1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/bits.h>
10 #include <linux/device.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/slab.h>
13 #include <linux/kthread.h>
14 #include <linux/completion.h>
15 #include <linux/scatterlist.h>
16 #include <linux/gpio/consumer.h>
17 
18 #include <uapi/linux/spi/spi.h>
19 #include <linux/acpi.h>
20 #include <linux/u64_stats_sync.h>
21 
22 struct dma_chan;
23 struct software_node;
24 struct ptp_system_timestamp;
25 struct spi_controller;
26 struct spi_transfer;
27 struct spi_controller_mem_ops;
28 struct spi_controller_mem_caps;
29 struct spi_message;
30 
31 /*
32  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
33  * and SPI infrastructure.
34  */
35 extern struct bus_type spi_bus_type;
36 
37 /**
38  * struct spi_statistics - statistics for spi transfers
39  * @syncp:         seqcount to protect members in this struct for per-cpu udate
40  *                 on 32-bit systems
41  *
42  * @messages:      number of spi-messages handled
43  * @transfers:     number of spi_transfers handled
44  * @errors:        number of errors during spi_transfer
45  * @timedout:      number of timeouts during spi_transfer
46  *
47  * @spi_sync:      number of times spi_sync is used
48  * @spi_sync_immediate:
49  *                 number of times spi_sync is executed immediately
50  *                 in calling context without queuing and scheduling
51  * @spi_async:     number of times spi_async is used
52  *
53  * @bytes:         number of bytes transferred to/from device
54  * @bytes_tx:      number of bytes sent to device
55  * @bytes_rx:      number of bytes received from device
56  *
57  * @transfer_bytes_histo:
58  *                 transfer bytes histogramm
59  *
60  * @transfers_split_maxsize:
61  *                 number of transfers that have been split because of
62  *                 maxsize limit
63  */
64 struct spi_statistics {
65 	struct u64_stats_sync	syncp;
66 
67 	u64_stats_t		messages;
68 	u64_stats_t		transfers;
69 	u64_stats_t		errors;
70 	u64_stats_t		timedout;
71 
72 	u64_stats_t		spi_sync;
73 	u64_stats_t		spi_sync_immediate;
74 	u64_stats_t		spi_async;
75 
76 	u64_stats_t		bytes;
77 	u64_stats_t		bytes_rx;
78 	u64_stats_t		bytes_tx;
79 
80 #define SPI_STATISTICS_HISTO_SIZE 17
81 	u64_stats_t	transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
82 
83 	u64_stats_t	transfers_split_maxsize;
84 };
85 
86 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count)		\
87 	do {								\
88 		struct spi_statistics *__lstats;			\
89 		get_cpu();						\
90 		__lstats = this_cpu_ptr(pcpu_stats);			\
91 		u64_stats_update_begin(&__lstats->syncp);		\
92 		u64_stats_add(&__lstats->field, count);			\
93 		u64_stats_update_end(&__lstats->syncp);			\
94 		put_cpu();						\
95 	} while (0)
96 
97 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field)		\
98 	do {								\
99 		struct spi_statistics *__lstats;			\
100 		get_cpu();						\
101 		__lstats = this_cpu_ptr(pcpu_stats);			\
102 		u64_stats_update_begin(&__lstats->syncp);		\
103 		u64_stats_inc(&__lstats->field);			\
104 		u64_stats_update_end(&__lstats->syncp);			\
105 		put_cpu();						\
106 	} while (0)
107 
108 /**
109  * struct spi_delay - SPI delay information
110  * @value: Value for the delay
111  * @unit: Unit for the delay
112  */
113 struct spi_delay {
114 #define SPI_DELAY_UNIT_USECS	0
115 #define SPI_DELAY_UNIT_NSECS	1
116 #define SPI_DELAY_UNIT_SCK	2
117 	u16	value;
118 	u8	unit;
119 };
120 
121 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
122 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
123 extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
124 						  struct spi_transfer *xfer);
125 
126 /**
127  * struct spi_device - Controller side proxy for an SPI slave device
128  * @dev: Driver model representation of the device.
129  * @controller: SPI controller used with the device.
130  * @master: Copy of controller, for backwards compatibility.
131  * @max_speed_hz: Maximum clock rate to be used with this chip
132  *	(on this board); may be changed by the device's driver.
133  *	The spi_transfer.speed_hz can override this for each transfer.
134  * @chip_select: Chipselect, distinguishing chips handled by @controller.
135  * @mode: The spi mode defines how data is clocked out and in.
136  *	This may be changed by the device's driver.
137  *	The "active low" default for chipselect mode can be overridden
138  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
139  *	each word in a transfer (by specifying SPI_LSB_FIRST).
140  * @bits_per_word: Data transfers involve one or more words; word sizes
141  *	like eight or 12 bits are common.  In-memory wordsizes are
142  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
143  *	This may be changed by the device's driver, or left at the
144  *	default (0) indicating protocol words are eight bit bytes.
145  *	The spi_transfer.bits_per_word can override this for each transfer.
146  * @rt: Make the pump thread real time priority.
147  * @irq: Negative, or the number passed to request_irq() to receive
148  *	interrupts from this device.
149  * @controller_state: Controller's runtime state
150  * @controller_data: Board-specific definitions for controller, such as
151  *	FIFO initialization parameters; from board_info.controller_data
152  * @modalias: Name of the driver to use with this device, or an alias
153  *	for that name.  This appears in the sysfs "modalias" attribute
154  *	for driver coldplugging, and in uevents used for hotplugging
155  * @driver_override: If the name of a driver is written to this attribute, then
156  *	the device will bind to the named driver and only the named driver.
157  *	Do not set directly, because core frees it; use driver_set_override() to
158  *	set or clear it.
159  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
160  *	not using a GPIO line)
161  * @word_delay: delay to be inserted between consecutive
162  *	words of a transfer
163  * @cs_setup: delay to be introduced by the controller after CS is asserted
164  * @cs_hold: delay to be introduced by the controller before CS is deasserted
165  * @cs_inactive: delay to be introduced by the controller after CS is
166  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
167  *	two delays will be added up.
168  * @pcpu_statistics: statistics for the spi_device
169  *
170  * A @spi_device is used to interchange data between an SPI slave
171  * (usually a discrete chip) and CPU memory.
172  *
173  * In @dev, the platform_data is used to hold information about this
174  * device that's meaningful to the device's protocol driver, but not
175  * to its controller.  One example might be an identifier for a chip
176  * variant with slightly different functionality; another might be
177  * information about how this particular board wires the chip's pins.
178  */
179 struct spi_device {
180 	struct device		dev;
181 	struct spi_controller	*controller;
182 	struct spi_controller	*master;	/* Compatibility layer */
183 	u32			max_speed_hz;
184 	u8			chip_select;
185 	u8			bits_per_word;
186 	bool			rt;
187 #define SPI_NO_TX	BIT(31)		/* No transmit wire */
188 #define SPI_NO_RX	BIT(30)		/* No receive wire */
189 	/*
190 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
191 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
192 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
193 	 * The bits defined here are from bit 31 downwards, while in
194 	 * SPI_MODE_USER_MASK are from 0 upwards.
195 	 * These bits must not overlap. A static assert check should make sure of that.
196 	 * If adding extra bits, make sure to decrease the bit index below as well.
