094 /**
1095 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1096 * @skb: buffer
1097 */
skb_pfmemalloc(const struct sk_buff * skb)1098 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1099 {
1100 return unlikely(skb->pfmemalloc);
1101 }
1102
1103 /*
1104 * skb might have a dst pointer attached, refcounted or not.
1105 * _skb_refdst low order bit is set if refcount was _not_ taken
1106 */
1107 #define SKB_DST_NOREF 1UL
1108 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1109
1110 /**
1111 * skb_dst - returns skb dst_entry
1112 * @skb: buffer
1113 *
1114 * Returns skb dst_entry, regardless of reference taken or not.
1115 */
skb_dst(const struct sk_buff * skb)1116 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1117 {
1118 /* If refdst was not refcounted, check we still are in a
1119 * rcu_read_lock section
1120 */
1121 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1122 !rcu_read_lock_held() &&
1123 !rcu_read_lock_bh_held());
1124 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1125 }
1126
1127 /**
1128 * skb_dst_set - sets skb dst
1129 * @skb: buffer
1130 * @dst: dst entry
1131 *
1132 * Sets skb dst, assuming a reference was taken on dst and should
1133 * be released by skb_dst_drop()
1134 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1135 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1136 {
1137 skb->slow_gro |= !!dst;
1138 skb->_skb_refdst = (unsigned long)dst;
1139 }
1140
1141 /**
1142 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1143 * @skb: buffer
1144 * @dst: dst entry
1145 *
1146 * Sets skb dst, assuming a reference was not taken on dst.
1147 * If dst entry is cached, we do not take reference and dst_release
1148 * will be avoided by refdst_drop. If dst entry is not cached, we take
1149 * reference, so that last dst_release can destroy the dst immediately.
1150 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1151 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1152 {
1153 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1154 skb->slow_gro |= !!dst;
1155 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1156 }
1157
1158 /**
1159 * skb_dst_is_noref - Test if skb dst isn't refcounted
1160 * @skb: buffer
1161 */
skb_dst_is_noref(const struct sk_buff * skb)1162 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1163 {
1164 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1165 }
1166
1167 /**
1168 * skb_rtable - Returns the skb &rtable
1169 * @skb: buffer
1170 */
skb_rtable(const struct sk_buff * skb)1171 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1172 {
1173 return (struct rtable *)skb_dst(skb);
1174 }
1175
1176 /* For mangling skb->pkt_type from user space side from applications
1177 * such as nft, tc, etc, we only allow a conservative subset of
1178 * possible pkt_types to be set.
1179 */
skb_pkt_type_ok(u32 ptype)1180 static inline bool skb_pkt_type_ok(u32 ptype)
1181 {
1182 return ptype <= PACKET_OTHERHOST;
1183 }
1184
1185 /**
1186 * skb_napi_id - Returns the skb's NAPI id
1187 * @skb: buffer
1188 */
skb_napi_id(const struct sk_buff * skb)1189 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1190 {
1191 #ifdef CONFIG_NET_RX_BUSY_POLL
1192 return skb->napi_id;
1193 #else
1194 return 0;
1195 #endif
1196 }
1197
1198 /**
1199 * skb_unref - decrement the skb's reference count
1200 * @skb: buffer
1201 *
1202 * Returns true if we can free the skb.
1203 */
skb_unref(struct sk_buff * skb)1204 static inline bool skb_unref(struct sk_buff *skb)
1205 {
1206 if (unlikely(!skb))
1207 return false;
1208 if (likely(refcount_read(&skb->users) == 1))
1209 smp_rmb();
1210 else if (likely(!refcount_dec_and_test(&skb->users)))
1211 return false;
1212
1213 return true;
1214 }
1215
1216 void __fix_address
1217 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1218
1219 /**
1220 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1221 * @skb: buffer to free
1222 */
kfree_skb(struct sk_buff * skb)1223 static inline void kfree_skb(struct sk_buff *skb)
1224 {
1225 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1226 }
1227
1228 void skb_release_head_state(struct sk_buff *skb);
1229 void kfree_skb_list_reason(struct sk_buff *segs,
1230 enum skb_drop_reason reason);
1231 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1232 void skb_tx_error(struct sk_buff *skb);
1233
kfree_skb_list(struct sk_buff * segs)1234 static inline void kfree_skb_list(struct sk_buff *segs)
1235 {
1236 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1237 }
1238
1239 #ifdef CONFIG_TRACEPOINTS
1240 void consume_skb(struct sk_buff *skb);
1241 #else
consume_skb(struct sk_buff * skb)1242 static inline void consume_skb(struct sk_buff *skb)
1243 {
1244 return kfree_skb(skb);
1245 }
1246 #endif
1247
1248 void __consume_stateless_skb(struct sk_buff *skb);
1249 void __kfree_skb(struct sk_buff *skb);
1250 extern struct kmem_cache *skbuff_cache;
1251
1252 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1253 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1254 bool *fragstolen, int *delta_truesize);
1255
1256 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1257 int node);
1258 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1259 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1260 struct sk_buff *build_skb_around(struct sk_buff *skb,
1261 void *data, unsigned int frag_size);
1262 void skb_attempt_defer_free(struct sk_buff *skb);
1263
1264 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1265 struct sk_buff *slab_build_skb(void *data);
1266
1267 /**
1268 * alloc_skb - allocate a network buffer
1269 * @size: size to allocate
1270 * @priority: allocation mask
1271 *
1272 * This function is a convenient wrapper around __alloc_skb().
1273 */
alloc_skb(unsigned int size,gfp_t priority)1274 static inline struct sk_buff *alloc_skb(unsigned int size,
1275 gfp_t priority)
1276 {
1277 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1278 }
1279
1280 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1281 unsigned long data_len,
1282 int max_page_order,
1283 int *errcode,
1284 gfp_t gfp_mask);
1285 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1286
1287 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1288 struct sk_buff_fclones {
1289 struct sk_buff skb1;
1290
1291 struct sk_buff skb2;
1292
1293 refcount_t fclone_ref;
1294 };
1295
1296 /**
1297 * skb_fclone_busy - check if fclone is busy
1298 * @sk: socket
1299 * @skb: buffer
1300 *
1301 * Returns true if skb is a fast clone, and its clone is not freed.
1302 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1303 * so we also check that this didnt happen.
1304 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1305 static inline bool skb_fclone_busy(const struct sock *sk,
1306 const struct sk_buff *skb)
1307 {
1308 const struct sk_buff_fclones *fclones;
1309
1310 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1311
1312 return skb->fclone == SKB_FCLONE_ORIG &&
1313 refcount_read(&fclones->fclone_ref) > 1 &&
1314 READ_ONCE(fclones->skb2.sk) == sk;
1315 }
1316
1317 /**
1318 * alloc_skb_fclone - allocate a network buffer from fclone cache
1319 * @size: size to allocate
1320 * @priority: allocation mask
1321 *
1322 * This function is a convenient wrapper around __alloc_skb().
1323 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1324 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1325 gfp_t priority)
1326 {
1327 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1328 }
1329
1330 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1331 void skb_headers_offset_update(struct sk_buff *skb, int off);
1332 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1333 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1334 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1335 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1336 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1337 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1338 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1339 gfp_t gfp_mask)
1340 {
1341 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1342 }
1343
1344 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1345 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1346 unsigned int headroom);
1347 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1348 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1349 int newtailroom, gfp_t priority);
1350 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1351 int offset, int len);
1352 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1353 int offset, int len);
1354 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1355 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1356
1357 /**
1358 * skb_pad - zero pad the tail of an skb
1359 * @skb: buffer to pad
1360 * @pad: space to pad
1361 *
1362 * Ensure that a buffer is followed by a padding area that is zero
1363 * filled. Used by network drivers which may DMA or transfer data
1364 * beyond the buffer end onto the wire.
1365 *
1366 * May return error in out of memory cases. The skb is freed on error.
1367 */
skb_pad(struct sk_buff * skb,int pad)1368 static inline int skb_pad(struct sk_buff *skb, int pad)
1369 {
1370 return __skb_pad(skb, pad, true);
1371 }
1372 #define dev_kfree_skb(a) consume_skb(a)
1373
1374 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1375 int offset, size_t size);
1376
1377 struct skb_seq_state {
1378 __u32 lower_offset;
1379 __u32 upper_offset;
1380 __u32 frag_idx;
1381 __u32 stepped_offset;
1382 struct sk_buff *root_skb;
1383 struct sk_buff *cur_skb;
1384 __u8 *frag_data;
1385 __u32 frag_off;
1386 };
1387
1388 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1389 unsigned int to, struct skb_seq_state *st);
1390 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1391 struct skb_seq_state *st);
1392 void skb_abort_seq_read(struct skb_seq_state *st);
1393
1394 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1395 unsigned int to, struct ts_config *config);
1396
1397 /*
1398 * Packet hash types specify the type of hash in skb_set_hash.
1399 *
1400 * Hash types refer to the protocol layer addresses which are used to
1401 * construct a packet's hash. The hashes are used to differentiate or identify
1402 * flows of the protocol layer for the hash type. Hash types are either
1403 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1404 *
1405 * Properties of hashes:
1406 *
1407 * 1) Two packets in different flows have different hash values
1408 * 2) Two packets in the same flow should have the same hash value
1409 *
1410 * A hash at a higher layer is considered to be more specific. A driver should
1411 * set the most specific hash possible.
1412 *
1413 * A driver cannot indicate a more specific hash than the layer at which a hash
1414 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1415 *
1416 * A driver may indicate a hash level which is less specific than the
1417 * actual layer the hash was computed on. For instance, a hash computed
1418 * at L4 may be considered an L3 hash. This should only be done if the
1419 * driver can't unambiguously determine that the HW computed the hash at
1420 * the higher layer. Note that the "should" in the second property above
1421 * permits this.
1422 */
1423 enum pkt_hash_types {
1424 PKT_HASH_TYPE_NONE, /* Undefined type */
1425 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1426 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1427 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1428 };
1429
skb_clear_hash(struct sk_buff * skb)1430 static inline void skb_clear_hash(struct sk_buff *skb)
1431 {
1432 skb->hash = 0;
1433 skb->sw_hash = 0;
1434 skb->l4_hash = 0;
1435 }
1436
skb_clear_hash_if_not_l4(struct sk_buff * skb)1437 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1438 {
1439 if (!skb->l4_hash)
1440 skb_clear_hash(skb);
1441 }
1442
1443 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1444 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1445 {
1446 skb->l4_hash = is_l4;
1447 skb->sw_hash = is_sw;
1448 skb->hash = hash;
1449 }
1450
1451 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1452 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1453 {
1454 /* Used by drivers to set hash from HW */
1455 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1456 }
1457
1458 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1459 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1460 {
1461 __skb_set_hash(skb, hash, true, is_l4);
1462 }
1463
1464 void __skb_get_hash(struct sk_buff *skb);
1465 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1466 u32 skb_get_poff(const struct sk_buff *skb);
1467 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1468 const struct flow_keys_basic *keys, int hlen);
1469 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1470 const void *data, int hlen_proto);
1471
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1472 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1473 int thoff, u8 ip_proto)
1474 {
1475 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1476 }
1477
1478 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1479 const struct flow_dissector_key *key,
1480 unsigned int key_count);
1481
1482 struct bpf_flow_dissector;
1483 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1484 __be16 proto, int nhoff, int hlen, unsigned int flags);
1485
1486 bool __skb_flow_dissect(const struct net *net,
1487 const struct sk_buff *skb,
1488 struct flow_dissector *flow_dissector,
1489 void *target_container, const void *data,
1490 __be16 proto, int nhoff, int hlen, unsigned int flags);
1491
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1492 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1493 struct flow_dissector *flow_dissector,
1494 void *target_container, unsigned int flags)
1495 {
1496 return __skb_flow_dissect(NULL, skb, flow_dissector,
1497 target_container, NULL, 0, 0, 0, flags);
1498 }
1499
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1500 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1501 struct flow_keys *flow,
1502 unsigned int flags)
1503 {
1504 memset(flow, 0, sizeof(*flow));
1505 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1506 flow, NULL, 0, 0, 0, flags);
1507 }
1508
1509 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1510 skb_flow_dissect_flow_keys_basic(const struct net *net,
1511 const struct sk_buff *skb,
1512 struct flow_keys_basic *flow,
1513 const void *data, __be16 proto,
1514 int nhoff, int hlen, unsigned int flags)
1515 {
1516 memset(flow, 0, sizeof(*flow));
1517 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1518 data, proto, nhoff, hlen, flags);
1519 }
1520
1521 void skb_flow_dissect_meta(const struct sk_buff *skb,
1522 struct flow_dissector *flow_dissector,
1523 void *target_container);
1524
1525 /* Gets a skb connection tracking info, ctinfo map should be a
1526 * map of mapsize to translate enum ip_conntrack_info states
1527 * to user states.
