1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Thunderbolt driver - bus logic (NHI independent)
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #ifndef TB_H_
10 #define TB_H_
11
12 #include <linux/nvmem-provider.h>
13 #include <linux/pci.h>
14 #include <linux/thunderbolt.h>
15 #include <linux/uuid.h>
16 #include <linux/bitfield.h>
17
18 #include "tb_regs.h"
19 #include "ctl.h"
20 #include "dma_port.h"
21
22 #define NVM_MIN_SIZE SZ_32K
23 #define NVM_MAX_SIZE SZ_512K
24 #define NVM_DATA_DWORDS 16
25
26 /**
27 * struct tb_nvm - Structure holding NVM information
28 * @dev: Owner of the NVM
29 * @major: Major version number of the active NVM portion
30 * @minor: Minor version number of the active NVM portion
31 * @id: Identifier used with both NVM portions
32 * @active: Active portion NVMem device
33 * @active_size: Size in bytes of the active NVM
34 * @non_active: Non-active portion NVMem device
35 * @buf: Buffer where the NVM image is stored before it is written to
36 * the actual NVM flash device
37 * @buf_data_start: Where the actual image starts after skipping
38 * possible headers
39 * @buf_data_size: Number of bytes actually consumed by the new NVM
40 * image
41 * @authenticating: The device is authenticating the new NVM
42 * @flushed: The image has been flushed to the storage area
43 * @vops: Router vendor specific NVM operations (optional)
44 *
45 * The user of this structure needs to handle serialization of possible
46 * concurrent access.
47 */
48 struct tb_nvm {
49 struct device *dev;
50 u32 major;
51 u32 minor;
52 int id;
53 struct nvmem_device *active;
54 size_t active_size;
55 struct nvmem_device *non_active;
56 void *buf;
57 void *buf_data_start;
58 size_t buf_data_size;
59 bool authenticating;
60 bool flushed;
61 const struct tb_nvm_vendor_ops *vops;
62 };
63
64 enum tb_nvm_write_ops {
65 WRITE_AND_AUTHENTICATE = 1,
66 WRITE_ONLY = 2,
67 AUTHENTICATE_ONLY = 3,
68 };
69
70 #define TB_SWITCH_KEY_SIZE 32
71 #define TB_SWITCH_MAX_DEPTH 6
72 #define USB4_SWITCH_MAX_DEPTH 5
73
74 /**
75 * enum tb_switch_tmu_rate - TMU refresh rate
76 * @TB_SWITCH_TMU_RATE_OFF: %0 (Disable Time Sync handshake)
77 * @TB_SWITCH_TMU_RATE_HIFI: %16 us time interval between successive
78 * transmission of the Delay Request TSNOS
79 * (Time Sync Notification Ordered Set) on a Link
80 * @TB_SWITCH_TMU_RATE_NORMAL: %1 ms time interval between successive
81 * transmission of the Delay Request TSNOS on
82 * a Link
83 */
84 enum tb_switch_tmu_rate {
85 TB_SWITCH_TMU_RATE_OFF = 0,
86 TB_SWITCH_TMU_RATE_HIFI = 16,
87 TB_SWITCH_TMU_RATE_NORMAL = 1000,
88 };
89
90 /**
91 * struct tb_switch_tmu - Structure holding switch TMU configuration
92 * @cap: Offset to the TMU capability (%0 if not found)
93 * @has_ucap: Does the switch support uni-directional mode
94 * @rate: TMU refresh rate related to upstream switch. In case of root
95 * switch this holds the domain rate. Reflects the HW setting.
96 * @unidirectional: Is the TMU in uni-directional or bi-directional mode
97 * related to upstream switch. Don't care for root switch.
98 * Reflects the HW setting.
99 * @unidirectional_request: Is the new TMU mode: uni-directional or bi-directional
100 * that is requested to be set. Related to upstream switch.
101 * Don't care for root switch.
102 * @rate_request: TMU new refresh rate related to upstream switch that is
103 * requested to be set. In case of root switch, this holds
104 * the new domain rate that is requested to be set.
105 */
106 struct tb_switch_tmu {
107 int cap;
108 bool has_ucap;
109 enum tb_switch_tmu_rate rate;
110 bool unidirectional;
111 bool unidirectional_request;
112 enum tb_switch_tmu_rate rate_request;
113 };
114
115 enum tb_clx {
116 TB_CLX_DISABLE,
117 /* CL0s and CL1 are enabled and supported together */
118 TB_CL1 = BIT(0),
119 TB_CL2 = BIT(1),
120 };
121
122 /**
123 * struct tb_switch - a thunderbolt switch
124 * @dev: Device for the switch
125 * @config: Switch configuration
126 * @ports: Ports in this switch
127 * @dma_port: If the switch has port supporting DMA configuration based
128 * mailbox this will hold the pointer to that (%NULL
129 * otherwise). If set it also means the switch has
130 * upgradeable NVM.
131 * @tmu: The switch TMU configuration
132 * @tb: Pointer to the domain the switch belongs to
133 * @uid: Unique ID of the switch
134 * @uuid: UUID of the switch (or %NULL if not supported)
135 * @vendor: Vendor ID of the switch
136 * @device: Device ID of the switch
137 * @vendor_name: Name of the vendor (or %NULL if not known)
138 * @device_name: Name of the device (or %NULL if not known)
139 * @link_speed: Speed of the link in Gb/s
140 * @link_width: Width of the link (1 or 2)
141 * @link_usb4: Upstream link is USB4
142 * @generation: Switch Thunderbolt generation
143 * @cap_plug_events: Offset to the plug events capability (%0 if not found)
144 * @cap_vsec_tmu: Offset to the TMU vendor specific capability (%0 if not found)
145 * @cap_lc: Offset to the link controller capability (%0 if not found)
146 * @cap_lp: Offset to the low power (CLx for TBT) capability (%0 if not found)
147 * @is_unplugged: The switch is going away
148 * @drom: DROM of the switch (%NULL if not found)
149 * @nvm: Pointer to the NVM if the switch has one (%NULL otherwise)
150 * @no_nvm_upgrade: Prevent NVM upgrade of this switch
151 * @safe_mode: The switch is in safe-mode
152 * @boot: Whether the switch was already authorized on boot or not
153 * @rpm: The switch supports runtime PM
154 * @authorized: Whether the switch is authorized by user or policy
155 * @security_level: Switch supported security level
156 * @debugfs_dir: Pointer to the debugfs structure
157 * @key: Contains the key used to challenge the device or %NULL if not
158 * supported. Size of the key is %TB_SWITCH_KEY_SIZE.
159 * @connection_id: Connection ID used with ICM messaging
160 * @connection_key: Connection key used with ICM messaging
161 * @link: Root switch link this switch is connected (ICM only)
162 * @depth: Depth in the chain this switch is connected (ICM only)
163 * @rpm_complete: Completion used to wait for runtime resume to
164 * complete (ICM only)
165 * @quirks: Quirks used for this Thunderbolt switch
166 * @credit_allocation: Are the below buffer allocation parameters valid
167 * @max_usb3_credits: Router preferred number of buffers for USB 3.x
168 * @min_dp_aux_credits: Router preferred minimum number of buffers for DP AUX
169 * @min_dp_main_credits: Router preferred minimum number of buffers for DP MAIN
170 * @max_pcie_credits: Router preferred number of buffers for PCIe
171 * @max_dma_credits: Router preferred number of buffers for DMA/P2P
172 * @clx: CLx state on the upstream link of the router
173 *
174 * When the switch is being added or removed to the domain (other
175 * switches) you need to have domain lock held.
