1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3 * Copyright (c) 2016-2022, Linaro Limited
4 * Copyright (c) 2014, STMicroelectronics International N.V.
5 * Copyright (c) 2020-2021, Arm Limited
6 */
7
8 #include <platform_config.h>
9
10 #include <arm.h>
11 #include <assert.h>
12 #include <config.h>
13 #include <io.h>
14 #include <keep.h>
15 #include <kernel/asan.h>
16 #include <kernel/boot.h>
17 #include <kernel/linker.h>
18 #include <kernel/lockdep.h>
19 #include <kernel/misc.h>
20 #include <kernel/panic.h>
21 #include <kernel/spinlock.h>
22 #include <kernel/spmc_sp_handler.h>
23 #include <kernel/tee_ta_manager.h>
24 #include <kernel/thread.h>
25 #include <kernel/thread_private.h>
26 #include <kernel/user_mode_ctx_struct.h>
27 #include <kernel/virtualization.h>
28 #include <mm/core_memprot.h>
29 #include <mm/mobj.h>
30 #include <mm/tee_mm.h>
31 #include <mm/tee_pager.h>
32 #include <mm/vm.h>
33 #include <smccc.h>
34 #include <sm/sm.h>
35 #include <trace.h>
36 #include <util.h>
37
38 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
39 static vaddr_t thread_user_kcode_va __nex_bss;
40 long thread_user_kcode_offset __nex_bss;
41 static size_t thread_user_kcode_size __nex_bss;
42 #endif
43
44 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
45 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
46 long thread_user_kdata_sp_offset __nex_bss;
47 static uint8_t thread_user_kdata_page[
48 ROUNDUP(sizeof(struct thread_core_local) * CFG_TEE_CORE_NB_CORE,
49 SMALL_PAGE_SIZE)]
50 __aligned(SMALL_PAGE_SIZE)
51 #ifndef CFG_VIRTUALIZATION
52 __section(".nozi.kdata_page");
53 #else
54 __section(".nex_nozi.kdata_page");
55 #endif
56 #endif
57
58 #ifdef ARM32
thread_get_exceptions(void)59 uint32_t __nostackcheck thread_get_exceptions(void)
60 {
61 uint32_t cpsr = read_cpsr();
62
63 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
64 }
65
thread_set_exceptions(uint32_t exceptions)66 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
67 {
68 uint32_t cpsr = read_cpsr();
69
70 /* Foreign interrupts must not be unmasked while holding a spinlock */
71 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
72 assert_have_no_spinlock();
73
74 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
75 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
76
77 barrier();
78 write_cpsr(cpsr);
79 barrier();
80 }
81 #endif /*ARM32*/
82
83 #ifdef ARM64
thread_get_exceptions(void)84 uint32_t __nostackcheck thread_get_exceptions(void)
85 {
86 uint32_t daif = read_daif();
87
88 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
89 }
90
thread_set_exceptions(uint32_t exceptions)91 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
92 {
93 uint32_t daif = read_daif();
94
95 /* Foreign interrupts must not be unmasked while holding a spinlock */
96 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
97 assert_have_no_spinlock();
98
99 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
100 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
101
102 barrier();
103 write_daif(daif);
104 barrier();
105 }
106 #endif /*ARM64*/
107
thread_mask_exceptions(uint32_t exceptions)108 uint32_t __nostackcheck thread_mask_exceptions(uint32_t exceptions)
109 {
110 uint32_t state = thread_get_exceptions();
111
112 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
113 return state;
114 }
115
thread_unmask_exceptions(uint32_t state)116 void __nostackcheck thread_unmask_exceptions(uint32_t state)
117 {
118 thread_set_exceptions(state & THREAD_EXCP_ALL);
119 }
120
thread_lazy_save_ns_vfp(void)121 static void thread_lazy_save_ns_vfp(void)
122 {
123 #ifdef CFG_WITH_VFP
124 struct thread_ctx *thr = threads + thread_get_id();
125
126 thr->vfp_state.ns_saved = false;
127 vfp_lazy_save_state_init(&thr->vfp_state.ns);
128 #endif /*CFG_WITH_VFP*/
129 }
130
thread_lazy_restore_ns_vfp(void)131 static void thread_lazy_restore_ns_vfp(void)
132 {
133 #ifdef CFG_WITH_VFP
134 struct thread_ctx *thr = threads + thread_get_id();
135 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
136
137 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
138
139 if (tuv && tuv->lazy_saved && !tuv->saved) {
140 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
141 tuv->saved = true;
142 }
143
144 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
145 thr->vfp_state.ns_saved = false;
146 #endif /*CFG_WITH_VFP*/
147 }
148
149 #ifdef ARM32
init_regs(struct thread_ctx * thread,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc)150 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
151 uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
152 uint32_t a6, uint32_t a7, void *pc)
153 {
154 thread->regs.pc = (uint32_t)pc;
155
156 /*
157 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
158 * Asynchronous abort and unmasked native interrupts.
159 */
160 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
161 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A |
162 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT);
163 /* Enable thumb mode if it's a thumb instruction */
164 if (thread->regs.pc & 1)
165 thread->regs.cpsr |= CPSR_T;
166 /* Reinitialize stack pointer */
167 thread->regs.svc_sp = thread->stack_va_end;
168
169 /*
170 * Copy arguments into context. This will make the
171 * arguments appear in r0-r7 when thread is started.