197 	 */
198 #define SPI_MODE_KERNEL_MASK	(~(BIT(30) - 1))
199 	u32			mode;
200 	int			irq;
201 	void			*controller_state;
202 	void			*controller_data;
203 	char			modalias[SPI_NAME_SIZE];
204 	const char		*driver_override;
205 	struct gpio_desc	*cs_gpiod;	/* Chip select gpio desc */
206 	struct spi_delay	word_delay; /* Inter-word delay */
207 	/* CS delays */
208 	struct spi_delay	cs_setup;
209 	struct spi_delay	cs_hold;
210 	struct spi_delay	cs_inactive;
211 
212 	/* The statistics */
213 	struct spi_statistics __percpu	*pcpu_statistics;
214 
215 	/*
216 	 * likely need more hooks for more protocol options affecting how
217 	 * the controller talks to each chip, like:
218 	 *  - memory packing (12 bit samples into low bits, others zeroed)
219 	 *  - priority
220 	 *  - chipselect delays
221 	 *  - ...
222 	 */
223 };
224 
225 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
226 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
227 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
228 
to_spi_device(const struct device * dev)229 static inline struct spi_device *to_spi_device(const struct device *dev)
230 {
231 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
232 }
233 
234 /* Most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)235 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
236 {
237 	return (spi && get_device(&spi->dev)) ? spi : NULL;
238 }
239 
spi_dev_put(struct spi_device * spi)240 static inline void spi_dev_put(struct spi_device *spi)
241 {
242 	if (spi)
243 		put_device(&spi->dev);
244 }
245 
246 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(struct spi_device * spi)247 static inline void *spi_get_ctldata(struct spi_device *spi)
248 {
249 	return spi->controller_state;
250 }
251 
spi_set_ctldata(struct spi_device * spi,void * state)252 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
253 {
254 	spi->controller_state = state;
255 }
256 
257 /* Device driver data */
258 
spi_set_drvdata(struct spi_device * spi,void * data)259 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
260 {
261 	dev_set_drvdata(&spi->dev, data);
262 }
263 
spi_get_drvdata(struct spi_device * spi)264 static inline void *spi_get_drvdata(struct spi_device *spi)
265 {
266 	return dev_get_drvdata(&spi->dev);
267 }
268 
spi_get_chipselect(struct spi_device * spi,u8 idx)269 static inline u8 spi_get_chipselect(struct spi_device *spi, u8 idx)
270 {
271 	return spi->chip_select;
272 }
273 
spi_set_chipselect(struct spi_device * spi,u8 idx,u8 chipselect)274 static inline void spi_set_chipselect(struct spi_device *spi, u8 idx, u8 chipselect)
275 {
276 	spi->chip_select = chipselect;
277 }
278 
spi_get_csgpiod(struct spi_device * spi,u8 idx)279 static inline struct gpio_desc *spi_get_csgpiod(struct spi_device *spi, u8 idx)
280 {
281 	return spi->cs_gpiod;
282 }
283 
spi_set_csgpiod(struct spi_device * spi,u8 idx,struct gpio_desc * csgpiod)284 static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_desc *csgpiod)
285 {
286 	spi->cs_gpiod = csgpiod;
287 }
288 
289 /**
290  * struct spi_driver - Host side "protocol" driver
291  * @id_table: List of SPI devices supported by this driver
292  * @probe: Binds this driver to the spi device.  Drivers can verify
293  *	that the device is actually present, and may need to configure
294  *	characteristics (such as bits_per_word) which weren't needed for
295  *	the initial configuration done during system setup.
296  * @remove: Unbinds this driver from the spi device
297  * @shutdown: Standard shutdown callback used during system state
298  *	transitions such as powerdown/halt and kexec
299  * @driver: SPI device drivers should initialize the name and owner
300  *	field of this structure.
301  *
302  * This represents the kind of device driver that uses SPI messages to
303  * interact with the hardware at the other end of a SPI link.  It's called
304  * a "protocol" driver because it works through messages rather than talking
305  * directly to SPI hardware (which is what the underlying SPI controller
306  * driver does to pass those messages).  These protocols are defined in the
307  * specification for the device(s) supported by the driver.
308  *
309  * As a rule, those device protocols represent the lowest level interface
310  * supported by a driver, and it will support upper level interfaces too.
311  * Examples of such upper levels include frameworks like MTD, networking,
312  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
313  */
314 struct spi_driver {
315 	const struct spi_device_id *id_table;
316 	int			(*probe)(struct spi_device *spi);
317 	void			(*remove)(struct spi_device *spi);
318 	void			(*shutdown)(struct spi_device *spi);
319 	struct device_driver	driver;
320 };
321 
to_spi_driver(struct device_driver * drv)322 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
323 {
324 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
325 }
326 
327 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
328 
329 /**
330  * spi_unregister_driver - reverse effect of spi_register_driver
331  * @sdrv: the driver to unregister
332  * Context: can sleep
333  */
spi_unregister_driver(struct spi_driver * sdrv)334 static inline void spi_unregister_driver(struct spi_driver *sdrv)
335 {
336 	if (sdrv)
337 		driver_unregister(&sdrv->driver);
338 }
339 
340 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
341 
342 /* Use a define to avoid include chaining to get THIS_MODULE */
343 #define spi_register_driver(driver) \
344 	__spi_register_driver(THIS_MODULE, driver)
345 
346 /**
347  * module_spi_driver() - Helper macro for registering a SPI driver
348  * @__spi_driver: spi_driver struct
349  *
350  * Helper macro for SPI drivers which do not do anything special in module
351  * init/exit. This eliminates a lot of boilerplate. Each module may only
352  * use this macro once, and calling it replaces module_init() and module_exit()
353  */
354 #define module_spi_driver(__spi_driver) \
355 	module_driver(__spi_driver, spi_register_driver, \
356 			spi_unregister_driver)
357 
358 /**
359  * struct spi_controller - interface to SPI master or slave controller
360  * @dev: device interface to this driver
361  * @list: link with the global spi_controller list
362  * @bus_num: board-specific (and often SOC-specific) identifier for a
363  *	given SPI controller.
364  * @num_chipselect: chipselects are used to distinguish individual
365  *	SPI slaves, and are numbered from zero to num_chipselects.
366  *	each slave has a chipselect signal, but it's common that not
367  *	every chipselect is connected to a slave.
368  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
369  * @mode_bits: flags understood by this controller driver
370  * @buswidth_override_bits: flags to override for this controller driver
371  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
372  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
373  *	supported. If set, the SPI core will reject any transfer with an
374  *	unsupported bits_per_word. If not set, this value is simply ignored,
375  *	and it's up to the individual driver to perform any validation.
376  * @min_speed_hz: Lowest supported transfer speed
377  * @max_speed_hz: Highest supported transfer speed
378  * @flags: other constraints relevant to this driver
379  * @slave: indicates that this is an SPI slave controller
380  * @target: indicates that this is an SPI target controller
381  * @devm_allocated: whether the allocation of this struct is devres-managed
382  * @max_transfer_size: function that returns the max transfer size for
383  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
384  * @max_message_size: function that returns the max message size for
385  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
386  * @io_mutex: mutex for physical bus access
387  * @add_lock: mutex to avoid adding devices to the same chipselect
388  * @bus_lock_spinlock: spinlock for SPI bus locking
389  * @bus_lock_mutex: mutex for exclusion of multiple callers
390  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
391  * @setup: updates the device mode and clocking records used by a
392  *	device's SPI controller; protocol code may call this.  This
393  *	must fail if an unrecognized or unsupported mode is requested.
394  *	It's always safe to call this unless transfers are pending on
395  *	the device whose settings are being modified.
396  * @set_cs_timing: optional hook for SPI devices to request SPI master
397  * controller for configuring specific CS setup time, hold time and inactive
398  * delay interms of clock counts
399  * @transfer: adds a message to the controller's transfer queue.