176 *
177 * In USB4 terminology this structure represents a router.
178 */
179 struct tb_switch {
180 struct device dev;
181 struct tb_regs_switch_header config;
182 struct tb_port *ports;
183 struct tb_dma_port *dma_port;
184 struct tb_switch_tmu tmu;
185 struct tb *tb;
186 u64 uid;
187 uuid_t *uuid;
188 u16 vendor;
189 u16 device;
190 const char *vendor_name;
191 const char *device_name;
192 unsigned int link_speed;
193 unsigned int link_width;
194 bool link_usb4;
195 unsigned int generation;
196 int cap_plug_events;
197 int cap_vsec_tmu;
198 int cap_lc;
199 int cap_lp;
200 bool is_unplugged;
201 u8 *drom;
202 struct tb_nvm *nvm;
203 bool no_nvm_upgrade;
204 bool safe_mode;
205 bool boot;
206 bool rpm;
207 unsigned int authorized;
208 enum tb_security_level security_level;
209 struct dentry *debugfs_dir;
210 u8 *key;
211 u8 connection_id;
212 u8 connection_key;
213 u8 link;
214 u8 depth;
215 struct completion rpm_complete;
216 unsigned long quirks;
217 bool credit_allocation;
218 unsigned int max_usb3_credits;
219 unsigned int min_dp_aux_credits;
220 unsigned int min_dp_main_credits;
221 unsigned int max_pcie_credits;
222 unsigned int max_dma_credits;
223 enum tb_clx clx;
224 };
225
226 /**
227 * struct tb_bandwidth_group - Bandwidth management group
228 * @tb: Pointer to the domain the group belongs to
229 * @index: Index of the group (aka Group_ID). Valid values %1-%7
230 * @ports: DP IN adapters belonging to this group are linked here
231 *
232 * Any tunnel that requires isochronous bandwidth (that's DP for now) is
233 * attached to a bandwidth group. All tunnels going through the same
234 * USB4 links share the same group and can dynamically distribute the
235 * bandwidth within the group.
236 */
237 struct tb_bandwidth_group {
238 struct tb *tb;
239 int index;
240 struct list_head ports;
241 };
242
243 /**
244 * struct tb_port - a thunderbolt port, part of a tb_switch
245 * @config: Cached port configuration read from registers
246 * @sw: Switch the port belongs to
247 * @remote: Remote port (%NULL if not connected)
248 * @xdomain: Remote host (%NULL if not connected)
249 * @cap_phy: Offset, zero if not found
250 * @cap_tmu: Offset of the adapter specific TMU capability (%0 if not present)
251 * @cap_adap: Offset of the adapter specific capability (%0 if not present)
252 * @cap_usb4: Offset to the USB4 port capability (%0 if not present)
253 * @usb4: Pointer to the USB4 port structure (only if @cap_usb4 is != %0)
254 * @port: Port number on switch
255 * @disabled: Disabled by eeprom or enabled but not implemented
256 * @bonded: true if the port is bonded (two lanes combined as one)
257 * @dual_link_port: If the switch is connected using two ports, points
258 * to the other port.
259 * @link_nr: Is this primary or secondary port on the dual_link.
260 * @in_hopids: Currently allocated input HopIDs
261 * @out_hopids: Currently allocated output HopIDs
262 * @list: Used to link ports to DP resources list
263 * @total_credits: Total number of buffers available for this port
264 * @ctl_credits: Buffers reserved for control path
265 * @dma_credits: Number of credits allocated for DMA tunneling for all
266 * DMA paths through this port.
267 * @group: Bandwidth allocation group the adapter is assigned to. Only
268 * used for DP IN adapters for now.
269 * @group_list: The adapter is linked to the group's list of ports through this
270 *
271 * In USB4 terminology this structure represents an adapter (protocol or
272 * lane adapter).
273 */
274 struct tb_port {
275 struct tb_regs_port_header config;
276 struct tb_switch *sw;
277 struct tb_port *remote;
278 struct tb_xdomain *xdomain;
279 int cap_phy;
280 int cap_tmu;
281 int cap_adap;
282 int cap_usb4;
283 struct usb4_port *usb4;
284 u8 port;
285 bool disabled;
286 bool bonded;
287 struct tb_port *dual_link_port;
288 u8 link_nr:1;
289 struct ida in_hopids;
290 struct ida out_hopids;
291 struct list_head list;
292 unsigned int total_credits;
293 unsigned int ctl_credits;
294 unsigned int dma_credits;
295 struct tb_bandwidth_group *group;
296 struct list_head group_list;
297 };
298
299 /**
300 * struct usb4_port - USB4 port device
301 * @dev: Device for the port
302 * @port: Pointer to the lane 0 adapter
303 * @can_offline: Does the port have necessary platform support to moved
304 * it into offline mode and back
305 * @offline: The port is currently in offline mode
306 * @margining: Pointer to margining structure if enabled
307 */
308 struct usb4_port {
309 struct device dev;
310 struct tb_port *port;
311 bool can_offline;
312 bool offline;
313 #ifdef CONFIG_USB4_DEBUGFS_MARGINING
314 struct tb_margining *margining;
315 #endif
316 };
317
318 /**
319 * tb_retimer: Thunderbolt retimer
320 * @dev: Device for the retimer
321 * @tb: Pointer to the domain the retimer belongs to
322 * @index: Retimer index facing the router USB4 port
323 * @vendor: Vendor ID of the retimer
324 * @device: Device ID of the retimer
325 * @port: Pointer to the lane 0 adapter
326 * @nvm: Pointer to the NVM if the retimer has one (%NULL otherwise)
327 * @no_nvm_upgrade: Prevent NVM upgrade of this retimer
328 * @auth_status: Status of last NVM authentication
329 */
330 struct tb_retimer {
331 struct device dev;
332 struct tb *tb;
333 u8 index;
334 u32 vendor;
335 u32 device;
336 struct tb_port *port;
337 struct tb_nvm *nvm;
338 bool no_nvm_upgrade;
339 u32 auth_status;
340 };
341
342 /**
343 * struct tb_path_hop - routing information for a tb_path
344 * @in_port: Ingress port of a switch
345 * @out_port: Egress port of a switch where the packet is routed out
346 * (must be on the same switch than @in_port)
347 * @in_hop_index: HopID where the path configuration entry is placed in
348 * the path config space of @in_port.
349 * @in_counter_index: Used counter index (not used in the driver
350 * currently, %-1 to disable)
351 * @next_hop_index: HopID of the packet when it is routed out from @out_port
352 * @initial_credits: Number of initial flow control credits allocated for
353 * the path
354 * @nfc_credits: Number of non-flow controlled buffers allocated for the
355 * @in_port.
356 *
357 * Hop configuration is always done on the IN port of a switch.
358 * in_port and out_port have to be on the same switch. Packets arriving on
359 * in_port with "hop" = in_hop_index will get routed to through out_port. The
360 * next hop to take (on out_port->remote) is determined by
361 * next_hop_index. When routing packet to another switch (out->remote is
362 * set) the @next_hop_index must match the @in_hop_index of that next
363 * hop to make routing possible.
364 *
365 * in_counter_index is the index of a counter (in TB_CFG_COUNTERS) on the in
366 * port.