172 */
173 thread->regs.r0 = a0;
174 thread->regs.r1 = a1;
175 thread->regs.r2 = a2;
176 thread->regs.r3 = a3;
177 thread->regs.r4 = a4;
178 thread->regs.r5 = a5;
179 thread->regs.r6 = a6;
180 thread->regs.r7 = a7;
181 }
182 #endif /*ARM32*/
183
184 #ifdef ARM64
init_regs(struct thread_ctx * thread,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc)185 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
186 uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
187 uint32_t a6, uint32_t a7, void *pc)
188 {
189 thread->regs.pc = (uint64_t)pc;
190
191 /*
192 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
193 * Asynchronous abort and unmasked native interrupts.
194 */
195 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
196 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT);
197 /* Reinitialize stack pointer */
198 thread->regs.sp = thread->stack_va_end;
199
200 /*
201 * Copy arguments into context. This will make the
202 * arguments appear in x0-x7 when thread is started.
203 */
204 thread->regs.x[0] = a0;
205 thread->regs.x[1] = a1;
206 thread->regs.x[2] = a2;
207 thread->regs.x[3] = a3;
208 thread->regs.x[4] = a4;
209 thread->regs.x[5] = a5;
210 thread->regs.x[6] = a6;
211 thread->regs.x[7] = a7;
212
213 /* Set up frame pointer as per the Aarch64 AAPCS */
214 thread->regs.x[29] = 0;
215 }
216 #endif /*ARM64*/
217
__thread_alloc_and_run(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc)218 static void __thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2,
219 uint32_t a3, uint32_t a4, uint32_t a5,
220 uint32_t a6, uint32_t a7,
221 void *pc)
222 {
223 struct thread_core_local *l = thread_get_core_local();
224 bool found_thread = false;
225 size_t n = 0;
226
227 assert(l->curr_thread == THREAD_ID_INVALID);
228
229 thread_lock_global();
230
231 for (n = 0; n < CFG_NUM_THREADS; n++) {
232 if (threads[n].state == THREAD_STATE_FREE) {
233 threads[n].state = THREAD_STATE_ACTIVE;
234 found_thread = true;
235 break;
236 }
237 }
238
239 thread_unlock_global();
240
241 if (!found_thread)
242 return;
243
244 l->curr_thread = n;
245
246 threads[n].flags = 0;
247 init_regs(threads + n, a0, a1, a2, a3, a4, a5, a6, a7, pc);
248 #ifdef CFG_CORE_PAUTH
249 /*
250 * Copy the APIA key into the registers to be restored with
251 * thread_resume().
252 */
253 threads[n].regs.apiakey_hi = threads[n].keys.apia_hi;
254 threads[n].regs.apiakey_lo = threads[n].keys.apia_lo;
255 #endif
256
257 thread_lazy_save_ns_vfp();
258
259 l->flags &= ~THREAD_CLF_TMP;
260 thread_resume(&threads[n].regs);
261 /*NOTREACHED*/
262 panic();
263 }
264
thread_alloc_and_run(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5)265 void thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
266 uint32_t a4, uint32_t a5)
267 {
268 __thread_alloc_and_run(a0, a1, a2, a3, a4, a5, 0, 0,
269 thread_std_smc_entry);
270 }
271
272 #ifdef CFG_SECURE_PARTITION
thread_sp_alloc_and_run(struct thread_smc_args * args __maybe_unused)273 void thread_sp_alloc_and_run(struct thread_smc_args *args __maybe_unused)
274 {
275 __thread_alloc_and_run(args->a0, args->a1, args->a2, args->a3, args->a4,
276 args->a5, args->a6, args->a7,
277 spmc_sp_thread_entry);
278 }
279 #endif
280
281 #ifdef ARM32
copy_a0_to_a3(struct thread_ctx_regs * regs,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)282 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
283 uint32_t a1, uint32_t a2, uint32_t a3)
284 {
285 /*
286 * Update returned values from RPC, values will appear in
287 * r0-r3 when thread is resumed.
288 */
289 regs->r0 = a0;
290 regs->r1 = a1;
291 regs->r2 = a2;
292 regs->r3 = a3;
293 }
294 #endif /*ARM32*/
295
296 #ifdef ARM64
copy_a0_to_a3(struct thread_ctx_regs * regs,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)297 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
298 uint32_t a1, uint32_t a2, uint32_t a3)
299 {
300 /*
301 * Update returned values from RPC, values will appear in
302 * x0-x3 when thread is resumed.
