1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_VMALLOC,
37 MEMCG_KMEM,
38 MEMCG_ZSWAP_B,
39 MEMCG_ZSWAPPED,
40 MEMCG_NR_STAT,
41 };
42
43 enum memcg_memory_event {
44 MEMCG_LOW,
45 MEMCG_HIGH,
46 MEMCG_MAX,
47 MEMCG_OOM,
48 MEMCG_OOM_KILL,
49 MEMCG_OOM_GROUP_KILL,
50 MEMCG_SWAP_HIGH,
51 MEMCG_SWAP_MAX,
52 MEMCG_SWAP_FAIL,
53 MEMCG_NR_MEMORY_EVENTS,
54 };
55
56 struct mem_cgroup_reclaim_cookie {
57 pg_data_t *pgdat;
58 unsigned int generation;
59 };
60
61 #ifdef CONFIG_MEMCG
62
63 #define MEM_CGROUP_ID_SHIFT 16
64 #define MEM_CGROUP_ID_MAX USHRT_MAX
65
66 struct mem_cgroup_id {
67 int id;
68 refcount_t ref;
69 };
70
71 /*
72 * Per memcg event counter is incremented at every pagein/pageout. With THP,
73 * it will be incremented by the number of pages. This counter is used
74 * to trigger some periodic events. This is straightforward and better
75 * than using jiffies etc. to handle periodic memcg event.
76 */
77 enum mem_cgroup_events_target {
78 MEM_CGROUP_TARGET_THRESH,
79 MEM_CGROUP_TARGET_SOFTLIMIT,
80 MEM_CGROUP_NTARGETS,
81 };
82
83 struct memcg_vmstats_percpu;
84 struct memcg_vmstats;
85
86 struct mem_cgroup_reclaim_iter {
87 struct mem_cgroup *position;
88 /* scan generation, increased every round-trip */
89 unsigned int generation;
90 };
91
92 /*
93 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
94 * shrinkers, which have elements charged to this memcg.
95 */
96 struct shrinker_info {
97 struct rcu_head rcu;
98 atomic_long_t *nr_deferred;
99 unsigned long *map;
100 };
101
102 struct lruvec_stats_percpu {
103 /* Local (CPU and cgroup) state */
104 long state[NR_VM_NODE_STAT_ITEMS];
105
106 /* Delta calculation for lockless upward propagation */
107 long state_prev[NR_VM_NODE_STAT_ITEMS];
108 };
109
110 struct lruvec_stats {
111 /* Aggregated (CPU and subtree) state */
112 long state[NR_VM_NODE_STAT_ITEMS];
113
114 /* Pending child counts during tree propagation */
115 long state_pending[NR_VM_NODE_STAT_ITEMS];
116 };
117
118 /*
119 * per-node information in memory controller.
120 */
121 struct mem_cgroup_per_node {
122 struct lruvec lruvec;
123
124 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
125 struct lruvec_stats lruvec_stats;
126
127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128
129 struct mem_cgroup_reclaim_iter iter;
130
131 struct shrinker_info __rcu *shrinker_info;
132
133 struct rb_node tree_node; /* RB tree node */
134 unsigned long usage_in_excess;/* Set to the value by which */
135 /* the soft limit is exceeded*/
136 bool on_tree;
137 struct mem_cgroup *memcg; /* Back pointer, we cannot */
138 /* use container_of */
139 };
140
141 struct mem_cgroup_threshold {
142 struct eventfd_ctx *eventfd;
143 unsigned long threshold;
144 };
145
146 /* For threshold */
147 struct mem_cgroup_threshold_ary {
148 /* An array index points to threshold just below or equal to usage. */
149 int current_threshold;
150 /* Size of entries[] */
151 unsigned int size;
152 /* Array of thresholds */
153 struct mem_cgroup_threshold entries[];
154 };
155
156 struct mem_cgroup_thresholds {
157 /* Primary thresholds array */
158 struct mem_cgroup_threshold_ary *primary;
159 /*
160 * Spare threshold array.
161 * This is needed to make mem_cgroup_unregister_event() "never fail".
162 * It must be able to store at least primary->size - 1 entries.
163 */
164 struct mem_cgroup_threshold_ary *spare;
165 };
166
167 /*
168 * Remember four most recent foreign writebacks with dirty pages in this
169 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
170 * one in a given round, we're likely to catch it later if it keeps
171 * foreign-dirtying, so a fairly low count should be enough.
172 *
173 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
174 */
175 #define MEMCG_CGWB_FRN_CNT 4
176
177 struct memcg_cgwb_frn {
178 u64 bdi_id; /* bdi->id of the foreign inode */
179 int memcg_id; /* memcg->css.id of foreign inode */
180 u64 at; /* jiffies_64 at the time of dirtying */
181 struct wb_completion done; /* tracks in-flight foreign writebacks */
182 };
183
184 /*
185 * Bucket for arbitrarily byte-sized objects charged to a memory
186 * cgroup. The bucket can be reparented in one piece when the cgroup
187 * is destroyed, without having to round up the individual references
188 * of all live memory objects in the wild.
189 */
190 struct obj_cgroup {
191 struct percpu_ref refcnt;
192 struct mem_cgroup *memcg;
193 atomic_t nr_charged_bytes;
194 union {
195 struct list_head list; /* protected by objcg_lock */
196 struct rcu_head rcu;
197 };
198 };
199
200 /*
201 * The memory controller data structure. The memory controller controls both
202 * page cache and RSS per cgroup. We would eventually like to provide
203 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
204 * to help the administrator determine what knobs to tune.
205 */
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
208
209 /* Private memcg ID. Used to ID objects that outlive the cgroup */
210 struct mem_cgroup_id id;
211
212 /* Accounted resources */
213 struct page_counter memory; /* Both v1 & v2 */
214
215 union {
216 struct page_counter swap; /* v2 only */
217 struct page_counter memsw; /* v1 only */
218 };
219
220 /* Legacy consumer-oriented counters */
221 struct page_counter kmem; /* v1 only */
222 struct page_counter tcpmem; /* v1 only */
223
224 /* Range enforcement for interrupt charges */
225 struct work_struct high_work;
226
227 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
228 unsigned long zswap_max;
229 #endif
230
231 unsigned long soft_limit;
232
233 /* vmpressure notifications */
234 struct vmpressure vmpressure;
235
236 /*
237 * Should the OOM killer kill all belonging tasks, had it kill one?