400  * @cleanup: frees controller-specific state
401  * @can_dma: determine whether this controller supports DMA
402  * @dma_map_dev: device which can be used for DMA mapping
403  * @cur_rx_dma_dev: device which is currently used for RX DMA mapping
404  * @cur_tx_dma_dev: device which is currently used for TX DMA mapping
405  * @queued: whether this controller is providing an internal message queue
406  * @kworker: pointer to thread struct for message pump
407  * @pump_messages: work struct for scheduling work to the message pump
408  * @queue_lock: spinlock to syncronise access to message queue
409  * @queue: message queue
410  * @cur_msg: the currently in-flight message
411  * @cur_msg_completion: a completion for the current in-flight message
412  * @cur_msg_incomplete: Flag used internally to opportunistically skip
413  *	the @cur_msg_completion. This flag is used to check if the driver has
414  *	already called spi_finalize_current_message().
415  * @cur_msg_need_completion: Flag used internally to opportunistically skip
416  *	the @cur_msg_completion. This flag is used to signal the context that
417  *	is running spi_finalize_current_message() that it needs to complete()
418  * @cur_msg_mapped: message has been mapped for DMA
419  * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip
420  *           selected
421  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
422  * @xfer_completion: used by core transfer_one_message()
423  * @busy: message pump is busy
424  * @running: message pump is running
425  * @rt: whether this queue is set to run as a realtime task
426  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
427  *                   while the hardware is prepared, using the parent
428  *                   device for the spidev
429  * @max_dma_len: Maximum length of a DMA transfer for the device.
430  * @prepare_transfer_hardware: a message will soon arrive from the queue
431  *	so the subsystem requests the driver to prepare the transfer hardware
432  *	by issuing this call
433  * @transfer_one_message: the subsystem calls the driver to transfer a single
434  *	message while queuing transfers that arrive in the meantime. When the
435  *	driver is finished with this message, it must call
436  *	spi_finalize_current_message() so the subsystem can issue the next
437  *	message
438  * @unprepare_transfer_hardware: there are currently no more messages on the
439  *	queue so the subsystem notifies the driver that it may relax the
440  *	hardware by issuing this call
441  *
442  * @set_cs: set the logic level of the chip select line.  May be called
443  *          from interrupt context.
444  * @prepare_message: set up the controller to transfer a single message,
445  *                   for example doing DMA mapping.  Called from threaded
446  *                   context.
447  * @transfer_one: transfer a single spi_transfer.
448  *
449  *                  - return 0 if the transfer is finished,
450  *                  - return 1 if the transfer is still in progress. When
451  *                    the driver is finished with this transfer it must
452  *                    call spi_finalize_current_transfer() so the subsystem
453  *                    can issue the next transfer. Note: transfer_one and
454  *                    transfer_one_message are mutually exclusive; when both
455  *                    are set, the generic subsystem does not call your
456  *                    transfer_one callback.
457  * @handle_err: the subsystem calls the driver to handle an error that occurs
458  *		in the generic implementation of transfer_one_message().
459  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
460  *	     This field is optional and should only be implemented if the
461  *	     controller has native support for memory like operations.
462  * @mem_caps: controller capabilities for the handling of memory operations.
463  * @unprepare_message: undo any work done by prepare_message().
464  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
465  * @target_abort: abort the ongoing transfer request on an SPI target controller
466  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
467  *	number. Any individual value may be NULL for CS lines that
468  *	are not GPIOs (driven by the SPI controller itself).
469  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
470  *	GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have
471  *	the cs_gpiod assigned if a GPIO line is found for the chipselect.
472  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
473  *	fill in this field with the first unused native CS, to be used by SPI
474  *	controller drivers that need to drive a native CS when using GPIO CS.
475  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
476  *	spi_register_controller() will validate all native CS (including the
477  *	unused native CS) against this value.
478  * @pcpu_statistics: statistics for the spi_controller
479  * @dma_tx: DMA transmit channel
480  * @dma_rx: DMA receive channel
481  * @dummy_rx: dummy receive buffer for full-duplex devices
482  * @dummy_tx: dummy transmit buffer for full-duplex devices
483  * @fw_translate_cs: If the boot firmware uses different numbering scheme
484  *	what Linux expects, this optional hook can be used to translate
485  *	between the two.
486  * @ptp_sts_supported: If the driver sets this to true, it must provide a
487  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
488  *	moment in time when @spi_transfer->ptp_sts_word_pre and
489  *	@spi_transfer->ptp_sts_word_post were transmitted.
490  *	If the driver does not set this, the SPI core takes the snapshot as
491  *	close to the driver hand-over as possible.
492  * @irq_flags: Interrupt enable state during PTP system timestamping
493  * @fallback: fallback to pio if dma transfer return failure with
494  *	SPI_TRANS_FAIL_NO_START.
495  * @queue_empty: signal green light for opportunistically skipping the queue
496  *	for spi_sync transfers.
497  * @must_async: disable all fast paths in the core
498  *
499  * Each SPI controller can communicate with one or more @spi_device
500  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
501  * but not chip select signals.  Each device may be configured to use a
502  * different clock rate, since those shared signals are ignored unless
503  * the chip is selected.
504  *
505  * The driver for an SPI controller manages access to those devices through
506  * a queue of spi_message transactions, copying data between CPU memory and
507  * an SPI slave device.  For each such message it queues, it calls the
508  * message's completion function when the transaction completes.
509  */
510 struct spi_controller {
511 	struct device	dev;
512 
513 	struct list_head list;
514 
515 	/* Other than negative (== assign one dynamically), bus_num is fully
516 	 * board-specific.  usually that simplifies to being SOC-specific.
517 	 * example:  one SOC has three SPI controllers, numbered 0..2,
518 	 * and one board's schematics might show it using SPI-2.  software
519 	 * would normally use bus_num=2 for that controller.
520 	 */
521 	s16			bus_num;
522 
523 	/* chipselects will be integral to many controllers; some others
524 	 * might use board-specific GPIOs.
525 	 */
526 	u16			num_chipselect;
527 
528 	/* Some SPI controllers pose alignment requirements on DMAable
529 	 * buffers; let protocol drivers know about these requirements.
530 	 */
531 	u16			dma_alignment;
532 
533 	/* spi_device.mode flags understood by this controller driver */
534 	u32			mode_bits;
535 
536 	/* spi_device.mode flags override flags for this controller */
537 	u32			buswidth_override_bits;
538 
539 	/* Bitmask of supported bits_per_word for transfers */
540 	u32			bits_per_word_mask;
541 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
542 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
543 
544 	/* Limits on transfer speed */
545 	u32			min_speed_hz;
546 	u32			max_speed_hz;
547 
548 	/* Other constraints relevant to this driver */
549 	u16			flags;
550 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* Can't do full duplex */
551 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* Can't do buffer read */
552 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* Can't do buffer write */
553 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* Requires rx */
554 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* Requires tx */
555 
556 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
557 
558 	/* Flag indicating if the allocation of this struct is devres-managed */
559 	bool			devm_allocated;
560 
561 	union {
562 		/* Flag indicating this is an SPI slave controller */
563 		bool			slave;
564 		/* Flag indicating this is an SPI target controller */
565 		bool			target;
566 	};
567 
568 	/*
569 	 * on some hardware transfer / message size may be constrained
570 	 * the limit may depend on device transfer settings
571 	 */
572 	size_t (*max_transfer_size)(struct spi_device *spi);
573 	size_t (*max_message_size)(struct spi_device *spi);
574 
575 	/* I/O mutex */
576 	struct mutex		io_mutex;
577 
578 	/* Used to avoid adding the same CS twice */
579 	struct mutex		add_lock;
580 
581 	/* Lock and mutex for SPI bus locking */
582 	spinlock_t		bus_lock_spinlock;
583 	struct mutex		bus_lock_mutex;
584 
585 	/* Flag indicating that the SPI bus is locked for exclusive use */
586 	bool			bus_lock_flag;
587 
588 	/* Setup mode and clock, etc (spi driver may call many times).