1528 */
1529 void
1530 skb_flow_dissect_ct(const struct sk_buff *skb,
1531 struct flow_dissector *flow_dissector,
1532 void *target_container,
1533 u16 *ctinfo_map, size_t mapsize,
1534 bool post_ct, u16 zone);
1535 void
1536 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1537 struct flow_dissector *flow_dissector,
1538 void *target_container);
1539
1540 void skb_flow_dissect_hash(const struct sk_buff *skb,
1541 struct flow_dissector *flow_dissector,
1542 void *target_container);
1543
skb_get_hash(struct sk_buff * skb)1544 static inline __u32 skb_get_hash(struct sk_buff *skb)
1545 {
1546 if (!skb->l4_hash && !skb->sw_hash)
1547 __skb_get_hash(skb);
1548
1549 return skb->hash;
1550 }
1551
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1552 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1553 {
1554 if (!skb->l4_hash && !skb->sw_hash) {
1555 struct flow_keys keys;
1556 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1557
1558 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1559 }
1560
1561 return skb->hash;
1562 }
1563
1564 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1565 const siphash_key_t *perturb);
1566
skb_get_hash_raw(const struct sk_buff * skb)1567 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1568 {
1569 return skb->hash;
1570 }
1571
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1572 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1573 {
1574 to->hash = from->hash;
1575 to->sw_hash = from->sw_hash;
1576 to->l4_hash = from->l4_hash;
1577 };
1578
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1579 static inline void skb_copy_decrypted(struct sk_buff *to,
1580 const struct sk_buff *from)
1581 {
1582 #ifdef CONFIG_TLS_DEVICE
1583 to->decrypted = from->decrypted;
1584 #endif
1585 }
1586
1587 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1588 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1589 {
1590 return skb->head + skb->end;
1591 }
1592
skb_end_offset(const struct sk_buff * skb)1593 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1594 {
1595 return skb->end;
1596 }
1597
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1598 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1599 {
1600 skb->end = offset;
1601 }
1602 #else
skb_end_pointer(const struct sk_buff * skb)1603 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1604 {
1605 return skb->end;
1606 }
1607
skb_end_offset(const struct sk_buff * skb)1608 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1609 {
1610 return skb->end - skb->head;
1611 }
1612
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1613 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1614 {
1615 skb->end = skb->head + offset;
1616 }
1617 #endif
1618
1619 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1620 struct ubuf_info *uarg);
1621
1622 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1623
1624 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1625 bool success);
1626
1627 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1628 struct sk_buff *skb, struct iov_iter *from,
1629 size_t length);
1630
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1631 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1632 struct msghdr *msg, int len)
1633 {
1634 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1635 }
1636
1637 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1638 struct msghdr *msg, int len,
1639 struct ubuf_info *uarg);
1640
1641 /* Internal */
1642 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1643
skb_hwtstamps(struct sk_buff * skb)1644 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1645 {
1646 return &skb_shinfo(skb)->hwtstamps;
1647 }
1648
skb_zcopy(struct sk_buff * skb)1649 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1650 {
1651 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1652
1653 return is_zcopy ? skb_uarg(skb) : NULL;
1654 }
1655
skb_zcopy_pure(const struct sk_buff * skb)1656 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1657 {
1658 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1659 }
1660
skb_zcopy_managed(const struct sk_buff * skb)1661 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1662 {
1663 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1664 }
1665
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1666 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1667 const struct sk_buff *skb2)
1668 {
1669 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1670 }
1671
net_zcopy_get(struct ubuf_info * uarg)1672 static inline void net_zcopy_get(struct ubuf_info *uarg)
1673 {
1674 refcount_inc(&uarg->refcnt);
1675 }
1676
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1677 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1678 {
1679 skb_shinfo(skb)->destructor_arg = uarg;
1680 skb_shinfo(skb)->flags |= uarg->flags;
1681 }
1682
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1683 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1684 bool *have_ref)
1685 {
1686 if (skb && uarg && !skb_zcopy(skb)) {
1687 if (unlikely(have_ref && *have_ref))
1688 *have_ref = false;
1689 else
1690 net_zcopy_get(uarg);
1691 skb_zcopy_init(skb, uarg);
1692 }
1693 }
1694
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1695 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1696 {
1697 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1698 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1699 }
1700
skb_zcopy_is_nouarg(struct sk_buff * skb)1701 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1702 {
1703 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1704 }
1705
skb_zcopy_get_nouarg(struct sk_buff * skb)1706 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1707 {
1708 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1709 }
1710
net_zcopy_put(struct ubuf_info * uarg)1711 static inline void net_zcopy_put(struct ubuf_info *uarg)
1712 {
1713 if (uarg)
1714 uarg->callback(NULL, uarg, true);
1715 }
1716
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1717 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1718 {
1719 if (uarg) {
1720 if (uarg->callback == msg_zerocopy_callback)
1721 msg_zerocopy_put_abort(uarg, have_uref);
1722 else if (have_uref)
1723 net_zcopy_put(uarg);
1724 }
1725 }
1726
1727 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1728 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1729 {
1730 struct ubuf_info *uarg = skb_zcopy(skb);
1731
1732 if (uarg) {
1733 if (!skb_zcopy_is_nouarg(skb))
1734 uarg->callback(skb, uarg, zerocopy_success);
1735
1736 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1737 }
1738 }
1739
1740 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1741
skb_zcopy_downgrade_managed(struct sk_buff * skb)1742 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1743 {
1744 if (unlikely(skb_zcopy_managed(skb)))
1745 __skb_zcopy_downgrade_managed(skb);
1746 }
1747
skb_mark_not_on_list(struct sk_buff * skb)1748 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1749 {
1750 skb->next = NULL;
1751 }
1752
skb_poison_list(struct sk_buff * skb)1753 static inline void skb_poison_list(struct sk_buff *skb)
1754 {
1755 #ifdef CONFIG_DEBUG_NET
1756 skb->next = SKB_LIST_POISON_NEXT;
1757 #endif
1758 }
1759
1760 /* Iterate through singly-linked GSO fragments of an skb. */
1761 #define skb_list_walk_safe(first, skb, next_skb) \
1762 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1763 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1764
skb_list_del_init(struct sk_buff * skb)1765 static inline void skb_list_del_init(struct sk_buff *skb)
1766 {
1767 __list_del_entry(&skb->list);
1768 skb_mark_not_on_list(skb);
1769 }
1770
1771 /**
1772 * skb_queue_empty - check if a queue is empty
1773 * @list: queue head
1774 *
1775 * Returns true if the queue is empty, false otherwise.
1776 */
skb_queue_empty(const struct sk_buff_head * list)1777 static inline int skb_queue_empty(const struct sk_buff_head *list)
1778 {
1779 return list->next == (const struct sk_buff *) list;
1780 }
1781
1782 /**
1783 * skb_queue_empty_lockless - check if a queue is empty
1784 * @list: queue head
1785 *
1786 * Returns true if the queue is empty, false otherwise.
1787 * This variant can be used in lockless contexts.
1788 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1789 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1790 {
1791 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1792 }
1793
1794
1795 /**
1796 * skb_queue_is_last - check if skb is the last entry in the queue
1797 * @list: queue head
1798 * @skb: buffer
1799 *
1800 * Returns true if @skb is the last buffer on the list.
1801 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1802 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1803 const struct sk_buff *skb)
1804 {
1805 return skb->next == (const struct sk_buff *) list;
1806 }
1807
1808 /**
1809 * skb_queue_is_first - check if skb is the first entry in the queue
1810 * @list: queue head
1811 * @skb: buffer
1812 *
1813 * Returns true if @skb is the first buffer on the list.
1814 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1815 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1816 const struct sk_buff *skb)
1817 {
1818 return skb->prev == (const struct sk_buff *) list;
1819 }
1820
1821 /**
1822 * skb_queue_next - return the next packet in the queue
1823 * @list: queue head
1824 * @skb: current buffer
1825 *
1826 * Return the next packet in @list after @skb. It is only valid to
1827 * call this if skb_queue_is_last() evaluates to false.
1828 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1829 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1830 const struct sk_buff *skb)
1831 {
1832 /* This BUG_ON may seem severe, but if we just return then we
1833 * are going to dereference garbage.
1834 */
1835 BUG_ON(skb_queue_is_last(list, skb));
1836 return skb->next;
1837 }
1838
1839 /**
1840 * skb_queue_prev - return the prev packet in the queue
1841 * @list: queue head
1842 * @skb: current buffer
1843 *
1844 * Return the prev packet in @list before @skb. It is only valid to
1845 * call this if skb_queue_is_first() evaluates to false.
1846 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1847 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1848 const struct sk_buff *skb)
1849 {
1850 /* This BUG_ON may seem severe, but if we just return then we
1851 * are going to dereference garbage.
1852 */
1853 BUG_ON(skb_queue_is_first(list, skb));
1854 return skb->prev;
1855 }
1856
1857 /**
1858 * skb_get - reference buffer
1859 * @skb: buffer to reference
1860 *
1861 * Makes another reference to a socket buffer and returns a pointer
1862 * to the buffer.
1863 */
skb_get(struct sk_buff * skb)1864 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1865 {
1866 refcount_inc(&skb->users);
1867 return skb;
1868 }
1869
1870 /*
1871 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1872 */
1873
1874 /**
1875 * skb_cloned - is the buffer a clone
1876 * @skb: buffer to check
1877 *
1878 * Returns true if the buffer was generated with skb_clone() and is
1879 * one of multiple shared copies of the buffer. Cloned buffers are
1880 * shared data so must not be written to under normal circumstances.
1881 */
skb_cloned(const struct sk_buff * skb)1882 static inline int skb_cloned(const struct sk_buff *skb)
1883 {
1884 return skb->cloned &&
1885 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1886 }
1887
skb_unclone(struct sk_buff * skb,gfp_t pri)1888 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1889 {
1890 might_sleep_if(gfpflags_allow_blocking(pri));
1891
1892 if (skb_cloned(skb))
1893 return pskb_expand_head(skb, 0, 0, pri);
1894
1895 return 0;
1896 }
1897
1898 /* This variant of skb_unclone() makes sure skb->truesize
1899 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1900 *
1901 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1902 * when various debugging features are in place.
1903 */
1904 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1905 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1906 {
1907 might_sleep_if(gfpflags_allow_blocking(pri));
1908
1909 if (skb_cloned(skb))
1910 return __skb_unclone_keeptruesize(skb, pri);
1911 return 0;
1912 }
1913
1914 /**
1915 * skb_header_cloned - is the header a clone
1916 * @skb: buffer to check
1917 *
1918 * Returns true if modifying the header part of the buffer requires
1919 * the data to be copied.
1920 */
skb_header_cloned(const struct sk_buff * skb)1921 static inline int skb_header_cloned(const struct sk_buff *skb)
1922 {
1923 int dataref;
1924
1925 if (!skb->cloned)
1926 return 0;
1927
1928 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1929 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1930 return dataref != 1;
1931 }
1932
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1933 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1934 {
1935 might_sleep_if(gfpflags_allow_blocking(pri));
1936
1937 if (skb_header_cloned(skb))
1938 return pskb_expand_head(skb, 0, 0, pri);
1939
1940 return 0;
1941 }
1942
1943 /**
1944 * __skb_header_release() - allow clones to use the headroom
1945 * @skb: buffer to operate on
1946 *
1947 * See "DOC: dataref and headerless skbs".
1948 */
__skb_header_release(struct sk_buff * skb)1949 static inline void __skb_header_release(struct sk_buff *skb)
1950 {
1951 skb->nohdr = 1;
1952 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1953 }
1954
1955
1956 /**
1957 * skb_shared - is the buffer shared
1958 * @skb: buffer to check
1959 *
1960 * Returns true if more than one person has a reference to this
1961 * buffer.
1962 */
skb_shared(const struct sk_buff * skb)1963 static inline int skb_shared(const struct sk_buff *skb)
1964 {
1965 return refcount_read(&skb->users) != 1;
1966 }
1967
1968 /**
1969 * skb_share_check - check if buffer is shared and if so clone it
1970 * @skb: buffer to check
1971 * @pri: priority for memory allocation
1972 *
1973 * If the buffer is shared the buffer is cloned and the old copy
1974 * drops a reference. A new clone with a single reference is returned.
1975 * If the buffer is not shared the original buffer is returned. When
1976 * being called from interrupt status or with spinlocks held pri must
1977 * be GFP_ATOMIC.
1978 *
1979 * NULL is returned on a memory allocation failure.
1980 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1981 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1982 {
1983 might_sleep_if(gfpflags_allow_blocking(pri));
1984 if (skb_shared(skb)) {
1985 struct sk_buff *nskb = skb_clone(skb, pri);
1986
1987 if (likely(nskb))
1988 consume_skb(skb);
1989 else
1990 kfree_skb(skb);
1991 skb = nskb;
1992 }
1993 return skb;
1994 }
1995
1996 /*
1997 * Copy shared buffers into a new sk_buff. We effectively do COW on
1998 * packets to handle cases where we have a local reader and forward
1999 * and a couple of other messy ones. The normal one is tcpdumping
2000 * a packet thats being forwarded.
2001 */
2002
2003 /**
2004 * skb_unshare - make a copy of a shared buffer
2005 * @skb: buffer to check
2006 * @pri: priority for memory allocation
2007 *
2008 * If the socket buffer is a clone then this function creates a new
2009 * copy of the data, drops a reference count on the old copy and returns
2010 * the new copy with the reference count at 1. If the buffer is not a clone
2011 * the original buffer is returned. When called with a spinlock held or
2012 * from interrupt state @pri must be %GFP_ATOMIC
2013 *
2014 * %NULL is returned on a memory allocation failure.
2015 */
skb_unshare(struct sk_buff * skb,gfp_t pri)2016 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2017 gfp_t pri)
2018 {
2019 might_sleep_if(gfpflags_allow_blocking(pri));
2020 if (skb_cloned(skb)) {
2021 struct sk_buff *nskb = skb_copy(skb, pri);
2022
2023 /* Free our shared copy */
2024 if (likely(nskb))
2025 consume_skb(skb);
2026 else
2027 kfree_skb(skb);
2028 skb = nskb;
2029 }
2030 return skb;
2031 }
2032
2033 /**
2034 * skb_peek - peek at the head of an &sk_buff_head
2035 * @list_: list to peek at
2036 *
2037 * Peek an &sk_buff. Unlike most other operations you _MUST_
2038 * be careful with this one. A peek leaves the buffer on the
2039 * list and someone else may run off with it. You must hold
2040 * the appropriate locks or have a private queue to do this.
2041 *
2042 * Returns %NULL for an empty list or a pointer to the head element.
2043 * The reference count is not incremented and the reference is therefore
2044 * volatile. Use with caution.
2045 */
skb_peek(const struct sk_buff_head * list_)2046 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2047 {
2048 struct sk_buff *skb = list_->next;
2049
2050 if (skb == (struct sk_buff *)list_)
2051 skb = NULL;
2052 return skb;
2053 }
2054
2055 /**
2056 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2057 * @list_: list to peek at
2058 *
2059 * Like skb_peek(), but the caller knows that the list is not empty.
2060 */
__skb_peek(const struct sk_buff_head * list_)2061 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2062 {
2063 return list_->next;
2064 }
2065
2066 /**
2067 * skb_peek_next - peek skb following the given one from a queue
2068 * @skb: skb to start from
2069 * @list_: list to peek at
2070 *
2071 * Returns %NULL when the end of the list is met or a pointer to the
2072 * next element. The reference count is not incremented and the
2073 * reference is therefore volatile. Use with caution.
2074 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2075 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2076 const struct sk_buff_head *list_)
2077 {
2078 struct sk_buff *next = skb->next;
2079
2080 if (next == (struct sk_buff *)list_)
2081 next = NULL;
2082 return next;
2083 }
2084
2085 /**
2086 * skb_peek_tail - peek at the tail of an &sk_buff_head
2087 * @list_: list to peek at
2088 *
2089 * Peek an &sk_buff. Unlike most other operations you _MUST_
2090 * be careful with this one. A peek leaves the buffer on the
2091 * list and someone else may run off with it. You must hold
2092 * the appropriate locks or have a private queue to do this.
