1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/pm.h>
18 #include <linux/bitops.h>
19 #include <linux/ctype.h>
20 #include <linux/slab.h>
21 #include <sound/core.h>
22 #include <sound/jack.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm_params.h>
25 #include <sound/soc.h>
26 #include <sound/soc-dpcm.h>
27 #include <sound/initval.h>
28
29 /**
30 * snd_soc_info_enum_double - enumerated double mixer info callback
31 * @kcontrol: mixer control
32 * @uinfo: control element information
33 *
34 * Callback to provide information about a double enumerated
35 * mixer control.
36 *
37 * Returns 0 for success.
38 */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)39 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
40 struct snd_ctl_elem_info *uinfo)
41 {
42 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
43
44 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
45 e->items, e->texts);
46 }
47 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
48
49 /**
50 * snd_soc_get_enum_double - enumerated double mixer get callback
51 * @kcontrol: mixer control
52 * @ucontrol: control element information
53 *
54 * Callback to get the value of a double enumerated mixer.
55 *
56 * Returns 0 for success.
57 */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)58 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
59 struct snd_ctl_elem_value *ucontrol)
60 {
61 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
62 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
63 unsigned int val, item;
64 unsigned int reg_val;
65
66 reg_val = snd_soc_component_read(component, e->reg);
67 val = (reg_val >> e->shift_l) & e->mask;
68 item = snd_soc_enum_val_to_item(e, val);
69 ucontrol->value.enumerated.item[0] = item;
70 if (e->shift_l != e->shift_r) {
71 val = (reg_val >> e->shift_r) & e->mask;
72 item = snd_soc_enum_val_to_item(e, val);
73 ucontrol->value.enumerated.item[1] = item;
74 }
75
76 return 0;
77 }
78 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
79
80 /**
81 * snd_soc_put_enum_double - enumerated double mixer put callback
82 * @kcontrol: mixer control
83 * @ucontrol: control element information
84 *
85 * Callback to set the value of a double enumerated mixer.
86 *
87 * Returns 0 for success.
88 */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)89 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
90 struct snd_ctl_elem_value *ucontrol)
91 {
92 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
93 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
94 unsigned int *item = ucontrol->value.enumerated.item;
95 unsigned int val;
96 unsigned int mask;
97
98 if (item[0] >= e->items)
99 return -EINVAL;
100 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
101 mask = e->mask << e->shift_l;
102 if (e->shift_l != e->shift_r) {
103 if (item[1] >= e->items)
104 return -EINVAL;
105 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
106 mask |= e->mask << e->shift_r;
107 }
108
109 return snd_soc_component_update_bits(component, e->reg, mask, val);
110 }
111 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
112
113 /**
114 * snd_soc_read_signed - Read a codec register and interpret as signed value
115 * @component: component
116 * @reg: Register to read
117 * @mask: Mask to use after shifting the register value
118 * @shift: Right shift of register value
119 * @sign_bit: Bit that describes if a number is negative or not.
120 * @signed_val: Pointer to where the read value should be stored
121 *
122 * This functions reads a codec register. The register value is shifted right
123 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
124 * the given registervalue into a signed integer if sign_bit is non-zero.
125 *
126 * Returns 0 on sucess, otherwise an error value
127 */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)128 static int snd_soc_read_signed(struct snd_soc_component *component,
129 unsigned int reg, unsigned int mask, unsigned int shift,
130 unsigned int sign_bit, int *signed_val)
131 {
132 int ret;
133 unsigned int val;
134
135 val = snd_soc_component_read(component, reg);
136 val = (val >> shift) & mask;
137
138 if (!sign_bit) {
139 *signed_val = val;
140 return 0;
141 }
142
143 /* non-negative number */
144 if (!(val & BIT(sign_bit))) {
145 *signed_val = val;
146 return 0;
147 }
148
149 ret = val;
150
151 /*
152 * The register most probably does not contain a full-sized int.
153 * Instead we have an arbitrary number of bits in a signed
154 * representation which has to be translated into a full-sized int.
155 * This is done by filling up all bits above the sign-bit.
