1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains functions which emulate a local clock-event
4 * device via a broadcast event source.
5 *
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9 */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/module.h>
19
20 #include "tick-internal.h"
21
22 /*
23 * Broadcast support for broken x86 hardware, where the local apic
24 * timer stops in C3 state.
25 */
26
27 static struct tick_device tick_broadcast_device;
28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
30 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
31 static int tick_broadcast_forced;
32
33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34
35 #ifdef CONFIG_TICK_ONESHOT
36 static DEFINE_PER_CPU(struct clock_event_device *, tick_oneshot_wakeup_device);
37
38 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 # ifdef CONFIG_HOTPLUG_CPU
42 static void tick_broadcast_oneshot_offline(unsigned int cpu);
43 # endif
44 #else
tick_broadcast_setup_oneshot(struct clock_event_device * bc)45 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
tick_broadcast_clear_oneshot(int cpu)46 static inline void tick_broadcast_clear_oneshot(int cpu) { }
tick_resume_broadcast_oneshot(struct clock_event_device * bc)47 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
48 # ifdef CONFIG_HOTPLUG_CPU
tick_broadcast_oneshot_offline(unsigned int cpu)49 static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
50 # endif
51 #endif
52
53 /*
54 * Debugging: see timer_list.c
55 */
tick_get_broadcast_device(void)56 struct tick_device *tick_get_broadcast_device(void)
57 {
58 return &tick_broadcast_device;
59 }
60
tick_get_broadcast_mask(void)61 struct cpumask *tick_get_broadcast_mask(void)
62 {
63 return tick_broadcast_mask;
64 }
65
66 static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu);
67
tick_get_wakeup_device(int cpu)68 const struct clock_event_device *tick_get_wakeup_device(int cpu)
69 {
70 return tick_get_oneshot_wakeup_device(cpu);
71 }
72
73 /*
74 * Start the device in periodic mode
75 */
tick_broadcast_start_periodic(struct clock_event_device * bc)76 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
77 {
78 if (bc)
79 tick_setup_periodic(bc, 1);
80 }
81
82 /*
83 * Check, if the device can be utilized as broadcast device:
84 */
tick_check_broadcast_device(struct clock_event_device * curdev,struct clock_event_device * newdev)85 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
86 struct clock_event_device *newdev)
87 {
88 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
89 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
90 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
91 return false;
92
93 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
94 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
95 return false;
96
97 return !curdev || newdev->rating > curdev->rating;
98 }
99
100 #ifdef CONFIG_TICK_ONESHOT
tick_get_oneshot_wakeup_device(int cpu)101 static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
102 {
103 return per_cpu(tick_oneshot_wakeup_device, cpu);
104 }
105
tick_oneshot_wakeup_handler(struct clock_event_device * wd)106 static void tick_oneshot_wakeup_handler(struct clock_event_device *wd)
107 {
108 /*
109 * If we woke up early and the tick was reprogrammed in the
110 * meantime then this may be spurious but harmless.
111 */
112 tick_receive_broadcast();
113 }
114
tick_set_oneshot_wakeup_device(struct clock_event_device * newdev,int cpu)115 static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
116 int cpu)
117 {
118 struct clock_event_device *curdev = tick_get_oneshot_wakeup_device(cpu);
119
120 if (!newdev)
121 goto set_device;
122
123 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
124 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
125 return false;
126
127 if (!(newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
128 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
129 return false;
130
131 if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
132 return false;
133
134 if (curdev && newdev->rating <= curdev->rating)
135 return false;
136
137 if (!try_module_get(newdev->owner))
138 return false;
139
140 newdev->event_handler = tick_oneshot_wakeup_handler;
141 set_device:
142 clockevents_exchange_device(curdev, newdev);
143 per_cpu(tick_oneshot_wakeup_device, cpu) = newdev;
144 return true;
145 }
146 #else
tick_get_oneshot_wakeup_device(int cpu)147 static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
148 {
149 return NULL;
150 }
151
tick_set_oneshot_wakeup_device(struct clock_event_device * newdev,int cpu)152 static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
153 int cpu)
154 {
155 return false;
156 }
157 #endif
158
159 /*
160 * Conditionally install/replace broadcast device
161 */
tick_install_broadcast_device(struct clock_event_device * dev,int cpu)162 void tick_install_broadcast_device(struct clock_event_device *dev, int cpu)
163 {
164 struct clock_event_device *cur = tick_broadcast_device.evtdev;
165
166 if (tick_set_oneshot_wakeup_device(dev, cpu))
167 return;
168
169 if (!tick_check_broadcast_device(cur, dev))
170 return;
171
172 if (!try_module_get(dev->owner))
173 return;
174
175 clockevents_exchange_device(cur, dev);
176 if (cur)
177 cur->event_handler = clockevents_handle_noop;
178 tick_broadcast_device.evtdev = dev;
179 if (!cpumask_empty(tick_broadcast_mask))
180 tick_broadcast_start_periodic(dev);
181
182 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
183 return;
184
185 /*
186 * If the system already runs in oneshot mode, switch the newly
187 * registered broadcast device to oneshot mode explicitly.