2093 *
2094 * Returns %NULL for an empty list or a pointer to the tail element.
2095 * The reference count is not incremented and the reference is therefore
2096 * volatile. Use with caution.
2097 */
skb_peek_tail(const struct sk_buff_head * list_)2098 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2099 {
2100 struct sk_buff *skb = READ_ONCE(list_->prev);
2101
2102 if (skb == (struct sk_buff *)list_)
2103 skb = NULL;
2104 return skb;
2105
2106 }
2107
2108 /**
2109 * skb_queue_len - get queue length
2110 * @list_: list to measure
2111 *
2112 * Return the length of an &sk_buff queue.
2113 */
skb_queue_len(const struct sk_buff_head * list_)2114 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2115 {
2116 return list_->qlen;
2117 }
2118
2119 /**
2120 * skb_queue_len_lockless - get queue length
2121 * @list_: list to measure
2122 *
2123 * Return the length of an &sk_buff queue.
2124 * This variant can be used in lockless contexts.
2125 */
skb_queue_len_lockless(const struct sk_buff_head * list_)2126 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2127 {
2128 return READ_ONCE(list_->qlen);
2129 }
2130
2131 /**
2132 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2133 * @list: queue to initialize
2134 *
2135 * This initializes only the list and queue length aspects of
2136 * an sk_buff_head object. This allows to initialize the list
2137 * aspects of an sk_buff_head without reinitializing things like
2138 * the spinlock. It can also be used for on-stack sk_buff_head
2139 * objects where the spinlock is known to not be used.
2140 */
__skb_queue_head_init(struct sk_buff_head * list)2141 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2142 {
2143 list->prev = list->next = (struct sk_buff *)list;
2144 list->qlen = 0;
2145 }
2146
2147 /*
2148 * This function creates a split out lock class for each invocation;
2149 * this is needed for now since a whole lot of users of the skb-queue
2150 * infrastructure in drivers have different locking usage (in hardirq)
2151 * than the networking core (in softirq only). In the long run either the
2152 * network layer or drivers should need annotation to consolidate the
2153 * main types of usage into 3 classes.
2154 */
skb_queue_head_init(struct sk_buff_head * list)2155 static inline void skb_queue_head_init(struct sk_buff_head *list)
2156 {
2157 spin_lock_init(&list->lock);
2158 __skb_queue_head_init(list);
2159 }
2160
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2161 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2162 struct lock_class_key *class)
2163 {
2164 skb_queue_head_init(list);
2165 lockdep_set_class(&list->lock, class);
2166 }
2167
2168 /*
2169 * Insert an sk_buff on a list.
2170 *
2171 * The "__skb_xxxx()" functions are the non-atomic ones that
2172 * can only be called with interrupts disabled.
2173 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2174 static inline void __skb_insert(struct sk_buff *newsk,
2175 struct sk_buff *prev, struct sk_buff *next,
2176 struct sk_buff_head *list)
2177 {
2178 /* See skb_queue_empty_lockless() and skb_peek_tail()
2179 * for the opposite READ_ONCE()
2180 */
2181 WRITE_ONCE(newsk->next, next);
2182 WRITE_ONCE(newsk->prev, prev);
2183 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2184 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2185 WRITE_ONCE(list->qlen, list->qlen + 1);
2186 }
2187
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2188 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2189 struct sk_buff *prev,
2190 struct sk_buff *next)
2191 {
2192 struct sk_buff *first = list->next;
2193 struct sk_buff *last = list->prev;
2194
2195 WRITE_ONCE(first->prev, prev);
2196 WRITE_ONCE(prev->next, first);
2197
2198 WRITE_ONCE(last->next, next);
2199 WRITE_ONCE(next->prev, last);
2200 }
2201
2202 /**
2203 * skb_queue_splice - join two skb lists, this is designed for stacks
2204 * @list: the new list to add
2205 * @head: the place to add it in the first list
2206 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2207 static inline void skb_queue_splice(const struct sk_buff_head *list,
2208 struct sk_buff_head *head)
2209 {
2210 if (!skb_queue_empty(list)) {
2211 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2212 head->qlen += list->qlen;
2213 }
2214 }
2215
2216 /**
2217 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2218 * @list: the new list to add
2219 * @head: the place to add it in the first list
2220 *
2221 * The list at @list is reinitialised
2222 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2223 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2224 struct sk_buff_head *head)
2225 {
2226 if (!skb_queue_empty(list)) {
2227 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2228 head->qlen += list->qlen;
2229 __skb_queue_head_init(list);
2230 }
2231 }
2232
2233 /**
2234 * skb_queue_splice_tail - join two skb lists, each list being a queue
2235 * @list: the new list to add
2236 * @head: the place to add it in the first list
2237 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2238 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2239 struct sk_buff_head *head)
2240 {
2241 if (!skb_queue_empty(list)) {
2242 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2243 head->qlen += list->qlen;
2244 }
2245 }
2246
2247 /**
2248 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2249 * @list: the new list to add
2250 * @head: the place to add it in the first list
2251 *
2252 * Each of the lists is a queue.
2253 * The list at @list is reinitialised
2254 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2255 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2256 struct sk_buff_head *head)
2257 {
2258 if (!skb_queue_empty(list)) {
2259 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2260 head->qlen += list->qlen;
2261 __skb_queue_head_init(list);
2262 }
2263 }
2264
2265 /**
2266 * __skb_queue_after - queue a buffer at the list head
2267 * @list: list to use
2268 * @prev: place after this buffer
2269 * @newsk: buffer to queue
2270 *
2271 * Queue a buffer int the middle of a list. This function takes no locks
2272 * and you must therefore hold required locks before calling it.
2273 *
2274 * A buffer cannot be placed on two lists at the same time.
2275 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2276 static inline void __skb_queue_after(struct sk_buff_head *list,
2277 struct sk_buff *prev,
2278 struct sk_buff *newsk)
2279 {
2280 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2281 }
2282
2283 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2284 struct sk_buff_head *list);
2285
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2286 static inline void __skb_queue_before(struct sk_buff_head *list,
2287 struct sk_buff *next,
2288 struct sk_buff *newsk)
2289 {
2290 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2291 }
2292
2293 /**
2294 * __skb_queue_head - queue a buffer at the list head
2295 * @list: list to use
2296 * @newsk: buffer to queue
2297 *
2298 * Queue a buffer at the start of a list. This function takes no locks
2299 * and you must therefore hold required locks before calling it.
2300 *
2301 * A buffer cannot be placed on two lists at the same time.
2302 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2303 static inline void __skb_queue_head(struct sk_buff_head *list,
2304 struct sk_buff *newsk)
2305 {
2306 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2307 }
2308 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2309
2310 /**
2311 * __skb_queue_tail - queue a buffer at the list tail
2312 * @list: list to use
2313 * @newsk: buffer to queue
2314 *
2315 * Queue a buffer at the end of a list. This function takes no locks
2316 * and you must therefore hold required locks before calling it.
2317 *
2318 * A buffer cannot be placed on two lists at the same time.
2319 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2320 static inline void __skb_queue_tail(struct sk_buff_head *list,
2321 struct sk_buff *newsk)
2322 {
2323 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2324 }
2325 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2326
2327 /*
2328 * remove sk_buff from list. _Must_ be called atomically, and with
2329 * the list known..
2330 */
2331 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2332 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2333 {
2334 struct sk_buff *next, *prev;
2335
2336 WRITE_ONCE(list->qlen, list->qlen - 1);
2337 next = skb->next;
2338 prev = skb->prev;
2339 skb->next = skb->prev = NULL;
2340 WRITE_ONCE(next->prev, prev);
2341 WRITE_ONCE(prev->next, next);
2342 }
2343
2344 /**
2345 * __skb_dequeue - remove from the head of the queue
2346 * @list: list to dequeue from
2347 *
2348 * Remove the head of the list. This function does not take any locks
2349 * so must be used with appropriate locks held only. The head item is
2350 * returned or %NULL if the list is empty.
2351 */
__skb_dequeue(struct sk_buff_head * list)2352 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2353 {
2354 struct sk_buff *skb = skb_peek(list);
2355 if (skb)
2356 __skb_unlink(skb, list);
2357 return skb;
2358 }
2359 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2360
2361 /**
2362 * __skb_dequeue_tail - remove from the tail of the queue
2363 * @list: list to dequeue from
2364 *
2365 * Remove the tail of the list. This function does not take any locks
2366 * so must be used with appropriate locks held only. The tail item is
2367 * returned or %NULL if the list is empty.
2368 */
__skb_dequeue_tail(struct sk_buff_head * list)2369 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2370 {
2371 struct sk_buff *skb = skb_peek_tail(list);
2372 if (skb)
2373 __skb_unlink(skb, list);
2374 return skb;
2375 }
2376 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2377
2378
skb_is_nonlinear(const struct sk_buff * skb)2379 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2380 {
2381 return skb->data_len;
2382 }
2383
skb_headlen(const struct sk_buff * skb)2384 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2385 {
2386 return skb->len - skb->data_len;
2387 }
2388
__skb_pagelen(const struct sk_buff * skb)2389 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2390 {
2391 unsigned int i, len = 0;
2392
2393 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2394 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2395 return len;
2396 }
2397
skb_pagelen(const struct sk_buff * skb)2398 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2399 {
2400 return skb_headlen(skb) + __skb_pagelen(skb);
2401 }
2402
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2403 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2404 int i, struct page *page,
2405 int off, int size)
2406 {
2407 skb_frag_t *frag = &shinfo->frags[i];
2408
2409 /*
2410 * Propagate page pfmemalloc to the skb if we can. The problem is
2411 * that not all callers have unique ownership of the page but rely
2412 * on page_is_pfmemalloc doing the right thing(tm).
2413 */
2414 frag->bv_page = page;
2415 frag->bv_offset = off;
2416 skb_frag_size_set(frag, size);
2417 }
2418
2419 /**
2420 * skb_len_add - adds a number to len fields of skb
2421 * @skb: buffer to add len to
2422 * @delta: number of bytes to add
2423 */
skb_len_add(struct sk_buff * skb,int delta)2424 static inline void skb_len_add(struct sk_buff *skb, int delta)
2425 {
2426 skb->len += delta;
2427 skb->data_len += delta;
2428 skb->truesize += delta;
2429 }
2430
2431 /**
2432 * __skb_fill_page_desc - initialise a paged fragment in an skb
2433 * @skb: buffer containing fragment to be initialised
2434 * @i: paged fragment index to initialise
2435 * @page: the page to use for this fragment
2436 * @off: the offset to the data with @page
2437 * @size: the length of the data
2438 *
2439 * Initialises the @i'th fragment of @skb to point to &size bytes at
2440 * offset @off within @page.
2441 *
2442 * Does not take any additional reference on the fragment.
2443 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2444 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2445 struct page *page, int off, int size)
2446 {
2447 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2448 page = compound_head(page);
2449 if (page_is_pfmemalloc(page))
2450 skb->pfmemalloc = true;
2451 }
2452
2453 /**
2454 * skb_fill_page_desc - initialise a paged fragment in an skb
2455 * @skb: buffer containing fragment to be initialised
2456 * @i: paged fragment index to initialise
2457 * @page: the page to use for this fragment
2458 * @off: the offset to the data with @page
2459 * @size: the length of the data
2460 *
2461 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2462 * @skb to point to @size bytes at offset @off within @page. In
2463 * addition updates @skb such that @i is the last fragment.
2464 *
2465 * Does not take any additional reference on the fragment.
2466 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2467 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2468 struct page *page, int off, int size)
2469 {
2470 __skb_fill_page_desc(skb, i, page, off, size);
2471 skb_shinfo(skb)->nr_frags = i + 1;
2472 }
2473
2474 /**
2475 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2476 * @skb: buffer containing fragment to be initialised
2477 * @i: paged fragment index to initialise
2478 * @page: the page to use for this fragment
2479 * @off: the offset to the data with @page
2480 * @size: the length of the data
2481 *
2482 * Variant of skb_fill_page_desc() which does not deal with
2483 * pfmemalloc, if page is not owned by us.
2484 */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2485 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2486 struct page *page, int off,
2487 int size)
2488 {
2489 struct skb_shared_info *shinfo = skb_shinfo(skb);
2490
2491 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2492 shinfo->nr_frags = i + 1;
2493 }
2494
2495 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2496 int size, unsigned int truesize);
2497
2498 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2499 unsigned int truesize);
2500
2501 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2502
2503 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2504 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2505 {
2506 return skb->head + skb->tail;
2507 }
2508
skb_reset_tail_pointer(struct sk_buff * skb)2509 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2510 {
2511 skb->tail = skb->data - skb->head;
2512 }
2513
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2514 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2515 {
2516 skb_reset_tail_pointer(skb);
2517 skb->tail += offset;
2518 }
2519
2520 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2521 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2522 {
2523 return skb->tail;
2524 }
2525
skb_reset_tail_pointer(struct sk_buff * skb)2526 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2527 {
2528 skb->tail = skb->data;
2529 }
2530
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2531 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2532 {
2533 skb->tail = skb->data + offset;
2534 }
2535
2536 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2537
skb_assert_len(struct sk_buff * skb)2538 static inline void skb_assert_len(struct sk_buff *skb)
2539 {
2540 #ifdef CONFIG_DEBUG_NET
2541 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2542 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2543 #endif /* CONFIG_DEBUG_NET */
2544 }
2545
2546 /*
2547 * Add data to an sk_buff
2548 */
2549 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2550 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2551 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2552 {
2553 void *tmp = skb_tail_pointer(skb);
2554 SKB_LINEAR_ASSERT(skb);
2555 skb->tail += len;
2556 skb->len += len;
2557 return tmp;
2558 }
2559
__skb_put_zero(struct sk_buff * skb,unsigned int len)2560 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2561 {
2562 void *tmp = __skb_put(skb, len);
2563
2564 memset(tmp, 0, len);
2565 return tmp;
2566 }
2567
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2568 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2569 unsigned int len)
2570 {
2571 void *tmp = __skb_put(skb, len);
2572
2573 memcpy(tmp, data, len);
2574 return tmp;
2575 }
2576
__skb_put_u8(struct sk_buff * skb,u8 val)2577 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2578 {
2579 *(u8 *)__skb_put(skb, 1) = val;
2580 }
2581
skb_put_zero(struct sk_buff * skb,unsigned int len)2582 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2583 {
2584 void *tmp = skb_put(skb, len);
2585
2586 memset(tmp, 0, len);
2587
2588 return tmp;
2589 }
2590
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2591 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2592 unsigned int len)
2593 {
2594 void *tmp = skb_put(skb, len);
2595
2596 memcpy(tmp, data, len);
2597
2598 return tmp;
2599 }
2600
skb_put_u8(struct sk_buff * skb,u8 val)2601 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2602 {
2603 *(u8 *)skb_put(skb, 1) = val;
2604 }
2605
2606 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2607 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2608 {
2609 skb->data -= len;
2610 skb->len += len;
2611 return skb->data;
2612 }
2613
2614 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2615 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2616 {
2617 skb->len -= len;
2618 if (unlikely(skb->len < skb->data_len)) {
2619 #if defined(CONFIG_DEBUG_NET)
2620 skb->len += len;
2621 pr_err("__skb_pull(len=%u)\n", len);
2622 skb_dump(KERN_ERR, skb, false);
2623 #endif
2624 BUG();
2625 }
2626 return skb->data += len;
2627 }
2628
skb_pull_inline(struct sk_buff * skb,unsigned int len)2629 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2630 {
2631 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2632 }
2633
2634 void *skb_pull_data(struct sk_buff *skb, size_t len);
2635
2636 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2637
2638 static inline enum skb_drop_reason
pskb_may_pull_reason(struct sk_buff * skb,unsigned int len)2639 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2640 {
2641 if (likely(len <= skb_headlen(skb)))
2642 return SKB_NOT_DROPPED_YET;
2643
2644 if (unlikely(len > skb->len))
2645 return SKB_DROP_REASON_PKT_TOO_SMALL;
2646
2647 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2648 return SKB_DROP_REASON_NOMEM;
2649
2650 return SKB_NOT_DROPPED_YET;
2651 }
2652
pskb_may_pull(struct sk_buff * skb,unsigned int len)2653 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2654 {
2655 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2656 }
2657
pskb_pull(struct sk_buff * skb,unsigned int len)2658 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2659 {
2660 if (!pskb_may_pull(skb, len))
2661 return NULL;
2662
2663 skb->len -= len;
2664 return skb->data += len;
2665 }
2666
2667 void skb_condense(struct sk_buff *skb);
2668
2669 /**
2670 * skb_headroom - bytes at buffer head
2671 * @skb: buffer to check
2672 *
2673 * Return the number of bytes of free space at the head of an &sk_buff.