303 */
304 regs->x[0] = a0;
305 regs->x[1] = a1;
306 regs->x[2] = a2;
307 regs->x[3] = a3;
308 }
309 #endif /*ARM64*/
310
311 #ifdef ARM32
is_from_user(uint32_t cpsr)312 static bool is_from_user(uint32_t cpsr)
313 {
314 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
315 }
316 #endif
317
318 #ifdef ARM64
is_from_user(uint32_t cpsr)319 static bool is_from_user(uint32_t cpsr)
320 {
321 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
322 return true;
323 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
324 SPSR_64_MODE_EL0)
325 return true;
326 return false;
327 }
328 #endif
329
330 #ifdef CFG_SYSCALL_FTRACE
ftrace_suspend(void)331 static void __noprof ftrace_suspend(void)
332 {
333 struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
334
335 if (s && s->fbuf)
336 s->fbuf->syscall_trace_suspended = true;
337 }
338
ftrace_resume(void)339 static void __noprof ftrace_resume(void)
340 {
341 struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
342
343 if (s && s->fbuf)
344 s->fbuf->syscall_trace_suspended = false;
345 }
346 #else
ftrace_suspend(void)347 static void __noprof ftrace_suspend(void)
348 {
349 }
350
ftrace_resume(void)351 static void __noprof ftrace_resume(void)
352 {
353 }
354 #endif
355
is_user_mode(struct thread_ctx_regs * regs)356 static bool is_user_mode(struct thread_ctx_regs *regs)
357 {
358 return is_from_user((uint32_t)regs->cpsr);
359 }
360
thread_resume_from_rpc(uint32_t thread_id,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)361 void thread_resume_from_rpc(uint32_t thread_id, uint32_t a0, uint32_t a1,
362 uint32_t a2, uint32_t a3)
363 {
364 size_t n = thread_id;
365 struct thread_core_local *l = thread_get_core_local();
366 bool found_thread = false;
367
368 assert(l->curr_thread == THREAD_ID_INVALID);
369
370 thread_lock_global();
371
372 if (n < CFG_NUM_THREADS && threads[n].state == THREAD_STATE_SUSPENDED) {
373 threads[n].state = THREAD_STATE_ACTIVE;
374 found_thread = true;
375 }
376
377 thread_unlock_global();
378
379 if (!found_thread)
380 return;
381
382 l->curr_thread = n;
383
384 if (threads[n].have_user_map) {
385 core_mmu_set_user_map(&threads[n].user_map);
386 if (threads[n].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
387 tee_ta_ftrace_update_times_resume();
388 }
389
390 if (is_user_mode(&threads[n].regs))
391 tee_ta_update_session_utime_resume();
392
393 /*
394 * Return from RPC to request service of a foreign interrupt must not
395 * get parameters from non-secure world.
396 */
397 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
398 copy_a0_to_a3(&threads[n].regs, a0, a1, a2, a3);
399 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
400 }
401
402 thread_lazy_save_ns_vfp();
403
404 if (threads[n].have_user_map)
405 ftrace_resume();
406
407 l->flags &= ~THREAD_CLF_TMP;
408 thread_resume(&threads[n].regs);
409 /*NOTREACHED*/
410 panic();
411 }
412
413 #ifdef ARM64
thread_get_saved_thread_sp(void)414 vaddr_t thread_get_saved_thread_sp(void)
415 {
416 struct thread_core_local *l = thread_get_core_local();
417 int ct = l->curr_thread;
418
419 assert(ct != THREAD_ID_INVALID);
420 return threads[ct].kern_sp;
421 }
422 #endif /*ARM64*/
423
424 #ifdef ARM32
thread_is_in_normal_mode(void)425 bool thread_is_in_normal_mode(void)
426 {
427 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC;
428 }
429 #endif
430
thread_state_free(void)431 void thread_state_free(void)
432 {
433 struct thread_core_local *l = thread_get_core_local();
434 int ct = l->curr_thread;
435
436 assert(ct != THREAD_ID_INVALID);
437
438 thread_lazy_restore_ns_vfp();
439 tee_pager_release_phys(
440 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE),
441 STACK_THREAD_SIZE);
442
443 thread_lock_global();
444
445 assert(threads[ct].state == THREAD_STATE_ACTIVE);
446 threads[ct].state = THREAD_STATE_FREE;
447 threads[ct].flags = 0;
448 l->curr_thread = THREAD_ID_INVALID;
449
450 if (IS_ENABLED(CFG_VIRTUALIZATION))
451 virt_unset_guest();
452 thread_unlock_global();
453 }
454
455 #ifdef CFG_WITH_PAGER
release_unused_kernel_stack(struct thread_ctx * thr,uint32_t cpsr __maybe_unused)456 static void release_unused_kernel_stack(struct thread_ctx *thr,
457 uint32_t cpsr __maybe_unused)
458 {
459 #ifdef ARM64
460 /*
461 * If we're from user mode then thr->regs.sp is the saved user
462 * stack pointer and thr->kern_sp holds the last kernel stack
463 * pointer. But if we're from kernel mode then thr->kern_sp isn't
464 * up to date so we need to read from thr->regs.sp instead.