188 */
189 if (tick_broadcast_oneshot_active()) {
190 tick_broadcast_switch_to_oneshot();
191 return;
192 }
193
194 /*
195 * Inform all cpus about this. We might be in a situation
196 * where we did not switch to oneshot mode because the per cpu
197 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
198 * of a oneshot capable broadcast device. Without that
199 * notification the systems stays stuck in periodic mode
200 * forever.
201 */
202 tick_clock_notify();
203 }
204
205 /*
206 * Check, if the device is the broadcast device
207 */
tick_is_broadcast_device(struct clock_event_device * dev)208 int tick_is_broadcast_device(struct clock_event_device *dev)
209 {
210 return (dev && tick_broadcast_device.evtdev == dev);
211 }
212
tick_broadcast_update_freq(struct clock_event_device * dev,u32 freq)213 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
214 {
215 int ret = -ENODEV;
216
217 if (tick_is_broadcast_device(dev)) {
218 raw_spin_lock(&tick_broadcast_lock);
219 ret = __clockevents_update_freq(dev, freq);
220 raw_spin_unlock(&tick_broadcast_lock);
221 }
222 return ret;
223 }
224
225
err_broadcast(const struct cpumask * mask)226 static void err_broadcast(const struct cpumask *mask)
227 {
228 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
229 }
230
tick_device_setup_broadcast_func(struct clock_event_device * dev)231 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
232 {
233 if (!dev->broadcast)
234 dev->broadcast = tick_broadcast;
235 if (!dev->broadcast) {
236 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
237 dev->name);
238 dev->broadcast = err_broadcast;
239 }
240 }
241
242 /*
243 * Check, if the device is dysfunctional and a placeholder, which
244 * needs to be handled by the broadcast device.
245 */
tick_device_uses_broadcast(struct clock_event_device * dev,int cpu)246 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
247 {
248 struct clock_event_device *bc = tick_broadcast_device.evtdev;
249 unsigned long flags;
250 int ret = 0;
251
252 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
253
254 /*
255 * Devices might be registered with both periodic and oneshot
256 * mode disabled. This signals, that the device needs to be
257 * operated from the broadcast device and is a placeholder for
258 * the cpu local device.
259 */
260 if (!tick_device_is_functional(dev)) {
261 dev->event_handler = tick_handle_periodic;
262 tick_device_setup_broadcast_func(dev);
263 cpumask_set_cpu(cpu, tick_broadcast_mask);
264 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
265 tick_broadcast_start_periodic(bc);
266 else
267 tick_broadcast_setup_oneshot(bc);
268 ret = 1;
269 } else {
270 /*
271 * Clear the broadcast bit for this cpu if the
272 * device is not power state affected.
273 */
274 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
275 cpumask_clear_cpu(cpu, tick_broadcast_mask);
276 else
277 tick_device_setup_broadcast_func(dev);
278
279 /*
280 * Clear the broadcast bit if the CPU is not in
281 * periodic broadcast on state.
282 */
283 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
284 cpumask_clear_cpu(cpu, tick_broadcast_mask);
285
286 switch (tick_broadcast_device.mode) {
287 case TICKDEV_MODE_ONESHOT:
288 /*
289 * If the system is in oneshot mode we can
290 * unconditionally clear the oneshot mask bit,
291 * because the CPU is running and therefore
292 * not in an idle state which causes the power
293 * state affected device to stop. Let the
294 * caller initialize the device.
295 */
296 tick_broadcast_clear_oneshot(cpu);
297 ret = 0;
298 break;
299
300 case TICKDEV_MODE_PERIODIC:
301 /*
302 * If the system is in periodic mode, check
303 * whether the broadcast device can be
304 * switched off now.