2674 */
skb_headroom(const struct sk_buff * skb)2675 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2676 {
2677 return skb->data - skb->head;
2678 }
2679
2680 /**
2681 * skb_tailroom - bytes at buffer end
2682 * @skb: buffer to check
2683 *
2684 * Return the number of bytes of free space at the tail of an sk_buff
2685 */
skb_tailroom(const struct sk_buff * skb)2686 static inline int skb_tailroom(const struct sk_buff *skb)
2687 {
2688 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2689 }
2690
2691 /**
2692 * skb_availroom - bytes at buffer end
2693 * @skb: buffer to check
2694 *
2695 * Return the number of bytes of free space at the tail of an sk_buff
2696 * allocated by sk_stream_alloc()
2697 */
skb_availroom(const struct sk_buff * skb)2698 static inline int skb_availroom(const struct sk_buff *skb)
2699 {
2700 if (skb_is_nonlinear(skb))
2701 return 0;
2702
2703 return skb->end - skb->tail - skb->reserved_tailroom;
2704 }
2705
2706 /**
2707 * skb_reserve - adjust headroom
2708 * @skb: buffer to alter
2709 * @len: bytes to move
2710 *
2711 * Increase the headroom of an empty &sk_buff by reducing the tail
2712 * room. This is only allowed for an empty buffer.
2713 */
skb_reserve(struct sk_buff * skb,int len)2714 static inline void skb_reserve(struct sk_buff *skb, int len)
2715 {
2716 skb->data += len;
2717 skb->tail += len;
2718 }
2719
2720 /**
2721 * skb_tailroom_reserve - adjust reserved_tailroom
2722 * @skb: buffer to alter
2723 * @mtu: maximum amount of headlen permitted
2724 * @needed_tailroom: minimum amount of reserved_tailroom
2725 *
2726 * Set reserved_tailroom so that headlen can be as large as possible but
2727 * not larger than mtu and tailroom cannot be smaller than
2728 * needed_tailroom.
2729 * The required headroom should already have been reserved before using
2730 * this function.
2731 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2732 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2733 unsigned int needed_tailroom)
2734 {
2735 SKB_LINEAR_ASSERT(skb);
2736 if (mtu < skb_tailroom(skb) - needed_tailroom)
2737 /* use at most mtu */
2738 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2739 else
2740 /* use up to all available space */
2741 skb->reserved_tailroom = needed_tailroom;
2742 }
2743
2744 #define ENCAP_TYPE_ETHER 0
2745 #define ENCAP_TYPE_IPPROTO 1
2746
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2747 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2748 __be16 protocol)
2749 {
2750 skb->inner_protocol = protocol;
2751 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2752 }
2753
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2754 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2755 __u8 ipproto)
2756 {
2757 skb->inner_ipproto = ipproto;
2758 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2759 }
2760
skb_reset_inner_headers(struct sk_buff * skb)2761 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2762 {
2763 skb->inner_mac_header = skb->mac_header;
2764 skb->inner_network_header = skb->network_header;
2765 skb->inner_transport_header = skb->transport_header;
2766 }
2767
skb_reset_mac_len(struct sk_buff * skb)2768 static inline void skb_reset_mac_len(struct sk_buff *skb)
2769 {
2770 skb->mac_len = skb->network_header - skb->mac_header;
2771 }
2772
skb_inner_transport_header(const struct sk_buff * skb)2773 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2774 *skb)
2775 {
2776 return skb->head + skb->inner_transport_header;
2777 }
2778
skb_inner_transport_offset(const struct sk_buff * skb)2779 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2780 {
2781 return skb_inner_transport_header(skb) - skb->data;
2782 }
2783
skb_reset_inner_transport_header(struct sk_buff * skb)2784 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2785 {
2786 skb->inner_transport_header = skb->data - skb->head;
2787 }
2788
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2789 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2790 const int offset)
2791 {
2792 skb_reset_inner_transport_header(skb);
2793 skb->inner_transport_header += offset;
2794 }
2795
skb_inner_network_header(const struct sk_buff * skb)2796 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2797 {
2798 return skb->head + skb->inner_network_header;
2799 }
2800
skb_reset_inner_network_header(struct sk_buff * skb)2801 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2802 {
2803 skb->inner_network_header = skb->data - skb->head;
2804 }
2805
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2806 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2807 const int offset)
2808 {
2809 skb_reset_inner_network_header(skb);
2810 skb->inner_network_header += offset;
2811 }
2812
skb_inner_mac_header(const struct sk_buff * skb)2813 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2814 {
2815 return skb->head + skb->inner_mac_header;
2816 }
2817
skb_reset_inner_mac_header(struct sk_buff * skb)2818 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2819 {
2820 skb->inner_mac_header = skb->data - skb->head;
2821 }
2822
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2823 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2824 const int offset)
2825 {
2826 skb_reset_inner_mac_header(skb);
2827 skb->inner_mac_header += offset;
2828 }
skb_transport_header_was_set(const struct sk_buff * skb)2829 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2830 {
2831 return skb->transport_header != (typeof(skb->transport_header))~0U;
2832 }
2833
skb_transport_header(const struct sk_buff * skb)2834 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2835 {
2836 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2837 return skb->head + skb->transport_header;
2838 }
2839
skb_reset_transport_header(struct sk_buff * skb)2840 static inline void skb_reset_transport_header(struct sk_buff *skb)
2841 {
2842 skb->transport_header = skb->data - skb->head;
2843 }
2844
skb_set_transport_header(struct sk_buff * skb,const int offset)2845 static inline void skb_set_transport_header(struct sk_buff *skb,
2846 const int offset)
2847 {
2848 skb_reset_transport_header(skb);
2849 skb->transport_header += offset;
2850 }
2851
skb_network_header(const struct sk_buff * skb)2852 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2853 {
2854 return skb->head + skb->network_header;
2855 }
2856
skb_reset_network_header(struct sk_buff * skb)2857 static inline void skb_reset_network_header(struct sk_buff *skb)
2858 {
2859 skb->network_header = skb->data - skb->head;
2860 }
2861
skb_set_network_header(struct sk_buff * skb,const int offset)2862 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2863 {
2864 skb_reset_network_header(skb);
2865 skb->network_header += offset;
2866 }
2867
skb_mac_header_was_set(const struct sk_buff * skb)2868 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2869 {
2870 return skb->mac_header != (typeof(skb->mac_header))~0U;
2871 }
2872
skb_mac_header(const struct sk_buff * skb)2873 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2874 {
2875 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2876 return skb->head + skb->mac_header;
2877 }
2878
skb_mac_offset(const struct sk_buff * skb)2879 static inline int skb_mac_offset(const struct sk_buff *skb)
2880 {
2881 return skb_mac_header(skb) - skb->data;
2882 }
2883
skb_mac_header_len(const struct sk_buff * skb)2884 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2885 {
2886 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2887 return skb->network_header - skb->mac_header;
2888 }
2889
skb_unset_mac_header(struct sk_buff * skb)2890 static inline void skb_unset_mac_header(struct sk_buff *skb)
2891 {
2892 skb->mac_header = (typeof(skb->mac_header))~0U;
2893 }
2894
skb_reset_mac_header(struct sk_buff * skb)2895 static inline void skb_reset_mac_header(struct sk_buff *skb)
2896 {
2897 skb->mac_header = skb->data - skb->head;
2898 }
2899
skb_set_mac_header(struct sk_buff * skb,const int offset)2900 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2901 {
2902 skb_reset_mac_header(skb);
2903 skb->mac_header += offset;
2904 }
2905
skb_pop_mac_header(struct sk_buff * skb)2906 static inline void skb_pop_mac_header(struct sk_buff *skb)
2907 {
2908 skb->mac_header = skb->network_header;
2909 }
2910
skb_probe_transport_header(struct sk_buff * skb)2911 static inline void skb_probe_transport_header(struct sk_buff *skb)
2912 {
2913 struct flow_keys_basic keys;
2914
2915 if (skb_transport_header_was_set(skb))
2916 return;
2917
2918 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2919 NULL, 0, 0, 0, 0))
2920 skb_set_transport_header(skb, keys.control.thoff);
2921 }
2922
skb_mac_header_rebuild(struct sk_buff * skb)2923 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2924 {
2925 if (skb_mac_header_was_set(skb)) {
2926 const unsigned char *old_mac = skb_mac_header(skb);
2927
2928 skb_set_mac_header(skb, -skb->mac_len);
2929 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2930 }
2931 }
2932
skb_checksum_start_offset(const struct sk_buff * skb)2933 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2934 {
2935 return skb->csum_start - skb_headroom(skb);
2936 }
2937
skb_checksum_start(const struct sk_buff * skb)2938 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2939 {
2940 return skb->head + skb->csum_start;
2941 }
2942
skb_transport_offset(const struct sk_buff * skb)2943 static inline int skb_transport_offset(const struct sk_buff *skb)
2944 {
2945 return skb_transport_header(skb) - skb->data;
2946 }
2947
skb_network_header_len(const struct sk_buff * skb)2948 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2949 {
2950 return skb->transport_header - skb->network_header;
2951 }
2952
skb_inner_network_header_len(const struct sk_buff * skb)2953 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2954 {
2955 return skb->inner_transport_header - skb->inner_network_header;
2956 }
2957
skb_network_offset(const struct sk_buff * skb)2958 static inline int skb_network_offset(const struct sk_buff *skb)
2959 {
2960 return skb_network_header(skb) - skb->data;
2961 }
2962
skb_inner_network_offset(const struct sk_buff * skb)2963 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2964 {
2965 return skb_inner_network_header(skb) - skb->data;
2966 }
2967
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2968 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2969 {
2970 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2971 }
2972
2973 /*
2974 * CPUs often take a performance hit when accessing unaligned memory
2975 * locations. The actual performance hit varies, it can be small if the
2976 * hardware handles it or large if we have to take an exception and fix it
2977 * in software.
2978 *
2979 * Since an ethernet header is 14 bytes network drivers often end up with
2980 * the IP header at an unaligned offset. The IP header can be aligned by
2981 * shifting the start of the packet by 2 bytes. Drivers should do this
2982 * with:
2983 *
2984 * skb_reserve(skb, NET_IP_ALIGN);
2985 *
2986 * The downside to this alignment of the IP header is that the DMA is now
2987 * unaligned. On some architectures the cost of an unaligned DMA is high
2988 * and this cost outweighs the gains made by aligning the IP header.
2989 *
2990 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2991 * to be overridden.
2992 */
2993 #ifndef NET_IP_ALIGN
2994 #define NET_IP_ALIGN 2
2995 #endif
2996
2997 /*
2998 * The networking layer reserves some headroom in skb data (via
2999 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3000 * the header has to grow. In the default case, if the header has to grow
3001 * 32 bytes or less we avoid the reallocation.
3002 *
3003 * Unfortunately this headroom changes the DMA alignment of the resulting
3004 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3005 * on some architectures. An architecture can override this value,
3006 * perhaps setting it to a cacheline in size (since that will maintain
3007 * cacheline alignment of the DMA). It must be a power of 2.
3008 *
3009 * Various parts of the networking layer expect at least 32 bytes of
3010 * headroom, you should not reduce this.
3011 *
3012 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3013 * to reduce average number of cache lines per packet.
3014 * get_rps_cpu() for example only access one 64 bytes aligned block :
3015 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3016 */
3017 #ifndef NET_SKB_PAD
3018 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
3019 #endif
3020
3021 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3022
__skb_set_length(struct sk_buff * skb,unsigned int len)3023 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3024 {
3025 if (WARN_ON(skb_is_nonlinear(skb)))
3026 return;
3027 skb->len = len;
3028 skb_set_tail_pointer(skb, len);
3029 }
3030
__skb_trim(struct sk_buff * skb,unsigned int len)3031 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3032 {
3033 __skb_set_length(skb, len);
3034 }
3035
3036 void skb_trim(struct sk_buff *skb, unsigned int len);
3037
__pskb_trim(struct sk_buff * skb,unsigned int len)3038 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3039 {
3040 if (skb->data_len)
3041 return ___pskb_trim(skb, len);
3042 __skb_trim(skb, len);
3043 return 0;
3044 }
3045
pskb_trim(struct sk_buff * skb,unsigned int len)3046 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3047 {
3048 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3049 }
3050
3051 /**
3052 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3053 * @skb: buffer to alter
3054 * @len: new length
3055 *
3056 * This is identical to pskb_trim except that the caller knows that
3057 * the skb is not cloned so we should never get an error due to out-
3058 * of-memory.