367 */
368 struct tb_path_hop {
369 struct tb_port *in_port;
370 struct tb_port *out_port;
371 int in_hop_index;
372 int in_counter_index;
373 int next_hop_index;
374 unsigned int initial_credits;
375 unsigned int nfc_credits;
376 };
377
378 /**
379 * enum tb_path_port - path options mask
380 * @TB_PATH_NONE: Do not activate on any hop on path
381 * @TB_PATH_SOURCE: Activate on the first hop (out of src)
382 * @TB_PATH_INTERNAL: Activate on the intermediate hops (not the first/last)
383 * @TB_PATH_DESTINATION: Activate on the last hop (into dst)
384 * @TB_PATH_ALL: Activate on all hops on the path
385 */
386 enum tb_path_port {
387 TB_PATH_NONE = 0,
388 TB_PATH_SOURCE = 1,
389 TB_PATH_INTERNAL = 2,
390 TB_PATH_DESTINATION = 4,
391 TB_PATH_ALL = 7,
392 };
393
394 /**
395 * struct tb_path - a unidirectional path between two ports
396 * @tb: Pointer to the domain structure
397 * @name: Name of the path (used for debugging)
398 * @ingress_shared_buffer: Shared buffering used for ingress ports on the path
399 * @egress_shared_buffer: Shared buffering used for egress ports on the path
400 * @ingress_fc_enable: Flow control for ingress ports on the path
401 * @egress_fc_enable: Flow control for egress ports on the path
402 * @priority: Priority group if the path
403 * @weight: Weight of the path inside the priority group
404 * @drop_packages: Drop packages from queue tail or head
405 * @activated: Is the path active
406 * @clear_fc: Clear all flow control from the path config space entries
407 * when deactivating this path
408 * @hops: Path hops
409 * @path_length: How many hops the path uses
410 * @alloc_hopid: Does this path consume port HopID
411 *
412 * A path consists of a number of hops (see &struct tb_path_hop). To
413 * establish a PCIe tunnel two paths have to be created between the two
414 * PCIe ports.
415 */
416 struct tb_path {
417 struct tb *tb;
418 const char *name;
419 enum tb_path_port ingress_shared_buffer;
420 enum tb_path_port egress_shared_buffer;
421 enum tb_path_port ingress_fc_enable;
422 enum tb_path_port egress_fc_enable;
423
424 unsigned int priority:3;
425 int weight:4;
426 bool drop_packages;
427 bool activated;
428 bool clear_fc;
429 struct tb_path_hop *hops;
430 int path_length;
431 bool alloc_hopid;
432 };
433
434 /* HopIDs 0-7 are reserved by the Thunderbolt protocol */
435 #define TB_PATH_MIN_HOPID 8
436 /*
437 * Support paths from the farthest (depth 6) router to the host and back
438 * to the same level (not necessarily to the same router).
439 */
440 #define TB_PATH_MAX_HOPS (7 * 2)
441
442 /* Possible wake types */
443 #define TB_WAKE_ON_CONNECT BIT(0)
444 #define TB_WAKE_ON_DISCONNECT BIT(1)
445 #define TB_WAKE_ON_USB4 BIT(2)
446 #define TB_WAKE_ON_USB3 BIT(3)
447 #define TB_WAKE_ON_PCIE BIT(4)
448 #define TB_WAKE_ON_DP BIT(5)
449
450 /**
451 * struct tb_cm_ops - Connection manager specific operations vector
452 * @driver_ready: Called right after control channel is started. Used by
453 * ICM to send driver ready message to the firmware.
454 * @start: Starts the domain
455 * @stop: Stops the domain
456 * @suspend_noirq: Connection manager specific suspend_noirq
457 * @resume_noirq: Connection manager specific resume_noirq
458 * @suspend: Connection manager specific suspend
459 * @freeze_noirq: Connection manager specific freeze_noirq
460 * @thaw_noirq: Connection manager specific thaw_noirq
461 * @complete: Connection manager specific complete
462 * @runtime_suspend: Connection manager specific runtime_suspend
463 * @runtime_resume: Connection manager specific runtime_resume
464 * @runtime_suspend_switch: Runtime suspend a switch
465 * @runtime_resume_switch: Runtime resume a switch
466 * @handle_event: Handle thunderbolt event
467 * @get_boot_acl: Get boot ACL list
468 * @set_boot_acl: Set boot ACL list
469 * @disapprove_switch: Disapprove switch (disconnect PCIe tunnel)
470 * @approve_switch: Approve switch
471 * @add_switch_key: Add key to switch
472 * @challenge_switch_key: Challenge switch using key
473 * @disconnect_pcie_paths: Disconnects PCIe paths before NVM update
474 * @approve_xdomain_paths: Approve (establish) XDomain DMA paths
475 * @disconnect_xdomain_paths: Disconnect XDomain DMA paths
476 * @usb4_switch_op: Optional proxy for USB4 router operations. If set
477 * this will be called whenever USB4 router operation is
478 * performed. If this returns %-EOPNOTSUPP then the
479 * native USB4 router operation is called.
480 * @usb4_switch_nvm_authenticate_status: Optional callback that the CM
481 * implementation can be used to
482 * return status of USB4 NVM_AUTH
483 * router operation.
484 */
485 struct tb_cm_ops {
486 int (*driver_ready)(struct tb *tb);
487 int (*start)(struct tb *tb);
488 void (*stop)(struct tb *tb);
489 int (*suspend_noirq)(struct tb *tb);
490 int (*resume_noirq)(struct tb *tb);
491 int (*suspend)(struct tb *tb);
492 int (*freeze_noirq)(struct tb *tb);
493 int (*thaw_noirq)(struct tb *tb);
494 void (*complete)(struct tb *tb);
495 int (*runtime_suspend)(struct tb *tb);
496 int (*runtime_resume)(struct tb *tb);
497 int (*runtime_suspend_switch)(struct tb_switch *sw);
498 int (*runtime_resume_switch)(struct tb_switch *sw);
499 void (*handle_event)(struct tb *tb, enum tb_cfg_pkg_type,
500 const void *buf, size_t size);
501 int (*get_boot_acl)(struct tb *tb, uuid_t *uuids, size_t nuuids);
502 int (*set_boot_acl)(struct tb *tb, const uuid_t *uuids, size_t nuuids);
503 int (*disapprove_switch)(struct tb *tb, struct tb_switch *sw);
504 int (*approve_switch)(struct tb *tb, struct tb_switch *sw);
505 int (*add_switch_key)(struct tb *tb, struct tb_switch *sw);
506 int (*challenge_switch_key)(struct tb *tb, struct tb_switch *sw,
507 const u8 *challenge, u8 *response);
508 int (*disconnect_pcie_paths)(struct tb *tb);
509 int (*approve_xdomain_paths)(struct tb *tb, struct tb_xdomain *xd,
510 int transmit_path, int transmit_ring,
511 int receive_path, int receive_ring);
512 int (*disconnect_xdomain_paths)(struct tb *tb, struct tb_xdomain *xd,
513 int transmit_path, int transmit_ring,
514 int receive_path, int receive_ring);
515 int (*usb4_switch_op)(struct tb_switch *sw, u16 opcode, u32 *metadata,
516 u8 *status, const void *tx_data, size_t tx_data_len,
517 void *rx_data, size_t rx_data_len);
518 int (*usb4_switch_nvm_authenticate_status)(struct tb_switch *sw,
519 u32 *status);
520 };
521
tb_priv(struct tb * tb)522 static inline void *tb_priv(struct tb *tb)
523 {
524 return (void *)tb->privdata;
525 }
526
527 #define TB_AUTOSUSPEND_DELAY 15000 /* ms */
528
529 /* helper functions & macros */
530
531 /**
532 * tb_upstream_port() - return the upstream port of a switch
533 *
534 * Every switch has an upstream port (for the root switch it is the NHI).