589 	 *
590 	 * IMPORTANT:  this may be called when transfers to another
591 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
592 	 * which could break those transfers.
593 	 */
594 	int			(*setup)(struct spi_device *spi);
595 
596 	/*
597 	 * set_cs_timing() method is for SPI controllers that supports
598 	 * configuring CS timing.
599 	 *
600 	 * This hook allows SPI client drivers to request SPI controllers
601 	 * to configure specific CS timing through spi_set_cs_timing() after
602 	 * spi_setup().
603 	 */
604 	int (*set_cs_timing)(struct spi_device *spi);
605 
606 	/* Bidirectional bulk transfers
607 	 *
608 	 * + The transfer() method may not sleep; its main role is
609 	 *   just to add the message to the queue.
610 	 * + For now there's no remove-from-queue operation, or
611 	 *   any other request management
612 	 * + To a given spi_device, message queueing is pure fifo
613 	 *
614 	 * + The controller's main job is to process its message queue,
615 	 *   selecting a chip (for masters), then transferring data
616 	 * + If there are multiple spi_device children, the i/o queue
617 	 *   arbitration algorithm is unspecified (round robin, fifo,
618 	 *   priority, reservations, preemption, etc)
619 	 *
620 	 * + Chipselect stays active during the entire message
621 	 *   (unless modified by spi_transfer.cs_change != 0).
622 	 * + The message transfers use clock and SPI mode parameters
623 	 *   previously established by setup() for this device
624 	 */
625 	int			(*transfer)(struct spi_device *spi,
626 						struct spi_message *mesg);
627 
628 	/* Called on release() to free memory provided by spi_controller */
629 	void			(*cleanup)(struct spi_device *spi);
630 
631 	/*
632 	 * Used to enable core support for DMA handling, if can_dma()
633 	 * exists and returns true then the transfer will be mapped
634 	 * prior to transfer_one() being called.  The driver should
635 	 * not modify or store xfer and dma_tx and dma_rx must be set
636 	 * while the device is prepared.
637 	 */
638 	bool			(*can_dma)(struct spi_controller *ctlr,
639 					   struct spi_device *spi,
640 					   struct spi_transfer *xfer);
641 	struct device *dma_map_dev;
642 	struct device *cur_rx_dma_dev;
643 	struct device *cur_tx_dma_dev;
644 
645 	/*
646 	 * These hooks are for drivers that want to use the generic
647 	 * controller transfer queueing mechanism. If these are used, the
648 	 * transfer() function above must NOT be specified by the driver.
649 	 * Over time we expect SPI drivers to be phased over to this API.
650 	 */
651 	bool				queued;
652 	struct kthread_worker		*kworker;
653 	struct kthread_work		pump_messages;
654 	spinlock_t			queue_lock;
655 	struct list_head		queue;
656 	struct spi_message		*cur_msg;
657 	struct completion               cur_msg_completion;
658 	bool				cur_msg_incomplete;
659 	bool				cur_msg_need_completion;
660 	bool				busy;
661 	bool				running;
662 	bool				rt;
663 	bool				auto_runtime_pm;
664 	bool				cur_msg_mapped;
665 	char				last_cs;
666 	bool				last_cs_mode_high;
667 	bool                            fallback;
668 	struct completion               xfer_completion;
669 	size_t				max_dma_len;
670 
671 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
672 	int (*transfer_one_message)(struct spi_controller *ctlr,
673 				    struct spi_message *mesg);
674 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
675 	int (*prepare_message)(struct spi_controller *ctlr,
676 			       struct spi_message *message);
677 	int (*unprepare_message)(struct spi_controller *ctlr,
678 				 struct spi_message *message);
679 	union {
680 		int (*slave_abort)(struct spi_controller *ctlr);
681 		int (*target_abort)(struct spi_controller *ctlr);
682 	};
683 
684 	/*
685 	 * These hooks are for drivers that use a generic implementation
686 	 * of transfer_one_message() provided by the core.
687 	 */
688 	void (*set_cs)(struct spi_device *spi, bool enable);
689 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
690 			    struct spi_transfer *transfer);
691 	void (*handle_err)(struct spi_controller *ctlr,
692 			   struct spi_message *message);
693 
694 	/* Optimized handlers for SPI memory-like operations. */
695 	const struct spi_controller_mem_ops *mem_ops;
696 	const struct spi_controller_mem_caps *mem_caps;
697 
698 	/* gpio chip select */
699 	struct gpio_desc	**cs_gpiods;
700 	bool			use_gpio_descriptors;
701 	s8			unused_native_cs;
702 	s8			max_native_cs;
703 
704 	/* Statistics */
705 	struct spi_statistics __percpu	*pcpu_statistics;
706 
707 	/* DMA channels for use with core dmaengine helpers */
708 	struct dma_chan		*dma_tx;
709 	struct dma_chan		*dma_rx;
710 
711 	/* Dummy data for full duplex devices */
712 	void			*dummy_rx;
713 	void			*dummy_tx;
714 
715 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
716 
717 	/*
718 	 * Driver sets this field to indicate it is able to snapshot SPI
719 	 * transfers (needed e.g. for reading the time of POSIX clocks)
720 	 */
721 	bool			ptp_sts_supported;
722 
723 	/* Interrupt enable state during PTP system timestamping */
724 	unsigned long		irq_flags;
725 
726 	/* Flag for enabling opportunistic skipping of the queue in spi_sync */
727 	bool			queue_empty;
728 	bool			must_async;
729 };
730 
spi_controller_get_devdata(struct spi_controller * ctlr)731 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
732 {
733 	return dev_get_drvdata(&ctlr->dev);
734 }
735 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)736 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
737 					      void *data)
738 {
739 	dev_set_drvdata(&ctlr->dev, data);
740 }
741 
spi_controller_get(struct spi_controller * ctlr)742 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
743 {
744 	if (!ctlr || !get_device(&ctlr->dev))
745 		return NULL;
746 	return ctlr;
747 }
748 
spi_controller_put(struct spi_controller * ctlr)749 static inline void spi_controller_put(struct spi_controller *ctlr)
750 {
751 	if (ctlr)
752 		put_device(&ctlr->dev);
753 }
754 
spi_controller_is_slave(struct spi_controller * ctlr)755 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
756 {
757 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
758 }
759 
spi_controller_is_target(struct spi_controller * ctlr)760 static inline bool spi_controller_is_target(struct spi_controller *ctlr)
761 {
762 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->target;
763 }
764 
765 /* PM calls that need to be issued by the driver */
766 extern int spi_controller_suspend(struct spi_controller *ctlr);
767 extern int spi_controller_resume(struct spi_controller *ctlr);
768 
769 /* Calls the driver make to interact with the message queue */
770 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
771 extern void spi_finalize_current_message(struct spi_controller *ctlr);
772 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
773 
774 /* Helper calls for driver to timestamp transfer */
775 void spi_take_timestamp_pre(struct spi_controller *ctlr,
776 			    struct spi_transfer *xfer,
777 			    size_t progress, bool irqs_off);
778 void spi_take_timestamp_post(struct spi_controller *ctlr,
779 			     struct spi_transfer *xfer,
780 			     size_t progress, bool irqs_off);
781 
782 /* The spi driver core manages memory for the spi_controller classdev */
783 extern struct spi_controller *__spi_alloc_controller(struct device *host,
784 						unsigned int size, bool slave);
785 
spi_alloc_master(struct device * host,unsigned int size)786 static inline struct spi_controller *spi_alloc_master(struct device *host,
787 						      unsigned int size)
788 {
789 	return __spi_alloc_controller(host, size, false);
790 }
791 
spi_alloc_slave(struct device * host,unsigned int size)792 static inline struct spi_controller *spi_alloc_slave(struct device *host,
793 						     unsigned int size)
794 {