3059 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3060 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3061 {
3062 int err = pskb_trim(skb, len);
3063 BUG_ON(err);
3064 }
3065
__skb_grow(struct sk_buff * skb,unsigned int len)3066 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3067 {
3068 unsigned int diff = len - skb->len;
3069
3070 if (skb_tailroom(skb) < diff) {
3071 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3072 GFP_ATOMIC);
3073 if (ret)
3074 return ret;
3075 }
3076 __skb_set_length(skb, len);
3077 return 0;
3078 }
3079
3080 /**
3081 * skb_orphan - orphan a buffer
3082 * @skb: buffer to orphan
3083 *
3084 * If a buffer currently has an owner then we call the owner's
3085 * destructor function and make the @skb unowned. The buffer continues
3086 * to exist but is no longer charged to its former owner.
3087 */
skb_orphan(struct sk_buff * skb)3088 static inline void skb_orphan(struct sk_buff *skb)
3089 {
3090 if (skb->destructor) {
3091 skb->destructor(skb);
3092 skb->destructor = NULL;
3093 skb->sk = NULL;
3094 } else {
3095 BUG_ON(skb->sk);
3096 }
3097 }
3098
3099 /**
3100 * skb_orphan_frags - orphan the frags contained in a buffer
3101 * @skb: buffer to orphan frags from
3102 * @gfp_mask: allocation mask for replacement pages
3103 *
3104 * For each frag in the SKB which needs a destructor (i.e. has an
3105 * owner) create a copy of that frag and release the original
3106 * page by calling the destructor.
3107 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3108 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3109 {
3110 if (likely(!skb_zcopy(skb)))
3111 return 0;
3112 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3113 return 0;
3114 return skb_copy_ubufs(skb, gfp_mask);
3115 }
3116
3117 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3118 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3119 {
3120 if (likely(!skb_zcopy(skb)))
3121 return 0;
3122 return skb_copy_ubufs(skb, gfp_mask);
3123 }
3124
3125 /**
3126 * __skb_queue_purge - empty a list
3127 * @list: list to empty
3128 *
3129 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3130 * the list and one reference dropped. This function does not take the
3131 * list lock and the caller must hold the relevant locks to use it.
3132 */
__skb_queue_purge(struct sk_buff_head * list)3133 static inline void __skb_queue_purge(struct sk_buff_head *list)
3134 {
3135 struct sk_buff *skb;
3136 while ((skb = __skb_dequeue(list)) != NULL)
3137 kfree_skb(skb);
3138 }
3139 void skb_queue_purge(struct sk_buff_head *list);
3140
3141 unsigned int skb_rbtree_purge(struct rb_root *root);
3142
3143 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3144
3145 /**
3146 * netdev_alloc_frag - allocate a page fragment
3147 * @fragsz: fragment size
3148 *
3149 * Allocates a frag from a page for receive buffer.
3150 * Uses GFP_ATOMIC allocations.
3151 */
netdev_alloc_frag(unsigned int fragsz)3152 static inline void *netdev_alloc_frag(unsigned int fragsz)
3153 {
3154 return __netdev_alloc_frag_align(fragsz, ~0u);
3155 }
3156
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3157 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3158 unsigned int align)
3159 {
3160 WARN_ON_ONCE(!is_power_of_2(align));
3161 return __netdev_alloc_frag_align(fragsz, -align);
3162 }
3163
3164 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3165 gfp_t gfp_mask);
3166
3167 /**
3168 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3169 * @dev: network device to receive on
3170 * @length: length to allocate
3171 *
3172 * Allocate a new &sk_buff and assign it a usage count of one. The
3173 * buffer has unspecified headroom built in. Users should allocate
3174 * the headroom they think they need without accounting for the
3175 * built in space. The built in space is used for optimisations.
3176 *
3177 * %NULL is returned if there is no free memory. Although this function
3178 * allocates memory it can be called from an interrupt.
3179 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3180 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3181 unsigned int length)
3182 {
3183 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3184 }
3185
3186 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3187 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3188 gfp_t gfp_mask)
3189 {
3190 return __netdev_alloc_skb(NULL, length, gfp_mask);
3191 }
3192
3193 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3194 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3195 {
3196 return netdev_alloc_skb(NULL, length);
3197 }
3198
3199
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3200 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3201 unsigned int length, gfp_t gfp)
3202 {
3203 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3204
3205 if (NET_IP_ALIGN && skb)
3206 skb_reserve(skb, NET_IP_ALIGN);
3207 return skb;
3208 }
3209
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3210 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3211 unsigned int length)
3212 {
3213 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3214 }
3215
skb_free_frag(void * addr)3216 static inline void skb_free_frag(void *addr)
3217 {
3218 page_frag_free(addr);
3219 }
3220
3221 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3222
napi_alloc_frag(unsigned int fragsz)3223 static inline void *napi_alloc_frag(unsigned int fragsz)
3224 {
3225 return __napi_alloc_frag_align(fragsz, ~0u);
3226 }
3227
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3228 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3229 unsigned int align)
3230 {
3231 WARN_ON_ONCE(!is_power_of_2(align));
3232 return __napi_alloc_frag_align(fragsz, -align);
3233 }
3234
3235 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3236 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)3237 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3238 unsigned int length)
3239 {
3240 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3241 }
3242 void napi_consume_skb(struct sk_buff *skb, int budget);
3243
3244 void napi_skb_free_stolen_head(struct sk_buff *skb);
3245 void __kfree_skb_defer(struct sk_buff *skb);
3246
3247 /**
3248 * __dev_alloc_pages - allocate page for network Rx
3249 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3250 * @order: size of the allocation
3251 *
3252 * Allocate a new page.
3253 *
3254 * %NULL is returned if there is no free memory.
3255 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)3256 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3257 unsigned int order)
3258 {
3259 /* This piece of code contains several assumptions.
3260 * 1. This is for device Rx, therefor a cold page is preferred.
3261 * 2. The expectation is the user wants a compound page.
3262 * 3. If requesting a order 0 page it will not be compound
3263 * due to the check to see if order has a value in prep_new_page
3264 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3265 * code in gfp_to_alloc_flags that should be enforcing this.
3266 */
3267 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3268
3269 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3270 }
3271
dev_alloc_pages(unsigned int order)3272 static inline struct page *dev_alloc_pages(unsigned int order)
3273 {
3274 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3275 }
3276
3277 /**
3278 * __dev_alloc_page - allocate a page for network Rx
3279 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3280 *
3281 * Allocate a new page.
3282 *
3283 * %NULL is returned if there is no free memory.
3284 */
__dev_alloc_page(gfp_t gfp_mask)3285 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3286 {
3287 return __dev_alloc_pages(gfp_mask, 0);
3288 }
3289
dev_alloc_page(void)3290 static inline struct page *dev_alloc_page(void)
3291 {
3292 return dev_alloc_pages(0);
3293 }
3294
3295 /**
3296 * dev_page_is_reusable - check whether a page can be reused for network Rx
3297 * @page: the page to test
3298 *
3299 * A page shouldn't be considered for reusing/recycling if it was allocated
3300 * under memory pressure or at a distant memory node.
3301 *
3302 * Returns false if this page should be returned to page allocator, true
3303 * otherwise.
3304 */
dev_page_is_reusable(const struct page * page)3305 static inline bool dev_page_is_reusable(const struct page *page)
3306 {
3307 return likely(page_to_nid(page) == numa_mem_id() &&
3308 !page_is_pfmemalloc(page));
3309 }
3310
3311 /**
3312 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3313 * @page: The page that was allocated from skb_alloc_page
3314 * @skb: The skb that may need pfmemalloc set
3315 */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3316 static inline void skb_propagate_pfmemalloc(const struct page *page,
3317 struct sk_buff *skb)
3318 {
3319 if (page_is_pfmemalloc(page))
3320 skb->pfmemalloc = true;
3321 }
3322
3323 /**
3324 * skb_frag_off() - Returns the offset of a skb fragment
3325 * @frag: the paged fragment
3326 */
skb_frag_off(const skb_frag_t * frag)3327 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3328 {
3329 return frag->bv_offset;
3330 }
3331
3332 /**
3333 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3334 * @frag: skb fragment
3335 * @delta: value to add
3336 */
skb_frag_off_add(skb_frag_t * frag,int delta)3337 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3338 {
3339 frag->bv_offset += delta;
3340 }
3341
3342 /**
3343 * skb_frag_off_set() - Sets the offset of a skb fragment
3344 * @frag: skb fragment
3345 * @offset: offset of fragment
3346 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3347 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3348 {
3349 frag->bv_offset = offset;
3350 }
3351
3352 /**
3353 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3354 * @fragto: skb fragment where offset is set
3355 * @fragfrom: skb fragment offset is copied from
3356 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3357 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3358 const skb_frag_t *fragfrom)
3359 {
3360 fragto->bv_offset = fragfrom->bv_offset;
3361 }
3362
3363 /**
3364 * skb_frag_page - retrieve the page referred to by a paged fragment
3365 * @frag: the paged fragment
3366 *
3367 * Returns the &struct page associated with @frag.
3368 */
skb_frag_page(const skb_frag_t * frag)3369 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3370 {
3371 return frag->bv_page;
3372 }
3373
3374 /**
3375 * __skb_frag_ref - take an addition reference on a paged fragment.
3376 * @frag: the paged fragment
3377 *
3378 * Takes an additional reference on the paged fragment @frag.
3379 */
__skb_frag_ref(skb_frag_t * frag)3380 static inline void __skb_frag_ref(skb_frag_t *frag)
3381 {
3382 get_page(skb_frag_page(frag));
3383 }
3384
3385 /**
3386 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3387 * @skb: the buffer
3388 * @f: the fragment offset.
3389 *
3390 * Takes an additional reference on the @f'th paged fragment of @skb.
3391 */
skb_frag_ref(struct sk_buff * skb,int f)3392 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3393 {
3394 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3395 }
3396
3397 /**
3398 * __skb_frag_unref - release a reference on a paged fragment.
3399 * @frag: the paged fragment
3400 * @recycle: recycle the page if allocated via page_pool
3401 *
3402 * Releases a reference on the paged fragment @frag
3403 * or recycles the page via the page_pool API.
3404 */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3405 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3406 {
3407 struct page *page = skb_frag_page(frag);
3408
3409 #ifdef CONFIG_PAGE_POOL
3410 if (recycle && page_pool_return_skb_page(page))
3411 return;
3412 #endif
3413 put_page(page);
3414 }
3415
3416 /**
3417 * skb_frag_unref - release a reference on a paged fragment of an skb.
3418 * @skb: the buffer
3419 * @f: the fragment offset
3420 *
3421 * Releases a reference on the @f'th paged fragment of @skb.
3422 */
skb_frag_unref(struct sk_buff * skb,int f)3423 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3424 {
3425 struct skb_shared_info *shinfo = skb_shinfo(skb);
3426
3427 if (!skb_zcopy_managed(skb))
3428 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3429 }
3430
3431 /**
3432 * skb_frag_address - gets the address of the data contained in a paged fragment
3433 * @frag: the paged fragment buffer
3434 *
3435 * Returns the address of the data within @frag. The page must already
3436 * be mapped.
3437 */
skb_frag_address(const skb_frag_t * frag)3438 static inline void *skb_frag_address(const skb_frag_t *frag)
3439 {
3440 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3441 }
3442
3443 /**
3444 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3445 * @frag: the paged fragment buffer
3446 *
3447 * Returns the address of the data within @frag. Checks that the page
3448 * is mapped and returns %NULL otherwise.
3449 */
skb_frag_address_safe(const skb_frag_t * frag)3450 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3451 {
3452 void *ptr = page_address(skb_frag_page(frag));
3453 if (unlikely(!ptr))
3454 return NULL;
3455
3456 return ptr + skb_frag_off(frag);
3457 }
3458
3459 /**
3460 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3461 * @fragto: skb fragment where page is set
3462 * @fragfrom: skb fragment page is copied from
3463 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3464 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3465 const skb_frag_t *fragfrom)
3466 {
3467 fragto->bv_page = fragfrom->bv_page;
3468 }
3469
3470 /**
3471 * __skb_frag_set_page - sets the page contained in a paged fragment
3472 * @frag: the paged fragment
3473 * @page: the page to set
3474 *
3475 * Sets the fragment @frag to contain @page.
3476 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3477 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3478 {
3479 frag->bv_page = page;
3480 }
3481
3482 /**
3483 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3484 * @skb: the buffer
3485 * @f: the fragment offset
3486 * @page: the page to set
3487 *
3488 * Sets the @f'th fragment of @skb to contain @page.
3489 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3490 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3491 struct page *page)
3492 {
3493 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3494 }
3495
3496 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3497
3498 /**
3499 * skb_frag_dma_map - maps a paged fragment via the DMA API
3500 * @dev: the device to map the fragment to
3501 * @frag: the paged fragment to map
3502 * @offset: the offset within the fragment (starting at the
3503 * fragment's own offset)
3504 * @size: the number of bytes to map
3505 * @dir: the direction of the mapping (``PCI_DMA_*``)
3506 *
3507 * Maps the page associated with @frag to @device.
3508 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3509 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3510 const skb_frag_t *frag,
3511 size_t offset, size_t size,
3512 enum dma_data_direction dir)
3513 {
3514 return dma_map_page(dev, skb_frag_page(frag),
3515 skb_frag_off(frag) + offset, size, dir);
3516 }
3517
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3518 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3519 gfp_t gfp_mask)
3520 {
3521 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3522 }
3523
3524
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3525 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3526 gfp_t gfp_mask)
3527 {
3528 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3529 }
3530
3531
3532 /**
3533 * skb_clone_writable - is the header of a clone writable
3534 * @skb: buffer to check
3535 * @len: length up to which to write
3536 *
3537 * Returns true if modifying the header part of the cloned buffer
3538 * does not requires the data to be copied.
3539 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3540 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3541 {
3542 return !skb_header_cloned(skb) &&
3543 skb_headroom(skb) + len <= skb->hdr_len;
3544 }
3545
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3546 static inline int skb_try_make_writable(struct sk_buff *skb,
3547 unsigned int write_len)
3548 {
3549 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3550 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3551 }
3552
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3553 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3554 int cloned)
3555 {
3556 int delta = 0;
3557
3558 if (headroom > skb_headroom(skb))
3559 delta = headroom - skb_headroom(skb);
3560
3561 if (delta || cloned)
3562 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3563 GFP_ATOMIC);
3564 return 0;
3565 }
3566
3567 /**
3568 * skb_cow - copy header of skb when it is required
3569 * @skb: buffer to cow
3570 * @headroom: needed headroom
3571 *
3572 * If the skb passed lacks sufficient headroom or its data part
3573 * is shared, data is reallocated. If reallocation fails, an error
3574 * is returned and original skb is not changed.
