1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25 #include <linux/stackprotector.h>
26
27 #include <asm/cmdline.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/api.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/cacheinfo.h>
56 #include <asm/memtype.h>
57 #include <asm/microcode.h>
58 #include <asm/microcode_intel.h>
59 #include <asm/intel-family.h>
60 #include <asm/cpu_device_id.h>
61 #include <asm/uv/uv.h>
62 #include <asm/sigframe.h>
63 #include <asm/traps.h>
64 #include <asm/sev.h>
65
66 #include "cpu.h"
67
68 u32 elf_hwcap2 __read_mostly;
69
70 /* all of these masks are initialized in setup_cpu_local_masks() */
71 cpumask_var_t cpu_initialized_mask;
72 cpumask_var_t cpu_callout_mask;
73 cpumask_var_t cpu_callin_mask;
74
75 /* representing cpus for which sibling maps can be computed */
76 cpumask_var_t cpu_sibling_setup_mask;
77
78 /* Number of siblings per CPU package */
79 int smp_num_siblings = 1;
80 EXPORT_SYMBOL(smp_num_siblings);
81
82 /* Last level cache ID of each logical CPU */
83 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
84
get_llc_id(unsigned int cpu)85 u16 get_llc_id(unsigned int cpu)
86 {
87 return per_cpu(cpu_llc_id, cpu);
88 }
89 EXPORT_SYMBOL_GPL(get_llc_id);
90
91 /* L2 cache ID of each logical CPU */
92 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
93
94 static struct ppin_info {
95 int feature;
96 int msr_ppin_ctl;
97 int msr_ppin;
98 } ppin_info[] = {
99 [X86_VENDOR_INTEL] = {
100 .feature = X86_FEATURE_INTEL_PPIN,
101 .msr_ppin_ctl = MSR_PPIN_CTL,
102 .msr_ppin = MSR_PPIN
103 },
104 [X86_VENDOR_AMD] = {
105 .feature = X86_FEATURE_AMD_PPIN,
106 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
107 .msr_ppin = MSR_AMD_PPIN
108 },
109 };
110
111 static const struct x86_cpu_id ppin_cpuids[] = {
112 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
113 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
114
115 /* Legacy models without CPUID enumeration */
116 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
117 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
118 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
119 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
120 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
122 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
123 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
124 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
125 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
126
127 {}
128 };
129
ppin_init(struct cpuinfo_x86 * c)130 static void ppin_init(struct cpuinfo_x86 *c)
131 {
132 const struct x86_cpu_id *id;
133 unsigned long long val;
134 struct ppin_info *info;
135
136 id = x86_match_cpu(ppin_cpuids);
137 if (!id)
138 return;
139
140 /*
141 * Testing the presence of the MSR is not enough. Need to check
142 * that the PPIN_CTL allows reading of the PPIN.
143 */
144 info = (struct ppin_info *)id->driver_data;
145
146 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
147 goto clear_ppin;
148
149 if ((val & 3UL) == 1UL) {
150 /* PPIN locked in disabled mode */
151 goto clear_ppin;
152 }
153
154 /* If PPIN is disabled, try to enable */
155 if (!(val & 2UL)) {
156 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
157 rdmsrl_safe(info->msr_ppin_ctl, &val);
158 }
159
160 /* Is the enable bit set? */
161 if (val & 2UL) {
162 c->ppin = __rdmsr(info->msr_ppin);
163 set_cpu_cap(c, info->feature);
164 return;
165 }
166
167 clear_ppin:
168 clear_cpu_cap(c, info->feature);
169 }
170
171 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)172 void __init setup_cpu_local_masks(void)
173 {
174 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
175 alloc_bootmem_cpumask_var(&cpu_callin_mask);
176 alloc_bootmem_cpumask_var(&cpu_callout_mask);
177 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
178 }
179
default_init(struct cpuinfo_x86 * c)180 static void default_init(struct cpuinfo_x86 *c)
181 {
182 #ifdef CONFIG_X86_64
183 cpu_detect_cache_sizes(c);
184 #else
185 /* Not much we can do here... */
186 /* Check if at least it has cpuid */
187 if (c->cpuid_level == -1) {
188 /* No cpuid. It must be an ancient CPU */
189 if (c->x86 == 4)
190 strcpy(c->x86_model_id, "486");
191 else if (c->x86 == 3)
192 strcpy(c->x86_model_id, "386");
193 }
194 #endif
195 }
196
197 static const struct cpu_dev default_cpu = {
198 .c_init = default_init,
199 .c_vendor = "Unknown",
200 .c_x86_vendor = X86_VENDOR_UNKNOWN,
201 };
202
203 static const struct cpu_dev *this_cpu = &default_cpu;
204
205 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
206 #ifdef CONFIG_X86_64
207 /*
208 * We need valid kernel segments for data and code in long mode too
209 * IRET will check the segment types kkeil 2000/10/28
210 * Also sysret mandates a special GDT layout
211 *
212 * TLS descriptors are currently at a different place compared to i386.