238 */
239 bool oom_group;
240
241 /* protected by memcg_oom_lock */
242 bool oom_lock;
243 int under_oom;
244
245 int swappiness;
246 /* OOM-Killer disable */
247 int oom_kill_disable;
248
249 /* memory.events and memory.events.local */
250 struct cgroup_file events_file;
251 struct cgroup_file events_local_file;
252
253 /* handle for "memory.swap.events" */
254 struct cgroup_file swap_events_file;
255
256 /* protect arrays of thresholds */
257 struct mutex thresholds_lock;
258
259 /* thresholds for memory usage. RCU-protected */
260 struct mem_cgroup_thresholds thresholds;
261
262 /* thresholds for mem+swap usage. RCU-protected */
263 struct mem_cgroup_thresholds memsw_thresholds;
264
265 /* For oom notifier event fd */
266 struct list_head oom_notify;
267
268 /*
269 * Should we move charges of a task when a task is moved into this
270 * mem_cgroup ? And what type of charges should we move ?
271 */
272 unsigned long move_charge_at_immigrate;
273 /* taken only while moving_account > 0 */
274 spinlock_t move_lock;
275 unsigned long move_lock_flags;
276
277 CACHELINE_PADDING(_pad1_);
278
279 /* memory.stat */
280 struct memcg_vmstats *vmstats;
281
282 /* memory.events */
283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
285
286 unsigned long socket_pressure;
287
288 /* Legacy tcp memory accounting */
289 bool tcpmem_active;
290 int tcpmem_pressure;
291
292 #ifdef CONFIG_MEMCG_KMEM
293 int kmemcg_id;
294 struct obj_cgroup __rcu *objcg;
295 /* list of inherited objcgs, protected by objcg_lock */
296 struct list_head objcg_list;
297 #endif
298
299 CACHELINE_PADDING(_pad2_);
300
301 /*
302 * set > 0 if pages under this cgroup are moving to other cgroup.
303 */
304 atomic_t moving_account;
305 struct task_struct *move_lock_task;
306
307 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
308
309 #ifdef CONFIG_CGROUP_WRITEBACK
310 struct list_head cgwb_list;
311 struct wb_domain cgwb_domain;
312 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
313 #endif
314
315 /* List of events which userspace want to receive */
316 struct list_head event_list;
317 spinlock_t event_list_lock;
318
319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
320 struct deferred_split deferred_split_queue;
321 #endif
322
323 #ifdef CONFIG_LRU_GEN
324 /* per-memcg mm_struct list */
325 struct lru_gen_mm_list mm_list;
326 #endif
327
328 struct mem_cgroup_per_node *nodeinfo[];
329 };
330
331 /*
332 * size of first charge trial.
333 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
334 * workload.
335 */
336 #define MEMCG_CHARGE_BATCH 64U
337
338 extern struct mem_cgroup *root_mem_cgroup;
339
340 enum page_memcg_data_flags {
341 /* page->memcg_data is a pointer to an objcgs vector */
342 MEMCG_DATA_OBJCGS = (1UL << 0),
343 /* page has been accounted as a non-slab kernel page */
344 MEMCG_DATA_KMEM = (1UL << 1),
345 /* the next bit after the last actual flag */
346 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
347 };
348
349 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
350
351 static inline bool folio_memcg_kmem(struct folio *folio);
352
353 /*
354 * After the initialization objcg->memcg is always pointing at
355 * a valid memcg, but can be atomically swapped to the parent memcg.
356 *
357 * The caller must ensure that the returned memcg won't be released:
358 * e.g. acquire the rcu_read_lock or css_set_lock.
359 */
obj_cgroup_memcg(struct obj_cgroup * objcg)360 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
361 {
362 return READ_ONCE(objcg->memcg);
363 }
364
365 /*
366 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367 * @folio: Pointer to the folio.
368 *
369 * Returns a pointer to the memory cgroup associated with the folio,
370 * or NULL. This function assumes that the folio is known to have a
371 * proper memory cgroup pointer. It's not safe to call this function
372 * against some type of folios, e.g. slab folios or ex-slab folios or
373 * kmem folios.
374 */
__folio_memcg(struct folio * folio)375 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 {
377 unsigned long memcg_data = folio->memcg_data;
378
379 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
381 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382
383 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
384 }
385
386 /*
387 * __folio_objcg - get the object cgroup associated with a kmem folio.
388 * @folio: Pointer to the folio.
389 *
390 * Returns a pointer to the object cgroup associated with the folio,
391 * or NULL. This function assumes that the folio is known to have a
392 * proper object cgroup pointer. It's not safe to call this function
393 * against some type of folios, e.g. slab folios or ex-slab folios or
394 * LRU folios.
395 */
__folio_objcg(struct folio * folio)396 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 {
398 unsigned long memcg_data = folio->memcg_data;
399
400 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
402 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403
404 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
405 }
406
407 /*
408 * folio_memcg - Get the memory cgroup associated with a folio.
409 * @folio: Pointer to the folio.
410 *
411 * Returns a pointer to the memory cgroup associated with the folio,
412 * or NULL. This function assumes that the folio is known to have a
413 * proper memory cgroup pointer. It's not safe to call this function
414 * against some type of folios, e.g. slab folios or ex-slab folios.
415 *
416 * For a non-kmem folio any of the following ensures folio and memcg binding
417 * stability:
418 *
419 * - the folio lock
420 * - LRU isolation
421 * - lock_page_memcg()
422 * - exclusive reference
423 * - mem_cgroup_trylock_pages()
424 *
425 * For a kmem folio a caller should hold an rcu read lock to protect memcg
426 * associated with a kmem folio from being released.
427 */
folio_memcg(struct folio * folio)428 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
429 {
430 if (folio_memcg_kmem(folio))
431 return obj_cgroup_memcg(__folio_objcg(folio));
432 return __folio_memcg(folio);
433 }
434
page_memcg(struct page * page)435 static inline struct mem_cgroup *page_memcg(struct page *page)
436 {
437 return folio_memcg(page_folio(page));
438 }
439
440 /**
441 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
442 * @folio: Pointer to the folio.
443 *
444 * This function assumes that the folio is known to have a
445 * proper memory cgroup pointer. It's not safe to call this function
446 * against some type of folios, e.g. slab folios or ex-slab folios.
447 *
448 * Return: A pointer to the memory cgroup associated with the folio,
449 * or NULL.