3575 *
3576 * The result is skb with writable area skb->head...skb->tail
3577 * and at least @headroom of space at head.
3578 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3579 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3580 {
3581 return __skb_cow(skb, headroom, skb_cloned(skb));
3582 }
3583
3584 /**
3585 * skb_cow_head - skb_cow but only making the head writable
3586 * @skb: buffer to cow
3587 * @headroom: needed headroom
3588 *
3589 * This function is identical to skb_cow except that we replace the
3590 * skb_cloned check by skb_header_cloned. It should be used when
3591 * you only need to push on some header and do not need to modify
3592 * the data.
3593 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3594 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3595 {
3596 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3597 }
3598
3599 /**
3600 * skb_padto - pad an skbuff up to a minimal size
3601 * @skb: buffer to pad
3602 * @len: minimal length
3603 *
3604 * Pads up a buffer to ensure the trailing bytes exist and are
3605 * blanked. If the buffer already contains sufficient data it
3606 * is untouched. Otherwise it is extended. Returns zero on
3607 * success. The skb is freed on error.
3608 */
skb_padto(struct sk_buff * skb,unsigned int len)3609 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3610 {
3611 unsigned int size = skb->len;
3612 if (likely(size >= len))
3613 return 0;
3614 return skb_pad(skb, len - size);
3615 }
3616
3617 /**
3618 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3619 * @skb: buffer to pad
3620 * @len: minimal length
3621 * @free_on_error: free buffer on error
3622 *
3623 * Pads up a buffer to ensure the trailing bytes exist and are
3624 * blanked. If the buffer already contains sufficient data it
3625 * is untouched. Otherwise it is extended. Returns zero on
3626 * success. The skb is freed on error if @free_on_error is true.
3627 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3628 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3629 unsigned int len,
3630 bool free_on_error)
3631 {
3632 unsigned int size = skb->len;
3633
3634 if (unlikely(size < len)) {
3635 len -= size;
3636 if (__skb_pad(skb, len, free_on_error))
3637 return -ENOMEM;
3638 __skb_put(skb, len);
3639 }
3640 return 0;
3641 }
3642
3643 /**
3644 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3645 * @skb: buffer to pad
3646 * @len: minimal length
3647 *
3648 * Pads up a buffer to ensure the trailing bytes exist and are
3649 * blanked. If the buffer already contains sufficient data it
3650 * is untouched. Otherwise it is extended. Returns zero on
3651 * success. The skb is freed on error.
3652 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3653 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3654 {
3655 return __skb_put_padto(skb, len, true);
3656 }
3657
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3658 static inline int skb_add_data(struct sk_buff *skb,
3659 struct iov_iter *from, int copy)
3660 {
3661 const int off = skb->len;
3662
3663 if (skb->ip_summed == CHECKSUM_NONE) {
3664 __wsum csum = 0;
3665 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3666 &csum, from)) {
3667 skb->csum = csum_block_add(skb->csum, csum, off);
3668 return 0;
3669 }
3670 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3671 return 0;
3672
3673 __skb_trim(skb, off);
3674 return -EFAULT;
3675 }
3676
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3677 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3678 const struct page *page, int off)
3679 {
3680 if (skb_zcopy(skb))
3681 return false;
3682 if (i) {
3683 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3684
3685 return page == skb_frag_page(frag) &&
3686 off == skb_frag_off(frag) + skb_frag_size(frag);
3687 }
3688 return false;
3689 }
3690
__skb_linearize(struct sk_buff * skb)3691 static inline int __skb_linearize(struct sk_buff *skb)
3692 {
3693 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3694 }
3695
3696 /**
3697 * skb_linearize - convert paged skb to linear one
3698 * @skb: buffer to linarize
3699 *
3700 * If there is no free memory -ENOMEM is returned, otherwise zero
3701 * is returned and the old skb data released.
3702 */
skb_linearize(struct sk_buff * skb)3703 static inline int skb_linearize(struct sk_buff *skb)
3704 {
3705 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3706 }
3707
3708 /**
3709 * skb_has_shared_frag - can any frag be overwritten
3710 * @skb: buffer to test
3711 *
3712 * Return true if the skb has at least one frag that might be modified
3713 * by an external entity (as in vmsplice()/sendfile())
3714 */
skb_has_shared_frag(const struct sk_buff * skb)3715 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3716 {
3717 return skb_is_nonlinear(skb) &&
3718 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3719 }
3720
3721 /**
3722 * skb_linearize_cow - make sure skb is linear and writable
3723 * @skb: buffer to process
3724 *
3725 * If there is no free memory -ENOMEM is returned, otherwise zero
3726 * is returned and the old skb data released.
3727 */
skb_linearize_cow(struct sk_buff * skb)3728 static inline int skb_linearize_cow(struct sk_buff *skb)
3729 {
3730 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3731 __skb_linearize(skb) : 0;
3732 }
3733
3734 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3735 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3736 unsigned int off)
3737 {
3738 if (skb->ip_summed == CHECKSUM_COMPLETE)
3739 skb->csum = csum_block_sub(skb->csum,
3740 csum_partial(start, len, 0), off);
3741 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3742 skb_checksum_start_offset(skb) < 0)
3743 skb->ip_summed = CHECKSUM_NONE;
3744 }
3745
3746 /**
3747 * skb_postpull_rcsum - update checksum for received skb after pull
3748 * @skb: buffer to update
3749 * @start: start of data before pull
3750 * @len: length of data pulled
3751 *
3752 * After doing a pull on a received packet, you need to call this to
3753 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3754 * CHECKSUM_NONE so that it can be recomputed from scratch.
3755 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3756 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3757 const void *start, unsigned int len)
3758 {
3759 if (skb->ip_summed == CHECKSUM_COMPLETE)
3760 skb->csum = wsum_negate(csum_partial(start, len,
3761 wsum_negate(skb->csum)));
3762 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3763 skb_checksum_start_offset(skb) < 0)
3764 skb->ip_summed = CHECKSUM_NONE;
3765 }
3766
3767 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3768 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3769 unsigned int off)
3770 {
3771 if (skb->ip_summed == CHECKSUM_COMPLETE)
3772 skb->csum = csum_block_add(skb->csum,
3773 csum_partial(start, len, 0), off);
3774 }
3775
3776 /**
3777 * skb_postpush_rcsum - update checksum for received skb after push
3778 * @skb: buffer to update
3779 * @start: start of data after push
3780 * @len: length of data pushed
3781 *
3782 * After doing a push on a received packet, you need to call this to
3783 * update the CHECKSUM_COMPLETE checksum.
3784 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3785 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3786 const void *start, unsigned int len)
3787 {
3788 __skb_postpush_rcsum(skb, start, len, 0);
3789 }
3790
3791 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3792
3793 /**
3794 * skb_push_rcsum - push skb and update receive checksum
3795 * @skb: buffer to update
3796 * @len: length of data pulled
3797 *
3798 * This function performs an skb_push on the packet and updates
3799 * the CHECKSUM_COMPLETE checksum. It should be used on
3800 * receive path processing instead of skb_push unless you know
3801 * that the checksum difference is zero (e.g., a valid IP header)
3802 * or you are setting ip_summed to CHECKSUM_NONE.
3803 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3804 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3805 {
3806 skb_push(skb, len);
3807 skb_postpush_rcsum(skb, skb->data, len);
3808 return skb->data;
3809 }
3810
3811 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3812 /**
3813 * pskb_trim_rcsum - trim received skb and update checksum
3814 * @skb: buffer to trim
3815 * @len: new length
3816 *
3817 * This is exactly the same as pskb_trim except that it ensures the
3818 * checksum of received packets are still valid after the operation.
3819 * It can change skb pointers.
3820 */
3821
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3822 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3823 {
3824 if (likely(len >= skb->len))
3825 return 0;
3826 return pskb_trim_rcsum_slow(skb, len);
3827 }
3828
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3829 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3830 {
3831 if (skb->ip_summed == CHECKSUM_COMPLETE)
3832 skb->ip_summed = CHECKSUM_NONE;
3833 __skb_trim(skb, len);
3834 return 0;
3835 }
3836
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3837 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3838 {
3839 if (skb->ip_summed == CHECKSUM_COMPLETE)
3840 skb->ip_summed = CHECKSUM_NONE;
3841 return __skb_grow(skb, len);
3842 }
3843
3844 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3845 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3846 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3847 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3848 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3849
3850 #define skb_queue_walk(queue, skb) \
3851 for (skb = (queue)->next; \
3852 skb != (struct sk_buff *)(queue); \
3853 skb = skb->next)
3854
3855 #define skb_queue_walk_safe(queue, skb, tmp) \
3856 for (skb = (queue)->next, tmp = skb->next; \
3857 skb != (struct sk_buff *)(queue); \
3858 skb = tmp, tmp = skb->next)
3859
3860 #define skb_queue_walk_from(queue, skb) \
3861 for (; skb != (struct sk_buff *)(queue); \
3862 skb = skb->next)
3863
3864 #define skb_rbtree_walk(skb, root) \
3865 for (skb = skb_rb_first(root); skb != NULL; \
3866 skb = skb_rb_next(skb))
3867
3868 #define skb_rbtree_walk_from(skb) \
3869 for (; skb != NULL; \
3870 skb = skb_rb_next(skb))
3871
3872 #define skb_rbtree_walk_from_safe(skb, tmp) \
3873 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3874 skb = tmp)
3875
3876 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3877 for (tmp = skb->next; \
3878 skb != (struct sk_buff *)(queue); \
3879 skb = tmp, tmp = skb->next)
3880
3881 #define skb_queue_reverse_walk(queue, skb) \
3882 for (skb = (queue)->prev; \
3883 skb != (struct sk_buff *)(queue); \
3884 skb = skb->prev)
3885
3886 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3887 for (skb = (queue)->prev, tmp = skb->prev; \
3888 skb != (struct sk_buff *)(queue); \
3889 skb = tmp, tmp = skb->prev)
3890
3891 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3892 for (tmp = skb->prev; \
3893 skb != (struct sk_buff *)(queue); \
3894 skb = tmp, tmp = skb->prev)
3895
skb_has_frag_list(const struct sk_buff * skb)3896 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3897 {
3898 return skb_shinfo(skb)->frag_list != NULL;
3899 }
3900
skb_frag_list_init(struct sk_buff * skb)3901 static inline void skb_frag_list_init(struct sk_buff *skb)
3902 {
3903 skb_shinfo(skb)->frag_list = NULL;
3904 }
3905
3906 #define skb_walk_frags(skb, iter) \
3907 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3908
3909
3910 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3911 int *err, long *timeo_p,
3912 const struct sk_buff *skb);
3913 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3914 struct sk_buff_head *queue,
3915 unsigned int flags,
3916 int *off, int *err,
3917 struct sk_buff **last);
3918 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3919 struct sk_buff_head *queue,
3920 unsigned int flags, int *off, int *err,
3921 struct sk_buff **last);
3922 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3923 struct sk_buff_head *sk_queue,
3924 unsigned int flags, int *off, int *err);
3925 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3926 __poll_t datagram_poll(struct file *file, struct socket *sock,
3927 struct poll_table_struct *wait);
3928 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3929 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3930 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3931 struct msghdr *msg, int size)
3932 {
3933 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3934 }
3935 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3936 struct msghdr *msg);
3937 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3938 struct iov_iter *to, int len,
3939 struct ahash_request *hash);
3940 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3941 struct iov_iter *from, int len);
3942 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3943 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3944 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3945 static inline void skb_free_datagram_locked(struct sock *sk,
3946 struct sk_buff *skb)
3947 {
3948 __skb_free_datagram_locked(sk, skb, 0);
3949 }
3950 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3951 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3952 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3953 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3954 int len);
3955 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3956 struct pipe_inode_info *pipe, unsigned int len,
3957 unsigned int flags);
3958 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3959 int len);
3960 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3961 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3962 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3963 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3964 int len, int hlen);
3965 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3966 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3967 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3968 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3969 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3970 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3971 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3972 unsigned int offset);
3973 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3974 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3975 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3976 int skb_vlan_pop(struct sk_buff *skb);
3977 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3978 int skb_eth_pop(struct sk_buff *skb);
3979 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3980 const unsigned char *src);
3981 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3982 int mac_len, bool ethernet);
3983 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3984 bool ethernet);
3985 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3986 int skb_mpls_dec_ttl(struct sk_buff *skb);
3987 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3988 gfp_t gfp);
3989
memcpy_from_msg(void * data,struct msghdr * msg,int len)3990 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3991 {
3992 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3993 }
3994
memcpy_to_msg(struct msghdr * msg,void * data,int len)3995 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3996 {
3997 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3998 }
3999
4000 struct skb_checksum_ops {
4001 __wsum (*update)(const void *mem, int len, __wsum wsum);
4002 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4003 };
4004
4005 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4006
4007 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4008 __wsum csum, const struct skb_checksum_ops *ops);
4009 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4010 __wsum csum);
4011
4012 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4013 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4014 const void *data, int hlen, void *buffer)
4015 {
4016 if (likely(hlen - offset >= len))
4017 return (void *)data + offset;
4018
4019 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4020 return NULL;
4021
4022 return buffer;
4023 }
4024
4025 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4026 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4027 {
4028 return __skb_header_pointer(skb, offset, len, skb->data,
4029 skb_headlen(skb), buffer);
4030 }
4031
4032 /**
4033 * skb_needs_linearize - check if we need to linearize a given skb
4034 * depending on the given device features.
4035 * @skb: socket buffer to check
4036 * @features: net device features
4037 *
4038 * Returns true if either:
4039 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4040 * 2. skb is fragmented and the device does not support SG.