305 */
306 if (cpumask_empty(tick_broadcast_mask) && bc)
307 clockevents_shutdown(bc);
308 /*
309 * If we kept the cpu in the broadcast mask,
310 * tell the caller to leave the per cpu device
311 * in shutdown state. The periodic interrupt
312 * is delivered by the broadcast device, if
313 * the broadcast device exists and is not
314 * hrtimer based.
315 */
316 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
317 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
318 break;
319 default:
320 break;
321 }
322 }
323 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
324 return ret;
325 }
326
tick_receive_broadcast(void)327 int tick_receive_broadcast(void)
328 {
329 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
330 struct clock_event_device *evt = td->evtdev;
331
332 if (!evt)
333 return -ENODEV;
334
335 if (!evt->event_handler)
336 return -EINVAL;
337
338 evt->event_handler(evt);
339 return 0;
340 }
341
342 /*
343 * Broadcast the event to the cpus, which are set in the mask (mangled).
344 */
tick_do_broadcast(struct cpumask * mask)345 static bool tick_do_broadcast(struct cpumask *mask)
346 {
347 int cpu = smp_processor_id();
348 struct tick_device *td;
349 bool local = false;
350
351 /*
352 * Check, if the current cpu is in the mask
353 */
354 if (cpumask_test_cpu(cpu, mask)) {
355 struct clock_event_device *bc = tick_broadcast_device.evtdev;
356
357 cpumask_clear_cpu(cpu, mask);
358 /*
359 * We only run the local handler, if the broadcast
360 * device is not hrtimer based. Otherwise we run into
361 * a hrtimer recursion.
362 *
363 * local timer_interrupt()
364 * local_handler()
365 * expire_hrtimers()
366 * bc_handler()
367 * local_handler()
368 * expire_hrtimers()
369 */
370 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
371 }
372
373 if (!cpumask_empty(mask)) {
374 /*
375 * It might be necessary to actually check whether the devices
376 * have different broadcast functions. For now, just use the
377 * one of the first device. This works as long as we have this
378 * misfeature only on x86 (lapic)
379 */
380 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
381 td->evtdev->broadcast(mask);
382 }
383 return local;
384 }
385
386 /*
387 * Periodic broadcast:
388 * - invoke the broadcast handlers
389 */
tick_do_periodic_broadcast(void)390 static bool tick_do_periodic_broadcast(void)
391 {
392 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
393 return tick_do_broadcast(tmpmask);
394 }
395
396 /*
397 * Event handler for periodic broadcast ticks
398 */
tick_handle_periodic_broadcast(struct clock_event_device * dev)399 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
400 {
401 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
402 bool bc_local;
403
404 raw_spin_lock(&tick_broadcast_lock);
405
406 /* Handle spurious interrupts gracefully */
407 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
408 raw_spin_unlock(&tick_broadcast_lock);
409 return;
410 }
411
412 bc_local = tick_do_periodic_broadcast();
413
414 if (clockevent_state_oneshot(dev)) {
415 ktime_t next = ktime_add_ns(dev->next_event, TICK_NSEC);
416
417 clockevents_program_event(dev, next, true);
418 }
419 raw_spin_unlock(&tick_broadcast_lock);
420
421 /*
422 * We run the handler of the local cpu after dropping
423 * tick_broadcast_lock because the handler might deadlock when
424 * trying to switch to oneshot mode.
425 */
426 if (bc_local)
427 td->evtdev->event_handler(td->evtdev);
428 }
429
430 /**
431 * tick_broadcast_control - Enable/disable or force broadcast mode
432 * @mode: The selected broadcast mode
433 *
434 * Called when the system enters a state where affected tick devices
435 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
436 */
tick_broadcast_control(enum tick_broadcast_mode mode)437 void tick_broadcast_control(enum tick_broadcast_mode mode)
438 {
439 struct clock_event_device *bc, *dev;
440 struct tick_device *td;
441 int cpu, bc_stopped;
442 unsigned long flags;
443
444 /* Protects also the local clockevent device. */
445 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
446 td = this_cpu_ptr(&tick_cpu_device);
447 dev = td->evtdev;
448
449 /*
450 * Is the device not affected by the powerstate ?