156 */
157 ret |= ~((int)(BIT(sign_bit) - 1));
158
159 *signed_val = ret;
160
161 return 0;
162 }
163
164 /**
165 * snd_soc_info_volsw - single mixer info callback
166 * @kcontrol: mixer control
167 * @uinfo: control element information
168 *
169 * Callback to provide information about a single mixer control, or a double
170 * mixer control that spans 2 registers.
171 *
172 * Returns 0 for success.
173 */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)174 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
175 struct snd_ctl_elem_info *uinfo)
176 {
177 struct soc_mixer_control *mc =
178 (struct soc_mixer_control *)kcontrol->private_value;
179 const char *vol_string = NULL;
180 int max;
181
182 max = uinfo->value.integer.max = mc->max - mc->min;
183 if (mc->platform_max && mc->platform_max < max)
184 max = mc->platform_max;
185
186 if (max == 1) {
187 /* Even two value controls ending in Volume should always be integer */
188 vol_string = strstr(kcontrol->id.name, " Volume");
189 if (vol_string && !strcmp(vol_string, " Volume"))
190 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
191 else
192 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
193 } else {
194 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
195 }
196
197 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
198 uinfo->value.integer.min = 0;
199 uinfo->value.integer.max = max;
200
201 return 0;
202 }
203 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
204
205 /**
206 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
207 * @kcontrol: mixer control
208 * @uinfo: control element information
209 *
210 * Callback to provide information about a single mixer control, or a double
211 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
212 * have a range that represents both positive and negative values either side
213 * of zero but without a sign bit. min is the minimum register value, max is
214 * the number of steps.
215 *
216 * Returns 0 for success.
217 */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)218 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
219 struct snd_ctl_elem_info *uinfo)
220 {
221 struct soc_mixer_control *mc =
222 (struct soc_mixer_control *)kcontrol->private_value;
223 int max;
224
225 if (mc->platform_max)
226 max = mc->platform_max;
227 else
228 max = mc->max;
229
230 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
231 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
232 else
233 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
234
235 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
236 uinfo->value.integer.min = 0;
237 uinfo->value.integer.max = max;
238
239 return 0;
240 }
241 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
242
243 /**
244 * snd_soc_get_volsw - single mixer get callback
245 * @kcontrol: mixer control
246 * @ucontrol: control element information
247 *
248 * Callback to get the value of a single mixer control, or a double mixer
249 * control that spans 2 registers.
250 *
251 * Returns 0 for success.
252 */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)253 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
254 struct snd_ctl_elem_value *ucontrol)
255 {
256 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
257 struct soc_mixer_control *mc =
258 (struct soc_mixer_control *)kcontrol->private_value;
259 unsigned int reg = mc->reg;
260 unsigned int reg2 = mc->rreg;
261 unsigned int shift = mc->shift;
262 unsigned int rshift = mc->rshift;
263 int max = mc->max;
264 int min = mc->min;
265 int sign_bit = mc->sign_bit;
266 unsigned int mask = (1 << fls(max)) - 1;
267 unsigned int invert = mc->invert;
268 int val;
269 int ret;
270
271 if (sign_bit)
272 mask = BIT(sign_bit + 1) - 1;
273
274 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
275 if (ret)
276 return ret;
277
278 ucontrol->value.integer.value[0] = val - min;
279 if (invert)
280 ucontrol->value.integer.value[0] =
281 max - ucontrol->value.integer.value[0];
282
283 if (snd_soc_volsw_is_stereo(mc)) {
284 if (reg == reg2)
285 ret = snd_soc_read_signed(component, reg, mask, rshift,
286 sign_bit, &val);
287 else
288 ret = snd_soc_read_signed(component, reg2, mask, shift,
289 sign_bit, &val);
290 if (ret)
291 return ret;
292
293 ucontrol->value.integer.value[1] = val - min;
294 if (invert)
295 ucontrol->value.integer.value[1] =
296 max - ucontrol->value.integer.value[1];
297 }
298
299 return 0;
300 }
301 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
302
303 /**
304 * snd_soc_put_volsw - single mixer put callback
305 * @kcontrol: mixer control
306 * @ucontrol: control element information
307 *
308 * Callback to set the value of a single mixer control, or a double mixer
309 * control that spans 2 registers.
310 *
311 * Returns 0 for success.