4041 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4042 static inline bool skb_needs_linearize(struct sk_buff *skb,
4043 netdev_features_t features)
4044 {
4045 return skb_is_nonlinear(skb) &&
4046 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4047 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4048 }
4049
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4050 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4051 void *to,
4052 const unsigned int len)
4053 {
4054 memcpy(to, skb->data, len);
4055 }
4056
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4057 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4058 const int offset, void *to,
4059 const unsigned int len)
4060 {
4061 memcpy(to, skb->data + offset, len);
4062 }
4063
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4064 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4065 const void *from,
4066 const unsigned int len)
4067 {
4068 memcpy(skb->data, from, len);
4069 }
4070
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4071 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4072 const int offset,
4073 const void *from,
4074 const unsigned int len)
4075 {
4076 memcpy(skb->data + offset, from, len);
4077 }
4078
4079 void skb_init(void);
4080
skb_get_ktime(const struct sk_buff * skb)4081 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4082 {
4083 return skb->tstamp;
4084 }
4085
4086 /**
4087 * skb_get_timestamp - get timestamp from a skb
4088 * @skb: skb to get stamp from
4089 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4090 *
4091 * Timestamps are stored in the skb as offsets to a base timestamp.
4092 * This function converts the offset back to a struct timeval and stores
4093 * it in stamp.
4094 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4095 static inline void skb_get_timestamp(const struct sk_buff *skb,
4096 struct __kernel_old_timeval *stamp)
4097 {
4098 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4099 }
4100
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4101 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4102 struct __kernel_sock_timeval *stamp)
4103 {
4104 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4105
4106 stamp->tv_sec = ts.tv_sec;
4107 stamp->tv_usec = ts.tv_nsec / 1000;
4108 }
4109
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4110 static inline void skb_get_timestampns(const struct sk_buff *skb,
4111 struct __kernel_old_timespec *stamp)
4112 {
4113 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4114
4115 stamp->tv_sec = ts.tv_sec;
4116 stamp->tv_nsec = ts.tv_nsec;
4117 }
4118
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4119 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4120 struct __kernel_timespec *stamp)
4121 {
4122 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4123
4124 stamp->tv_sec = ts.tv_sec;
4125 stamp->tv_nsec = ts.tv_nsec;
4126 }
4127
__net_timestamp(struct sk_buff * skb)4128 static inline void __net_timestamp(struct sk_buff *skb)
4129 {
4130 skb->tstamp = ktime_get_real();
4131 skb->mono_delivery_time = 0;
4132 }
4133
net_timedelta(ktime_t t)4134 static inline ktime_t net_timedelta(ktime_t t)
4135 {
4136 return ktime_sub(ktime_get_real(), t);
4137 }
4138
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,bool mono)4139 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4140 bool mono)
4141 {
4142 skb->tstamp = kt;
4143 skb->mono_delivery_time = kt && mono;
4144 }
4145
4146 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4147
4148 /* It is used in the ingress path to clear the delivery_time.
4149 * If needed, set the skb->tstamp to the (rcv) timestamp.
4150 */
skb_clear_delivery_time(struct sk_buff * skb)4151 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4152 {
4153 if (skb->mono_delivery_time) {
4154 skb->mono_delivery_time = 0;
4155 if (static_branch_unlikely(&netstamp_needed_key))
4156 skb->tstamp = ktime_get_real();
4157 else
4158 skb->tstamp = 0;
4159 }
4160 }
4161
skb_clear_tstamp(struct sk_buff * skb)4162 static inline void skb_clear_tstamp(struct sk_buff *skb)
4163 {
4164 if (skb->mono_delivery_time)
4165 return;
4166
4167 skb->tstamp = 0;
4168 }
4169
skb_tstamp(const struct sk_buff * skb)4170 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4171 {
4172 if (skb->mono_delivery_time)
4173 return 0;
4174
4175 return skb->tstamp;
4176 }
4177
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4178 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4179 {
4180 if (!skb->mono_delivery_time && skb->tstamp)
4181 return skb->tstamp;
4182
4183 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4184 return ktime_get_real();
4185
4186 return 0;
4187 }
4188
skb_metadata_len(const struct sk_buff * skb)4189 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4190 {
4191 return skb_shinfo(skb)->meta_len;
4192 }
4193
skb_metadata_end(const struct sk_buff * skb)4194 static inline void *skb_metadata_end(const struct sk_buff *skb)
4195 {
4196 return skb_mac_header(skb);
4197 }
4198
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4199 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4200 const struct sk_buff *skb_b,
4201 u8 meta_len)
4202 {
4203 const void *a = skb_metadata_end(skb_a);
4204 const void *b = skb_metadata_end(skb_b);
4205 /* Using more efficient varaiant than plain call to memcmp(). */
4206 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4207 u64 diffs = 0;
4208
4209 switch (meta_len) {
4210 #define __it(x, op) (x -= sizeof(u##op))
4211 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4212 case 32: diffs |= __it_diff(a, b, 64);
4213 fallthrough;
4214 case 24: diffs |= __it_diff(a, b, 64);
4215 fallthrough;
4216 case 16: diffs |= __it_diff(a, b, 64);
4217 fallthrough;
4218 case 8: diffs |= __it_diff(a, b, 64);
4219 break;
4220 case 28: diffs |= __it_diff(a, b, 64);
4221 fallthrough;
4222 case 20: diffs |= __it_diff(a, b, 64);
4223 fallthrough;
4224 case 12: diffs |= __it_diff(a, b, 64);
4225 fallthrough;
4226 case 4: diffs |= __it_diff(a, b, 32);
4227 break;
4228 }
4229 return diffs;
4230 #else
4231 return memcmp(a - meta_len, b - meta_len, meta_len);
4232 #endif
4233 }
4234
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4235 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4236 const struct sk_buff *skb_b)
4237 {
4238 u8 len_a = skb_metadata_len(skb_a);
4239 u8 len_b = skb_metadata_len(skb_b);
4240
4241 if (!(len_a | len_b))
4242 return false;
4243
4244 return len_a != len_b ?
4245 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4246 }
4247
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4248 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4249 {
4250 skb_shinfo(skb)->meta_len = meta_len;
4251 }
4252
skb_metadata_clear(struct sk_buff * skb)4253 static inline void skb_metadata_clear(struct sk_buff *skb)
4254 {
4255 skb_metadata_set(skb, 0);
4256 }
4257
4258 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4259
4260 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4261
4262 void skb_clone_tx_timestamp(struct sk_buff *skb);
4263 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4264
4265 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4266
skb_clone_tx_timestamp(struct sk_buff * skb)4267 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4268 {
4269 }
4270
skb_defer_rx_timestamp(struct sk_buff * skb)4271 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4272 {
4273 return false;
4274 }
4275
4276 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4277
4278 /**
4279 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4280 *
4281 * PHY drivers may accept clones of transmitted packets for
4282 * timestamping via their phy_driver.txtstamp method. These drivers
4283 * must call this function to return the skb back to the stack with a
4284 * timestamp.
4285 *
4286 * @skb: clone of the original outgoing packet
4287 * @hwtstamps: hardware time stamps
4288 *
4289 */
4290 void skb_complete_tx_timestamp(struct sk_buff *skb,
4291 struct skb_shared_hwtstamps *hwtstamps);
4292
4293 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4294 struct skb_shared_hwtstamps *hwtstamps,
4295 struct sock *sk, int tstype);
4296
4297 /**
4298 * skb_tstamp_tx - queue clone of skb with send time stamps
4299 * @orig_skb: the original outgoing packet
4300 * @hwtstamps: hardware time stamps, may be NULL if not available
4301 *
4302 * If the skb has a socket associated, then this function clones the
4303 * skb (thus sharing the actual data and optional structures), stores
4304 * the optional hardware time stamping information (if non NULL) or
4305 * generates a software time stamp (otherwise), then queues the clone
4306 * to the error queue of the socket. Errors are silently ignored.
4307 */
4308 void skb_tstamp_tx(struct sk_buff *orig_skb,
4309 struct skb_shared_hwtstamps *hwtstamps);
4310
4311 /**
4312 * skb_tx_timestamp() - Driver hook for transmit timestamping
4313 *
4314 * Ethernet MAC Drivers should call this function in their hard_xmit()
4315 * function immediately before giving the sk_buff to the MAC hardware.
4316 *
4317 * Specifically, one should make absolutely sure that this function is
4318 * called before TX completion of this packet can trigger. Otherwise
4319 * the packet could potentially already be freed.
4320 *
4321 * @skb: A socket buffer.
4322 */
skb_tx_timestamp(struct sk_buff * skb)4323 static inline void skb_tx_timestamp(struct sk_buff *skb)
4324 {
4325 skb_clone_tx_timestamp(skb);
4326 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4327 skb_tstamp_tx(skb, NULL);
4328 }
4329
4330 /**
4331 * skb_complete_wifi_ack - deliver skb with wifi status
4332 *
4333 * @skb: the original outgoing packet
4334 * @acked: ack status
4335 *
4336 */
4337 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4338
4339 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4340 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4341
skb_csum_unnecessary(const struct sk_buff * skb)4342 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4343 {
4344 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4345 skb->csum_valid ||
4346 (skb->ip_summed == CHECKSUM_PARTIAL &&
4347 skb_checksum_start_offset(skb) >= 0));
4348 }
4349
4350 /**
4351 * skb_checksum_complete - Calculate checksum of an entire packet
4352 * @skb: packet to process
4353 *
4354 * This function calculates the checksum over the entire packet plus
4355 * the value of skb->csum. The latter can be used to supply the
4356 * checksum of a pseudo header as used by TCP/UDP. It returns the
4357 * checksum.
4358 *
4359 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4360 * this function can be used to verify that checksum on received
4361 * packets. In that case the function should return zero if the
4362 * checksum is correct. In particular, this function will return zero
4363 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4364 * hardware has already verified the correctness of the checksum.
4365 */
skb_checksum_complete(struct sk_buff * skb)4366 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4367 {
4368 return skb_csum_unnecessary(skb) ?
4369 0 : __skb_checksum_complete(skb);
4370 }
4371
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4372 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4373 {
4374 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4375 if (skb->csum_level == 0)
4376 skb->ip_summed = CHECKSUM_NONE;
4377 else
4378 skb->csum_level--;
4379 }
4380 }
4381
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4382 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4383 {
4384 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4385 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4386 skb->csum_level++;
4387 } else if (skb->ip_summed == CHECKSUM_NONE) {
4388 skb->ip_summed = CHECKSUM_UNNECESSARY;
4389 skb->csum_level = 0;
4390 }
4391 }
4392
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4393 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4394 {
4395 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4396 skb->ip_summed = CHECKSUM_NONE;
4397 skb->csum_level = 0;
4398 }
4399 }
4400
4401 /* Check if we need to perform checksum complete validation.
4402 *
4403 * Returns true if checksum complete is needed, false otherwise
4404 * (either checksum is unnecessary or zero checksum is allowed).
4405 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4406 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4407 bool zero_okay,
4408 __sum16 check)
4409 {
4410 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4411 skb->csum_valid = 1;
4412 __skb_decr_checksum_unnecessary(skb);
4413 return false;
4414 }
4415
4416 return true;
4417 }
4418
4419 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4420 * in checksum_init.
4421 */
4422 #define CHECKSUM_BREAK 76
4423
4424 /* Unset checksum-complete
4425 *
4426 * Unset checksum complete can be done when packet is being modified
4427 * (uncompressed for instance) and checksum-complete value is
4428 * invalidated.
4429 */
skb_checksum_complete_unset(struct sk_buff * skb)4430 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4431 {
4432 if (skb->ip_summed == CHECKSUM_COMPLETE)
4433 skb->ip_summed = CHECKSUM_NONE;
4434 }
4435
4436 /* Validate (init) checksum based on checksum complete.
4437 *
4438 * Return values:
4439 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4440 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4441 * checksum is stored in skb->csum for use in __skb_checksum_complete
4442 * non-zero: value of invalid checksum
4443 *
4444 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4445 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4446 bool complete,
4447 __wsum psum)
4448 {
4449 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4450 if (!csum_fold(csum_add(psum, skb->csum))) {
4451 skb->csum_valid = 1;
4452 return 0;
4453 }
4454 }
4455
4456 skb->csum = psum;
4457
4458 if (complete || skb->len <= CHECKSUM_BREAK) {
4459 __sum16 csum;
4460
4461 csum = __skb_checksum_complete(skb);
4462 skb->csum_valid = !csum;
4463 return csum;
4464 }
4465
4466 return 0;
4467 }
4468
null_compute_pseudo(struct sk_buff * skb,int proto)4469 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4470 {
4471 return 0;
4472 }
4473
4474 /* Perform checksum validate (init). Note that this is a macro since we only
4475 * want to calculate the pseudo header which is an input function if necessary.
4476 * First we try to validate without any computation (checksum unnecessary) and
4477 * then calculate based on checksum complete calling the function to compute
4478 * pseudo header.
4479 *
4480 * Return values:
4481 * 0: checksum is validated or try to in skb_checksum_complete
4482 * non-zero: value of invalid checksum
4483 */
4484 #define __skb_checksum_validate(skb, proto, complete, \
4485 zero_okay, check, compute_pseudo) \
4486 ({ \
4487 __sum16 __ret = 0; \
4488 skb->csum_valid = 0; \
4489 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4490 __ret = __skb_checksum_validate_complete(skb, \
4491 complete, compute_pseudo(skb, proto)); \
4492 __ret; \
4493 })
4494
4495 #define skb_checksum_init(skb, proto, compute_pseudo) \
4496 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4497
4498 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4499 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4500
4501 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4502 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4503
4504 #define skb_checksum_validate_zero_check(skb, proto, check, \
4505 compute_pseudo) \
4506 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4507
4508 #define skb_checksum_simple_validate(skb) \
4509 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4510
__skb_checksum_convert_check(struct sk_buff * skb)4511 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4512 {
4513 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4514 }
4515
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4516 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4517 {
4518 skb->csum = ~pseudo;
4519 skb->ip_summed = CHECKSUM_COMPLETE;
4520 }
4521
4522 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4523 do { \
4524 if (__skb_checksum_convert_check(skb)) \
4525 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4526 } while (0)
4527
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4528 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4529 u16 start, u16 offset)
4530 {
4531 skb->ip_summed = CHECKSUM_PARTIAL;
4532 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4533 skb->csum_offset = offset - start;
4534 }
4535
4536 /* Update skbuf and packet to reflect the remote checksum offload operation.