465 */
466 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp;
467 #else
468 vaddr_t sp = thr->regs.svc_sp;
469 #endif
470 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE;
471 size_t len = sp - base;
472
473 tee_pager_release_phys((void *)base, len);
474 }
475 #else
release_unused_kernel_stack(struct thread_ctx * thr __unused,uint32_t cpsr __unused)476 static void release_unused_kernel_stack(struct thread_ctx *thr __unused,
477 uint32_t cpsr __unused)
478 {
479 }
480 #endif
481
thread_state_suspend(uint32_t flags,uint32_t cpsr,vaddr_t pc)482 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
483 {
484 struct thread_core_local *l = thread_get_core_local();
485 int ct = l->curr_thread;
486
487 assert(ct != THREAD_ID_INVALID);
488
489 if (core_mmu_user_mapping_is_active())
490 ftrace_suspend();
491
492 thread_check_canaries();
493
494 release_unused_kernel_stack(threads + ct, cpsr);
495
496 if (is_from_user(cpsr)) {
497 thread_user_save_vfp();
498 tee_ta_update_session_utime_suspend();
499 tee_ta_gprof_sample_pc(pc);
500 }
501 thread_lazy_restore_ns_vfp();
502
503 thread_lock_global();
504
505 assert(threads[ct].state == THREAD_STATE_ACTIVE);
506 threads[ct].flags |= flags;
507 threads[ct].regs.cpsr = cpsr;
508 threads[ct].regs.pc = pc;
509 threads[ct].state = THREAD_STATE_SUSPENDED;
510
511 threads[ct].have_user_map = core_mmu_user_mapping_is_active();
512 if (threads[ct].have_user_map) {
513 if (threads[ct].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
514 tee_ta_ftrace_update_times_suspend();
515 core_mmu_get_user_map(&threads[ct].user_map);
516 core_mmu_set_user_map(NULL);
517 }
518
519 l->curr_thread = THREAD_ID_INVALID;
520
521 if (IS_ENABLED(CFG_VIRTUALIZATION))
522 virt_unset_guest();
523
524 thread_unlock_global();
525
526 return ct;
527 }
528
thread_init_stack(uint32_t thread_id,vaddr_t sp)529 bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
530 {
531 if (thread_id >= CFG_NUM_THREADS)
532 return false;
533 threads[thread_id].stack_va_end = sp;
534 return true;
535 }
536
537 static void __maybe_unused
set_core_local_kcode_offset(struct thread_core_local * cls,long offset)538 set_core_local_kcode_offset(struct thread_core_local *cls, long offset)
539 {
540 size_t n = 0;
541
542 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
543 cls[n].kcode_offset = offset;
544 }
545
init_user_kcode(void)546 static void init_user_kcode(void)
547 {
548 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
549 vaddr_t v = (vaddr_t)thread_excp_vect;
550 vaddr_t ve = (vaddr_t)thread_excp_vect_end;
551
552 thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE);
553 ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE);
554 thread_user_kcode_size = ve - thread_user_kcode_va;
555
556 core_mmu_get_user_va_range(&v, NULL);
557 thread_user_kcode_offset = thread_user_kcode_va - v;
558
559 set_core_local_kcode_offset(thread_core_local,
560 thread_user_kcode_offset);
561 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
562 set_core_local_kcode_offset((void *)thread_user_kdata_page,
563 thread_user_kcode_offset);
564 /*
565 * When transitioning to EL0 subtract SP with this much to point to
566 * this special kdata page instead. SP is restored by add this much
567 * while transitioning back to EL1.
568 */
569 v += thread_user_kcode_size;
570 thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v;
571 #endif
572 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/
573 }
574
thread_init_primary(void)575 void thread_init_primary(void)
576 {
577 /* Initialize canaries around the stacks */
578 thread_init_canaries();
579
580 init_user_kcode();
581 }
582
get_midr_implementer(uint32_t midr)583 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr)
584 {
585 return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK;
586 }
587
get_midr_primary_part(uint32_t midr)588 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr)
589 {
590 return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) &
591 MIDR_PRIMARY_PART_NUM_MASK;
592 }
593
get_midr_variant(uint32_t midr)594 static uint32_t __maybe_unused get_midr_variant(uint32_t midr)
595 {
596 return (midr >> MIDR_VARIANT_SHIFT) & MIDR_VARIANT_MASK;
597 }
598
get_midr_revision(uint32_t midr)599 static uint32_t __maybe_unused get_midr_revision(uint32_t midr)
600 {
601 return (midr >> MIDR_REVISION_SHIFT) & MIDR_REVISION_MASK;
602 }
603
604 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
605 #ifdef ARM64
probe_workaround_available(uint32_t wa_id)606 static bool probe_workaround_available(uint32_t wa_id)
607 {
608 int32_t r;
609
610 r = thread_smc(SMCCC_VERSION, 0, 0, 0);
611 if (r < 0)
612 return false;
613 if (r < 0x10001) /* compare with version 1.1 */
614 return false;
615
616 /* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */
617 r = thread_smc(SMCCC_ARCH_FEATURES, wa_id, 0, 0);
618 return r >= 0;
619 }
620
select_vector_wa_spectre_v2(void)621 static vaddr_t __maybe_unused select_vector_wa_spectre_v2(void)
622 {
623 if (probe_workaround_available(SMCCC_ARCH_WORKAROUND_1)) {
624 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available",
625 SMCCC_ARCH_WORKAROUND_1);
626 DMSG("SMC Workaround for CVE-2017-5715 used");
627 return (vaddr_t)thread_excp_vect_wa_spectre_v2;
628 }
629
630 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable",
631 SMCCC_ARCH_WORKAROUND_1);
632 DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)");
633 return (vaddr_t)thread_excp_vect;
634 }
635 #else
select_vector_wa_spectre_v2(void)636 static vaddr_t __maybe_unused select_vector_wa_spectre_v2(void)
637 {
638 return (vaddr_t)thread_excp_vect_wa_spectre_v2;
639 }
640 #endif
641 #endif
642
643 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
select_vector_wa_spectre_bhb(uint8_t loop_count __maybe_unused)644 static vaddr_t select_vector_wa_spectre_bhb(uint8_t loop_count __maybe_unused)
645 {
646 /*
647 * Spectre-BHB has only been analyzed for AArch64 so far. For
648 * AArch32 fall back to the Spectre-V2 workaround which is likely
649 * to work even if perhaps a bit more expensive than a more
650 * optimized workaround.