795 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
796 		return NULL;
797 
798 	return __spi_alloc_controller(host, size, true);
799 }
800 
spi_alloc_host(struct device * dev,unsigned int size)801 static inline struct spi_controller *spi_alloc_host(struct device *dev,
802 						    unsigned int size)
803 {
804 	return __spi_alloc_controller(dev, size, false);
805 }
806 
spi_alloc_target(struct device * dev,unsigned int size)807 static inline struct spi_controller *spi_alloc_target(struct device *dev,
808 						      unsigned int size)
809 {
810 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
811 		return NULL;
812 
813 	return __spi_alloc_controller(dev, size, true);
814 }
815 
816 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
817 						   unsigned int size,
818 						   bool slave);
819 
devm_spi_alloc_master(struct device * dev,unsigned int size)820 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
821 							   unsigned int size)
822 {
823 	return __devm_spi_alloc_controller(dev, size, false);
824 }
825 
devm_spi_alloc_slave(struct device * dev,unsigned int size)826 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
827 							  unsigned int size)
828 {
829 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
830 		return NULL;
831 
832 	return __devm_spi_alloc_controller(dev, size, true);
833 }
834 
devm_spi_alloc_host(struct device * dev,unsigned int size)835 static inline struct spi_controller *devm_spi_alloc_host(struct device *dev,
836 							 unsigned int size)
837 {
838 	return __devm_spi_alloc_controller(dev, size, false);
839 }
840 
devm_spi_alloc_target(struct device * dev,unsigned int size)841 static inline struct spi_controller *devm_spi_alloc_target(struct device *dev,
842 							   unsigned int size)
843 {
844 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
845 		return NULL;
846 
847 	return __devm_spi_alloc_controller(dev, size, true);
848 }
849 
850 extern int spi_register_controller(struct spi_controller *ctlr);
851 extern int devm_spi_register_controller(struct device *dev,
852 					struct spi_controller *ctlr);
853 extern void spi_unregister_controller(struct spi_controller *ctlr);
854 
855 #if IS_ENABLED(CONFIG_ACPI)
856 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
857 						struct acpi_device *adev,
858 						int index);
859 int acpi_spi_count_resources(struct acpi_device *adev);
860 #endif
861 
862 /*
863  * SPI resource management while processing a SPI message
864  */
865 
866 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
867 				  struct spi_message *msg,
868 				  void *res);
869 
870 /**
871  * struct spi_res - spi resource management structure
872  * @entry:   list entry
873  * @release: release code called prior to freeing this resource
874  * @data:    extra data allocated for the specific use-case
875  *
876  * this is based on ideas from devres, but focused on life-cycle
877  * management during spi_message processing
878  */
879 struct spi_res {
880 	struct list_head        entry;
881 	spi_res_release_t       release;
882 	unsigned long long      data[]; /* Guarantee ull alignment */
883 };
884 
885 /*---------------------------------------------------------------------------*/
886 
887 /*
888  * I/O INTERFACE between SPI controller and protocol drivers
889  *
890  * Protocol drivers use a queue of spi_messages, each transferring data
891  * between the controller and memory buffers.
892  *
893  * The spi_messages themselves consist of a series of read+write transfer
894  * segments.  Those segments always read the same number of bits as they
895  * write; but one or the other is easily ignored by passing a null buffer
896  * pointer.  (This is unlike most types of I/O API, because SPI hardware
897  * is full duplex.)
898  *
899  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
900  * up to the protocol driver, which guarantees the integrity of both (as
901  * well as the data buffers) for as long as the message is queued.
902  */
903 
904 /**
905  * struct spi_transfer - a read/write buffer pair
906  * @tx_buf: data to be written (dma-safe memory), or NULL
907  * @rx_buf: data to be read (dma-safe memory), or NULL
908  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
909  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
910  * @tx_nbits: number of bits used for writing. If 0 the default
911  *      (SPI_NBITS_SINGLE) is used.
912  * @rx_nbits: number of bits used for reading. If 0 the default
913  *      (SPI_NBITS_SINGLE) is used.
914  * @len: size of rx and tx buffers (in bytes)
915  * @speed_hz: Select a speed other than the device default for this
916  *      transfer. If 0 the default (from @spi_device) is used.
917  * @bits_per_word: select a bits_per_word other than the device default
918  *      for this transfer. If 0 the default (from @spi_device) is used.
919  * @dummy_data: indicates transfer is dummy bytes transfer.
920  * @cs_off: performs the transfer with chipselect off.
921  * @cs_change: affects chipselect after this transfer completes
922  * @cs_change_delay: delay between cs deassert and assert when
923  *      @cs_change is set and @spi_transfer is not the last in @spi_message
924  * @delay: delay to be introduced after this transfer before
925  *	(optionally) changing the chipselect status, then starting
926  *	the next transfer or completing this @spi_message.
927  * @word_delay: inter word delay to be introduced after each word size
928  *	(set by bits_per_word) transmission.
929  * @effective_speed_hz: the effective SCK-speed that was used to
930  *      transfer this transfer. Set to 0 if the spi bus driver does
931  *      not support it.
932  * @transfer_list: transfers are sequenced through @spi_message.transfers
933  * @tx_sg: Scatterlist for transmit, currently not for client use
934  * @rx_sg: Scatterlist for receive, currently not for client use
935  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
936  *	within @tx_buf for which the SPI device is requesting that the time
937  *	snapshot for this transfer begins. Upon completing the SPI transfer,
938  *	this value may have changed compared to what was requested, depending
939  *	on the available snapshotting resolution (DMA transfer,
940  *	@ptp_sts_supported is false, etc).
941  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
942  *	that a single byte should be snapshotted).
943  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
944  *	for this controller), it will set @ptp_sts_word_pre to 0, and
945  *	@ptp_sts_word_post to the length of the transfer. This is done
946  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
947  *	that a transfer-level snapshot taken from within the driver may still
948  *	be of higher quality.
949  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
950  *	PTP system timestamp structure may lie. If drivers use PIO or their
951  *	hardware has some sort of assist for retrieving exact transfer timing,
952  *	they can (and should) assert @ptp_sts_supported and populate this
953  *	structure using the ptp_read_system_*ts helper functions.
954  *	The timestamp must represent the time at which the SPI slave device has
955  *	processed the word, i.e. the "pre" timestamp should be taken before
956  *	transmitting the "pre" word, and the "post" timestamp after receiving
957  *	transmit confirmation from the controller for the "post" word.
958  * @timestamped: true if the transfer has been timestamped
959  * @error: Error status logged by spi controller driver.
960  *
961  * SPI transfers always write the same number of bytes as they read.
962  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
963  * In some cases, they may also want to provide DMA addresses for
964  * the data being transferred; that may reduce overhead, when the
965  * underlying driver uses dma.
