1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_JIFFIES_H
3 #define _LINUX_JIFFIES_H
4 
5 #include <linux/cache.h>
6 #include <linux/limits.h>
7 #include <linux/math64.h>
8 #include <linux/minmax.h>
9 #include <linux/types.h>
10 #include <linux/time.h>
11 #include <linux/timex.h>
12 #include <vdso/jiffies.h>
13 #include <asm/param.h>			/* for HZ */
14 #include <generated/timeconst.h>
15 
16 /*
17  * The following defines establish the engineering parameters of the PLL
18  * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
19  * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
20  * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
21  * nearest power of two in order to avoid hardware multiply operations.
22  */
23 #if HZ >= 12 && HZ < 24
24 # define SHIFT_HZ	4
25 #elif HZ >= 24 && HZ < 48
26 # define SHIFT_HZ	5
27 #elif HZ >= 48 && HZ < 96
28 # define SHIFT_HZ	6
29 #elif HZ >= 96 && HZ < 192
30 # define SHIFT_HZ	7
31 #elif HZ >= 192 && HZ < 384
32 # define SHIFT_HZ	8
33 #elif HZ >= 384 && HZ < 768
34 # define SHIFT_HZ	9
35 #elif HZ >= 768 && HZ < 1536
36 # define SHIFT_HZ	10
37 #elif HZ >= 1536 && HZ < 3072
38 # define SHIFT_HZ	11
39 #elif HZ >= 3072 && HZ < 6144
40 # define SHIFT_HZ	12
41 #elif HZ >= 6144 && HZ < 12288
42 # define SHIFT_HZ	13
43 #else
44 # error Invalid value of HZ.
45 #endif
46 
47 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
48  * improve accuracy by shifting LSH bits, hence calculating:
49  *     (NOM << LSH) / DEN
50  * This however means trouble for large NOM, because (NOM << LSH) may no
51  * longer fit in 32 bits. The following way of calculating this gives us
52  * some slack, under the following conditions:
53  *   - (NOM / DEN) fits in (32 - LSH) bits.
54  *   - (NOM % DEN) fits in (32 - LSH) bits.
55  */
56 #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
57                              + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
58 
59 /* LATCH is used in the interval timer and ftape setup. */
60 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)	/* For divider */
61 
62 extern int register_refined_jiffies(long clock_tick_rate);
63 
64 /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */
65 #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ)
66 
67 /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
68 #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
69 
70 #ifndef __jiffy_arch_data
71 #define __jiffy_arch_data
72 #endif
73 
74 /*
75  * The 64-bit value is not atomic - you MUST NOT read it
76  * without sampling the sequence number in jiffies_lock.
77  * get_jiffies_64() will do this for you as appropriate.
78  */
79 extern u64 __cacheline_aligned_in_smp jiffies_64;
80 extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
81 
82 #if (BITS_PER_LONG < 64)
83 u64 get_jiffies_64(void);
84 #else
get_jiffies_64(void)85 static inline u64 get_jiffies_64(void)
86 {
87 	return (u64)jiffies;
88 }
89 #endif
90 
91 /*
92  *	These inlines deal with timer wrapping correctly. You are
93  *	strongly encouraged to use them
94  *	1. Because people otherwise forget
95  *	2. Because if the timer wrap changes in future you won't have to
96  *	   alter your driver code.
97  *
98  * time_after(a,b) returns true if the time a is after time b.
99  *
100  * Do this with "<0" and ">=0" to only test the sign of the result. A
101  * good compiler would generate better code (and a really good compiler
102  * wouldn't care). Gcc is currently neither.
103  */
104 #define time_after(a,b)		\
105 	(typecheck(unsigned long, a) && \
106 	 typecheck(unsigned long, b) && \
107 	 ((long)((b) - (a)) < 0))
108 #define time_before(a,b)	time_after(b,a)
109 
110 #define time_after_eq(a,b)	\
111 	(typecheck(unsigned long, a) && \
112 	 typecheck(unsigned long, b) && \
113 	 ((long)((a) - (b)) >= 0))
114 #define time_before_eq(a,b)	time_after_eq(b,a)
115 
116 /*
117  * Calculate whether a is in the range of [b, c].