451 */
452 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
453 goto out;
454
455 if (!tick_device_is_functional(dev))
456 goto out;
457
458 cpu = smp_processor_id();
459 bc = tick_broadcast_device.evtdev;
460 bc_stopped = cpumask_empty(tick_broadcast_mask);
461
462 switch (mode) {
463 case TICK_BROADCAST_FORCE:
464 tick_broadcast_forced = 1;
465 fallthrough;
466 case TICK_BROADCAST_ON:
467 cpumask_set_cpu(cpu, tick_broadcast_on);
468 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
469 /*
470 * Only shutdown the cpu local device, if:
471 *
472 * - the broadcast device exists
473 * - the broadcast device is not a hrtimer based one
474 * - the broadcast device is in periodic mode to
475 * avoid a hiccup during switch to oneshot mode
476 */
477 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
478 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
479 clockevents_shutdown(dev);
480 }
481 break;
482
483 case TICK_BROADCAST_OFF:
484 if (tick_broadcast_forced)
485 break;
486 cpumask_clear_cpu(cpu, tick_broadcast_on);
487 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
488 if (tick_broadcast_device.mode ==
489 TICKDEV_MODE_PERIODIC)
490 tick_setup_periodic(dev, 0);
491 }
492 break;
493 }
494
495 if (bc) {
496 if (cpumask_empty(tick_broadcast_mask)) {
497 if (!bc_stopped)
498 clockevents_shutdown(bc);
499 } else if (bc_stopped) {
500 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
501 tick_broadcast_start_periodic(bc);
502 else
503 tick_broadcast_setup_oneshot(bc);
504 }
505 }
506 out:
507 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
508 }
509 EXPORT_SYMBOL_GPL(tick_broadcast_control);
510
511 /*
512 * Set the periodic handler depending on broadcast on/off
513 */
tick_set_periodic_handler(struct clock_event_device * dev,int broadcast)514 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
515 {
516 if (!broadcast)
517 dev->event_handler = tick_handle_periodic;
518 else
519 dev->event_handler = tick_handle_periodic_broadcast;
520 }
521
522 #ifdef CONFIG_HOTPLUG_CPU
tick_shutdown_broadcast(void)523 static void tick_shutdown_broadcast(void)
524 {
525 struct clock_event_device *bc = tick_broadcast_device.evtdev;
526
527 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
528 if (bc && cpumask_empty(tick_broadcast_mask))
529 clockevents_shutdown(bc);
530 }
531 }
532
533 /*
534 * Remove a CPU from broadcasting
535 */
tick_broadcast_offline(unsigned int cpu)536 void tick_broadcast_offline(unsigned int cpu)
537 {
538 raw_spin_lock(&tick_broadcast_lock);
539 cpumask_clear_cpu(cpu, tick_broadcast_mask);
540 cpumask_clear_cpu(cpu, tick_broadcast_on);
541 tick_broadcast_oneshot_offline(cpu);
542 tick_shutdown_broadcast();
543 raw_spin_unlock(&tick_broadcast_lock);
544 }
545
546 #endif
547
tick_suspend_broadcast(void)548 void tick_suspend_broadcast(void)
549 {
550 struct clock_event_device *bc;
551 unsigned long flags;
552
553 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
554
555 bc = tick_broadcast_device.evtdev;
556 if (bc)
557 clockevents_shutdown(bc);
558
559 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
560 }
561
562 /*
563 * This is called from tick_resume_local() on a resuming CPU. That's
564 * called from the core resume function, tick_unfreeze() and the magic XEN
565 * resume hackery.
566 *
567 * In none of these cases the broadcast device mode can change and the
568 * bit of the resuming CPU in the broadcast mask is safe as well.
569 */
tick_resume_check_broadcast(void)570 bool tick_resume_check_broadcast(void)
571 {
572 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
573 return false;
574 else
575 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
576 }
577
tick_resume_broadcast(void)578 void tick_resume_broadcast(void)
579 {
580 struct clock_event_device *bc;
581 unsigned long flags;
582
583 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
584
585 bc = tick_broadcast_device.evtdev;
586
587 if (bc) {
588 clockevents_tick_resume(bc);
589
590 switch (tick_broadcast_device.mode) {
591 case TICKDEV_MODE_PERIODIC:
592 if (!cpumask_empty(tick_broadcast_mask))
593 tick_broadcast_start_periodic(bc);
594 break;
595 case TICKDEV_MODE_ONESHOT:
596 if (!cpumask_empty(tick_broadcast_mask))
597 tick_resume_broadcast_oneshot(bc);
598 break;
599 }
600 }
601 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
602 }
603
604 #ifdef CONFIG_TICK_ONESHOT
605
606 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
607 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
608 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
609
610 /*
611 * Exposed for debugging: see timer_list.c
612 */
tick_get_broadcast_oneshot_mask(void)613 struct cpumask *tick_get_broadcast_oneshot_mask(void)
614 {
615 return tick_broadcast_oneshot_mask;
616 }
617
618 /*
619 * Called before going idle with interrupts disabled. Checks whether a
620 * broadcast event from the other core is about to happen. We detected
621 * that in tick_broadcast_oneshot_control(). The callsite can use this
622 * to avoid a deep idle transition as we are about to get the
623 * broadcast IPI right away.