966  *
967  * If the transmit buffer is null, zeroes will be shifted out
968  * while filling @rx_buf.  If the receive buffer is null, the data
969  * shifted in will be discarded.  Only "len" bytes shift out (or in).
970  * It's an error to try to shift out a partial word.  (For example, by
971  * shifting out three bytes with word size of sixteen or twenty bits;
972  * the former uses two bytes per word, the latter uses four bytes.)
973  *
974  * In-memory data values are always in native CPU byte order, translated
975  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
976  * for example when bits_per_word is sixteen, buffers are 2N bytes long
977  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
978  *
979  * When the word size of the SPI transfer is not a power-of-two multiple
980  * of eight bits, those in-memory words include extra bits.  In-memory
981  * words are always seen by protocol drivers as right-justified, so the
982  * undefined (rx) or unused (tx) bits are always the most significant bits.
983  *
984  * All SPI transfers start with the relevant chipselect active.  Normally
985  * it stays selected until after the last transfer in a message.  Drivers
986  * can affect the chipselect signal using cs_change.
987  *
988  * (i) If the transfer isn't the last one in the message, this flag is
989  * used to make the chipselect briefly go inactive in the middle of the
990  * message.  Toggling chipselect in this way may be needed to terminate
991  * a chip command, letting a single spi_message perform all of group of
992  * chip transactions together.
993  *
994  * (ii) When the transfer is the last one in the message, the chip may
995  * stay selected until the next transfer.  On multi-device SPI busses
996  * with nothing blocking messages going to other devices, this is just
997  * a performance hint; starting a message to another device deselects
998  * this one.  But in other cases, this can be used to ensure correctness.
999  * Some devices need protocol transactions to be built from a series of
1000  * spi_message submissions, where the content of one message is determined
1001  * by the results of previous messages and where the whole transaction
1002  * ends when the chipselect goes intactive.
1003  *
1004  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
1005  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
1006  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
1007  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
1008  *
1009  * The code that submits an spi_message (and its spi_transfers)
1010  * to the lower layers is responsible for managing its memory.
1011  * Zero-initialize every field you don't set up explicitly, to
1012  * insulate against future API updates.  After you submit a message
1013  * and its transfers, ignore them until its completion callback.
1014  */
1015 struct spi_transfer {
1016 	/* It's ok if tx_buf == rx_buf (right?)
1017 	 * for MicroWire, one buffer must be null
1018 	 * buffers must work with dma_*map_single() calls, unless
1019 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
1020 	 */
1021 	const void	*tx_buf;
1022 	void		*rx_buf;
1023 	unsigned	len;
1024 
1025 #define SPI_TRANS_FAIL_NO_START	BIT(0)
1026 	u16		error;
1027 
1028 	dma_addr_t	tx_dma;
1029 	dma_addr_t	rx_dma;
1030 	struct sg_table tx_sg;
1031 	struct sg_table rx_sg;
1032 
1033 	unsigned	dummy_data:1;
1034 	unsigned	cs_off:1;
1035 	unsigned	cs_change:1;
1036 	unsigned	tx_nbits:3;
1037 	unsigned	rx_nbits:3;
1038 	unsigned	timestamped:1;
1039 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
1040 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
1041 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
1042 	u8		bits_per_word;
1043 	struct spi_delay	delay;
1044 	struct spi_delay	cs_change_delay;
1045 	struct spi_delay	word_delay;
1046 	u32		speed_hz;
1047 
1048 	u32		effective_speed_hz;
1049 
1050 	unsigned int	ptp_sts_word_pre;
1051 	unsigned int	ptp_sts_word_post;
1052 
1053 	struct ptp_system_timestamp *ptp_sts;
1054 
1055 	struct list_head transfer_list;
1056 };
1057 
1058 /**
1059  * struct spi_message - one multi-segment SPI transaction
1060  * @transfers: list of transfer segments in this transaction
1061  * @spi: SPI device to which the transaction is queued
1062  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
1063  *	addresses for each transfer buffer
1064  * @complete: called to report transaction completions
1065  * @context: the argument to complete() when it's called
1066  * @frame_length: the total number of bytes in the message
1067  * @actual_length: the total number of bytes that were transferred in all
1068  *	successful segments
1069  * @status: zero for success, else negative errno
1070  * @queue: for use by whichever driver currently owns the message
1071  * @state: for use by whichever driver currently owns the message
1072  * @resources: for resource management when the spi message is processed
1073  * @prepared: spi_prepare_message was called for the this message
1074  *
1075  * A @spi_message is used to execute an atomic sequence of data transfers,
1076  * each represented by a struct spi_transfer.  The sequence is "atomic"
1077  * in the sense that no other spi_message may use that SPI bus until that
1078  * sequence completes.  On some systems, many such sequences can execute as
1079  * a single programmed DMA transfer.  On all systems, these messages are
1080  * queued, and might complete after transactions to other devices.  Messages
1081  * sent to a given spi_device are always executed in FIFO order.
1082  *
1083  * The code that submits an spi_message (and its spi_transfers)
1084  * to the lower layers is responsible for managing its memory.
1085  * Zero-initialize every field you don't set up explicitly, to
1086  * insulate against future API updates.  After you submit a message
1087  * and its transfers, ignore them until its completion callback.
1088  */
1089 struct spi_message {
1090 	struct list_head	transfers;
1091 
1092 	struct spi_device	*spi;
1093 
1094 	unsigned		is_dma_mapped:1;
1095 
1096 	/* REVISIT:  we might want a flag affecting the behavior of the
1097 	 * last transfer ... allowing things like "read 16 bit length L"
1098 	 * immediately followed by "read L bytes".  Basically imposing
1099 	 * a specific message scheduling algorithm.
1100 	 *
1101 	 * Some controller drivers (message-at-a-time queue processing)
1102 	 * could provide that as their default scheduling algorithm.  But
1103 	 * others (with multi-message pipelines) could need a flag to
1104 	 * tell them about such special cases.
1105 	 */
1106 
1107 	/* Completion is reported through a callback */
1108 	void			(*complete)(void *context);
1109 	void			*context;
1110 	unsigned		frame_length;
1111 	unsigned		actual_length;
1112 	int			status;
1113 
1114 	/* For optional use by whatever driver currently owns the
1115 	 * spi_message ...  between calls to spi_async and then later
1116 	 * complete(), that's the spi_controller controller driver.
1117 	 */
1118 	struct list_head	queue;
1119 	void			*state;
1120 
1121 	/* List of spi_res reources when the spi message is processed */
1122 	struct list_head        resources;
1123 
1124 	/* spi_prepare_message() was called for this message */
1125 	bool			prepared;
1126 };
1127 
spi_message_init_no_memset(struct spi_message * m)1128 static inline void spi_message_init_no_memset(struct spi_message *m)
1129 {
1130 	INIT_LIST_HEAD(&m->transfers);
1131 	INIT_LIST_HEAD(&m->resources);
1132 }
1133 
spi_message_init(struct spi_message * m)1134 static inline void spi_message_init(struct spi_message *m)
1135 {
1136 	memset(m, 0, sizeof *m);
1137 	spi_message_init_no_memset(m);
1138 }
1139 
1140 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1141 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1142 {
1143 	list_add_tail(&t->transfer_list, &m->transfers);
1144 }
1145 
1146 static inline void
spi_transfer_del(struct spi_transfer * t)1147 spi_transfer_del(struct spi_transfer *t)
1148 {
1149 	list_del(&t->transfer_list);
1150 }
1151 
1152 static inline int
spi_transfer_delay_exec(struct spi_transfer * t)1153 spi_transfer_delay_exec(struct spi_transfer *t)
1154 {
1155 	return spi_delay_exec(&t->delay, t);
1156 }
1157 
1158 /**
1159  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1160  * @m: spi_message to be initialized
1161  * @xfers: An array of spi transfers
1162  * @num_xfers: Number of items in the xfer array
1163  *
1164  * This function initializes the given spi_message and adds each spi_transfer in
1165  * the given array to the message.