535 *
536 * During switch alloc/init tb_upstream_port()->remote may be NULL, even for
537 * non root switches (on the NHI port remote is always NULL).
538 *
539 * Return: Returns the upstream port of the switch.
540 */
tb_upstream_port(struct tb_switch * sw)541 static inline struct tb_port *tb_upstream_port(struct tb_switch *sw)
542 {
543 return &sw->ports[sw->config.upstream_port_number];
544 }
545
546 /**
547 * tb_is_upstream_port() - Is the port upstream facing
548 * @port: Port to check
549 *
550 * Returns true if @port is upstream facing port. In case of dual link
551 * ports both return true.
552 */
tb_is_upstream_port(const struct tb_port * port)553 static inline bool tb_is_upstream_port(const struct tb_port *port)
554 {
555 const struct tb_port *upstream_port = tb_upstream_port(port->sw);
556 return port == upstream_port || port->dual_link_port == upstream_port;
557 }
558
tb_route(const struct tb_switch * sw)559 static inline u64 tb_route(const struct tb_switch *sw)
560 {
561 return ((u64) sw->config.route_hi) << 32 | sw->config.route_lo;
562 }
563
tb_port_at(u64 route,struct tb_switch * sw)564 static inline struct tb_port *tb_port_at(u64 route, struct tb_switch *sw)
565 {
566 u8 port;
567
568 port = route >> (sw->config.depth * 8);
569 if (WARN_ON(port > sw->config.max_port_number))
570 return NULL;
571 return &sw->ports[port];
572 }
573
574 /**
575 * tb_port_has_remote() - Does the port have switch connected downstream
576 * @port: Port to check
577 *
578 * Returns true only when the port is primary port and has remote set.
579 */
tb_port_has_remote(const struct tb_port * port)580 static inline bool tb_port_has_remote(const struct tb_port *port)
581 {
582 if (tb_is_upstream_port(port))
583 return false;
584 if (!port->remote)
585 return false;
586 if (port->dual_link_port && port->link_nr)
587 return false;
588
589 return true;
590 }
591
tb_port_is_null(const struct tb_port * port)592 static inline bool tb_port_is_null(const struct tb_port *port)
593 {
594 return port && port->port && port->config.type == TB_TYPE_PORT;
595 }
596
tb_port_is_nhi(const struct tb_port * port)597 static inline bool tb_port_is_nhi(const struct tb_port *port)
598 {
599 return port && port->config.type == TB_TYPE_NHI;
600 }
601
tb_port_is_pcie_down(const struct tb_port * port)602 static inline bool tb_port_is_pcie_down(const struct tb_port *port)
603 {
604 return port && port->config.type == TB_TYPE_PCIE_DOWN;
605 }
606
tb_port_is_pcie_up(const struct tb_port * port)607 static inline bool tb_port_is_pcie_up(const struct tb_port *port)
608 {
609 return port && port->config.type == TB_TYPE_PCIE_UP;
610 }
611
tb_port_is_dpin(const struct tb_port * port)612 static inline bool tb_port_is_dpin(const struct tb_port *port)
613 {
614 return port && port->config.type == TB_TYPE_DP_HDMI_IN;
615 }
616
tb_port_is_dpout(const struct tb_port * port)617 static inline bool tb_port_is_dpout(const struct tb_port *port)
618 {
619 return port && port->config.type == TB_TYPE_DP_HDMI_OUT;
620 }
621
tb_port_is_usb3_down(const struct tb_port * port)622 static inline bool tb_port_is_usb3_down(const struct tb_port *port)
623 {
624 return port && port->config.type == TB_TYPE_USB3_DOWN;
625 }
626
tb_port_is_usb3_up(const struct tb_port * port)627 static inline bool tb_port_is_usb3_up(const struct tb_port *port)
628 {
629 return port && port->config.type == TB_TYPE_USB3_UP;
630 }
631
tb_sw_read(struct tb_switch * sw,void * buffer,enum tb_cfg_space space,u32 offset,u32 length)632 static inline int tb_sw_read(struct tb_switch *sw, void *buffer,
633 enum tb_cfg_space space, u32 offset, u32 length)
634 {
635 if (sw->is_unplugged)
636 return -ENODEV;
637 return tb_cfg_read(sw->tb->ctl,
638 buffer,
639 tb_route(sw),
640 0,
641 space,
642 offset,
643 length);
644 }
645
tb_sw_write(struct tb_switch * sw,const void * buffer,enum tb_cfg_space space,u32 offset,u32 length)646 static inline int tb_sw_write(struct tb_switch *sw, const void *buffer,
647 enum tb_cfg_space space, u32 offset, u32 length)
648 {
649 if (sw->is_unplugged)
650 return -ENODEV;
651 return tb_cfg_write(sw->tb->ctl,
652 buffer,
653 tb_route(sw),
654 0,
655 space,
656 offset,
657 length);
658 }
659
tb_port_read(struct tb_port * port,void * buffer,enum tb_cfg_space space,u32 offset,u32 length)660 static inline int tb_port_read(struct tb_port *port, void *buffer,
661 enum tb_cfg_space space, u32 offset, u32 length)
662 {
663 if (port->sw->is_unplugged)
664 return -ENODEV;
665 return tb_cfg_read(port->sw->tb->ctl,
666 buffer,
667 tb_route(port->sw),
668 port->port,
669 space,
670 offset,
671 length);
672 }
673
tb_port_write(struct tb_port * port,const void * buffer,enum tb_cfg_space space,u32 offset,u32 length)674 static inline int tb_port_write(struct tb_port *port, const void *buffer,
675 enum tb_cfg_space space, u32 offset, u32 length)
676 {
677 if (port->sw->is_unplugged)
678 return -ENODEV;
679 return tb_cfg_write(port->sw->tb->ctl,
680 buffer,
681 tb_route(port->sw),
682 port->port,
683 space,
684 offset,
685 length);
686 }
687
688 #define tb_err(tb, fmt, arg...) dev_err(&(tb)->nhi->pdev->dev, fmt, ## arg)
689 #define tb_WARN(tb, fmt, arg...) dev_WARN(&(tb)->nhi->pdev->dev, fmt, ## arg)
690 #define tb_warn(tb, fmt, arg...) dev_warn(&(tb)->nhi->pdev->dev, fmt, ## arg)
691 #define tb_info(tb, fmt, arg...) dev_info(&(tb)->nhi->pdev->dev, fmt, ## arg)
692 #define tb_dbg(tb, fmt, arg...) dev_dbg(&(tb)->nhi->pdev->dev, fmt, ## arg)
693
694 #define __TB_SW_PRINT(level, sw, fmt, arg...) \
695 do { \
696 const struct tb_switch *__sw = (sw); \
697 level(__sw->tb, "%llx: " fmt, \
698 tb_route(__sw), ## arg); \
699 } while (0)
700 #define tb_sw_WARN(sw, fmt, arg...) __TB_SW_PRINT(tb_WARN, sw, fmt, ##arg)
701 #define tb_sw_warn(sw, fmt, arg...) __TB_SW_PRINT(tb_warn, sw, fmt, ##arg)
702 #define tb_sw_info(sw, fmt, arg...) __TB_SW_PRINT(tb_info, sw, fmt, ##arg)
703 #define tb_sw_dbg(sw, fmt, arg...) __TB_SW_PRINT(tb_dbg, sw, fmt, ##arg)
704
705 #define __TB_PORT_PRINT(level, _port, fmt, arg...) \
706 do { \
707 const struct tb_port *__port = (_port); \
708 level(__port->sw->tb, "%llx:%u: " fmt, \
709 tb_route(__port->sw), __port->port, ## arg); \
710 } while (0)
711 #define tb_port_WARN(port, fmt, arg...) \
712 __TB_PORT_PRINT(tb_WARN, port, fmt, ##arg)
713 #define tb_port_warn(port, fmt, arg...) \
714 __TB_PORT_PRINT(tb_warn, port, fmt, ##arg)
715 #define tb_port_info(port, fmt, arg...) \
716 __TB_PORT_PRINT(tb_info, port, fmt, ##arg)
717 #define tb_port_dbg(port, fmt, arg...) \
718 __TB_PORT_PRINT(tb_dbg, port, fmt, ##arg)
719
720 struct tb *icm_probe(struct tb_nhi *nhi);
721 struct tb *tb_probe(struct tb_nhi *nhi);
722
723 extern struct device_type tb_domain_type;
724 extern struct device_type tb_retimer_type;
725 extern struct device_type tb_switch_type;
726 extern struct device_type usb4_port_device_type;
727
728 int tb_domain_init(void);
729 void tb_domain_exit(void);
730 int tb_xdomain_init(void);
731 void tb_xdomain_exit(void);
732
733 struct tb *tb_domain_alloc(struct tb_nhi *nhi, int timeout_msec, size_t privsize);
734 int tb_domain_add(struct tb *tb);
735 void tb_domain_remove(struct tb *tb);
736 int tb_domain_suspend_noirq(struct tb *tb);
737 int tb_domain_resume_noirq(struct tb *tb);
738 int tb_domain_suspend(struct tb *tb);
739 int tb_domain_freeze_noirq(struct tb *tb);
740 int tb_domain_thaw_noirq(struct tb *tb);