450 */
folio_memcg_rcu(struct folio * folio)451 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
452 {
453 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
454
455 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
456 WARN_ON_ONCE(!rcu_read_lock_held());
457
458 if (memcg_data & MEMCG_DATA_KMEM) {
459 struct obj_cgroup *objcg;
460
461 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
462 return obj_cgroup_memcg(objcg);
463 }
464
465 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466 }
467
468 /*
469 * folio_memcg_check - Get the memory cgroup associated with a folio.
470 * @folio: Pointer to the folio.
471 *
472 * Returns a pointer to the memory cgroup associated with the folio,
473 * or NULL. This function unlike folio_memcg() can take any folio
474 * as an argument. It has to be used in cases when it's not known if a folio
475 * has an associated memory cgroup pointer or an object cgroups vector or
476 * an object cgroup.
477 *
478 * For a non-kmem folio any of the following ensures folio and memcg binding
479 * stability:
480 *
481 * - the folio lock
482 * - LRU isolation
483 * - lock_folio_memcg()
484 * - exclusive reference
485 * - mem_cgroup_trylock_pages()
486 *
487 * For a kmem folio a caller should hold an rcu read lock to protect memcg
488 * associated with a kmem folio from being released.
489 */
folio_memcg_check(struct folio * folio)490 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
491 {
492 /*
493 * Because folio->memcg_data might be changed asynchronously
494 * for slabs, READ_ONCE() should be used here.
495 */
496 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
497
498 if (memcg_data & MEMCG_DATA_OBJCGS)
499 return NULL;
500
501 if (memcg_data & MEMCG_DATA_KMEM) {
502 struct obj_cgroup *objcg;
503
504 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
505 return obj_cgroup_memcg(objcg);
506 }
507
508 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
509 }
510
page_memcg_check(struct page * page)511 static inline struct mem_cgroup *page_memcg_check(struct page *page)
512 {
513 if (PageTail(page))
514 return NULL;
515 return folio_memcg_check((struct folio *)page);
516 }
517
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)518 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
519 {
520 struct mem_cgroup *memcg;
521
522 rcu_read_lock();
523 retry:
524 memcg = obj_cgroup_memcg(objcg);
525 if (unlikely(!css_tryget(&memcg->css)))
526 goto retry;
527 rcu_read_unlock();
528
529 return memcg;
530 }
531
532 #ifdef CONFIG_MEMCG_KMEM
533 /*
534 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
535 * @folio: Pointer to the folio.
536 *
537 * Checks if the folio has MemcgKmem flag set. The caller must ensure
538 * that the folio has an associated memory cgroup. It's not safe to call
539 * this function against some types of folios, e.g. slab folios.
540 */
folio_memcg_kmem(struct folio * folio)541 static inline bool folio_memcg_kmem(struct folio *folio)
542 {
543 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
544 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
545 return folio->memcg_data & MEMCG_DATA_KMEM;
546 }
547
548
549 #else
folio_memcg_kmem(struct folio * folio)550 static inline bool folio_memcg_kmem(struct folio *folio)
551 {
552 return false;
553 }
554
555 #endif
556
PageMemcgKmem(struct page * page)557 static inline bool PageMemcgKmem(struct page *page)
558 {
559 return folio_memcg_kmem(page_folio(page));
560 }
561
mem_cgroup_is_root(struct mem_cgroup * memcg)562 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
563 {
564 return (memcg == root_mem_cgroup);
565 }
566
mem_cgroup_disabled(void)567 static inline bool mem_cgroup_disabled(void)
568 {
569 return !cgroup_subsys_enabled(memory_cgrp_subsys);
570 }
571
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)572 static inline void mem_cgroup_protection(struct mem_cgroup *root,
573 struct mem_cgroup *memcg,
574 unsigned long *min,
575 unsigned long *low)
576 {
577 *min = *low = 0;
578
579 if (mem_cgroup_disabled())
580 return;
581
582 /*
583 * There is no reclaim protection applied to a targeted reclaim.
584 * We are special casing this specific case here because
585 * mem_cgroup_protected calculation is not robust enough to keep
586 * the protection invariant for calculated effective values for
587 * parallel reclaimers with different reclaim target. This is
588 * especially a problem for tail memcgs (as they have pages on LRU)
589 * which would want to have effective values 0 for targeted reclaim
590 * but a different value for external reclaim.
591 *
592 * Example
593 * Let's have global and A's reclaim in parallel:
594 * |
595 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
596 * |\
597 * | C (low = 1G, usage = 2.5G)
598 * B (low = 1G, usage = 0.5G)
599 *
600 * For the global reclaim
601 * A.elow = A.low
602 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
603 * C.elow = min(C.usage, C.low)
604 *
605 * With the effective values resetting we have A reclaim
606 * A.elow = 0
607 * B.elow = B.low
608 * C.elow = C.low
609 *
610 * If the global reclaim races with A's reclaim then
611 * B.elow = C.elow = 0 because children_low_usage > A.elow)
612 * is possible and reclaiming B would be violating the protection.
613 *
614 */
615 if (root == memcg)
616 return;
617
618 *min = READ_ONCE(memcg->memory.emin);
619 *low = READ_ONCE(memcg->memory.elow);
620 }
621
622 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
623 struct mem_cgroup *memcg);
624
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)625 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
626 struct mem_cgroup *memcg)
627 {
628 /*
629 * The root memcg doesn't account charges, and doesn't support
630 * protection. The target memcg's protection is ignored, see
631 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
632 */
633 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
634 memcg == target;
635 }
636
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)637 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
638 struct mem_cgroup *memcg)
639 {
640 if (mem_cgroup_unprotected(target, memcg))
641 return false;
642
643 return READ_ONCE(memcg->memory.elow) >=
644 page_counter_read(&memcg->memory);
645 }
646
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)647 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
648 struct mem_cgroup *memcg)
649 {
650 if (mem_cgroup_unprotected(target, memcg))
651 return false;
652
653 return READ_ONCE(memcg->memory.emin) >=
654 page_counter_read(&memcg->memory);
655 }
656
657 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
658
659 /**
660 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
661 * @folio: Folio to charge.
662 * @mm: mm context of the allocating task.
663 * @gfp: Reclaim mode.
664 *
665 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
666 * pages according to @gfp if necessary. If @mm is NULL, try to
667 * charge to the active memcg.
668 *
669 * Do not use this for folios allocated for swapin.
670 *
671 * Return: 0 on success. Otherwise, an error code is returned.