1166  */
1167 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1168 spi_message_init_with_transfers(struct spi_message *m,
1169 struct spi_transfer *xfers, unsigned int num_xfers)
1170 {
1171 	unsigned int i;
1172 
1173 	spi_message_init(m);
1174 	for (i = 0; i < num_xfers; ++i)
1175 		spi_message_add_tail(&xfers[i], m);
1176 }
1177 
1178 /* It's fine to embed message and transaction structures in other data
1179  * structures so long as you don't free them while they're in use.
1180  */
1181 
spi_message_alloc(unsigned ntrans,gfp_t flags)1182 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1183 {
1184 	struct spi_message *m;
1185 
1186 	m = kzalloc(sizeof(struct spi_message)
1187 			+ ntrans * sizeof(struct spi_transfer),
1188 			flags);
1189 	if (m) {
1190 		unsigned i;
1191 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
1192 
1193 		spi_message_init_no_memset(m);
1194 		for (i = 0; i < ntrans; i++, t++)
1195 			spi_message_add_tail(t, m);
1196 	}
1197 	return m;
1198 }
1199 
spi_message_free(struct spi_message * m)1200 static inline void spi_message_free(struct spi_message *m)
1201 {
1202 	kfree(m);
1203 }
1204 
1205 extern int spi_setup(struct spi_device *spi);
1206 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1207 extern int spi_slave_abort(struct spi_device *spi);
1208 extern int spi_target_abort(struct spi_device *spi);
1209 
1210 static inline size_t
spi_max_message_size(struct spi_device * spi)1211 spi_max_message_size(struct spi_device *spi)
1212 {
1213 	struct spi_controller *ctlr = spi->controller;
1214 
1215 	if (!ctlr->max_message_size)
1216 		return SIZE_MAX;
1217 	return ctlr->max_message_size(spi);
1218 }
1219 
1220 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1221 spi_max_transfer_size(struct spi_device *spi)
1222 {
1223 	struct spi_controller *ctlr = spi->controller;
1224 	size_t tr_max = SIZE_MAX;
1225 	size_t msg_max = spi_max_message_size(spi);
1226 
1227 	if (ctlr->max_transfer_size)
1228 		tr_max = ctlr->max_transfer_size(spi);
1229 
1230 	/* Transfer size limit must not be greater than message size limit */
1231 	return min(tr_max, msg_max);
1232 }
1233 
1234 /**
1235  * spi_is_bpw_supported - Check if bits per word is supported
1236  * @spi: SPI device
1237  * @bpw: Bits per word
1238  *
1239  * This function checks to see if the SPI controller supports @bpw.
1240  *
1241  * Returns:
1242  * True if @bpw is supported, false otherwise.
1243  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1244 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1245 {
1246 	u32 bpw_mask = spi->master->bits_per_word_mask;
1247 
1248 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1249 		return true;
1250 
1251 	return false;
1252 }
1253 
1254 /*---------------------------------------------------------------------------*/
1255 
1256 /* SPI transfer replacement methods which make use of spi_res */
1257 
1258 struct spi_replaced_transfers;
1259 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1260 				       struct spi_message *msg,
1261 				       struct spi_replaced_transfers *res);
1262 /**
1263  * struct spi_replaced_transfers - structure describing the spi_transfer
1264  *                                 replacements that have occurred
1265  *                                 so that they can get reverted
1266  * @release:            some extra release code to get executed prior to
1267  *                      relasing this structure
1268  * @extradata:          pointer to some extra data if requested or NULL
1269  * @replaced_transfers: transfers that have been replaced and which need
1270  *                      to get restored
1271  * @replaced_after:     the transfer after which the @replaced_transfers
1272  *                      are to get re-inserted
1273  * @inserted:           number of transfers inserted
1274  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1275  *                      that have been replacing replaced_transfers
1276  *
1277  * note: that @extradata will point to @inserted_transfers[@inserted]
1278  * if some extra allocation is requested, so alignment will be the same
1279  * as for spi_transfers
1280  */
1281 struct spi_replaced_transfers {
1282 	spi_replaced_release_t release;
1283 	void *extradata;
1284 	struct list_head replaced_transfers;
1285 	struct list_head *replaced_after;
1286 	size_t inserted;
1287 	struct spi_transfer inserted_transfers[];
1288 };
1289 
1290 /*---------------------------------------------------------------------------*/
1291 
1292 /* SPI transfer transformation methods */
1293 
1294 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1295 				       struct spi_message *msg,
1296 				       size_t maxsize,
1297 				       gfp_t gfp);
1298 
1299 /*---------------------------------------------------------------------------*/
1300 
1301 /* All these synchronous SPI transfer routines are utilities layered
1302  * over the core async transfer primitive.  Here, "synchronous" means
1303  * they will sleep uninterruptibly until the async transfer completes.
1304  */
1305 
1306 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1307 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1308 extern int spi_bus_lock(struct spi_controller *ctlr);
1309 extern int spi_bus_unlock(struct spi_controller *ctlr);
1310 
1311 /**
1312  * spi_sync_transfer - synchronous SPI data transfer
1313  * @spi: device with which data will be exchanged
1314  * @xfers: An array of spi_transfers
1315  * @num_xfers: Number of items in the xfer array
1316  * Context: can sleep
1317  *
1318  * Does a synchronous SPI data transfer of the given spi_transfer array.
1319  *
1320  * For more specific semantics see spi_sync().
1321  *
1322  * Return: zero on success, else a negative error code.
1323  */
1324 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1325 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1326 	unsigned int num_xfers)
1327 {
1328 	struct spi_message msg;
1329 
1330 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1331 
1332 	return spi_sync(spi, &msg);
1333 }
1334 
1335 /**
1336  * spi_write - SPI synchronous write
1337  * @spi: device to which data will be written
1338  * @buf: data buffer
1339  * @len: data buffer size
1340  * Context: can sleep
1341  *
1342  * This function writes the buffer @buf.
1343  * Callable only from contexts that can sleep.
1344  *
1345  * Return: zero on success, else a negative error code.
1346  */
1347 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1348 spi_write(struct spi_device *spi, const void *buf, size_t len)
1349 {
1350 	struct spi_transfer	t = {
1351 			.tx_buf		= buf,
1352 			.len		= len,
1353 		};
1354 
1355 	return spi_sync_transfer(spi, &t, 1);
1356 }
1357 
1358 /**
1359  * spi_read - SPI synchronous read
1360  * @spi: device from which data will be read
1361  * @buf: data buffer
1362  * @len: data buffer size
1363  * Context: can sleep
1364  *
1365  * This function reads the buffer @buf.
1366  * Callable only from contexts that can sleep.
1367  *
1368  * Return: zero on success, else a negative error code.
1369  */
1370 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1371 spi_read(struct spi_device *spi, void *buf, size_t len)
1372 {
1373 	struct spi_transfer	t = {
1374 			.rx_buf		= buf,
1375 			.len		= len,
1376 		};
1377 
1378 	return spi_sync_transfer(spi, &t, 1);
1379 }
1380 
1381 /* This copies txbuf and rxbuf data; for small transfers only! */
1382 extern int spi_write_then_read(struct spi_device *spi,
1383 		const void *txbuf, unsigned n_tx,
1384 		void *rxbuf, unsigned n_rx);
1385 
1386 /**
1387  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1388  * @spi: device with which data will be exchanged
1389  * @cmd: command to be written before data is read back
1390  * Context: can sleep
1391  *
1392  * Callable only from contexts that can sleep.