624 */
tick_check_broadcast_expired(void)625 noinstr int tick_check_broadcast_expired(void)
626 {
627 #ifdef _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H
628 return arch_test_bit(smp_processor_id(), cpumask_bits(tick_broadcast_force_mask));
629 #else
630 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
631 #endif
632 }
633
634 /*
635 * Set broadcast interrupt affinity
636 */
tick_broadcast_set_affinity(struct clock_event_device * bc,const struct cpumask * cpumask)637 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
638 const struct cpumask *cpumask)
639 {
640 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
641 return;
642
643 if (cpumask_equal(bc->cpumask, cpumask))
644 return;
645
646 bc->cpumask = cpumask;
647 irq_set_affinity(bc->irq, bc->cpumask);
648 }
649
tick_broadcast_set_event(struct clock_event_device * bc,int cpu,ktime_t expires)650 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
651 ktime_t expires)
652 {
653 if (!clockevent_state_oneshot(bc))
654 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
655
656 clockevents_program_event(bc, expires, 1);
657 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
658 }
659
tick_resume_broadcast_oneshot(struct clock_event_device * bc)660 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
661 {
662 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
663 }
664
665 /*
666 * Called from irq_enter() when idle was interrupted to reenable the
667 * per cpu device.
668 */
tick_check_oneshot_broadcast_this_cpu(void)669 void tick_check_oneshot_broadcast_this_cpu(void)
670 {
671 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
672 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
673
674 /*
675 * We might be in the middle of switching over from
676 * periodic to oneshot. If the CPU has not yet
677 * switched over, leave the device alone.
678 */
679 if (td->mode == TICKDEV_MODE_ONESHOT) {
680 clockevents_switch_state(td->evtdev,
681 CLOCK_EVT_STATE_ONESHOT);
682 }
683 }
684 }
685
686 /*
687 * Handle oneshot mode broadcasting
688 */
tick_handle_oneshot_broadcast(struct clock_event_device * dev)689 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
690 {
691 struct tick_device *td;
692 ktime_t now, next_event;
693 int cpu, next_cpu = 0;
694 bool bc_local;
695
696 raw_spin_lock(&tick_broadcast_lock);
697 dev->next_event = KTIME_MAX;
698 next_event = KTIME_MAX;
699 cpumask_clear(tmpmask);
700 now = ktime_get();
701 /* Find all expired events */
702 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
703 /*
704 * Required for !SMP because for_each_cpu() reports
705 * unconditionally CPU0 as set on UP kernels.
706 */
707 if (!IS_ENABLED(CONFIG_SMP) &&
708 cpumask_empty(tick_broadcast_oneshot_mask))
709 break;
710
711 td = &per_cpu(tick_cpu_device, cpu);
712 if (td->evtdev->next_event <= now) {
713 cpumask_set_cpu(cpu, tmpmask);
714 /*
715 * Mark the remote cpu in the pending mask, so
716 * it can avoid reprogramming the cpu local
717 * timer in tick_broadcast_oneshot_control().
718 */
719 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
720 } else if (td->evtdev->next_event < next_event) {
721 next_event = td->evtdev->next_event;
722 next_cpu = cpu;
723 }
724 }
725
726 /*
727 * Remove the current cpu from the pending mask. The event is
728 * delivered immediately in tick_do_broadcast() !
729 */
730 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
731
732 /* Take care of enforced broadcast requests */
733 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
734 cpumask_clear(tick_broadcast_force_mask);
735
736 /*
737 * Sanity check. Catch the case where we try to broadcast to
738 * offline cpus.
739 */
740 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
741 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
742
743 /*
744 * Wakeup the cpus which have an expired event.