672 */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)673 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
674 gfp_t gfp)
675 {
676 if (mem_cgroup_disabled())
677 return 0;
678 return __mem_cgroup_charge(folio, mm, gfp);
679 }
680
681 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
682 gfp_t gfp, swp_entry_t entry);
683 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
684
685 void __mem_cgroup_uncharge(struct folio *folio);
686
687 /**
688 * mem_cgroup_uncharge - Uncharge a folio.
689 * @folio: Folio to uncharge.
690 *
691 * Uncharge a folio previously charged with mem_cgroup_charge().
692 */
mem_cgroup_uncharge(struct folio * folio)693 static inline void mem_cgroup_uncharge(struct folio *folio)
694 {
695 if (mem_cgroup_disabled())
696 return;
697 __mem_cgroup_uncharge(folio);
698 }
699
700 void __mem_cgroup_uncharge_list(struct list_head *page_list);
mem_cgroup_uncharge_list(struct list_head * page_list)701 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
702 {
703 if (mem_cgroup_disabled())
704 return;
705 __mem_cgroup_uncharge_list(page_list);
706 }
707
708 void mem_cgroup_migrate(struct folio *old, struct folio *new);
709
710 /**
711 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
712 * @memcg: memcg of the wanted lruvec
713 * @pgdat: pglist_data
714 *
715 * Returns the lru list vector holding pages for a given @memcg &
716 * @pgdat combination. This can be the node lruvec, if the memory
717 * controller is disabled.
718 */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)719 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
720 struct pglist_data *pgdat)
721 {
722 struct mem_cgroup_per_node *mz;
723 struct lruvec *lruvec;
724
725 if (mem_cgroup_disabled()) {
726 lruvec = &pgdat->__lruvec;
727 goto out;
728 }
729
730 if (!memcg)
731 memcg = root_mem_cgroup;
732
733 mz = memcg->nodeinfo[pgdat->node_id];
734 lruvec = &mz->lruvec;
735 out:
736 /*
737 * Since a node can be onlined after the mem_cgroup was created,
738 * we have to be prepared to initialize lruvec->pgdat here;
739 * and if offlined then reonlined, we need to reinitialize it.
740 */
741 if (unlikely(lruvec->pgdat != pgdat))
742 lruvec->pgdat = pgdat;
743 return lruvec;
744 }
745
746 /**
747 * folio_lruvec - return lruvec for isolating/putting an LRU folio
748 * @folio: Pointer to the folio.
749 *
750 * This function relies on folio->mem_cgroup being stable.
751 */
folio_lruvec(struct folio * folio)752 static inline struct lruvec *folio_lruvec(struct folio *folio)
753 {
754 struct mem_cgroup *memcg = folio_memcg(folio);
755
756 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
757 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
758 }
759
760 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
761
762 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
763
764 struct lruvec *folio_lruvec_lock(struct folio *folio);
765 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
766 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
767 unsigned long *flags);
768
769 #ifdef CONFIG_DEBUG_VM
770 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
771 #else
772 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)773 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
774 {
775 }
776 #endif
777
778 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)779 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
780 return css ? container_of(css, struct mem_cgroup, css) : NULL;
781 }
782
obj_cgroup_tryget(struct obj_cgroup * objcg)783 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
784 {
785 return percpu_ref_tryget(&objcg->refcnt);
786 }
787
obj_cgroup_get(struct obj_cgroup * objcg)788 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
789 {
790 percpu_ref_get(&objcg->refcnt);
791 }
792
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)793 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
794 unsigned long nr)
795 {
796 percpu_ref_get_many(&objcg->refcnt, nr);
797 }
798
obj_cgroup_put(struct obj_cgroup * objcg)799 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
800 {
801 percpu_ref_put(&objcg->refcnt);
802 }
803
mem_cgroup_tryget(struct mem_cgroup * memcg)804 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
805 {
806 return !memcg || css_tryget(&memcg->css);
807 }
808
mem_cgroup_put(struct mem_cgroup * memcg)809 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
810 {
811 if (memcg)
812 css_put(&memcg->css);
813 }
814
815 #define mem_cgroup_from_counter(counter, member) \
816 container_of(counter, struct mem_cgroup, member)
817
818 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
819 struct mem_cgroup *,
820 struct mem_cgroup_reclaim_cookie *);
821 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
822 int mem_cgroup_scan_tasks(struct mem_cgroup *,
823 int (*)(struct task_struct *, void *), void *);
824
mem_cgroup_id(struct mem_cgroup * memcg)825 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
826 {
827 if (mem_cgroup_disabled())
828 return 0;
829
830 return memcg->id.id;
831 }
832 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
833
834 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)835 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
836 {
837 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
838 }
839
840 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
841 #endif
842
mem_cgroup_from_seq(struct seq_file * m)843 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
844 {
845 return mem_cgroup_from_css(seq_css(m));
846 }
847
lruvec_memcg(struct lruvec * lruvec)848 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
849 {
850 struct mem_cgroup_per_node *mz;
851
852 if (mem_cgroup_disabled())
853 return NULL;
854
855 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
856 return mz->memcg;
857 }
858
859 /**
860 * parent_mem_cgroup - find the accounting parent of a memcg
861 * @memcg: memcg whose parent to find
862 *
863 * Returns the parent memcg, or NULL if this is the root or the memory
864 * controller is in legacy no-hierarchy mode.