312 */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)313 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
314 struct snd_ctl_elem_value *ucontrol)
315 {
316 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
317 struct soc_mixer_control *mc =
318 (struct soc_mixer_control *)kcontrol->private_value;
319 unsigned int reg = mc->reg;
320 unsigned int reg2 = mc->rreg;
321 unsigned int shift = mc->shift;
322 unsigned int rshift = mc->rshift;
323 int max = mc->max;
324 int min = mc->min;
325 unsigned int sign_bit = mc->sign_bit;
326 unsigned int mask = (1 << fls(max)) - 1;
327 unsigned int invert = mc->invert;
328 int err, ret;
329 bool type_2r = false;
330 unsigned int val2 = 0;
331 unsigned int val, val_mask;
332
333 if (sign_bit)
334 mask = BIT(sign_bit + 1) - 1;
335
336 if (ucontrol->value.integer.value[0] < 0)
337 return -EINVAL;
338 val = ucontrol->value.integer.value[0];
339 if (mc->platform_max && ((int)val + min) > mc->platform_max)
340 return -EINVAL;
341 if (val > max - min)
342 return -EINVAL;
343 val = (val + min) & mask;
344 if (invert)
345 val = max - val;
346 val_mask = mask << shift;
347 val = val << shift;
348 if (snd_soc_volsw_is_stereo(mc)) {
349 if (ucontrol->value.integer.value[1] < 0)
350 return -EINVAL;
351 val2 = ucontrol->value.integer.value[1];
352 if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
353 return -EINVAL;
354 if (val2 > max - min)
355 return -EINVAL;
356 val2 = (val2 + min) & mask;
357 if (invert)
358 val2 = max - val2;
359 if (reg == reg2) {
360 val_mask |= mask << rshift;
361 val |= val2 << rshift;
362 } else {
363 val2 = val2 << shift;
364 type_2r = true;
365 }
366 }
367 err = snd_soc_component_update_bits(component, reg, val_mask, val);
368 if (err < 0)
369 return err;
370 ret = err;
371
372 if (type_2r) {
373 err = snd_soc_component_update_bits(component, reg2, val_mask,
374 val2);
375 /* Don't discard any error code or drop change flag */
376 if (ret == 0 || err < 0) {
377 ret = err;
378 }
379 }
380
381 return ret;
382 }
383 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
384
385 /**
386 * snd_soc_get_volsw_sx - single mixer get callback
387 * @kcontrol: mixer control
388 * @ucontrol: control element information
389 *
390 * Callback to get the value of a single mixer control, or a double mixer
391 * control that spans 2 registers.
392 *
393 * Returns 0 for success.
394 */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)395 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
396 struct snd_ctl_elem_value *ucontrol)
397 {
398 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
399 struct soc_mixer_control *mc =
400 (struct soc_mixer_control *)kcontrol->private_value;
401 unsigned int reg = mc->reg;
402 unsigned int reg2 = mc->rreg;
403 unsigned int shift = mc->shift;
404 unsigned int rshift = mc->rshift;
405 int max = mc->max;
406 int min = mc->min;
407 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
408 unsigned int val;
409
410 val = snd_soc_component_read(component, reg);
411 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
412
413 if (snd_soc_volsw_is_stereo(mc)) {
414 val = snd_soc_component_read(component, reg2);
415 val = ((val >> rshift) - min) & mask;
416 ucontrol->value.integer.value[1] = val;
417 }
418
419 return 0;
420 }
421 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
422
423 /**
424 * snd_soc_put_volsw_sx - double mixer set callback
425 * @kcontrol: mixer control
426 * @ucontrol: control element information
427 *
428 * Callback to set the value of a double mixer control that spans 2 registers.
429 *
430 * Returns 0 for success.