118  */
119 #define time_in_range(a,b,c) \
120 	(time_after_eq(a,b) && \
121 	 time_before_eq(a,c))
122 
123 /*
124  * Calculate whether a is in the range of [b, c).
125  */
126 #define time_in_range_open(a,b,c) \
127 	(time_after_eq(a,b) && \
128 	 time_before(a,c))
129 
130 /* Same as above, but does so with platform independent 64bit types.
131  * These must be used when utilizing jiffies_64 (i.e. return value of
132  * get_jiffies_64() */
133 #define time_after64(a,b)	\
134 	(typecheck(__u64, a) &&	\
135 	 typecheck(__u64, b) && \
136 	 ((__s64)((b) - (a)) < 0))
137 #define time_before64(a,b)	time_after64(b,a)
138 
139 #define time_after_eq64(a,b)	\
140 	(typecheck(__u64, a) && \
141 	 typecheck(__u64, b) && \
142 	 ((__s64)((a) - (b)) >= 0))
143 #define time_before_eq64(a,b)	time_after_eq64(b,a)
144 
145 #define time_in_range64(a, b, c) \
146 	(time_after_eq64(a, b) && \
147 	 time_before_eq64(a, c))
148 
149 /*
150  * These four macros compare jiffies and 'a' for convenience.
151  */
152 
153 /* time_is_before_jiffies(a) return true if a is before jiffies */
154 #define time_is_before_jiffies(a) time_after(jiffies, a)
155 #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
156 
157 /* time_is_after_jiffies(a) return true if a is after jiffies */
158 #define time_is_after_jiffies(a) time_before(jiffies, a)
159 #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
160 
161 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
162 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
163 #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
164 
165 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
166 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
167 #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
168 
169 /*
170  * Have the 32 bit jiffies value wrap 5 minutes after boot
171  * so jiffies wrap bugs show up earlier.
172  */
173 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
174 
175 /*
176  * Change timeval to jiffies, trying to avoid the
177  * most obvious overflows..
178  *
179  * And some not so obvious.
180  *
181  * Note that we don't want to return LONG_MAX, because
182  * for various timeout reasons we often end up having
183  * to wait "jiffies+1" in order to guarantee that we wait
184  * at _least_ "jiffies" - so "jiffies+1" had better still
185  * be positive.
186  */
187 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
188 
189 extern unsigned long preset_lpj;
190 
191 /*
192  * We want to do realistic conversions of time so we need to use the same
193  * values the update wall clock code uses as the jiffies size.  This value
194  * is: TICK_NSEC (which is defined in timex.h).  This
195  * is a constant and is in nanoseconds.  We will use scaled math
196  * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
197  * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
198  * constants and so are computed at compile time.  SHIFT_HZ (computed in
199  * timex.h) adjusts the scaling for different HZ values.
200 
201  * Scaled math???  What is that?
202  *
203  * Scaled math is a way to do integer math on values that would,
204  * otherwise, either overflow, underflow, or cause undesired div
205  * instructions to appear in the execution path.  In short, we "scale"
206  * up the operands so they take more bits (more precision, less
207  * underflow), do the desired operation and then "scale" the result back
208  * by the same amount.  If we do the scaling by shifting we avoid the
209  * costly mpy and the dastardly div instructions.
210 
211  * Suppose, for example, we want to convert from seconds to jiffies
212  * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
213  * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
214  * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
215  * might calculate at compile time, however, the result will only have
216  * about 3-4 bits of precision (less for smaller values of HZ).