865 */
parent_mem_cgroup(struct mem_cgroup * memcg)866 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
867 {
868 return mem_cgroup_from_css(memcg->css.parent);
869 }
870
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)871 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
872 struct mem_cgroup *root)
873 {
874 if (root == memcg)
875 return true;
876 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
877 }
878
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)879 static inline bool mm_match_cgroup(struct mm_struct *mm,
880 struct mem_cgroup *memcg)
881 {
882 struct mem_cgroup *task_memcg;
883 bool match = false;
884
885 rcu_read_lock();
886 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
887 if (task_memcg)
888 match = mem_cgroup_is_descendant(task_memcg, memcg);
889 rcu_read_unlock();
890 return match;
891 }
892
893 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
894 ino_t page_cgroup_ino(struct page *page);
895
mem_cgroup_online(struct mem_cgroup * memcg)896 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
897 {
898 if (mem_cgroup_disabled())
899 return true;
900 return !!(memcg->css.flags & CSS_ONLINE);
901 }
902
903 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
904 int zid, int nr_pages);
905
906 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)907 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
908 enum lru_list lru, int zone_idx)
909 {
910 struct mem_cgroup_per_node *mz;
911
912 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
913 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
914 }
915
916 void mem_cgroup_handle_over_high(void);
917
918 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
919
920 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
921
922 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
923 struct task_struct *p);
924
925 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
926
mem_cgroup_enter_user_fault(void)927 static inline void mem_cgroup_enter_user_fault(void)
928 {
929 WARN_ON(current->in_user_fault);
930 current->in_user_fault = 1;
931 }
932
mem_cgroup_exit_user_fault(void)933 static inline void mem_cgroup_exit_user_fault(void)
934 {
935 WARN_ON(!current->in_user_fault);
936 current->in_user_fault = 0;
937 }
938
task_in_memcg_oom(struct task_struct * p)939 static inline bool task_in_memcg_oom(struct task_struct *p)
940 {
941 return p->memcg_in_oom;
942 }
943
944 bool mem_cgroup_oom_synchronize(bool wait);
945 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
946 struct mem_cgroup *oom_domain);
947 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
948
949 void folio_memcg_lock(struct folio *folio);
950 void folio_memcg_unlock(struct folio *folio);
951 void lock_page_memcg(struct page *page);
952 void unlock_page_memcg(struct page *page);
953
954 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
955
956 /* try to stablize folio_memcg() for all the pages in a memcg */
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)957 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
958 {
959 rcu_read_lock();
960
961 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
962 return true;
963
964 rcu_read_unlock();
965 return false;
966 }
967
mem_cgroup_unlock_pages(void)968 static inline void mem_cgroup_unlock_pages(void)
969 {
970 rcu_read_unlock();
971 }
972
973 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)974 static inline void mod_memcg_state(struct mem_cgroup *memcg,
975 int idx, int val)
976 {
977 unsigned long flags;
978
979 local_irq_save(flags);
980 __mod_memcg_state(memcg, idx, val);
981 local_irq_restore(flags);
982 }
983
mod_memcg_page_state(struct page * page,int idx,int val)984 static inline void mod_memcg_page_state(struct page *page,
985 int idx, int val)
986 {
987 struct mem_cgroup *memcg;
988
989 if (mem_cgroup_disabled())
990 return;
991
992 rcu_read_lock();
993 memcg = page_memcg(page);
994 if (memcg)
995 mod_memcg_state(memcg, idx, val);
996 rcu_read_unlock();
997 }
998
999 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1000
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1001 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1002 enum node_stat_item idx)
1003 {
1004 struct mem_cgroup_per_node *pn;
1005 long x;
1006
1007 if (mem_cgroup_disabled())
1008 return node_page_state(lruvec_pgdat(lruvec), idx);
1009
1010 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1011 x = READ_ONCE(pn->lruvec_stats.state[idx]);
1012 #ifdef CONFIG_SMP
1013 if (x < 0)
1014 x = 0;
1015 #endif
1016 return x;
1017 }
1018
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1019 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1020 enum node_stat_item idx)
1021 {
1022 struct mem_cgroup_per_node *pn;
1023 long x = 0;
1024 int cpu;
1025
1026 if (mem_cgroup_disabled())
1027 return node_page_state(lruvec_pgdat(lruvec), idx);
1028
1029 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1030 for_each_possible_cpu(cpu)
1031 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1032 #ifdef CONFIG_SMP
1033 if (x < 0)
1034 x = 0;
1035 #endif
1036 return x;
1037 }
1038
1039 void mem_cgroup_flush_stats(void);
1040 void mem_cgroup_flush_stats_delayed(void);
1041
1042 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1043 int val);
1044 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1045
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1046 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1047 int val)
1048 {
1049 unsigned long flags;
1050
1051 local_irq_save(flags);
1052 __mod_lruvec_kmem_state(p, idx, val);
1053 local_irq_restore(flags);
1054 }
1055
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1056 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1057 enum node_stat_item idx, int val)
1058 {
1059 unsigned long flags;
1060
1061 local_irq_save(flags);
1062 __mod_memcg_lruvec_state(lruvec, idx, val);
1063 local_irq_restore(flags);
1064 }
1065
1066 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1067 unsigned long count);
1068
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1069 static inline void count_memcg_events(struct mem_cgroup *memcg,
1070 enum vm_event_item idx,
1071 unsigned long count)
1072 {
1073 unsigned long flags;
1074
1075 local_irq_save(flags);
1076 __count_memcg_events(memcg, idx, count);
1077 local_irq_restore(flags);
1078 }
1079
count_memcg_page_event(struct page * page,enum vm_event_item idx)1080 static inline void count_memcg_page_event(struct page *page,
1081 enum vm_event_item idx)
1082 {
1083 struct mem_cgroup *memcg = page_memcg(page);
1084
1085 if (memcg)
1086 count_memcg_events(memcg, idx, 1);
1087 }
1088
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1089 static inline void count_memcg_folio_events(struct folio *folio,
1090 enum vm_event_item idx, unsigned long nr)
1091 {
1092 struct mem_cgroup *memcg = folio_memcg(folio);
1093
1094 if (memcg)
1095 count_memcg_events(memcg, idx, nr);
1096 }
1097
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1098 static inline void count_memcg_event_mm(struct mm_struct *mm,
1099 enum vm_event_item idx)
1100 {
1101 struct mem_cgroup *memcg;
1102
1103 if (mem_cgroup_disabled())
1104 return;
1105
1106 rcu_read_lock();
1107 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1108 if (likely(memcg))
1109 count_memcg_events(memcg, idx, 1);
1110 rcu_read_unlock();
1111 }
1112
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1113 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1114 enum memcg_memory_event event)
1115 {
1116 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1117 event == MEMCG_SWAP_FAIL;
1118
1119 atomic_long_inc(&memcg->memory_events_local[event]);
1120 if (!swap_event)
1121 cgroup_file_notify(&memcg->events_local_file);
1122
1123 do {
1124 atomic_long_inc(&memcg->memory_events[event]);
1125 if (swap_event)
1126 cgroup_file_notify(&memcg->swap_events_file);
1127 else
1128 cgroup_file_notify(&memcg->events_file);
1129