741 void tb_domain_complete(struct tb *tb);
742 int tb_domain_runtime_suspend(struct tb *tb);
743 int tb_domain_runtime_resume(struct tb *tb);
744 int tb_domain_disapprove_switch(struct tb *tb, struct tb_switch *sw);
745 int tb_domain_approve_switch(struct tb *tb, struct tb_switch *sw);
746 int tb_domain_approve_switch_key(struct tb *tb, struct tb_switch *sw);
747 int tb_domain_challenge_switch_key(struct tb *tb, struct tb_switch *sw);
748 int tb_domain_disconnect_pcie_paths(struct tb *tb);
749 int tb_domain_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
750 int transmit_path, int transmit_ring,
751 int receive_path, int receive_ring);
752 int tb_domain_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
753 int transmit_path, int transmit_ring,
754 int receive_path, int receive_ring);
755 int tb_domain_disconnect_all_paths(struct tb *tb);
756
tb_domain_get(struct tb * tb)757 static inline struct tb *tb_domain_get(struct tb *tb)
758 {
759 if (tb)
760 get_device(&tb->dev);
761 return tb;
762 }
763
tb_domain_put(struct tb * tb)764 static inline void tb_domain_put(struct tb *tb)
765 {
766 put_device(&tb->dev);
767 }
768
769 struct tb_nvm *tb_nvm_alloc(struct device *dev);
770 int tb_nvm_read_version(struct tb_nvm *nvm);
771 int tb_nvm_validate(struct tb_nvm *nvm);
772 int tb_nvm_write_headers(struct tb_nvm *nvm);
773 int tb_nvm_add_active(struct tb_nvm *nvm, nvmem_reg_read_t reg_read);
774 int tb_nvm_write_buf(struct tb_nvm *nvm, unsigned int offset, void *val,
775 size_t bytes);
776 int tb_nvm_add_non_active(struct tb_nvm *nvm, nvmem_reg_write_t reg_write);
777 void tb_nvm_free(struct tb_nvm *nvm);
778 void tb_nvm_exit(void);
779
780 typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
781 typedef int (*write_block_fn)(void *, unsigned int, const void *, size_t);
782
783 int tb_nvm_read_data(unsigned int address, void *buf, size_t size,
784 unsigned int retries, read_block_fn read_block,
785 void *read_block_data);
786 int tb_nvm_write_data(unsigned int address, const void *buf, size_t size,
787 unsigned int retries, write_block_fn write_next_block,
788 void *write_block_data);
789
790 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
791 size_t size);
792 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
793 u64 route);
794 struct tb_switch *tb_switch_alloc_safe_mode(struct tb *tb,
795 struct device *parent, u64 route);
796 int tb_switch_configure(struct tb_switch *sw);
797 int tb_switch_add(struct tb_switch *sw);
798 void tb_switch_remove(struct tb_switch *sw);
799 void tb_switch_suspend(struct tb_switch *sw, bool runtime);
800 int tb_switch_resume(struct tb_switch *sw);
801 int tb_switch_reset(struct tb_switch *sw);
802 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
803 u32 value, int timeout_msec);
804 void tb_sw_set_unplugged(struct tb_switch *sw);
805 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
806 enum tb_port_type type);
807 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link,
808 u8 depth);
809 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid);
810 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route);
811
812 /**
813 * tb_switch_for_each_port() - Iterate over each switch port
814 * @sw: Switch whose ports to iterate
815 * @p: Port used as iterator
816 *
817 * Iterates over each switch port skipping the control port (port %0).
818 */
819 #define tb_switch_for_each_port(sw, p) \
820 for ((p) = &(sw)->ports[1]; \
821 (p) <= &(sw)->ports[(sw)->config.max_port_number]; (p)++)
822
tb_switch_get(struct tb_switch * sw)823 static inline struct tb_switch *tb_switch_get(struct tb_switch *sw)
824 {
825 if (sw)
826 get_device(&sw->dev);
827 return sw;
828 }
829
tb_switch_put(struct tb_switch * sw)830 static inline void tb_switch_put(struct tb_switch *sw)
831 {
832 put_device(&sw->dev);
833 }
834
tb_is_switch(const struct device * dev)835 static inline bool tb_is_switch(const struct device *dev)
836 {
837 return dev->type == &tb_switch_type;
838 }
839
tb_to_switch(const struct device * dev)840 static inline struct tb_switch *tb_to_switch(const struct device *dev)
841 {
842 if (tb_is_switch(dev))
843 return container_of(dev, struct tb_switch, dev);
844 return NULL;
845 }
846
tb_switch_parent(struct tb_switch * sw)847 static inline struct tb_switch *tb_switch_parent(struct tb_switch *sw)
848 {
849 return tb_to_switch(sw->dev.parent);
850 }
851
tb_switch_is_light_ridge(const struct tb_switch * sw)852 static inline bool tb_switch_is_light_ridge(const struct tb_switch *sw)
853 {
854 return sw->config.vendor_id == PCI_VENDOR_ID_INTEL &&
855 sw->config.device_id == PCI_DEVICE_ID_INTEL_LIGHT_RIDGE;
856 }
857
tb_switch_is_eagle_ridge(const struct tb_switch * sw)858 static inline bool tb_switch_is_eagle_ridge(const struct tb_switch *sw)
859 {
860 return sw->config.vendor_id == PCI_VENDOR_ID_INTEL &&
861 sw->config.device_id == PCI_DEVICE_ID_INTEL_EAGLE_RIDGE;
862 }
863
tb_switch_is_cactus_ridge(const struct tb_switch * sw)864 static inline bool tb_switch_is_cactus_ridge(const struct tb_switch *sw)
865 {
866 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
867 switch (sw->config.device_id) {
868 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
869 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
870 return true;
871 }
872 }
873 return false;
874 }
875
tb_switch_is_falcon_ridge(const struct tb_switch * sw)876 static inline bool tb_switch_is_falcon_ridge(const struct tb_switch *sw)
877 {
878 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
879 switch (sw->config.device_id) {
880 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
881 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
882 return true;
883 }
884 }
885 return false;
886 }
887
tb_switch_is_alpine_ridge(const struct tb_switch * sw)888 static inline bool tb_switch_is_alpine_ridge(const struct tb_switch *sw)
889 {
890 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
891 switch (sw->config.device_id) {
892 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
893 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
894 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
895 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
896 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
897 return true;
898 }
899 }
900 return false;
901 }
902
tb_switch_is_titan_ridge(const struct tb_switch * sw)903 static inline bool tb_switch_is_titan_ridge(const struct tb_switch *sw)
904 {
905 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
906 switch (sw->config.device_id) {
907 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
908 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
909 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
910 return true;
911 }
912 }
913 return false;
914 }
915
tb_switch_is_tiger_lake(const struct tb_switch * sw)916 static inline bool tb_switch_is_tiger_lake(const struct tb_switch *sw)
917 {
918 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
919 switch (sw->config.device_id) {
920 case PCI_DEVICE_ID_INTEL_TGL_NHI0:
921 case PCI_DEVICE_ID_INTEL_TGL_NHI1:
922 case PCI_DEVICE_ID_INTEL_TGL_H_NHI0:
923 case PCI_DEVICE_ID_INTEL_TGL_H_NHI1:
924 return true;
925 }
926 }
927 return false;
928 }
929
930 /**
931 * tb_switch_is_usb4() - Is the switch USB4 compliant
932 * @sw: Switch to check
933 *
934 * Returns true if the @sw is USB4 compliant router, false otherwise.