745 */
746 bc_local = tick_do_broadcast(tmpmask);
747
748 /*
749 * Two reasons for reprogram:
750 *
751 * - The global event did not expire any CPU local
752 * events. This happens in dyntick mode, as the maximum PIT
753 * delta is quite small.
754 *
755 * - There are pending events on sleeping CPUs which were not
756 * in the event mask
757 */
758 if (next_event != KTIME_MAX)
759 tick_broadcast_set_event(dev, next_cpu, next_event);
760
761 raw_spin_unlock(&tick_broadcast_lock);
762
763 if (bc_local) {
764 td = this_cpu_ptr(&tick_cpu_device);
765 td->evtdev->event_handler(td->evtdev);
766 }
767 }
768
broadcast_needs_cpu(struct clock_event_device * bc,int cpu)769 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
770 {
771 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
772 return 0;
773 if (bc->next_event == KTIME_MAX)
774 return 0;
775 return bc->bound_on == cpu ? -EBUSY : 0;
776 }
777
broadcast_shutdown_local(struct clock_event_device * bc,struct clock_event_device * dev)778 static void broadcast_shutdown_local(struct clock_event_device *bc,
779 struct clock_event_device *dev)
780 {
781 /*
782 * For hrtimer based broadcasting we cannot shutdown the cpu
783 * local device if our own event is the first one to expire or
784 * if we own the broadcast timer.
785 */
786 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
787 if (broadcast_needs_cpu(bc, smp_processor_id()))
788 return;
789 if (dev->next_event < bc->next_event)
790 return;
791 }
792 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
793 }
794
___tick_broadcast_oneshot_control(enum tick_broadcast_state state,struct tick_device * td,int cpu)795 static int ___tick_broadcast_oneshot_control(enum tick_broadcast_state state,
796 struct tick_device *td,
797 int cpu)
798 {
799 struct clock_event_device *bc, *dev = td->evtdev;
800 int ret = 0;
801 ktime_t now;
802
803 raw_spin_lock(&tick_broadcast_lock);
804 bc = tick_broadcast_device.evtdev;
805
806 if (state == TICK_BROADCAST_ENTER) {
807 /*
808 * If the current CPU owns the hrtimer broadcast
809 * mechanism, it cannot go deep idle and we do not add
810 * the CPU to the broadcast mask. We don't have to go
811 * through the EXIT path as the local timer is not
812 * shutdown.
813 */
814 ret = broadcast_needs_cpu(bc, cpu);
815 if (ret)
816 goto out;
817
818 /*
819 * If the broadcast device is in periodic mode, we
820 * return.
821 */
822 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
823 /* If it is a hrtimer based broadcast, return busy */
824 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
825 ret = -EBUSY;
826 goto out;
827 }
828
829 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
830 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
831
832 /* Conditionally shut down the local timer. */
833 broadcast_shutdown_local(bc, dev);
834
835 /*
836 * We only reprogram the broadcast timer if we
837 * did not mark ourself in the force mask and
838 * if the cpu local event is earlier than the
839 * broadcast event. If the current CPU is in
840 * the force mask, then we are going to be
841 * woken by the IPI right away; we return
842 * busy, so the CPU does not try to go deep
843 * idle.
844 */
845 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
846 ret = -EBUSY;
847 } else if (dev->next_event < bc->next_event) {
848 tick_broadcast_set_event(bc, cpu, dev->next_event);
849 /*
850 * In case of hrtimer broadcasts the
851 * programming might have moved the
852 * timer to this cpu. If yes, remove
853 * us from the broadcast mask and
854 * return busy.
855 */
856 ret = broadcast_needs_cpu(bc, cpu);
857 if (ret) {
858 cpumask_clear_cpu(cpu,
859 tick_broadcast_oneshot_mask);
860 }
861 }
862 }
863 } else {
864 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
865 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
866 /*
867 * The cpu which was handling the broadcast
868 * timer marked this cpu in the broadcast
869 * pending mask and fired the broadcast
870 * IPI. So we are going to handle the expired
871 * event anyway via the broadcast IPI
872 * handler. No need to reprogram the timer
873 * with an already expired event.
874 */
875 if (cpumask_test_and_clear_cpu(cpu,
876 tick_broadcast_pending_mask))
877 goto out;
878
879 /*
880 * Bail out if there is no next event.
881 */
882 if (dev->next_event == KTIME_MAX)
883 goto out;
884 /*
885 * If the pending bit is not set, then we are
886 * either the CPU handling the broadcast
887 * interrupt or we got woken by something else.