1130 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1131 break;
1132 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1133 break;
1134 } while ((memcg = parent_mem_cgroup(memcg)) &&
1135 !mem_cgroup_is_root(memcg));
1136 }
1137
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1138 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1139 enum memcg_memory_event event)
1140 {
1141 struct mem_cgroup *memcg;
1142
1143 if (mem_cgroup_disabled())
1144 return;
1145
1146 rcu_read_lock();
1147 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1148 if (likely(memcg))
1149 memcg_memory_event(memcg, event);
1150 rcu_read_unlock();
1151 }
1152
1153 void split_page_memcg(struct page *head, unsigned int nr);
1154
1155 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1156 gfp_t gfp_mask,
1157 unsigned long *total_scanned);
1158
1159 #else /* CONFIG_MEMCG */
1160
1161 #define MEM_CGROUP_ID_SHIFT 0
1162 #define MEM_CGROUP_ID_MAX 0
1163
folio_memcg(struct folio * folio)1164 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1165 {
1166 return NULL;
1167 }
1168
page_memcg(struct page * page)1169 static inline struct mem_cgroup *page_memcg(struct page *page)
1170 {
1171 return NULL;
1172 }
1173
folio_memcg_rcu(struct folio * folio)1174 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1175 {
1176 WARN_ON_ONCE(!rcu_read_lock_held());
1177 return NULL;
1178 }
1179
folio_memcg_check(struct folio * folio)1180 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1181 {
1182 return NULL;
1183 }
1184
page_memcg_check(struct page * page)1185 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1186 {
1187 return NULL;
1188 }
1189
folio_memcg_kmem(struct folio * folio)1190 static inline bool folio_memcg_kmem(struct folio *folio)
1191 {
1192 return false;
1193 }
1194
PageMemcgKmem(struct page * page)1195 static inline bool PageMemcgKmem(struct page *page)
1196 {
1197 return false;
1198 }
1199
mem_cgroup_is_root(struct mem_cgroup * memcg)1200 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1201 {
1202 return true;
1203 }
1204
mem_cgroup_disabled(void)1205 static inline bool mem_cgroup_disabled(void)
1206 {
1207 return true;
1208 }
1209
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1210 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1211 enum memcg_memory_event event)
1212 {
1213 }
1214
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1215 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1216 enum memcg_memory_event event)
1217 {
1218 }
1219
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1220 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1221 struct mem_cgroup *memcg,
1222 unsigned long *min,
1223 unsigned long *low)
1224 {
1225 *min = *low = 0;
1226 }
1227
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1228 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1229 struct mem_cgroup *memcg)
1230 {
1231 }
1232
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)1233 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1234 struct mem_cgroup *memcg)
1235 {
1236 return true;
1237 }
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)1238 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1239 struct mem_cgroup *memcg)
1240 {
1241 return false;
1242 }
1243
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)1244 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1245 struct mem_cgroup *memcg)
1246 {
1247 return false;
1248 }
1249
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1250 static inline int mem_cgroup_charge(struct folio *folio,
1251 struct mm_struct *mm, gfp_t gfp)
1252 {
1253 return 0;
1254 }
1255
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1256 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1257 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1258 {
1259 return 0;
1260 }
1261
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1262 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1263 {
1264 }
1265
mem_cgroup_uncharge(struct folio * folio)1266 static inline void mem_cgroup_uncharge(struct folio *folio)
1267 {
1268 }
1269
mem_cgroup_uncharge_list(struct list_head * page_list)1270 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1271 {
1272 }
1273
mem_cgroup_migrate(struct folio * old,struct folio * new)1274 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1275 {
1276 }
1277
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1278 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1279 struct pglist_data *pgdat)
1280 {
1281 return &pgdat->__lruvec;
1282 }
1283
folio_lruvec(struct folio * folio)1284 static inline struct lruvec *folio_lruvec(struct folio *folio)
1285 {
1286 struct pglist_data *pgdat = folio_pgdat(folio);
1287 return &pgdat->__lruvec;
1288 }
1289
1290 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1291 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1292 {
1293 }
1294
parent_mem_cgroup(struct mem_cgroup * memcg)1295 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1296 {
1297 return NULL;
1298 }
1299
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1300 static inline bool mm_match_cgroup(struct mm_struct *mm,
1301 struct mem_cgroup *memcg)
1302 {
1303 return true;
1304 }
1305
get_mem_cgroup_from_mm(struct mm_struct * mm)1306 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1307 {
1308 return NULL;
1309 }
1310
1311 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1312 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1313 {
1314 return NULL;
1315 }
1316
obj_cgroup_put(struct obj_cgroup * objcg)1317 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1318 {
1319 }
1320
mem_cgroup_tryget(struct mem_cgroup * memcg)1321 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1322 {
1323 return true;
1324 }
1325
mem_cgroup_put(struct mem_cgroup * memcg)1326 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1327 {
1328 }
1329
folio_lruvec_lock(struct folio * folio)1330 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1331 {
1332 struct pglist_data *pgdat = folio_pgdat(folio);
1333
1334 spin_lock(&pgdat->__lruvec.lru_lock);
1335 return &pgdat->__lruvec;
1336 }
1337
folio_lruvec_lock_irq(struct folio * folio)1338 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1339 {
1340 struct pglist_data *pgdat = folio_pgdat(folio);
1341
1342 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1343 return &pgdat->__lruvec;
1344 }
1345
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1346 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1347 unsigned long *flagsp)
1348 {
1349 struct pglist_data *pgdat = folio_pgdat(folio);
1350
1351 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1352 return &pgdat->__lruvec;
1353 }
1354
1355 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1356 mem_cgroup_iter(struct mem_cgroup *root,
1357 struct mem_cgroup *prev,
1358 struct mem_cgroup_reclaim_cookie *reclaim)
1359 {
1360 return NULL;
1361 }
1362
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1363 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1364 struct mem_cgroup *prev)
1365 {
1366 }
1367
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1368 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1369 int (*fn)(struct task_struct *, void *), void *arg)
1370 {
1371 return 0;
1372 }
1373
mem_cgroup_id(struct mem_cgroup * memcg)1374 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1375 {
1376 return 0;
1377 }
1378
mem_cgroup_from_id(unsigned short id)1379 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1380 {
1381 WARN_ON_ONCE(id);
1382 /* XXX: This should always return root_mem_cgroup */
1383 return NULL;
1384 }
1385
1386 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)1387 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1388 {
1389 return 0;
1390 }
1391
mem_cgroup_get_from_ino(unsigned long ino)1392 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1393 {
1394 return NULL;
1395 }
1396 #endif
1397
mem_cgroup_from_seq(struct seq_file * m)1398 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1399 {