217  *
218  * So, we scale as follows:
219  * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
220  * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
221  * Then we make SCALE a power of two so:
222  * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
223  * Now we define:
224  * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
225  * jiff = (sec * SEC_CONV) >> SCALE;
226  *
227  * Often the math we use will expand beyond 32-bits so we tell C how to
228  * do this and pass the 64-bit result of the mpy through the ">> SCALE"
229  * which should take the result back to 32-bits.  We want this expansion
230  * to capture as much precision as possible.  At the same time we don't
231  * want to overflow so we pick the SCALE to avoid this.  In this file,
232  * that means using a different scale for each range of HZ values (as
233  * defined in timex.h).
234  *
235  * For those who want to know, gcc will give a 64-bit result from a "*"
236  * operator if the result is a long long AND at least one of the
237  * operands is cast to long long (usually just prior to the "*" so as
238  * not to confuse it into thinking it really has a 64-bit operand,
239  * which, buy the way, it can do, but it takes more code and at least 2
240  * mpys).
241 
242  * We also need to be aware that one second in nanoseconds is only a
243  * couple of bits away from overflowing a 32-bit word, so we MUST use
244  * 64-bits to get the full range time in nanoseconds.
245 
246  */
247 
248 /*
249  * Here are the scales we will use.  One for seconds, nanoseconds and
250  * microseconds.
251  *
252  * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
253  * check if the sign bit is set.  If not, we bump the shift count by 1.
254  * (Gets an extra bit of precision where we can use it.)
255  * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
256  * Haven't tested others.
257 
258  * Limits of cpp (for #if expressions) only long (no long long), but
259  * then we only need the most signicant bit.
260  */
261 
262 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
263 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
264 #undef SEC_JIFFIE_SC
265 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
266 #endif
267 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
268 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
269                                 TICK_NSEC -1) / (u64)TICK_NSEC))
270 
271 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
272                                         TICK_NSEC -1) / (u64)TICK_NSEC))
273 /*
274  * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
275  * into seconds.  The 64-bit case will overflow if we are not careful,
276  * so use the messy SH_DIV macro to do it.  Still all constants.
277  */
278 #if BITS_PER_LONG < 64
279 # define MAX_SEC_IN_JIFFIES \
280 	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
281 #else	/* take care of overflow on 64 bits machines */
282 # define MAX_SEC_IN_JIFFIES \
283 	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
284 
285 #endif
286 
287 /*
288  * Convert various time units to each other:
289  */
290 extern unsigned int jiffies_to_msecs(const unsigned long j);
291 extern unsigned int jiffies_to_usecs(const unsigned long j);
292 
jiffies_to_nsecs(const unsigned long j)293 static inline u64 jiffies_to_nsecs(const unsigned long j)
294 {
295 	return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
296 }
297 
298 extern u64 jiffies64_to_nsecs(u64 j);
299 extern u64 jiffies64_to_msecs(u64 j);
300 
301 extern unsigned long __msecs_to_jiffies(const unsigned int m);
302 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
303 /*
304  * HZ is equal to or smaller than 1000, and 1000 is a nice round
305  * multiple of HZ, divide with the factor between them, but round
306  * upwards:
307  */
_msecs_to_jiffies(const unsigned int m)308 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
309 {
310 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
311 }
312 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
313 /*
314  * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
315  * simply multiply with the factor between them.
316  *
317  * But first make sure the multiplication result cannot overflow:
318  */
_msecs_to_jiffies(const unsigned int m)319 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
320 {
321 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
322 		return MAX_JIFFY_OFFSET;
323 	return m * (HZ / MSEC_PER_SEC);
324 }
325 #else
326 /*
327  * Generic case - multiply, round and divide. But first check that if
328  * we are doing a net multiplication, that we wouldn't overflow:
329  */
_msecs_to_jiffies(const unsigned int m)330 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
331 {
332 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
333 		return MAX_JIFFY_OFFSET;
334 
335 	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
336 }
337 #endif
338 /**
339  * msecs_to_jiffies: - convert milliseconds to jiffies
340  * @m:	time in milliseconds
341  *
342  * conversion is done as follows:
343  *
344  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
345  *
346  * - 'too large' values [that would result in larger than
347  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
348  *
349  * - all other values are converted to jiffies by either multiplying
350  *   the input value by a factor or dividing it with a factor and
351  *   handling any 32-bit overflows.