888 *
889 * We are no longer in the broadcast mask, so
890 * if the cpu local expiry time is already
891 * reached, we would reprogram the cpu local
892 * timer with an already expired event.
893 *
894 * This can lead to a ping-pong when we return
895 * to idle and therefore rearm the broadcast
896 * timer before the cpu local timer was able
897 * to fire. This happens because the forced
898 * reprogramming makes sure that the event
899 * will happen in the future and depending on
900 * the min_delta setting this might be far
901 * enough out that the ping-pong starts.
902 *
903 * If the cpu local next_event has expired
904 * then we know that the broadcast timer
905 * next_event has expired as well and
906 * broadcast is about to be handled. So we
907 * avoid reprogramming and enforce that the
908 * broadcast handler, which did not run yet,
909 * will invoke the cpu local handler.
910 *
911 * We cannot call the handler directly from
912 * here, because we might be in a NOHZ phase
913 * and we did not go through the irq_enter()
914 * nohz fixups.
915 */
916 now = ktime_get();
917 if (dev->next_event <= now) {
918 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
919 goto out;
920 }
921 /*
922 * We got woken by something else. Reprogram
923 * the cpu local timer device.
924 */
925 tick_program_event(dev->next_event, 1);
926 }
927 }
928 out:
929 raw_spin_unlock(&tick_broadcast_lock);
930 return ret;
931 }
932
tick_oneshot_wakeup_control(enum tick_broadcast_state state,struct tick_device * td,int cpu)933 static int tick_oneshot_wakeup_control(enum tick_broadcast_state state,
934 struct tick_device *td,
935 int cpu)
936 {
937 struct clock_event_device *dev, *wd;
938
939 dev = td->evtdev;
940 if (td->mode != TICKDEV_MODE_ONESHOT)
941 return -EINVAL;
942
943 wd = tick_get_oneshot_wakeup_device(cpu);
944 if (!wd)
945 return -ENODEV;
946
947 switch (state) {
948 case TICK_BROADCAST_ENTER:
949 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT_STOPPED);
950 clockevents_switch_state(wd, CLOCK_EVT_STATE_ONESHOT);
951 clockevents_program_event(wd, dev->next_event, 1);
952 break;
953 case TICK_BROADCAST_EXIT:
954 /* We may have transitioned to oneshot mode while idle */
955 if (clockevent_get_state(wd) != CLOCK_EVT_STATE_ONESHOT)
956 return -ENODEV;
957 }
958
959 return 0;
960 }
961
__tick_broadcast_oneshot_control(enum tick_broadcast_state state)962 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
963 {
964 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
965 int cpu = smp_processor_id();
966
967 if (!tick_oneshot_wakeup_control(state, td, cpu))
968 return 0;
969
970 if (tick_broadcast_device.evtdev)
971 return ___tick_broadcast_oneshot_control(state, td, cpu);
972
973 /*
974 * If there is no broadcast or wakeup device, tell the caller not
975 * to go into deep idle.
976 */
977 return -EBUSY;
978 }
979
980 /*
981 * Reset the one shot broadcast for a cpu
982 *
983 * Called with tick_broadcast_lock held
984 */
tick_broadcast_clear_oneshot(int cpu)985 static void tick_broadcast_clear_oneshot(int cpu)
986 {
987 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
988 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
989 }
990
tick_broadcast_init_next_event(struct cpumask * mask,ktime_t expires)991 static void tick_broadcast_init_next_event(struct cpumask *mask,
992 ktime_t expires)
993 {
994 struct tick_device *td;
995 int cpu;
996
997 for_each_cpu(cpu, mask) {
998 td = &per_cpu(tick_cpu_device, cpu);
999 if (td->evtdev)
1000 td->evtdev->next_event = expires;
1001 }
1002 }
1003
tick_get_next_period(void)1004 static inline ktime_t tick_get_next_period(void)
1005 {
1006 ktime_t next;
1007
1008 /*
1009 * Protect against concurrent updates (store /load tearing on
1010 * 32bit). It does not matter if the time is already in the
1011 * past. The broadcast device which is about to be programmed will
1012 * fire in any case.