651 */
652 #ifdef ARM64
653 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
654 struct thread_core_local *cl = (void *)thread_user_kdata_page;
655
656 cl[get_core_pos()].bhb_loop_count = loop_count;
657 #endif
658 thread_get_core_local()->bhb_loop_count = loop_count;
659
660 DMSG("Spectre-BHB CVE-2022-23960 workaround enabled with \"K\" = %u",
661 loop_count);
662
663 return (vaddr_t)thread_excp_vect_wa_spectre_bhb;
664 #else
665 return select_vector_wa_spectre_v2();
666 #endif
667 }
668 #endif
669
get_excp_vect(void)670 static vaddr_t get_excp_vect(void)
671 {
672 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
673 uint32_t midr = read_midr();
674 uint8_t vers = 0;
675
676 if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM)
677 return (vaddr_t)thread_excp_vect;
678 /*
679 * Variant rx, Revision py, for instance
680 * Variant 2 Revision 0 = r2p0 = 0x20
681 */
682 vers = (get_midr_variant(midr) << 4) | get_midr_revision(midr);
683
684 /*
685 * Spectre-V2 (CVE-2017-5715) software workarounds covers what's
686 * needed for Spectre-BHB (CVE-2022-23960) too. The workaround for
687 * Spectre-V2 is more expensive than the one for Spectre-BHB so if
688 * possible select the workaround for Spectre-BHB.
689 */
690 switch (get_midr_primary_part(midr)) {
691 #ifdef ARM32
692 /* Spectre-V2 */
693 case CORTEX_A8_PART_NUM:
694 case CORTEX_A9_PART_NUM:
695 case CORTEX_A17_PART_NUM:
696 #endif
697 /* Spectre-V2 */
698 case CORTEX_A57_PART_NUM:
699 case CORTEX_A73_PART_NUM:
700 case CORTEX_A75_PART_NUM:
701 return select_vector_wa_spectre_v2();
702 #ifdef ARM32
703 /* Spectre-V2 */
704 case CORTEX_A15_PART_NUM:
705 return (vaddr_t)thread_excp_vect_wa_a15_spectre_v2;
706 #endif
707 /*
708 * Spectre-V2 for vers < r1p0
709 * Spectre-BHB for vers >= r1p0
710 */
711 case CORTEX_A72_PART_NUM:
712 if (vers < 0x10)
713 return select_vector_wa_spectre_v2();
714 return select_vector_wa_spectre_bhb(8);
715
716 /*
717 * Doing the more safe but expensive Spectre-V2 workaround for CPUs
718 * still being researched on the best mitigation sequence.
719 */
720 case CORTEX_A65_PART_NUM:
721 case CORTEX_A65AE_PART_NUM:
722 case NEOVERSE_E1_PART_NUM:
723 return select_vector_wa_spectre_v2();
724
725 /* Spectre-BHB */
726 case CORTEX_A76_PART_NUM:
727 case CORTEX_A76AE_PART_NUM:
728 case CORTEX_A77_PART_NUM:
729 return select_vector_wa_spectre_bhb(24);
730 case CORTEX_A78_PART_NUM:
731 case CORTEX_A78AE_PART_NUM:
732 case CORTEX_A78C_PART_NUM:
733 case CORTEX_A710_PART_NUM:
734 case CORTEX_X1_PART_NUM:
735 case CORTEX_X2_PART_NUM:
736 return select_vector_wa_spectre_bhb(32);
737 case NEOVERSE_N1_PART_NUM:
738 return select_vector_wa_spectre_bhb(24);
739 case NEOVERSE_N2_PART_NUM:
740 case NEOVERSE_V1_PART_NUM:
741 return select_vector_wa_spectre_bhb(32);
742
743 default:
744 return (vaddr_t)thread_excp_vect;
745 }
746 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/
747
748 return (vaddr_t)thread_excp_vect;
749 }
750
thread_init_per_cpu(void)751 void thread_init_per_cpu(void)
752 {
753 #ifdef ARM32
754 struct thread_core_local *l = thread_get_core_local();
755
756 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
757 /* Initialize secure monitor */
758 sm_init(l->tmp_stack_va_end + STACK_TMP_OFFS);
759 #endif
760 thread_set_irq_sp(l->tmp_stack_va_end);
761 thread_set_fiq_sp(l->tmp_stack_va_end);
762 thread_set_abt_sp((vaddr_t)l);
763 thread_set_und_sp((vaddr_t)l);
764 #endif
765
766 thread_init_vbar(get_excp_vect());
767
768 #ifdef CFG_FTRACE_SUPPORT
769 /*
770 * Enable accesses to frequency register and physical counter
771 * register in EL0/PL0 required for timestamping during
772 * function tracing.