213 * Hopefully nobody expects them at a fixed place (Wine?)
214 */
215 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
216 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
217 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
218 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
219 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
220 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
221 #else
222 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
223 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
224 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
225 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
226 /*
227 * Segments used for calling PnP BIOS have byte granularity.
228 * They code segments and data segments have fixed 64k limits,
229 * the transfer segment sizes are set at run time.
230 */
231 /* 32-bit code */
232 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
233 /* 16-bit code */
234 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
235 /* 16-bit data */
236 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
237 /* 16-bit data */
238 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
239 /* 16-bit data */
240 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
241 /*
242 * The APM segments have byte granularity and their bases
243 * are set at run time. All have 64k limits.
244 */
245 /* 32-bit code */
246 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
247 /* 16-bit code */
248 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
249 /* data */
250 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
251
252 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
253 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
254 #endif
255 } };
256 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
257
258 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)259 static int __init x86_nopcid_setup(char *s)
260 {
261 /* nopcid doesn't accept parameters */
262 if (s)
263 return -EINVAL;
264
265 /* do not emit a message if the feature is not present */
266 if (!boot_cpu_has(X86_FEATURE_PCID))
267 return 0;
268
269 setup_clear_cpu_cap(X86_FEATURE_PCID);
270 pr_info("nopcid: PCID feature disabled\n");
271 return 0;
272 }
273 early_param("nopcid", x86_nopcid_setup);
274 #endif
275
x86_noinvpcid_setup(char * s)276 static int __init x86_noinvpcid_setup(char *s)
277 {
278 /* noinvpcid doesn't accept parameters */
279 if (s)
280 return -EINVAL;
281
282 /* do not emit a message if the feature is not present */
283 if (!boot_cpu_has(X86_FEATURE_INVPCID))
284 return 0;
285
286 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
287 pr_info("noinvpcid: INVPCID feature disabled\n");
288 return 0;
289 }
290 early_param("noinvpcid", x86_noinvpcid_setup);
291
292 #ifdef CONFIG_X86_32
293 static int cachesize_override = -1;
294 static int disable_x86_serial_nr = 1;
295
cachesize_setup(char * str)296 static int __init cachesize_setup(char *str)
297 {
298 get_option(&str, &cachesize_override);
299 return 1;
300 }
301 __setup("cachesize=", cachesize_setup);
302
303 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)304 static inline int flag_is_changeable_p(u32 flag)
305 {
306 u32 f1, f2;
307
308 /*
309 * Cyrix and IDT cpus allow disabling of CPUID
310 * so the code below may return different results
311 * when it is executed before and after enabling
312 * the CPUID. Add "volatile" to not allow gcc to
313 * optimize the subsequent calls to this function.
314 */
315 asm volatile ("pushfl \n\t"
316 "pushfl \n\t"
317 "popl %0 \n\t"
318 "movl %0, %1 \n\t"
319 "xorl %2, %0 \n\t"
320 "pushl %0 \n\t"
321 "popfl \n\t"
322 "pushfl \n\t"
323 "popl %0 \n\t"
324 "popfl \n\t"
325
326 : "=&r" (f1), "=&r" (f2)
327 : "ir" (flag));
328
329 return ((f1^f2) & flag) != 0;
330 }
331
332 /* Probe for the CPUID instruction */
have_cpuid_p(void)333 int have_cpuid_p(void)
334 {
335 return flag_is_changeable_p(X86_EFLAGS_ID);
336 }
337
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)338 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
339 {
340 unsigned long lo, hi;
341
342 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
343 return;
344
345 /* Disable processor serial number: */
346
347 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
348 lo |= 0x200000;
349 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
350
351 pr_notice("CPU serial number disabled.\n");
352 clear_cpu_cap(c, X86_FEATURE_PN);
353
354 /* Disabling the serial number may affect the cpuid level */
355 c->cpuid_level = cpuid_eax(0);
356 }
357
x86_serial_nr_setup(char * s)358 static int __init x86_serial_nr_setup(char *s)
359 {
360 disable_x86_serial_nr = 0;
361 return 1;
362 }
363 __setup("serialnumber", x86_serial_nr_setup);
364 #else
flag_is_changeable_p(u32 flag)365 static inline int flag_is_changeable_p(u32 flag)
366 {
367 return 1;
368 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)369 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
370 {
371 }
372 #endif
373
setup_smep(struct cpuinfo_x86 * c)374 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
375 {
376 if (cpu_has(c, X86_FEATURE_SMEP))
377 cr4_set_bits(X86_CR4_SMEP);
378 }
379
setup_smap(struct cpuinfo_x86 * c)380 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
381 {
382 unsigned long eflags = native_save_fl();
383
384 /* This should have been cleared long ago */
385 BUG_ON(eflags & X86_EFLAGS_AC);
386
387 if (cpu_has(c, X86_FEATURE_SMAP))
388 cr4_set_bits(X86_CR4_SMAP);
389 }
390
setup_umip(struct cpuinfo_x86 * c)391 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
392 {
393 /* Check the boot processor, plus build option for UMIP. */
394 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
395 goto out;
396
397 /* Check the current processor's cpuid bits. */
398 if (!cpu_has(c, X86_FEATURE_UMIP))
399 goto out;
400
401 cr4_set_bits(X86_CR4_UMIP);
402
403 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
404
405 return;
406
407 out:
408 /*
409 * Make sure UMIP is disabled in case it was enabled in a
410 * previous boot (e.g., via kexec).