4537 * When called, ptr indicates the starting point for skb->csum when
4538 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4539 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4540 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4541 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4542 int start, int offset, bool nopartial)
4543 {
4544 __wsum delta;
4545
4546 if (!nopartial) {
4547 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4548 return;
4549 }
4550
4551 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4552 __skb_checksum_complete(skb);
4553 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4554 }
4555
4556 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4557
4558 /* Adjust skb->csum since we changed the packet */
4559 skb->csum = csum_add(skb->csum, delta);
4560 }
4561
skb_nfct(const struct sk_buff * skb)4562 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4563 {
4564 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4565 return (void *)(skb->_nfct & NFCT_PTRMASK);
4566 #else
4567 return NULL;
4568 #endif
4569 }
4570
skb_get_nfct(const struct sk_buff * skb)4571 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4572 {
4573 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4574 return skb->_nfct;
4575 #else
4576 return 0UL;
4577 #endif
4578 }
4579
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4580 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4581 {
4582 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4583 skb->slow_gro |= !!nfct;
4584 skb->_nfct = nfct;
4585 #endif
4586 }
4587
4588 #ifdef CONFIG_SKB_EXTENSIONS
4589 enum skb_ext_id {
4590 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4591 SKB_EXT_BRIDGE_NF,
4592 #endif
4593 #ifdef CONFIG_XFRM
4594 SKB_EXT_SEC_PATH,
4595 #endif
4596 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4597 TC_SKB_EXT,
4598 #endif
4599 #if IS_ENABLED(CONFIG_MPTCP)
4600 SKB_EXT_MPTCP,
4601 #endif
4602 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4603 SKB_EXT_MCTP,
4604 #endif
4605 SKB_EXT_NUM, /* must be last */
4606 };
4607
4608 /**
4609 * struct skb_ext - sk_buff extensions
4610 * @refcnt: 1 on allocation, deallocated on 0
4611 * @offset: offset to add to @data to obtain extension address
4612 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4613 * @data: start of extension data, variable sized
4614 *
4615 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4616 * to use 'u8' types while allowing up to 2kb worth of extension data.
4617 */
4618 struct skb_ext {
4619 refcount_t refcnt;
4620 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4621 u8 chunks; /* same */
4622 char data[] __aligned(8);
4623 };
4624
4625 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4626 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4627 struct skb_ext *ext);
4628 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4629 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4630 void __skb_ext_put(struct skb_ext *ext);
4631
skb_ext_put(struct sk_buff * skb)4632 static inline void skb_ext_put(struct sk_buff *skb)
4633 {
4634 if (skb->active_extensions)
4635 __skb_ext_put(skb->extensions);
4636 }
4637
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4638 static inline void __skb_ext_copy(struct sk_buff *dst,
4639 const struct sk_buff *src)
4640 {
4641 dst->active_extensions = src->active_extensions;
4642
4643 if (src->active_extensions) {
4644 struct skb_ext *ext = src->extensions;
4645
4646 refcount_inc(&ext->refcnt);
4647 dst->extensions = ext;
4648 }
4649 }
4650
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4651 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4652 {
4653 skb_ext_put(dst);
4654 __skb_ext_copy(dst, src);
4655 }
4656
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4657 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4658 {
4659 return !!ext->offset[i];
4660 }
4661
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4662 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4663 {
4664 return skb->active_extensions & (1 << id);
4665 }
4666
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4667 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4668 {
4669 if (skb_ext_exist(skb, id))
4670 __skb_ext_del(skb, id);
4671 }
4672
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4673 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4674 {
4675 if (skb_ext_exist(skb, id)) {
4676 struct skb_ext *ext = skb->extensions;
4677
4678 return (void *)ext + (ext->offset[id] << 3);
4679 }
4680
4681 return NULL;
4682 }
4683
skb_ext_reset(struct sk_buff * skb)4684 static inline void skb_ext_reset(struct sk_buff *skb)
4685 {
4686 if (unlikely(skb->active_extensions)) {
4687 __skb_ext_put(skb->extensions);
4688 skb->active_extensions = 0;
4689 }
4690 }
4691
skb_has_extensions(struct sk_buff * skb)4692 static inline bool skb_has_extensions(struct sk_buff *skb)
4693 {
4694 return unlikely(skb->active_extensions);
4695 }
4696 #else
skb_ext_put(struct sk_buff * skb)4697 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4698 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4699 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4700 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4701 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4702 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4703 #endif /* CONFIG_SKB_EXTENSIONS */
4704
nf_reset_ct(struct sk_buff * skb)4705 static inline void nf_reset_ct(struct sk_buff *skb)
4706 {
4707 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4708 nf_conntrack_put(skb_nfct(skb));
4709 skb->_nfct = 0;
4710 #endif
4711 }
4712
nf_reset_trace(struct sk_buff * skb)4713 static inline void nf_reset_trace(struct sk_buff *skb)
4714 {
4715 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4716 skb->nf_trace = 0;
4717 #endif
4718 }
4719
ipvs_reset(struct sk_buff * skb)4720 static inline void ipvs_reset(struct sk_buff *skb)
4721 {
4722 #if IS_ENABLED(CONFIG_IP_VS)
4723 skb->ipvs_property = 0;
4724 #endif
4725 }
4726
4727 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4728 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4729 bool copy)
4730 {
4731 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4732 dst->_nfct = src->_nfct;
4733 nf_conntrack_get(skb_nfct(src));
4734 #endif
4735 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4736 if (copy)
4737 dst->nf_trace = src->nf_trace;
4738 #endif
4739 }
4740
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4741 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4742 {
4743 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4744 nf_conntrack_put(skb_nfct(dst));
4745 #endif
4746 dst->slow_gro = src->slow_gro;
4747 __nf_copy(dst, src, true);
4748 }
4749
4750 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4751 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4752 {
4753 to->secmark = from->secmark;
4754 }
4755
skb_init_secmark(struct sk_buff * skb)4756 static inline void skb_init_secmark(struct sk_buff *skb)
4757 {
4758 skb->secmark = 0;
4759 }
4760 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4761 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4762 { }
4763
skb_init_secmark(struct sk_buff * skb)4764 static inline void skb_init_secmark(struct sk_buff *skb)
4765 { }
4766 #endif
4767
secpath_exists(const struct sk_buff * skb)4768 static inline int secpath_exists(const struct sk_buff *skb)
4769 {
4770 #ifdef CONFIG_XFRM
4771 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4772 #else
4773 return 0;
4774 #endif
4775 }
4776
skb_irq_freeable(const struct sk_buff * skb)4777 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4778 {
4779 return !skb->destructor &&
4780 !secpath_exists(skb) &&
4781 !skb_nfct(skb) &&
4782 !skb->_skb_refdst &&
4783 !skb_has_frag_list(skb);
4784 }
4785
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4786 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4787 {
4788 skb->queue_mapping = queue_mapping;
4789 }
4790
skb_get_queue_mapping(const struct sk_buff * skb)4791 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4792 {
4793 return skb->queue_mapping;
4794 }
4795
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4796 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4797 {
4798 to->queue_mapping = from->queue_mapping;
4799 }
4800
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4801 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4802 {
4803 skb->queue_mapping = rx_queue + 1;
4804 }
4805
skb_get_rx_queue(const struct sk_buff * skb)4806 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4807 {
4808 return skb->queue_mapping - 1;
4809 }
4810
skb_rx_queue_recorded(const struct sk_buff * skb)4811 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4812 {
4813 return skb->queue_mapping != 0;
4814 }
4815
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4816 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4817 {
4818 skb->dst_pending_confirm = val;
4819 }
4820
skb_get_dst_pending_confirm(const struct sk_buff * skb)4821 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4822 {
4823 return skb->dst_pending_confirm != 0;
4824 }
4825
skb_sec_path(const struct sk_buff * skb)4826 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4827 {
4828 #ifdef CONFIG_XFRM
4829 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4830 #else
4831 return NULL;
4832 #endif
4833 }
4834
4835 /* Keeps track of mac header offset relative to skb->head.
4836 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4837 * For non-tunnel skb it points to skb_mac_header() and for
4838 * tunnel skb it points to outer mac header.
4839 * Keeps track of level of encapsulation of network headers.
4840 */
4841 struct skb_gso_cb {
4842 union {
4843 int mac_offset;
4844 int data_offset;
4845 };
4846 int encap_level;
4847 __wsum csum;
4848 __u16 csum_start;
4849 };
4850 #define SKB_GSO_CB_OFFSET 32
4851 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4852
skb_tnl_header_len(const struct sk_buff * inner_skb)4853 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4854 {
4855 return (skb_mac_header(inner_skb) - inner_skb->head) -
4856 SKB_GSO_CB(inner_skb)->mac_offset;
4857 }
4858
gso_pskb_expand_head(struct sk_buff * skb,int extra)4859 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4860 {
4861 int new_headroom, headroom;
4862 int ret;
4863
4864 headroom = skb_headroom(skb);
4865 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4866 if (ret)
4867 return ret;
4868
4869 new_headroom = skb_headroom(skb);
4870 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4871 return 0;
4872 }
4873
gso_reset_checksum(struct sk_buff * skb,__wsum res)4874 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4875 {
4876 /* Do not update partial checksums if remote checksum is enabled. */
4877 if (skb->remcsum_offload)
4878 return;
4879
4880 SKB_GSO_CB(skb)->csum = res;
4881 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4882 }
4883
4884 /* Compute the checksum for a gso segment. First compute the checksum value
4885 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4886 * then add in skb->csum (checksum from csum_start to end of packet).
4887 * skb->csum and csum_start are then updated to reflect the checksum of the
4888 * resultant packet starting from the transport header-- the resultant checksum
4889 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4890 * header.
4891 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4892 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4893 {
4894 unsigned char *csum_start = skb_transport_header(skb);
4895 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4896 __wsum partial = SKB_GSO_CB(skb)->csum;
4897
4898 SKB_GSO_CB(skb)->csum = res;
4899 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4900
4901 return csum_fold(csum_partial(csum_start, plen, partial));
4902 }
4903
skb_is_gso(const struct sk_buff * skb)4904 static inline bool skb_is_gso(const struct sk_buff *skb)
4905 {
4906 return skb_shinfo(skb)->gso_size;
4907 }
4908
4909 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4910 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4911 {
4912 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4913 }
4914
4915 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4916 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4917 {
4918 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4919 }
4920
4921 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4922 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4923 {
4924 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4925 }
4926
skb_gso_reset(struct sk_buff * skb)4927 static inline void skb_gso_reset(struct sk_buff *skb)
4928 {
4929 skb_shinfo(skb)->gso_size = 0;
4930 skb_shinfo(skb)->gso_segs = 0;
4931 skb_shinfo(skb)->gso_type = 0;
4932 }
4933
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4934 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4935 u16 increment)
4936 {
4937 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4938 return;
4939 shinfo->gso_size += increment;
4940 }
4941
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4942 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4943 u16 decrement)
4944 {
4945 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4946 return;
4947 shinfo->gso_size -= decrement;
4948 }
4949
4950 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4951
skb_warn_if_lro(const struct sk_buff * skb)4952 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4953 {
4954 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4955 * wanted then gso_type will be set. */
4956 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4957
4958 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4959 unlikely(shinfo->gso_type == 0)) {
4960 __skb_warn_lro_forwarding(skb);
4961 return true;
4962 }
4963 return false;
4964 }
4965
skb_forward_csum(struct sk_buff * skb)4966 static inline void skb_forward_csum(struct sk_buff *skb)
4967 {
4968 /* Unfortunately we don't support this one. Any brave souls? */
4969 if (skb->ip_summed == CHECKSUM_COMPLETE)
4970 skb->ip_summed = CHECKSUM_NONE;
4971 }
4972
4973 /**
4974 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4975 * @skb: skb to check
4976 *
4977 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4978 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4979 * use this helper, to document places where we make this assertion.
4980 */
skb_checksum_none_assert(const struct sk_buff * skb)4981 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4982 {
4983 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4984 }
4985
4986 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4987
4988 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4989 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4990 unsigned int transport_len,
4991 __sum16(*skb_chkf)(struct sk_buff *skb));
4992
4993 /**
4994 * skb_head_is_locked - Determine if the skb->head is locked down
4995 * @skb: skb to check
4996 *
4997 * The head on skbs build around a head frag can be removed if they are
4998 * not cloned. This function returns true if the skb head is locked down
4999 * due to either being allocated via kmalloc, or by being a clone with
5000 * multiple references to the head.
5001 */
skb_head_is_locked(const struct sk_buff * skb)5002 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5003 {
5004 return !skb->head_frag || skb_cloned(skb);
5005 }
5006
5007 /* Local Checksum Offload.
5008 * Compute outer checksum based on the assumption that the
5009 * inner checksum will be offloaded later.
5010 * See Documentation/networking/checksum-offloads.rst for
5011 * explanation of how this works.
5012 * Fill in outer checksum adjustment (e.g. with sum of outer
5013 * pseudo-header) before calling.
5014 * Also ensure that inner checksum is in linear data area.
5015 */
lco_csum(struct sk_buff * skb)5016 static inline __wsum lco_csum(struct sk_buff *skb)
5017 {
5018 unsigned char *csum_start = skb_checksum_start(skb);
5019 unsigned char *l4_hdr = skb_transport_header(skb);
5020 __wsum partial;
5021
5022 /* Start with complement of inner checksum adjustment */
5023 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5024 skb->csum_offset));
5025
5026 /* Add in checksum of our headers (incl. outer checksum
5027 * adjustment filled in by caller) and return result.
5028 */
5029 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5030 }
5031
skb_is_redirected(const struct sk_buff * skb)5032 static inline bool skb_is_redirected(const struct sk_buff *skb)
5033 {
5034 return skb->redirected;
5035 }
5036
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5037 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5038 {
5039 skb->redirected = 1;
5040 #ifdef CONFIG_NET_REDIRECT
5041 skb->from_ingress = from_ingress;
5042 if (skb->from_ingress)
5043 skb_clear_tstamp(skb);
5044 #endif
5045 }
5046
skb_reset_redirect(struct sk_buff * skb)5047 static inline void skb_reset_redirect(struct sk_buff *skb)
5048 {
5049 skb->redirected = 0;
5050 }
5051
skb_csum_is_sctp(struct sk_buff * skb)5052 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5053 {
5054 return skb->csum_not_inet;
5055 }
5056
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5057 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5058 const u64 kcov_handle)
5059 {
5060 #ifdef CONFIG_KCOV
5061 skb->kcov_handle = kcov_handle;
5062 #endif
5063 }
5064
skb_get_kcov_handle(struct sk_buff * skb)5065 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5066 {
5067 #ifdef CONFIG_KCOV
5068 return skb->kcov_handle;
5069 #else
5070 return 0;
5071 #endif
5072 }
5073
5074 #ifdef CONFIG_PAGE_POOL
skb_mark_for_recycle(struct sk_buff * skb)5075 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5076 {
5077 skb->pp_recycle = 1;
5078 }
5079 #endif
5080
5081 #endif /* __KERNEL__ */
5082 #endif /* _LINUX_SKBUFF_H */
5083