773 */
774 write_cntkctl(read_cntkctl() | CNTKCTL_PL0PCTEN);
775 #endif
776 }
777
778 #ifdef CFG_WITH_VFP
thread_kernel_enable_vfp(void)779 uint32_t thread_kernel_enable_vfp(void)
780 {
781 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
782 struct thread_ctx *thr = threads + thread_get_id();
783 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
784
785 assert(!vfp_is_enabled());
786
787 if (!thr->vfp_state.ns_saved) {
788 vfp_lazy_save_state_final(&thr->vfp_state.ns,
789 true /*force_save*/);
790 thr->vfp_state.ns_saved = true;
791 } else if (thr->vfp_state.sec_lazy_saved &&
792 !thr->vfp_state.sec_saved) {
793 /*
794 * This happens when we're handling an abort while the
795 * thread was using the VFP state.
796 */
797 vfp_lazy_save_state_final(&thr->vfp_state.sec,
798 false /*!force_save*/);
799 thr->vfp_state.sec_saved = true;
800 } else if (tuv && tuv->lazy_saved && !tuv->saved) {
801 /*
802 * This can happen either during syscall or abort
803 * processing (while processing a syscall).
804 */
805 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
806 tuv->saved = true;
807 }
808
809 vfp_enable();
810 return exceptions;
811 }
812
thread_kernel_disable_vfp(uint32_t state)813 void thread_kernel_disable_vfp(uint32_t state)
814 {
815 uint32_t exceptions;
816
817 assert(vfp_is_enabled());
818
819 vfp_disable();
820 exceptions = thread_get_exceptions();
821 assert(exceptions & THREAD_EXCP_FOREIGN_INTR);
822 exceptions &= ~THREAD_EXCP_FOREIGN_INTR;
823 exceptions |= state & THREAD_EXCP_FOREIGN_INTR;
824 thread_set_exceptions(exceptions);
825 }
826
thread_kernel_save_vfp(void)827 void thread_kernel_save_vfp(void)
828 {
829 struct thread_ctx *thr = threads + thread_get_id();
830
831 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
832 if (vfp_is_enabled()) {
833 vfp_lazy_save_state_init(&thr->vfp_state.sec);
834 thr->vfp_state.sec_lazy_saved = true;
835 }
836 }
837
thread_kernel_restore_vfp(void)838 void thread_kernel_restore_vfp(void)
839 {
840 struct thread_ctx *thr = threads + thread_get_id();
841
842 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
843 assert(!vfp_is_enabled());
844 if (thr->vfp_state.sec_lazy_saved) {
845 vfp_lazy_restore_state(&thr->vfp_state.sec,
846 thr->vfp_state.sec_saved);
847 thr->vfp_state.sec_saved = false;
848 thr->vfp_state.sec_lazy_saved = false;
849 }
850 }
851
thread_user_enable_vfp(struct thread_user_vfp_state * uvfp)852 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
853 {
854 struct thread_ctx *thr = threads + thread_get_id();
855 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
856
857 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
858 assert(!vfp_is_enabled());
859
860 if (!thr->vfp_state.ns_saved) {
861 vfp_lazy_save_state_final(&thr->vfp_state.ns,
862 true /*force_save*/);
863 thr->vfp_state.ns_saved = true;
864 } else if (tuv && uvfp != tuv) {
865 if (tuv->lazy_saved && !tuv->saved) {
866 vfp_lazy_save_state_final(&tuv->vfp,
867 false /*!force_save*/);
868 tuv->saved = true;
869 }
870 }
871
872 if (uvfp->lazy_saved)
873 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
874 uvfp->lazy_saved = false;
875 uvfp->saved = false;
876
877 thr->vfp_state.uvfp = uvfp;
878 vfp_enable();
879 }
880
thread_user_save_vfp(void)881 void thread_user_save_vfp(void)
882 {
883 struct thread_ctx *thr = threads + thread_get_id();
884 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
885
886 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
887 if (!vfp_is_enabled())
888 return;
889
890 assert(tuv && !tuv->lazy_saved && !tuv->saved);
891 vfp_lazy_save_state_init(&tuv->vfp);
892 tuv->lazy_saved = true;
893 }
894
thread_user_clear_vfp(struct user_mode_ctx * uctx)895 void thread_user_clear_vfp(struct user_mode_ctx *uctx)
896 {
897 struct thread_user_vfp_state *uvfp = &uctx->vfp;
898 struct thread_ctx *thr = threads + thread_get_id();
899
900 if (uvfp == thr->vfp_state.uvfp)
901 thr->vfp_state.uvfp = NULL;
902 uvfp->lazy_saved = false;
903 uvfp->saved = false;
904 }
905 #endif /*CFG_WITH_VFP*/
906
907 #ifdef ARM32
get_spsr(bool is_32bit,unsigned long entry_func,uint32_t * spsr)908 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
909 {
910 uint32_t s;
911
912 if (!is_32bit)
913 return false;
914
915 s = read_cpsr();
916 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
917 s |= CPSR_MODE_USR;
918 if (entry_func & 1)
919 s |= CPSR_T;
920 *spsr = s;
921 return true;
922 }
923 #endif
924
925 #ifdef ARM64
get_spsr(bool is_32bit,unsigned long entry_func,uint32_t * spsr)926 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
927 {
928 uint32_t s;
929
930 if (is_32bit) {
931 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
932 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
933 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
934 } else {
935 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
936 }
937
938 *spsr = s;
939 return true;
940 }
941 #endif
942
set_ctx_regs(struct thread_ctx_regs * regs,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long user_sp,unsigned long entry_func,uint32_t spsr,struct thread_pauth_keys * keys __maybe_unused)943 static void set_ctx_regs(struct thread_ctx_regs *regs, unsigned long a0,
944 unsigned long a1, unsigned long a2, unsigned long a3,
945 unsigned long user_sp, unsigned long entry_func,
946 uint32_t spsr,
947 struct thread_pauth_keys *keys __maybe_unused)
948 {
949 /*
950 * First clear all registers to avoid leaking information from
951 * other TAs or even the Core itself.