431 */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)432 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
433 struct snd_ctl_elem_value *ucontrol)
434 {
435 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
436 struct soc_mixer_control *mc =
437 (struct soc_mixer_control *)kcontrol->private_value;
438
439 unsigned int reg = mc->reg;
440 unsigned int reg2 = mc->rreg;
441 unsigned int shift = mc->shift;
442 unsigned int rshift = mc->rshift;
443 int max = mc->max;
444 int min = mc->min;
445 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
446 int err = 0;
447 int ret;
448 unsigned int val, val_mask;
449
450 if (ucontrol->value.integer.value[0] < 0)
451 return -EINVAL;
452 val = ucontrol->value.integer.value[0];
453 if (mc->platform_max && val > mc->platform_max)
454 return -EINVAL;
455 if (val > max)
456 return -EINVAL;
457 val_mask = mask << shift;
458 val = (val + min) & mask;
459 val = val << shift;
460
461 err = snd_soc_component_update_bits(component, reg, val_mask, val);
462 if (err < 0)
463 return err;
464 ret = err;
465
466 if (snd_soc_volsw_is_stereo(mc)) {
467 unsigned int val2 = ucontrol->value.integer.value[1];
468
469 if (mc->platform_max && val2 > mc->platform_max)
470 return -EINVAL;
471 if (val2 > max)
472 return -EINVAL;
473
474 val_mask = mask << rshift;
475 val2 = (val2 + min) & mask;
476 val2 = val2 << rshift;
477
478 err = snd_soc_component_update_bits(component, reg2, val_mask,
479 val2);
480
481 /* Don't discard any error code or drop change flag */
482 if (ret == 0 || err < 0) {
483 ret = err;
484 }
485 }
486 return ret;
487 }
488 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
489
490 /**
491 * snd_soc_info_volsw_range - single mixer info callback with range.
492 * @kcontrol: mixer control
493 * @uinfo: control element information
494 *
495 * Callback to provide information, within a range, about a single
496 * mixer control.
497 *
498 * returns 0 for success.
499 */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)500 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
501 struct snd_ctl_elem_info *uinfo)
502 {
503 struct soc_mixer_control *mc =
504 (struct soc_mixer_control *)kcontrol->private_value;
505 int platform_max;
506 int min = mc->min;
507
508 if (!mc->platform_max)
509 mc->platform_max = mc->max;
510 platform_max = mc->platform_max;
511
512 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
513 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
514 uinfo->value.integer.min = 0;
515 uinfo->value.integer.max = platform_max - min;
516
517 return 0;
518 }
519 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
520
521 /**
522 * snd_soc_put_volsw_range - single mixer put value callback with range.
523 * @kcontrol: mixer control
524 * @ucontrol: control element information
525 *
526 * Callback to set the value, within a range, for a single mixer control.
527 *
528 * Returns 0 for success.
529 */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)530 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
531 struct snd_ctl_elem_value *ucontrol)
532 {
533 struct soc_mixer_control *mc =
534 (struct soc_mixer_control *)kcontrol->private_value;
535 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
536 unsigned int reg = mc->reg;
537 unsigned int rreg = mc->rreg;
538 unsigned int shift = mc->shift;
539 int min = mc->min;
540 int max = mc->max;
541 unsigned int mask = (1 << fls(max)) - 1;
542 unsigned int invert = mc->invert;
543 unsigned int val, val_mask;
544 int err, ret, tmp;
545
546 tmp = ucontrol->value.integer.value[0];
547 if (tmp < 0)
548 return -EINVAL;
549 if (mc->platform_max && tmp > mc->platform_max)
550 return -EINVAL;
551 if (tmp > mc->max - mc->min)
552 return -EINVAL;
553
554 if (invert)
555 val = (max - ucontrol->value.integer.value[0]) & mask;
556 else
557 val = ((ucontrol->value.integer.value[0] + min) & mask);
558 val_mask = mask << shift;
559 val = val << shift;
560
561 err = snd_soc_component_update_bits(component, reg, val_mask, val);
562 if (err < 0)
563 return err;
564 ret = err;
565
566 if (snd_soc_volsw_is_stereo(mc)) {
567 tmp = ucontrol->value.integer.value[1];
568 if (tmp < 0)
569 return -EINVAL;
570 if (mc->platform_max && tmp > mc->platform_max)
571 return -EINVAL;
572 if (tmp > mc->max - mc->min)
573 return -EINVAL;
574
575 if (invert)
576 val = (max - ucontrol->value.integer.value[1]) & mask;
577 else
578 val = ((ucontrol->value.integer.value[1] + min) & mask);
579 val_mask = mask << shift;
580 val = val << shift;
581
582 err = snd_soc_component_update_bits(component, rreg, val_mask,
583 val);
584 /* Don't discard any error code or drop change flag */
585 if (ret == 0 || err < 0) {
586 ret = err;
587 }
588 }
589
590 return ret;
591 }
592 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
593
594 /**
595 * snd_soc_get_volsw_range - single mixer get callback with range
596 * @kcontrol: mixer control
597 * @ucontrol: control element information
598 *
599 * Callback to get the value, within a range, of a single mixer control.