1393  *
1394  * Return: the (unsigned) eight bit number returned by the
1395  * device, or else a negative error code.
1396  */
spi_w8r8(struct spi_device * spi,u8 cmd)1397 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1398 {
1399 	ssize_t			status;
1400 	u8			result;
1401 
1402 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1403 
1404 	/* Return negative errno or unsigned value */
1405 	return (status < 0) ? status : result;
1406 }
1407 
1408 /**
1409  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1410  * @spi: device with which data will be exchanged
1411  * @cmd: command to be written before data is read back
1412  * Context: can sleep
1413  *
1414  * The number is returned in wire-order, which is at least sometimes
1415  * big-endian.
1416  *
1417  * Callable only from contexts that can sleep.
1418  *
1419  * Return: the (unsigned) sixteen bit number returned by the
1420  * device, or else a negative error code.
1421  */
spi_w8r16(struct spi_device * spi,u8 cmd)1422 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1423 {
1424 	ssize_t			status;
1425 	u16			result;
1426 
1427 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1428 
1429 	/* Return negative errno or unsigned value */
1430 	return (status < 0) ? status : result;
1431 }
1432 
1433 /**
1434  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1435  * @spi: device with which data will be exchanged
1436  * @cmd: command to be written before data is read back
1437  * Context: can sleep
1438  *
1439  * This function is similar to spi_w8r16, with the exception that it will
1440  * convert the read 16 bit data word from big-endian to native endianness.
1441  *
1442  * Callable only from contexts that can sleep.
1443  *
1444  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1445  * endianness, or else a negative error code.
1446  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1447 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1448 
1449 {
1450 	ssize_t status;
1451 	__be16 result;
1452 
1453 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1454 	if (status < 0)
1455 		return status;
1456 
1457 	return be16_to_cpu(result);
1458 }
1459 
1460 /*---------------------------------------------------------------------------*/
1461 
1462 /*
1463  * INTERFACE between board init code and SPI infrastructure.
1464  *
1465  * No SPI driver ever sees these SPI device table segments, but
1466  * it's how the SPI core (or adapters that get hotplugged) grows
1467  * the driver model tree.
1468  *
1469  * As a rule, SPI devices can't be probed.  Instead, board init code
1470  * provides a table listing the devices which are present, with enough
1471  * information to bind and set up the device's driver.  There's basic
1472  * support for nonstatic configurations too; enough to handle adding
1473  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1474  */
1475 
1476 /**
1477  * struct spi_board_info - board-specific template for a SPI device
1478  * @modalias: Initializes spi_device.modalias; identifies the driver.
1479  * @platform_data: Initializes spi_device.platform_data; the particular
1480  *	data stored there is driver-specific.
1481  * @swnode: Software node for the device.
1482  * @controller_data: Initializes spi_device.controller_data; some
1483  *	controllers need hints about hardware setup, e.g. for DMA.
1484  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1485  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1486  *	from the chip datasheet and board-specific signal quality issues.
1487  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1488  *	by spi_new_device(), and otherwise depends on board wiring.
1489  * @chip_select: Initializes spi_device.chip_select; depends on how
1490  *	the board is wired.
1491  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1492  *	wiring (some devices support both 3WIRE and standard modes), and
1493  *	possibly presence of an inverter in the chipselect path.
1494  *
1495  * When adding new SPI devices to the device tree, these structures serve
1496  * as a partial device template.  They hold information which can't always
1497  * be determined by drivers.  Information that probe() can establish (such
1498  * as the default transfer wordsize) is not included here.
1499  *
1500  * These structures are used in two places.  Their primary role is to
1501  * be stored in tables of board-specific device descriptors, which are
1502  * declared early in board initialization and then used (much later) to
1503  * populate a controller's device tree after the that controller's driver
1504  * initializes.  A secondary (and atypical) role is as a parameter to
1505  * spi_new_device() call, which happens after those controller drivers
1506  * are active in some dynamic board configuration models.
1507  */
1508 struct spi_board_info {
1509 	/* The device name and module name are coupled, like platform_bus;
1510 	 * "modalias" is normally the driver name.
1511 	 *
1512 	 * platform_data goes to spi_device.dev.platform_data,
1513 	 * controller_data goes to spi_device.controller_data,
1514 	 * irq is copied too
1515 	 */
1516 	char		modalias[SPI_NAME_SIZE];
1517 	const void	*platform_data;
1518 	const struct software_node *swnode;
1519 	void		*controller_data;
1520 	int		irq;
1521 
1522 	/* Slower signaling on noisy or low voltage boards */
1523 	u32		max_speed_hz;
1524 
1525 
1526 	/* bus_num is board specific and matches the bus_num of some
1527 	 * spi_controller that will probably be registered later.
1528 	 *
1529 	 * chip_select reflects how this chip is wired to that master;
1530 	 * it's less than num_chipselect.
1531 	 */
1532 	u16		bus_num;
1533 	u16		chip_select;
1534 
1535 	/* mode becomes spi_device.mode, and is essential for chips
1536 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1537 	 */
1538 	u32		mode;
1539 
1540 	/* ... may need additional spi_device chip config data here.
1541 	 * avoid stuff protocol drivers can set; but include stuff
1542 	 * needed to behave without being bound to a driver:
1543 	 *  - quirks like clock rate mattering when not selected
1544 	 */
1545 };
1546 
1547 #ifdef	CONFIG_SPI
1548 extern int
1549 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1550 #else
1551 /* Board init code may ignore whether SPI is configured or not */
1552 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1553 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1554 	{ return 0; }
1555 #endif
1556 
1557 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1558  * use spi_new_device() to describe each device.  You can also call
1559  * spi_unregister_device() to start making that device vanish, but
1560  * normally that would be handled by spi_unregister_controller().
1561  *
1562  * You can also use spi_alloc_device() and spi_add_device() to use a two
1563  * stage registration sequence for each spi_device. This gives the caller
1564  * some more control over the spi_device structure before it is registered,
1565  * but requires that caller to initialize fields that would otherwise
1566  * be defined using the board info.
1567  */
1568 extern struct spi_device *
1569 spi_alloc_device(struct spi_controller *ctlr);
1570 
1571 extern int
1572 spi_add_device(struct spi_device *spi);
1573 
1574 extern struct spi_device *
1575 spi_new_device(struct spi_controller *, struct spi_board_info *);
1576 
1577 extern void spi_unregister_device(struct spi_device *spi);
1578 
1579 extern const struct spi_device_id *
1580 spi_get_device_id(const struct spi_device *sdev);
1581 
1582 extern const void *
1583 spi_get_device_match_data(const struct spi_device *sdev);
1584 
1585 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1586 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1587 {
1588 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1589 }
1590 
1591 /* Compatibility layer */
1592 #define spi_master			spi_controller
1593 
1594 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1595 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1596 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1597 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1598 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1599 
1600 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1601 #define spi_master_set_devdata(_ctlr, _data)	\
1602 	spi_controller_set_devdata(_ctlr, _data)
1603 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1604 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1605 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1606 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1607 
1608 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1609 #define devm_spi_register_master(_dev, _ctlr) \
1610 	devm_spi_register_controller(_dev, _ctlr)
1611 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1612 
1613 #endif /* __LINUX_SPI_H */
1614