952 */
953 *regs = (struct thread_ctx_regs){ };
954 #ifdef ARM32
955 regs->r0 = a0;
956 regs->r1 = a1;
957 regs->r2 = a2;
958 regs->r3 = a3;
959 regs->usr_sp = user_sp;
960 regs->pc = entry_func;
961 regs->cpsr = spsr;
962 #endif
963 #ifdef ARM64
964 regs->x[0] = a0;
965 regs->x[1] = a1;
966 regs->x[2] = a2;
967 regs->x[3] = a3;
968 regs->sp = user_sp;
969 regs->pc = entry_func;
970 regs->cpsr = spsr;
971 regs->x[13] = user_sp; /* Used when running TA in Aarch32 */
972 regs->sp = user_sp; /* Used when running TA in Aarch64 */
973 #ifdef CFG_TA_PAUTH
974 assert(keys);
975 regs->apiakey_hi = keys->apia_hi;
976 regs->apiakey_lo = keys->apia_lo;
977 #endif
978 /* Set frame pointer (user stack can't be unwound past this point) */
979 regs->x[29] = 0;
980 #endif
981 }
982
thread_get_pauth_keys(void)983 static struct thread_pauth_keys *thread_get_pauth_keys(void)
984 {
985 #if defined(CFG_TA_PAUTH)
986 struct ts_session *s = ts_get_current_session();
987 /* Only user TA's support the PAUTH keys */
988 struct user_ta_ctx *utc = to_user_ta_ctx(s->ctx);
989
990 return &utc->uctx.keys;
991 #else
992 return NULL;
993 #endif
994 }
995
thread_enter_user_mode(unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long user_sp,unsigned long entry_func,bool is_32bit,uint32_t * exit_status0,uint32_t * exit_status1)996 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
997 unsigned long a2, unsigned long a3, unsigned long user_sp,
998 unsigned long entry_func, bool is_32bit,
999 uint32_t *exit_status0, uint32_t *exit_status1)
1000 {
1001 uint32_t spsr = 0;
1002 uint32_t exceptions = 0;
1003 uint32_t rc = 0;
1004 struct thread_ctx_regs *regs = NULL;
1005 struct thread_pauth_keys *keys = NULL;
1006
1007 tee_ta_update_session_utime_resume();
1008
1009 keys = thread_get_pauth_keys();
1010
1011 /* Derive SPSR from current CPSR/PSTATE readout. */
1012 if (!get_spsr(is_32bit, entry_func, &spsr)) {
1013 *exit_status0 = 1; /* panic */
1014 *exit_status1 = 0xbadbadba;
1015 return 0;
1016 }
1017
1018 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1019 /*
1020 * We're using the per thread location of saved context registers
1021 * for temporary storage. Now that exceptions are masked they will
1022 * not be used for any thing else until they are eventually
1023 * unmasked when user mode has been entered.
1024 */
1025 regs = thread_get_ctx_regs();
1026 set_ctx_regs(regs, a0, a1, a2, a3, user_sp, entry_func, spsr, keys);
1027 rc = __thread_enter_user_mode(regs, exit_status0, exit_status1);
1028 thread_unmask_exceptions(exceptions);
1029 return rc;
1030 }
1031
1032 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
thread_get_user_kcode(struct mobj ** mobj,size_t * offset,vaddr_t * va,size_t * sz)1033 void thread_get_user_kcode(struct mobj **mobj, size_t *offset,
1034 vaddr_t *va, size_t *sz)
1035 {
1036 core_mmu_get_user_va_range(va, NULL);
1037 *mobj = mobj_tee_ram_rx;
1038 *sz = thread_user_kcode_size;
1039 *offset = thread_user_kcode_va - (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1040 }
1041 #endif
1042
1043 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
1044 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
thread_get_user_kdata(struct mobj ** mobj,size_t * offset,vaddr_t * va,size_t * sz)1045 void thread_get_user_kdata(struct mobj **mobj, size_t *offset,
1046 vaddr_t *va, size_t *sz)
1047 {
1048 vaddr_t v;
1049
1050 core_mmu_get_user_va_range(&v, NULL);
1051 *va = v + thread_user_kcode_size;
1052 *mobj = mobj_tee_ram_rw;
1053 *sz = sizeof(thread_user_kdata_page);
1054 *offset = (vaddr_t)thread_user_kdata_page -
1055 (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1056 }
1057 #endif
1058
setup_unwind_user_mode(struct thread_svc_regs * regs)1059 static void setup_unwind_user_mode(struct thread_svc_regs *regs)
1060 {
1061 #ifdef ARM32
1062 regs->lr = (uintptr_t)thread_unwind_user_mode;
1063 regs->spsr = read_cpsr();
1064 #endif
1065 #ifdef ARM64
1066 regs->elr = (uintptr_t)thread_unwind_user_mode;
1067 regs->spsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 0);
1068 regs->spsr |= read_daif();
1069 /*
1070 * Regs is the value of stack pointer before calling the SVC
1071 * handler. By the addition matches for the reserved space at the
1072 * beginning of el0_sync_svc(). This prepares the stack when
1073 * returning to thread_unwind_user_mode instead of a normal
1074 * exception return.