600 *
601 * Returns 0 for success.
602 */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)603 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
604 struct snd_ctl_elem_value *ucontrol)
605 {
606 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
607 struct soc_mixer_control *mc =
608 (struct soc_mixer_control *)kcontrol->private_value;
609 unsigned int reg = mc->reg;
610 unsigned int rreg = mc->rreg;
611 unsigned int shift = mc->shift;
612 int min = mc->min;
613 int max = mc->max;
614 unsigned int mask = (1 << fls(max)) - 1;
615 unsigned int invert = mc->invert;
616 unsigned int val;
617
618 val = snd_soc_component_read(component, reg);
619 ucontrol->value.integer.value[0] = (val >> shift) & mask;
620 if (invert)
621 ucontrol->value.integer.value[0] =
622 max - ucontrol->value.integer.value[0];
623 else
624 ucontrol->value.integer.value[0] =
625 ucontrol->value.integer.value[0] - min;
626
627 if (snd_soc_volsw_is_stereo(mc)) {
628 val = snd_soc_component_read(component, rreg);
629 ucontrol->value.integer.value[1] = (val >> shift) & mask;
630 if (invert)
631 ucontrol->value.integer.value[1] =
632 max - ucontrol->value.integer.value[1];
633 else
634 ucontrol->value.integer.value[1] =
635 ucontrol->value.integer.value[1] - min;
636 }
637
638 return 0;
639 }
640 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
641
642 /**
643 * snd_soc_limit_volume - Set new limit to an existing volume control.
644 *
645 * @card: where to look for the control
646 * @name: Name of the control
647 * @max: new maximum limit
648 *
649 * Return 0 for success, else error.
650 */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)651 int snd_soc_limit_volume(struct snd_soc_card *card,
652 const char *name, int max)
653 {
654 struct snd_kcontrol *kctl;
655 int ret = -EINVAL;
656
657 /* Sanity check for name and max */
658 if (unlikely(!name || max <= 0))
659 return -EINVAL;
660
661 kctl = snd_soc_card_get_kcontrol(card, name);
662 if (kctl) {
663 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
664 if (max <= mc->max) {
665 mc->platform_max = max;
666 ret = 0;
667 }
668 }
669 return ret;
670 }
671 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
672
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)673 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
674 struct snd_ctl_elem_info *uinfo)
675 {
676 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
677 struct soc_bytes *params = (void *)kcontrol->private_value;
678
679 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
680 uinfo->count = params->num_regs * component->val_bytes;
681
682 return 0;
683 }
684 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
685
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)686 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
687 struct snd_ctl_elem_value *ucontrol)
688 {
689 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
690 struct soc_bytes *params = (void *)kcontrol->private_value;
691 int ret;
692
693 if (component->regmap)
694 ret = regmap_raw_read(component->regmap, params->base,
695 ucontrol->value.bytes.data,
696 params->num_regs * component->val_bytes);
697 else
698 ret = -EINVAL;
699
700 /* Hide any masked bytes to ensure consistent data reporting */
701 if (ret == 0 && params->mask) {
702 switch (component->val_bytes) {
703 case 1:
704 ucontrol->value.bytes.data[0] &= ~params->mask;
705 break;
706 case 2:
707 ((u16 *)(&ucontrol->value.bytes.data))[0]
708 &= cpu_to_be16(~params->mask);
709 break;
710 case 4:
711 ((u32 *)(&ucontrol->value.bytes.data))[0]
712 &= cpu_to_be32(~params->mask);
713 break;
714 default:
715 return -EINVAL;
716 }
717 }
718
719 return ret;
720 }
721 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
722
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)723 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
724 struct snd_ctl_elem_value *ucontrol)
725 {
726 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
727 struct soc_bytes *params = (void *)kcontrol->private_value;
728 int ret, len;
729 unsigned int val, mask;
730 void *data;
731
732 if (!component->regmap || !params->num_regs)
733 return -EINVAL;
734
735 len = params->num_regs * component->val_bytes;
736
737 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
738 if (!data)
739 return -ENOMEM;
740
741 /*
742 * If we've got a mask then we need to preserve the register
743 * bits. We shouldn't modify the incoming data so take a
744 * copy.