352  *   for the details see __msecs_to_jiffies()
353  *
354  * msecs_to_jiffies() checks for the passed in value being a constant
355  * via __builtin_constant_p() allowing gcc to eliminate most of the
356  * code, __msecs_to_jiffies() is called if the value passed does not
357  * allow constant folding and the actual conversion must be done at
358  * runtime.
359  * the HZ range specific helpers _msecs_to_jiffies() are called both
360  * directly here and from __msecs_to_jiffies() in the case where
361  * constant folding is not possible.
362  */
msecs_to_jiffies(const unsigned int m)363 static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
364 {
365 	if (__builtin_constant_p(m)) {
366 		if ((int)m < 0)
367 			return MAX_JIFFY_OFFSET;
368 		return _msecs_to_jiffies(m);
369 	} else {
370 		return __msecs_to_jiffies(m);
371 	}
372 }
373 
374 extern unsigned long __usecs_to_jiffies(const unsigned int u);
375 #if !(USEC_PER_SEC % HZ)
_usecs_to_jiffies(const unsigned int u)376 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
377 {
378 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
379 }
380 #else
_usecs_to_jiffies(const unsigned int u)381 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
382 {
383 	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
384 		>> USEC_TO_HZ_SHR32;
385 }
386 #endif
387 
388 /**
389  * usecs_to_jiffies: - convert microseconds to jiffies
390  * @u:	time in microseconds
391  *
392  * conversion is done as follows:
393  *
394  * - 'too large' values [that would result in larger than
395  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
396  *
397  * - all other values are converted to jiffies by either multiplying
398  *   the input value by a factor or dividing it with a factor and
399  *   handling any 32-bit overflows as for msecs_to_jiffies.
400  *
401  * usecs_to_jiffies() checks for the passed in value being a constant
402  * via __builtin_constant_p() allowing gcc to eliminate most of the
403  * code, __usecs_to_jiffies() is called if the value passed does not
404  * allow constant folding and the actual conversion must be done at
405  * runtime.
406  * the HZ range specific helpers _usecs_to_jiffies() are called both
407  * directly here and from __msecs_to_jiffies() in the case where
408  * constant folding is not possible.
409  */
usecs_to_jiffies(const unsigned int u)410 static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
411 {
412 	if (__builtin_constant_p(u)) {
413 		if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
414 			return MAX_JIFFY_OFFSET;
415 		return _usecs_to_jiffies(u);
416 	} else {
417 		return __usecs_to_jiffies(u);
418 	}
419 }
420 
421 extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
422 extern void jiffies_to_timespec64(const unsigned long jiffies,
423 				  struct timespec64 *value);
424 extern clock_t jiffies_to_clock_t(unsigned long x);
jiffies_delta_to_clock_t(long delta)425 static inline clock_t jiffies_delta_to_clock_t(long delta)
426 {
427 	return jiffies_to_clock_t(max(0L, delta));
428 }
429 
jiffies_delta_to_msecs(long delta)430 static inline unsigned int jiffies_delta_to_msecs(long delta)
431 {
432 	return jiffies_to_msecs(max(0L, delta));
433 }
434 
435 extern unsigned long clock_t_to_jiffies(unsigned long x);
436 extern u64 jiffies_64_to_clock_t(u64 x);
437 extern u64 nsec_to_clock_t(u64 x);
438 extern u64 nsecs_to_jiffies64(u64 n);
439 extern unsigned long nsecs_to_jiffies(u64 n);
440 
441 #define TIMESTAMP_SIZE	30
442 
443 #endif
444