935 */
tb_switch_is_usb4(const struct tb_switch * sw)936 static inline bool tb_switch_is_usb4(const struct tb_switch *sw)
937 {
938 return sw->config.thunderbolt_version == USB4_VERSION_1_0;
939 }
940
941 /**
942 * tb_switch_is_icm() - Is the switch handled by ICM firmware
943 * @sw: Switch to check
944 *
945 * In case there is a need to differentiate whether ICM firmware or SW CM
946 * is handling @sw this function can be called. It is valid to call this
947 * after tb_switch_alloc() and tb_switch_configure() has been called
948 * (latter only for SW CM case).
949 */
tb_switch_is_icm(const struct tb_switch * sw)950 static inline bool tb_switch_is_icm(const struct tb_switch *sw)
951 {
952 return !sw->config.enabled;
953 }
954
955 int tb_switch_lane_bonding_enable(struct tb_switch *sw);
956 void tb_switch_lane_bonding_disable(struct tb_switch *sw);
957 int tb_switch_configure_link(struct tb_switch *sw);
958 void tb_switch_unconfigure_link(struct tb_switch *sw);
959
960 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in);
961 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in);
962 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in);
963
964 int tb_switch_tmu_init(struct tb_switch *sw);
965 int tb_switch_tmu_post_time(struct tb_switch *sw);
966 int tb_switch_tmu_disable(struct tb_switch *sw);
967 int tb_switch_tmu_enable(struct tb_switch *sw);
968 void tb_switch_tmu_configure(struct tb_switch *sw,
969 enum tb_switch_tmu_rate rate,
970 bool unidirectional);
971 void tb_switch_enable_tmu_1st_child(struct tb_switch *sw,
972 enum tb_switch_tmu_rate rate);
973 /**
974 * tb_switch_tmu_is_enabled() - Checks if the specified TMU mode is enabled
975 * @sw: Router whose TMU mode to check
976 * @unidirectional: If uni-directional (bi-directional otherwise)
977 *
978 * Return true if hardware TMU configuration matches the one passed in
979 * as parameter. That is HiFi/Normal and either uni-directional or bi-directional.
980 */
tb_switch_tmu_is_enabled(const struct tb_switch * sw,bool unidirectional)981 static inline bool tb_switch_tmu_is_enabled(const struct tb_switch *sw,
982 bool unidirectional)
983 {
984 return sw->tmu.rate == sw->tmu.rate_request &&
985 sw->tmu.unidirectional == unidirectional;
986 }
987
tb_switch_clx_name(enum tb_clx clx)988 static inline const char *tb_switch_clx_name(enum tb_clx clx)
989 {
990 switch (clx) {
991 /* CL0s and CL1 are enabled and supported together */
992 case TB_CL1:
993 return "CL0s/CL1";
994 default:
995 return "unknown";
996 }
997 }
998
999 int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx);
1000 int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx);
1001
1002 /**
1003 * tb_switch_is_clx_enabled() - Checks if the CLx is enabled
1004 * @sw: Router to check for the CLx
1005 * @clx: The CLx state to check for
1006 *
1007 * Checks if the specified CLx is enabled on the router upstream link.
1008 * Not applicable for a host router.
1009 */
tb_switch_is_clx_enabled(const struct tb_switch * sw,enum tb_clx clx)1010 static inline bool tb_switch_is_clx_enabled(const struct tb_switch *sw,
1011 enum tb_clx clx)
1012 {
1013 return sw->clx == clx;
1014 }
1015
1016 /**
1017 * tb_switch_is_clx_supported() - Is CLx supported on this type of router
1018 * @sw: The router to check CLx support for
1019 */
tb_switch_is_clx_supported(const struct tb_switch * sw)1020 static inline bool tb_switch_is_clx_supported(const struct tb_switch *sw)
1021 {
1022 return tb_switch_is_usb4(sw) || tb_switch_is_titan_ridge(sw);
1023 }
1024
1025 int tb_switch_mask_clx_objections(struct tb_switch *sw);
1026
1027 int tb_switch_pcie_l1_enable(struct tb_switch *sw);
1028
1029 int tb_switch_xhci_connect(struct tb_switch *sw);
1030 void tb_switch_xhci_disconnect(struct tb_switch *sw);
1031
1032 int tb_port_state(struct tb_port *port);
1033 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged);
1034 int tb_port_add_nfc_credits(struct tb_port *port, int credits);
1035 int tb_port_clear_counter(struct tb_port *port, int counter);
1036 int tb_port_unlock(struct tb_port *port);
1037 int tb_port_enable(struct tb_port *port);
1038 int tb_port_disable(struct tb_port *port);
1039 int tb_port_alloc_in_hopid(struct tb_port *port, int hopid, int max_hopid);
1040 void tb_port_release_in_hopid(struct tb_port *port, int hopid);
1041 int tb_port_alloc_out_hopid(struct tb_port *port, int hopid, int max_hopid);
1042 void tb_port_release_out_hopid(struct tb_port *port, int hopid);
1043 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
1044 struct tb_port *prev);
1045
tb_port_use_credit_allocation(const struct tb_port * port)1046 static inline bool tb_port_use_credit_allocation(const struct tb_port *port)
1047 {
1048 return tb_port_is_null(port) && port->sw->credit_allocation;
1049 }
1050
1051 /**
1052 * tb_for_each_port_on_path() - Iterate over each port on path
1053 * @src: Source port
1054 * @dst: Destination port
1055 * @p: Port used as iterator
1056 *
1057 * Walks over each port on path from @src to @dst.