745 */
746 if (params->mask) {
747 ret = regmap_read(component->regmap, params->base, &val);
748 if (ret != 0)
749 goto out;
750
751 val &= params->mask;
752
753 switch (component->val_bytes) {
754 case 1:
755 ((u8 *)data)[0] &= ~params->mask;
756 ((u8 *)data)[0] |= val;
757 break;
758 case 2:
759 mask = ~params->mask;
760 ret = regmap_parse_val(component->regmap,
761 &mask, &mask);
762 if (ret != 0)
763 goto out;
764
765 ((u16 *)data)[0] &= mask;
766
767 ret = regmap_parse_val(component->regmap,
768 &val, &val);
769 if (ret != 0)
770 goto out;
771
772 ((u16 *)data)[0] |= val;
773 break;
774 case 4:
775 mask = ~params->mask;
776 ret = regmap_parse_val(component->regmap,
777 &mask, &mask);
778 if (ret != 0)
779 goto out;
780
781 ((u32 *)data)[0] &= mask;
782
783 ret = regmap_parse_val(component->regmap,
784 &val, &val);
785 if (ret != 0)
786 goto out;
787
788 ((u32 *)data)[0] |= val;
789 break;
790 default:
791 ret = -EINVAL;
792 goto out;
793 }
794 }
795
796 ret = regmap_raw_write(component->regmap, params->base,
797 data, len);
798
799 out:
800 kfree(data);
801
802 return ret;
803 }
804 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
805
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)806 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
807 struct snd_ctl_elem_info *ucontrol)
808 {
809 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
810
811 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
812 ucontrol->count = params->max;
813
814 return 0;
815 }
816 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
817
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)818 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
819 unsigned int size, unsigned int __user *tlv)
820 {
821 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
822 unsigned int count = size < params->max ? size : params->max;
823 int ret = -ENXIO;
824
825 switch (op_flag) {
826 case SNDRV_CTL_TLV_OP_READ:
827 if (params->get)
828 ret = params->get(kcontrol, tlv, count);
829 break;
830 case SNDRV_CTL_TLV_OP_WRITE:
831 if (params->put)
832 ret = params->put(kcontrol, tlv, count);
833 break;
834 }
835 return ret;
836 }
837 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
838
839 /**
840 * snd_soc_info_xr_sx - signed multi register info callback
841 * @kcontrol: mreg control
842 * @uinfo: control element information
843 *
844 * Callback to provide information of a control that can
845 * span multiple codec registers which together
846 * forms a single signed value in a MSB/LSB manner.
847 *
848 * Returns 0 for success.
849 */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)850 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
851 struct snd_ctl_elem_info *uinfo)
852 {
853 struct soc_mreg_control *mc =
854 (struct soc_mreg_control *)kcontrol->private_value;
855 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
856 uinfo->count = 1;
857 uinfo->value.integer.min = mc->min;
858 uinfo->value.integer.max = mc->max;
859
860 return 0;
861 }
862 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
863
864 /**
865 * snd_soc_get_xr_sx - signed multi register get callback
866 * @kcontrol: mreg control
867 * @ucontrol: control element information
868 *
869 * Callback to get the value of a control that can span
870 * multiple codec registers which together forms a single
871 * signed value in a MSB/LSB manner. The control supports
872 * specifying total no of bits used to allow for bitfields
873 * across the multiple codec registers.
874 *
875 * Returns 0 for success.