1400 return NULL;
1401 }
1402
lruvec_memcg(struct lruvec * lruvec)1403 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1404 {
1405 return NULL;
1406 }
1407
mem_cgroup_online(struct mem_cgroup * memcg)1408 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1409 {
1410 return true;
1411 }
1412
1413 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1414 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1415 enum lru_list lru, int zone_idx)
1416 {
1417 return 0;
1418 }
1419
mem_cgroup_get_max(struct mem_cgroup * memcg)1420 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1421 {
1422 return 0;
1423 }
1424
mem_cgroup_size(struct mem_cgroup * memcg)1425 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1426 {
1427 return 0;
1428 }
1429
1430 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1431 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1432 {
1433 }
1434
1435 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1436 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1437 {
1438 }
1439
lock_page_memcg(struct page * page)1440 static inline void lock_page_memcg(struct page *page)
1441 {
1442 }
1443
unlock_page_memcg(struct page * page)1444 static inline void unlock_page_memcg(struct page *page)
1445 {
1446 }
1447
folio_memcg_lock(struct folio * folio)1448 static inline void folio_memcg_lock(struct folio *folio)
1449 {
1450 }
1451
folio_memcg_unlock(struct folio * folio)1452 static inline void folio_memcg_unlock(struct folio *folio)
1453 {
1454 }
1455
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)1456 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1457 {
1458 /* to match folio_memcg_rcu() */
1459 rcu_read_lock();
1460 return true;
1461 }
1462
mem_cgroup_unlock_pages(void)1463 static inline void mem_cgroup_unlock_pages(void)
1464 {
1465 rcu_read_unlock();
1466 }
1467
mem_cgroup_handle_over_high(void)1468 static inline void mem_cgroup_handle_over_high(void)
1469 {
1470 }
1471
mem_cgroup_enter_user_fault(void)1472 static inline void mem_cgroup_enter_user_fault(void)
1473 {
1474 }
1475
mem_cgroup_exit_user_fault(void)1476 static inline void mem_cgroup_exit_user_fault(void)
1477 {
1478 }
1479
task_in_memcg_oom(struct task_struct * p)1480 static inline bool task_in_memcg_oom(struct task_struct *p)
1481 {
1482 return false;
1483 }
1484
mem_cgroup_oom_synchronize(bool wait)1485 static inline bool mem_cgroup_oom_synchronize(bool wait)
1486 {
1487 return false;
1488 }
1489
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1490 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1491 struct task_struct *victim, struct mem_cgroup *oom_domain)
1492 {
1493 return NULL;
1494 }
1495
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1496 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1497 {
1498 }
1499
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1500 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1501 int idx,
1502 int nr)
1503 {
1504 }
1505
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1506 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1507 int idx,
1508 int nr)
1509 {
1510 }
1511
mod_memcg_page_state(struct page * page,int idx,int val)1512 static inline void mod_memcg_page_state(struct page *page,
1513 int idx, int val)
1514 {
1515 }
1516
memcg_page_state(struct mem_cgroup * memcg,int idx)1517 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1518 {
1519 return 0;
1520 }
1521
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1522 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1523 enum node_stat_item idx)
1524 {
1525 return node_page_state(lruvec_pgdat(lruvec), idx);
1526 }
1527
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1528 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1529 enum node_stat_item idx)
1530 {
1531 return node_page_state(lruvec_pgdat(lruvec), idx);
1532 }
1533
mem_cgroup_flush_stats(void)1534 static inline void mem_cgroup_flush_stats(void)
1535 {
1536 }
1537
mem_cgroup_flush_stats_delayed(void)1538 static inline void mem_cgroup_flush_stats_delayed(void)
1539 {
1540 }
1541
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1542 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1543 enum node_stat_item idx, int val)
1544 {
1545 }
1546
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1547 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1548 int val)
1549 {
1550 struct page *page = virt_to_head_page(p);
1551
1552 __mod_node_page_state(page_pgdat(page), idx, val);
1553 }
1554
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1555 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1556 int val)
1557 {
1558 struct page *page = virt_to_head_page(p);
1559
1560 mod_node_page_state(page_pgdat(page), idx, val);
1561 }
1562
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1563 static inline void count_memcg_events(struct mem_cgroup *memcg,
1564 enum vm_event_item idx,
1565 unsigned long count)
1566 {
1567 }
1568
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1569 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1570 enum vm_event_item idx,
1571 unsigned long count)
1572 {
1573 }
1574
count_memcg_page_event(struct page * page,int idx)1575 static inline void count_memcg_page_event(struct page *page,
1576 int idx)
1577 {
1578 }
1579
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1580 static inline void count_memcg_folio_events(struct folio *folio,
1581 enum vm_event_item idx, unsigned long nr)
1582 {
1583 }
1584
1585 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1586 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1587 {
1588 }
1589
split_page_memcg(struct page * head,unsigned int nr)1590 static inline void split_page_memcg(struct page *head, unsigned int nr)
1591 {
1592 }
1593
1594 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1595 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1596 gfp_t gfp_mask,
1597 unsigned long *total_scanned)
1598 {
1599 return 0;
1600 }
1601 #endif /* CONFIG_MEMCG */
1602
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1603 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1604 {
1605 __mod_lruvec_kmem_state(p, idx, 1);
1606 }
1607
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1608 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1609 {
1610 __mod_lruvec_kmem_state(p, idx, -1);
1611 }
1612
parent_lruvec(struct lruvec * lruvec)1613 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1614 {
1615 struct mem_cgroup *memcg;
1616
1617 memcg = lruvec_memcg(lruvec);
1618 if (!memcg)
1619 return NULL;
1620 memcg = parent_mem_cgroup(memcg);
1621 if (!memcg)
1622 return NULL;
1623 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1624 }
1625
unlock_page_lruvec(struct lruvec * lruvec)1626 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1627 {
1628 spin_unlock(&lruvec->lru_lock);
1629 }
1630
unlock_page_lruvec_irq(struct lruvec * lruvec)1631 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1632 {
1633 spin_unlock_irq(&lruvec->lru_lock);
1634 }
1635
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1636 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1637 unsigned long flags)
1638 {
1639 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1640 }
1641
1642 /* Test requires a stable page->memcg binding, see page_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1643 static inline bool folio_matches_lruvec(struct folio *folio,
1644 struct lruvec *lruvec)
1645 {
1646 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1647 lruvec_memcg(lruvec) == folio_memcg(folio);
1648 }
1649
1650 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1651 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1652 struct lruvec *locked_lruvec)
1653 {
1654 if (locked_lruvec) {
1655 if (folio_matches_lruvec(folio, locked_lruvec))
1656 return locked_lruvec;
1657
1658 unlock_page_lruvec_irq(locked_lruvec);
1659 }
1660
1661 return folio_lruvec_lock_irq(folio);