1058 */
1059 #define tb_for_each_port_on_path(src, dst, p) \
1060 for ((p) = tb_next_port_on_path((src), (dst), NULL); (p); \
1061 (p) = tb_next_port_on_path((src), (dst), (p)))
1062
1063 int tb_port_get_link_speed(struct tb_port *port);
1064 int tb_port_get_link_width(struct tb_port *port);
1065 int tb_port_set_link_width(struct tb_port *port, unsigned int width);
1066 int tb_port_set_lane_bonding(struct tb_port *port, bool bonding);
1067 int tb_port_lane_bonding_enable(struct tb_port *port);
1068 void tb_port_lane_bonding_disable(struct tb_port *port);
1069 int tb_port_wait_for_link_width(struct tb_port *port, int width,
1070 int timeout_msec);
1071 int tb_port_update_credits(struct tb_port *port);
1072 bool tb_port_is_clx_enabled(struct tb_port *port, unsigned int clx);
1073
1074 int tb_switch_find_vse_cap(struct tb_switch *sw, enum tb_switch_vse_cap vsec);
1075 int tb_switch_find_cap(struct tb_switch *sw, enum tb_switch_cap cap);
1076 int tb_switch_next_cap(struct tb_switch *sw, unsigned int offset);
1077 int tb_port_find_cap(struct tb_port *port, enum tb_port_cap cap);
1078 int tb_port_next_cap(struct tb_port *port, unsigned int offset);
1079 bool tb_port_is_enabled(struct tb_port *port);
1080
1081 bool tb_usb3_port_is_enabled(struct tb_port *port);
1082 int tb_usb3_port_enable(struct tb_port *port, bool enable);
1083
1084 bool tb_pci_port_is_enabled(struct tb_port *port);
1085 int tb_pci_port_enable(struct tb_port *port, bool enable);
1086
1087 int tb_dp_port_hpd_is_active(struct tb_port *port);
1088 int tb_dp_port_hpd_clear(struct tb_port *port);
1089 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1090 unsigned int aux_tx, unsigned int aux_rx);
1091 bool tb_dp_port_is_enabled(struct tb_port *port);
1092 int tb_dp_port_enable(struct tb_port *port, bool enable);
1093
1094 struct tb_path *tb_path_discover(struct tb_port *src, int src_hopid,
1095 struct tb_port *dst, int dst_hopid,
1096 struct tb_port **last, const char *name,
1097 bool alloc_hopid);
1098 struct tb_path *tb_path_alloc(struct tb *tb, struct tb_port *src, int src_hopid,
1099 struct tb_port *dst, int dst_hopid, int link_nr,
1100 const char *name);
1101 void tb_path_free(struct tb_path *path);
1102 int tb_path_activate(struct tb_path *path);
1103 void tb_path_deactivate(struct tb_path *path);
1104 bool tb_path_is_invalid(struct tb_path *path);
1105 bool tb_path_port_on_path(const struct tb_path *path,
1106 const struct tb_port *port);
1107
1108 /**
1109 * tb_path_for_each_hop() - Iterate over each hop on path
1110 * @path: Path whose hops to iterate
1111 * @hop: Hop used as iterator
1112 *
1113 * Iterates over each hop on path.
1114 */
1115 #define tb_path_for_each_hop(path, hop) \
1116 for ((hop) = &(path)->hops[0]; \
1117 (hop) <= &(path)->hops[(path)->path_length - 1]; (hop)++)
1118
1119 int tb_drom_read(struct tb_switch *sw);
1120 int tb_drom_read_uid_only(struct tb_switch *sw, u64 *uid);
1121
1122 int tb_lc_read_uuid(struct tb_switch *sw, u32 *uuid);
1123 int tb_lc_configure_port(struct tb_port *port);
1124 void tb_lc_unconfigure_port(struct tb_port *port);
1125 int tb_lc_configure_xdomain(struct tb_port *port);
1126 void tb_lc_unconfigure_xdomain(struct tb_port *port);
1127 int tb_lc_start_lane_initialization(struct tb_port *port);
1128 bool tb_lc_is_clx_supported(struct tb_port *port);
1129 bool tb_lc_is_usb_plugged(struct tb_port *port);
1130 bool tb_lc_is_xhci_connected(struct tb_port *port);
1131 int tb_lc_xhci_connect(struct tb_port *port);
1132 void tb_lc_xhci_disconnect(struct tb_port *port);
1133 int tb_lc_set_wake(struct tb_switch *sw, unsigned int flags);
1134 int tb_lc_set_sleep(struct tb_switch *sw);
1135 bool tb_lc_lane_bonding_possible(struct tb_switch *sw);
1136 bool tb_lc_dp_sink_query(struct tb_switch *sw, struct tb_port *in);
1137 int tb_lc_dp_sink_alloc(struct tb_switch *sw, struct tb_port *in);
1138 int tb_lc_dp_sink_dealloc(struct tb_switch *sw, struct tb_port *in);
1139 int tb_lc_force_power(struct tb_switch *sw);
1140
tb_route_length(u64 route)1141 static inline int tb_route_length(u64 route)
1142 {
1143 return (fls64(route) + TB_ROUTE_SHIFT - 1) / TB_ROUTE_SHIFT;
1144 }
1145
1146 /**
1147 * tb_downstream_route() - get route to downstream switch
1148 *
1149 * Port must not be the upstream port (otherwise a loop is created).
1150 *
1151 * Return: Returns a route to the switch behind @port.
1152 */
tb_downstream_route(struct tb_port * port)1153 static inline u64 tb_downstream_route(struct tb_port *port)
1154 {
1155 return tb_route(port->sw)
1156 | ((u64) port->port << (port->sw->config.depth * 8));
1157 }
1158
1159 bool tb_is_xdomain_enabled(void);
1160 bool tb_xdomain_handle_request(struct tb *tb, enum tb_cfg_pkg_type type,
1161 const void *buf, size_t size);
1162 struct tb_xdomain *tb_xdomain_alloc(struct tb *tb, struct device *parent,
1163 u64 route, const uuid_t *local_uuid,
1164 const uuid_t *remote_uuid);
1165 void tb_xdomain_add(struct tb_xdomain *xd);
1166 void tb_xdomain_remove(struct tb_xdomain *xd);
1167 struct tb_xdomain *tb_xdomain_find_by_link_depth(struct tb *tb, u8 link,
1168 u8 depth);
1169
tb_xdomain_parent(struct tb_xdomain * xd)1170 static inline struct tb_switch *tb_xdomain_parent(struct tb_xdomain *xd)
1171 {
1172 return tb_to_switch(xd->dev.parent);
1173 }
1174
1175 int tb_retimer_nvm_read(struct tb_retimer *rt, unsigned int address, void *buf,
1176 size_t size);
1177 int tb_retimer_scan(struct tb_port *port, bool add);
1178 void tb_retimer_remove_all(struct tb_port *port);
1179
tb_is_retimer(const struct device * dev)1180 static inline bool tb_is_retimer(const struct device *dev)
1181 {
1182 return dev->type == &tb_retimer_type;
1183 }
1184
tb_to_retimer(struct device * dev)1185 static inline struct tb_retimer *tb_to_retimer(struct device *dev)
1186 {
1187 if (tb_is_retimer(dev))
1188 return container_of(dev, struct tb_retimer, dev);
1189 return NULL;
1190 }
1191
1192 int usb4_switch_setup(struct tb_switch *sw);
1193 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid);
1194 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
1195 size_t size);
1196 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw);
1197 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags);
1198 int usb4_switch_set_sleep(struct tb_switch *sw);
1199 int usb4_switch_nvm_sector_size(struct tb_switch *sw);
1200 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
1201 size_t size);
1202 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address);
1203 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
1204 const void *buf, size_t size);
1205 int usb4_switch_nvm_authenticate(struct tb_switch *sw);
1206 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status);
1207 int usb4_switch_credits_init(struct tb_switch *sw);
1208 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in);
1209 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in);
1210 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in);
1211 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