876 */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)877 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
878 struct snd_ctl_elem_value *ucontrol)
879 {
880 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
881 struct soc_mreg_control *mc =
882 (struct soc_mreg_control *)kcontrol->private_value;
883 unsigned int regbase = mc->regbase;
884 unsigned int regcount = mc->regcount;
885 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
886 unsigned int regwmask = (1UL<<regwshift)-1;
887 unsigned int invert = mc->invert;
888 unsigned long mask = (1UL<<mc->nbits)-1;
889 long min = mc->min;
890 long max = mc->max;
891 long val = 0;
892 unsigned int i;
893
894 for (i = 0; i < regcount; i++) {
895 unsigned int regval = snd_soc_component_read(component, regbase+i);
896 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
897 }
898 val &= mask;
899 if (min < 0 && val > max)
900 val |= ~mask;
901 if (invert)
902 val = max - val;
903 ucontrol->value.integer.value[0] = val;
904
905 return 0;
906 }
907 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
908
909 /**
910 * snd_soc_put_xr_sx - signed multi register get callback
911 * @kcontrol: mreg control
912 * @ucontrol: control element information
913 *
914 * Callback to set the value of a control that can span
915 * multiple codec registers which together forms a single
916 * signed value in a MSB/LSB manner. The control supports
917 * specifying total no of bits used to allow for bitfields
918 * across the multiple codec registers.
919 *
920 * Returns 0 for success.
921 */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)922 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
923 struct snd_ctl_elem_value *ucontrol)
924 {
925 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
926 struct soc_mreg_control *mc =
927 (struct soc_mreg_control *)kcontrol->private_value;
928 unsigned int regbase = mc->regbase;
929 unsigned int regcount = mc->regcount;
930 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
931 unsigned int regwmask = (1UL<<regwshift)-1;
932 unsigned int invert = mc->invert;
933 unsigned long mask = (1UL<<mc->nbits)-1;
934 long max = mc->max;
935 long val = ucontrol->value.integer.value[0];
936 int ret = 0;
937 unsigned int i;
938
939 if (val < mc->min || val > mc->max)
940 return -EINVAL;
941 if (invert)
942 val = max - val;
943 val &= mask;
944 for (i = 0; i < regcount; i++) {
945 unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
946 unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
947 int err = snd_soc_component_update_bits(component, regbase+i,
948 regmask, regval);
949 if (err < 0)
950 return err;
951 if (err > 0)
952 ret = err;
953 }
954
955 return ret;
956 }
957 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
958
959 /**
960 * snd_soc_get_strobe - strobe get callback
961 * @kcontrol: mixer control
962 * @ucontrol: control element information
963 *
964 * Callback get the value of a strobe mixer control.
965 *
966 * Returns 0 for success.
967 */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)968 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
969 struct snd_ctl_elem_value *ucontrol)
970 {
971 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
972 struct soc_mixer_control *mc =
973 (struct soc_mixer_control *)kcontrol->private_value;
974 unsigned int reg = mc->reg;
975 unsigned int shift = mc->shift;
976 unsigned int mask = 1 << shift;
977 unsigned int invert = mc->invert != 0;
978 unsigned int val;
979
980 val = snd_soc_component_read(component, reg);
981 val &= mask;
982
983 if (shift != 0 && val != 0)
984 val = val >> shift;
985 ucontrol->value.enumerated.item[0] = val ^ invert;
986
987 return 0;
988 }
989 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
990
991 /**
992 * snd_soc_put_strobe - strobe put callback
993 * @kcontrol: mixer control
994 * @ucontrol: control element information
995 *
996 * Callback strobe a register bit to high then low (or the inverse)
997 * in one pass of a single mixer enum control.
998 *
999 * Returns 1 for success.
1000 */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1001 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
1002 struct snd_ctl_elem_value *ucontrol)
1003 {
1004 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1005 struct soc_mixer_control *mc =
1006 (struct soc_mixer_control *)kcontrol->private_value;
1007 unsigned int reg = mc->reg;
1008 unsigned int shift = mc->shift;
1009 unsigned int mask = 1 << shift;
1010 unsigned int invert = mc->invert != 0;
1011 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1012 unsigned int val1 = (strobe ^ invert) ? mask : 0;
1013 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1014 int err;
1015
1016 err = snd_soc_component_update_bits(component, reg, mask, val1);
1017 if (err < 0)
1018 return err;
1019
1020 return snd_soc_component_update_bits(component, reg, mask, val2);
1021 }
1022 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1023