1013 */
1014 raw_spin_lock(&jiffies_lock);
1015 next = tick_next_period;
1016 raw_spin_unlock(&jiffies_lock);
1017 return next;
1018 }
1019
1020 /**
1021 * tick_broadcast_setup_oneshot - setup the broadcast device
1022 */
tick_broadcast_setup_oneshot(struct clock_event_device * bc)1023 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
1024 {
1025 int cpu = smp_processor_id();
1026
1027 if (!bc)
1028 return;
1029
1030 /* Set it up only once ! */
1031 if (bc->event_handler != tick_handle_oneshot_broadcast) {
1032 int was_periodic = clockevent_state_periodic(bc);
1033
1034 bc->event_handler = tick_handle_oneshot_broadcast;
1035
1036 /*
1037 * We must be careful here. There might be other CPUs
1038 * waiting for periodic broadcast. We need to set the
1039 * oneshot_mask bits for those and program the
1040 * broadcast device to fire.
1041 */
1042 cpumask_copy(tmpmask, tick_broadcast_mask);
1043 cpumask_clear_cpu(cpu, tmpmask);
1044 cpumask_or(tick_broadcast_oneshot_mask,
1045 tick_broadcast_oneshot_mask, tmpmask);
1046
1047 if (was_periodic && !cpumask_empty(tmpmask)) {
1048 ktime_t nextevt = tick_get_next_period();
1049
1050 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
1051 tick_broadcast_init_next_event(tmpmask, nextevt);
1052 tick_broadcast_set_event(bc, cpu, nextevt);
1053 } else
1054 bc->next_event = KTIME_MAX;
1055 } else {
1056 /*
1057 * The first cpu which switches to oneshot mode sets
1058 * the bit for all other cpus which are in the general
1059 * (periodic) broadcast mask. So the bit is set and
1060 * would prevent the first broadcast enter after this
1061 * to program the bc device.
1062 */
1063 tick_broadcast_clear_oneshot(cpu);
1064 }
1065 }
1066
1067 /*
1068 * Select oneshot operating mode for the broadcast device
1069 */
tick_broadcast_switch_to_oneshot(void)1070 void tick_broadcast_switch_to_oneshot(void)
1071 {
1072 struct clock_event_device *bc;
1073 unsigned long flags;
1074
1075 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
1076
1077 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
1078 bc = tick_broadcast_device.evtdev;
1079 if (bc)
1080 tick_broadcast_setup_oneshot(bc);
1081
1082 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
1083 }
1084
1085 #ifdef CONFIG_HOTPLUG_CPU
hotplug_cpu__broadcast_tick_pull(int deadcpu)1086 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
1087 {
1088 struct clock_event_device *bc;
1089 unsigned long flags;
1090
1091 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
1092 bc = tick_broadcast_device.evtdev;
1093
1094 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
1095 /* This moves the broadcast assignment to this CPU: */
1096 clockevents_program_event(bc, bc->next_event, 1);
1097 }
1098 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
1099 }
1100
1101 /*
1102 * Remove a dying CPU from broadcasting
1103 */
tick_broadcast_oneshot_offline(unsigned int cpu)1104 static void tick_broadcast_oneshot_offline(unsigned int cpu)
1105 {
1106 if (tick_get_oneshot_wakeup_device(cpu))
1107 tick_set_oneshot_wakeup_device(NULL, cpu);
1108
1109 /*
1110 * Clear the broadcast masks for the dead cpu, but do not stop
1111 * the broadcast device!
1112 */
1113 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
1114 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
1115 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
1116 }
1117 #endif
1118
1119 /*
1120 * Check, whether the broadcast device is in one shot mode
1121 */
tick_broadcast_oneshot_active(void)1122 int tick_broadcast_oneshot_active(void)
1123 {
1124 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
1125 }
1126
1127 /*
1128 * Check whether the broadcast device supports oneshot.
1129 */
tick_broadcast_oneshot_available(void)1130 bool tick_broadcast_oneshot_available(void)
1131 {
1132 struct clock_event_device *bc = tick_broadcast_device.evtdev;
1133
1134 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
1135 }
1136
1137 #else
__tick_broadcast_oneshot_control(enum tick_broadcast_state state)1138 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
1139 {
1140 struct clock_event_device *bc = tick_broadcast_device.evtdev;
1141
1142 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1143 return -EBUSY;
1144
1145 return 0;
1146 }
1147 #endif
1148
tick_broadcast_init(void)1149 void __init tick_broadcast_init(void)
1150 {
1151 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1152 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1153 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1154 #ifdef CONFIG_TICK_ONESHOT
1155 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1156 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1157 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1158 #endif
1159 }
1160