1212 const struct tb_port *port);
1213 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1214 const struct tb_port *port);
1215 int usb4_switch_add_ports(struct tb_switch *sw);
1216 void usb4_switch_remove_ports(struct tb_switch *sw);
1217
1218 int usb4_port_unlock(struct tb_port *port);
1219 int usb4_port_hotplug_enable(struct tb_port *port);
1220 int usb4_port_configure(struct tb_port *port);
1221 void usb4_port_unconfigure(struct tb_port *port);
1222 int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd);
1223 void usb4_port_unconfigure_xdomain(struct tb_port *port);
1224 int usb4_port_router_offline(struct tb_port *port);
1225 int usb4_port_router_online(struct tb_port *port);
1226 int usb4_port_enumerate_retimers(struct tb_port *port);
1227 bool usb4_port_clx_supported(struct tb_port *port);
1228 int usb4_port_margining_caps(struct tb_port *port, u32 *caps);
1229 int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1230 unsigned int ber_level, bool timing, bool right_high,
1231 u32 *results);
1232 int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1233 bool right_high, u32 counter);
1234 int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors);
1235
1236 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index);
1237 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1238 u8 size);
1239 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1240 const void *buf, u8 size);
1241 int usb4_port_retimer_is_last(struct tb_port *port, u8 index);
1242 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index);
1243 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1244 unsigned int address);
1245 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index,
1246 unsigned int address, const void *buf,
1247 size_t size);
1248 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index);
1249 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1250 u32 *status);
1251 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1252 unsigned int address, void *buf, size_t size);
1253
1254 int usb4_usb3_port_max_link_rate(struct tb_port *port);
1255 int usb4_usb3_port_actual_link_rate(struct tb_port *port);
1256 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1257 int *downstream_bw);
1258 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1259 int *downstream_bw);
1260 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1261 int *downstream_bw);
1262
1263 int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id);
1264 bool usb4_dp_port_bw_mode_supported(struct tb_port *port);
1265 bool usb4_dp_port_bw_mode_enabled(struct tb_port *port);
1266 int usb4_dp_port_set_cm_bw_mode_supported(struct tb_port *port, bool supported);
1267 int usb4_dp_port_group_id(struct tb_port *port);
1268 int usb4_dp_port_set_group_id(struct tb_port *port, int group_id);
1269 int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes);
1270 int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes);
1271 int usb4_dp_port_granularity(struct tb_port *port);
1272 int usb4_dp_port_set_granularity(struct tb_port *port, int granularity);
1273 int usb4_dp_port_set_estimated_bw(struct tb_port *port, int bw);
1274 int usb4_dp_port_allocated_bw(struct tb_port *port);
1275 int usb4_dp_port_allocate_bw(struct tb_port *port, int bw);
1276 int usb4_dp_port_requested_bw(struct tb_port *port);
1277
tb_is_usb4_port_device(const struct device * dev)1278 static inline bool tb_is_usb4_port_device(const struct device *dev)
1279 {
1280 return dev->type == &usb4_port_device_type;
1281 }
1282
tb_to_usb4_port_device(struct device * dev)1283 static inline struct usb4_port *tb_to_usb4_port_device(struct device *dev)
1284 {
1285 if (tb_is_usb4_port_device(dev))
1286 return container_of(dev, struct usb4_port, dev);
1287 return NULL;
1288 }
1289
1290 struct usb4_port *usb4_port_device_add(struct tb_port *port);
1291 void usb4_port_device_remove(struct usb4_port *usb4);
1292 int usb4_port_device_resume(struct usb4_port *usb4);
1293
1294 /* Keep link controller awake during update */
1295 #define QUIRK_FORCE_POWER_LINK_CONTROLLER BIT(0)
1296
1297 void tb_check_quirks(struct tb_switch *sw);
1298
1299 #ifdef CONFIG_ACPI
1300 void tb_acpi_add_links(struct tb_nhi *nhi);
1301
1302 bool tb_acpi_is_native(void);
1303 bool tb_acpi_may_tunnel_usb3(void);
1304 bool tb_acpi_may_tunnel_dp(void);
1305 bool tb_acpi_may_tunnel_pcie(void);
1306 bool tb_acpi_is_xdomain_allowed(void);
1307
1308 int tb_acpi_init(void);
1309 void tb_acpi_exit(void);
1310 int tb_acpi_power_on_retimers(struct tb_port *port);
1311 int tb_acpi_power_off_retimers(struct tb_port *port);
1312 #else
tb_acpi_add_links(struct tb_nhi * nhi)1313 static inline void tb_acpi_add_links(struct tb_nhi *nhi) { }
1314
tb_acpi_is_native(void)1315 static inline bool tb_acpi_is_native(void) { return true; }
tb_acpi_may_tunnel_usb3(void)1316 static inline bool tb_acpi_may_tunnel_usb3(void) { return true; }
tb_acpi_may_tunnel_dp(void)1317 static inline bool tb_acpi_may_tunnel_dp(void) { return true; }
tb_acpi_may_tunnel_pcie(void)1318 static inline bool tb_acpi_may_tunnel_pcie(void) { return true; }
tb_acpi_is_xdomain_allowed(void)1319 static inline bool tb_acpi_is_xdomain_allowed(void) { return true; }
1320
tb_acpi_init(void)1321 static inline int tb_acpi_init(void) { return 0; }
tb_acpi_exit(void)1322 static inline void tb_acpi_exit(void) { }
tb_acpi_power_on_retimers(struct tb_port * port)1323 static inline int tb_acpi_power_on_retimers(struct tb_port *port) { return 0; }
tb_acpi_power_off_retimers(struct tb_port * port)1324 static inline int tb_acpi_power_off_retimers(struct tb_port *port) { return 0; }
1325 #endif
1326
1327 #ifdef CONFIG_DEBUG_FS
1328 void tb_debugfs_init(void);
1329 void tb_debugfs_exit(void);
1330 void tb_switch_debugfs_init(struct tb_switch *sw);
1331 void tb_switch_debugfs_remove(struct tb_switch *sw);
1332 void tb_xdomain_debugfs_init(struct tb_xdomain *xd);
1333 void tb_xdomain_debugfs_remove(struct tb_xdomain *xd);
1334 void tb_service_debugfs_init(struct tb_service *svc);
1335 void tb_service_debugfs_remove(struct tb_service *svc);
1336 #else
tb_debugfs_init(void)1337 static inline void tb_debugfs_init(void) { }
tb_debugfs_exit(void)1338 static inline void tb_debugfs_exit(void) { }
tb_switch_debugfs_init(struct tb_switch * sw)1339 static inline void tb_switch_debugfs_init(struct tb_switch *sw) { }
tb_switch_debugfs_remove(struct tb_switch * sw)1340 static inline void tb_switch_debugfs_remove(struct tb_switch *sw) { }
tb_xdomain_debugfs_init(struct tb_xdomain * xd)1341 static inline void tb_xdomain_debugfs_init(struct tb_xdomain *xd) { }
tb_xdomain_debugfs_remove(struct tb_xdomain * xd)1342 static inline void tb_xdomain_debugfs_remove(struct tb_xdomain *xd) { }
tb_service_debugfs_init(struct tb_service * svc)1343 static inline void tb_service_debugfs_init(struct tb_service *svc) { }
tb_service_debugfs_remove(struct tb_service * svc)1344 static inline void tb_service_debugfs_remove(struct tb_service *svc) { }
1345 #endif
1346
1347 #endif
1348