1662 }
1663
1664 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec * locked_lruvec,unsigned long * flags)1665 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1666 struct lruvec *locked_lruvec, unsigned long *flags)
1667 {
1668 if (locked_lruvec) {
1669 if (folio_matches_lruvec(folio, locked_lruvec))
1670 return locked_lruvec;
1671
1672 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1673 }
1674
1675 return folio_lruvec_lock_irqsave(folio, flags);
1676 }
1677
1678 #ifdef CONFIG_CGROUP_WRITEBACK
1679
1680 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1681 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1682 unsigned long *pheadroom, unsigned long *pdirty,
1683 unsigned long *pwriteback);
1684
1685 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1686 struct bdi_writeback *wb);
1687
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1688 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1689 struct bdi_writeback *wb)
1690 {
1691 struct mem_cgroup *memcg;
1692
1693 if (mem_cgroup_disabled())
1694 return;
1695
1696 memcg = folio_memcg(folio);
1697 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1698 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1699 }
1700
1701 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1702
1703 #else /* CONFIG_CGROUP_WRITEBACK */
1704
mem_cgroup_wb_domain(struct bdi_writeback * wb)1705 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1706 {
1707 return NULL;
1708 }
1709
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1710 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1711 unsigned long *pfilepages,
1712 unsigned long *pheadroom,
1713 unsigned long *pdirty,
1714 unsigned long *pwriteback)
1715 {
1716 }
1717
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1718 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1719 struct bdi_writeback *wb)
1720 {
1721 }
1722
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1723 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1724 {
1725 }
1726
1727 #endif /* CONFIG_CGROUP_WRITEBACK */
1728
1729 struct sock;
1730 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1731 gfp_t gfp_mask);
1732 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1733 #ifdef CONFIG_MEMCG
1734 extern struct static_key_false memcg_sockets_enabled_key;
1735 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1736 void mem_cgroup_sk_alloc(struct sock *sk);
1737 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1738 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1739 {
1740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1741 return true;
1742 do {
1743 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1744 return true;
1745 } while ((memcg = parent_mem_cgroup(memcg)));
1746 return false;
1747 }
1748
1749 int alloc_shrinker_info(struct mem_cgroup *memcg);
1750 void free_shrinker_info(struct mem_cgroup *memcg);
1751 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1752 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1753 #else
1754 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1755 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1756 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1757 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1758 {
1759 return false;
1760 }
1761
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1762 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1763 int nid, int shrinker_id)
1764 {
1765 }
1766 #endif
1767
1768 #ifdef CONFIG_MEMCG_KMEM
1769 bool mem_cgroup_kmem_disabled(void);
1770 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1771 void __memcg_kmem_uncharge_page(struct page *page, int order);
1772
1773 struct obj_cgroup *get_obj_cgroup_from_current(void);
1774 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1775
1776 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1777 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1778
1779 extern struct static_key_false memcg_bpf_enabled_key;
memcg_bpf_enabled(void)1780 static inline bool memcg_bpf_enabled(void)
1781 {
1782 return static_branch_likely(&memcg_bpf_enabled_key);
1783 }
1784
1785 extern struct static_key_false memcg_kmem_online_key;
1786
memcg_kmem_online(void)1787 static inline bool memcg_kmem_online(void)
1788 {
1789 return static_branch_likely(&memcg_kmem_online_key);
1790 }
1791
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1792 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1793 int order)
1794 {
1795 if (memcg_kmem_online())
1796 return __memcg_kmem_charge_page(page, gfp, order);
1797 return 0;
1798 }
1799
memcg_kmem_uncharge_page(struct page * page,int order)1800 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1801 {
1802 if (memcg_kmem_online())
1803 __memcg_kmem_uncharge_page(page, order);
1804 }
1805
1806 /*
1807 * A helper for accessing memcg's kmem_id, used for getting
1808 * corresponding LRU lists.
1809 */
memcg_kmem_id(struct mem_cgroup * memcg)1810 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1811 {
1812 return memcg ? memcg->kmemcg_id : -1;
1813 }
1814
1815 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1816 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1817
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1818 static inline void count_objcg_event(struct obj_cgroup *objcg,
1819 enum vm_event_item idx)
1820 {
1821 struct mem_cgroup *memcg;
1822
1823 if (!memcg_kmem_online())
1824 return;
1825
1826 rcu_read_lock();
1827 memcg = obj_cgroup_memcg(objcg);
1828 count_memcg_events(memcg, idx, 1);
1829 rcu_read_unlock();
1830 }
1831
1832 #else
mem_cgroup_kmem_disabled(void)1833 static inline bool mem_cgroup_kmem_disabled(void)
1834 {
1835 return true;
1836 }
1837
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1838 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1839 int order)
1840 {
1841 return 0;
1842 }
1843
memcg_kmem_uncharge_page(struct page * page,int order)1844 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1845 {
1846 }
1847
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1848 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1849 int order)
1850 {
1851 return 0;
1852 }
1853
__memcg_kmem_uncharge_page(struct page * page,int order)1854 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1855 {
1856 }
1857
get_obj_cgroup_from_page(struct page * page)1858 static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1859 {
1860 return NULL;
1861 }
1862
memcg_bpf_enabled(void)1863 static inline bool memcg_bpf_enabled(void)
1864 {
1865 return false;
1866 }
1867
memcg_kmem_online(void)1868 static inline bool memcg_kmem_online(void)
1869 {
1870 return false;
1871 }
1872
memcg_kmem_id(struct mem_cgroup * memcg)1873 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1874 {
1875 return -1;
1876 }
1877
mem_cgroup_from_obj(void * p)1878 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1879 {
1880 return NULL;
1881 }
1882
mem_cgroup_from_slab_obj(void * p)1883 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1884 {
1885 return NULL;
1886 }
1887
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1888 static inline void count_objcg_event(struct obj_cgroup *objcg,
1889 enum vm_event_item idx)
1890 {
1891 }
1892
1893 #endif /* CONFIG_MEMCG_KMEM */
1894
1895 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1896 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1897 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1898 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1899 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1900 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1901 {
1902 return true;
1903 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1904 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1905 size_t size)
1906 {
1907 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1908 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1909 size_t size)
1910 {
1911 }
1912 #endif
1913
1914 #endif /* _LINUX_MEMCONTROL_H */
1915