1075 */
1076 regs->sp_el0 = (uint64_t)(regs + 1);
1077 #endif
1078 }
1079
gprof_set_status(struct ts_session * s __maybe_unused,enum ts_gprof_status status __maybe_unused)1080 static void gprof_set_status(struct ts_session *s __maybe_unused,
1081 enum ts_gprof_status status __maybe_unused)
1082 {
1083 #ifdef CFG_TA_GPROF_SUPPORT
1084 if (s->ctx->ops->gprof_set_status)
1085 s->ctx->ops->gprof_set_status(status);
1086 #endif
1087 }
1088
1089 /*
1090 * Note: this function is weak just to make it possible to exclude it from
1091 * the unpaged area.
1092 */
thread_svc_handler(struct thread_svc_regs * regs)1093 void __weak thread_svc_handler(struct thread_svc_regs *regs)
1094 {
1095 struct ts_session *sess = NULL;
1096 uint32_t state = 0;
1097
1098 /* Enable native interrupts */
1099 state = thread_get_exceptions();
1100 thread_unmask_exceptions(state & ~THREAD_EXCP_NATIVE_INTR);
1101
1102 thread_user_save_vfp();
1103
1104 sess = ts_get_current_session();
1105 /*
1106 * User mode service has just entered kernel mode, suspend gprof
1107 * collection until we're about to switch back again.
1108 */
1109 gprof_set_status(sess, TS_GPROF_SUSPEND);
1110
1111 /* Restore foreign interrupts which are disabled on exception entry */
1112 thread_restore_foreign_intr();
1113
1114 assert(sess && sess->handle_svc);
1115 if (sess->handle_svc(regs)) {
1116 /* We're about to switch back to user mode */
1117 gprof_set_status(sess, TS_GPROF_RESUME);
1118 } else {
1119 /* We're returning from __thread_enter_user_mode() */
1120 setup_unwind_user_mode(regs);
1121 }
1122 }
1123
1124 #ifdef CFG_WITH_ARM_TRUSTED_FW
1125 /*
1126 * These five functions are __weak to allow platforms to override them if
1127 * needed.
1128 */
thread_cpu_off_handler(unsigned long a0 __unused,unsigned long a1 __unused)1129 unsigned long __weak thread_cpu_off_handler(unsigned long a0 __unused,
1130 unsigned long a1 __unused)
1131 {
1132 return 0;
1133 }
1134 DECLARE_KEEP_PAGER(thread_cpu_off_handler);
1135
thread_cpu_suspend_handler(unsigned long a0 __unused,unsigned long a1 __unused)1136 unsigned long __weak thread_cpu_suspend_handler(unsigned long a0 __unused,
1137 unsigned long a1 __unused)
1138 {
1139 return 0;
1140 }
1141 DECLARE_KEEP_PAGER(thread_cpu_suspend_handler);
1142
thread_cpu_resume_handler(unsigned long a0 __unused,unsigned long a1 __unused)1143 unsigned long __weak thread_cpu_resume_handler(unsigned long a0 __unused,
1144 unsigned long a1 __unused)
1145 {
1146 return 0;
1147 }
1148 DECLARE_KEEP_PAGER(thread_cpu_resume_handler);
1149
thread_system_off_handler(unsigned long a0 __unused,unsigned long a1 __unused)1150 unsigned long __weak thread_system_off_handler(unsigned long a0 __unused,
1151 unsigned long a1 __unused)
1152 {
1153 return 0;
1154 }
1155 DECLARE_KEEP_PAGER(thread_system_off_handler);
1156
thread_system_reset_handler(unsigned long a0 __unused,unsigned long a1 __unused)1157 unsigned long __weak thread_system_reset_handler(unsigned long a0 __unused,
1158 unsigned long a1 __unused)
1159 {
1160 return 0;
1161 }
1162 DECLARE_KEEP_PAGER(thread_system_reset_handler);
1163 #endif /*CFG_WITH_ARM_TRUSTED_FW*/
1164
1165 #ifdef CFG_CORE_WORKAROUND_ARM_NMFI
itr_core_handler(void)1166 void __noreturn itr_core_handler(void)
1167 {
1168 /*
1169 * Note: overrides the default implementation of this function so that
1170 * if there would be another handler defined there would be duplicate
1171 * symbol error during linking.
1172 */
1173 panic("Secure interrupt received but it is not supported");
1174 }
1175 #endif
1176