411 */
412 cr4_clear_bits(X86_CR4_UMIP);
413 }
414
415 /* These bits should not change their value after CPU init is finished. */
416 static const unsigned long cr4_pinned_mask =
417 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
418 X86_CR4_FSGSBASE | X86_CR4_CET;
419 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
420 static unsigned long cr4_pinned_bits __ro_after_init;
421
native_write_cr0(unsigned long val)422 void native_write_cr0(unsigned long val)
423 {
424 unsigned long bits_missing = 0;
425
426 set_register:
427 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
428
429 if (static_branch_likely(&cr_pinning)) {
430 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
431 bits_missing = X86_CR0_WP;
432 val |= bits_missing;
433 goto set_register;
434 }
435 /* Warn after we've set the missing bits. */
436 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
437 }
438 }
439 EXPORT_SYMBOL(native_write_cr0);
440
native_write_cr4(unsigned long val)441 void __no_profile native_write_cr4(unsigned long val)
442 {
443 unsigned long bits_changed = 0;
444
445 set_register:
446 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
447
448 if (static_branch_likely(&cr_pinning)) {
449 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
450 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
451 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
452 goto set_register;
453 }
454 /* Warn after we've corrected the changed bits. */
455 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
456 bits_changed);
457 }
458 }
459 #if IS_MODULE(CONFIG_LKDTM)
460 EXPORT_SYMBOL_GPL(native_write_cr4);
461 #endif
462
cr4_update_irqsoff(unsigned long set,unsigned long clear)463 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
464 {
465 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
466
467 lockdep_assert_irqs_disabled();
468
469 newval = (cr4 & ~clear) | set;
470 if (newval != cr4) {
471 this_cpu_write(cpu_tlbstate.cr4, newval);
472 __write_cr4(newval);
473 }
474 }
475 EXPORT_SYMBOL(cr4_update_irqsoff);
476
477 /* Read the CR4 shadow. */
cr4_read_shadow(void)478 unsigned long cr4_read_shadow(void)
479 {
480 return this_cpu_read(cpu_tlbstate.cr4);
481 }
482 EXPORT_SYMBOL_GPL(cr4_read_shadow);
483
cr4_init(void)484 void cr4_init(void)
485 {
486 unsigned long cr4 = __read_cr4();
487
488 if (boot_cpu_has(X86_FEATURE_PCID))
489 cr4 |= X86_CR4_PCIDE;
490 if (static_branch_likely(&cr_pinning))
491 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
492
493 __write_cr4(cr4);
494
495 /* Initialize cr4 shadow for this CPU. */
496 this_cpu_write(cpu_tlbstate.cr4, cr4);
497 }
498
499 /*
500 * Once CPU feature detection is finished (and boot params have been
501 * parsed), record any of the sensitive CR bits that are set, and
502 * enable CR pinning.
503 */
setup_cr_pinning(void)504 static void __init setup_cr_pinning(void)
505 {
506 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
507 static_key_enable(&cr_pinning.key);
508 }
509
x86_nofsgsbase_setup(char * arg)510 static __init int x86_nofsgsbase_setup(char *arg)
511 {
512 /* Require an exact match without trailing characters. */
513 if (strlen(arg))
514 return 0;
515
516 /* Do not emit a message if the feature is not present. */
517 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
518 return 1;
519
520 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
521 pr_info("FSGSBASE disabled via kernel command line\n");
522 return 1;
523 }
524 __setup("nofsgsbase", x86_nofsgsbase_setup);
525
526 /*
527 * Protection Keys are not available in 32-bit mode.
528 */
529 static bool pku_disabled;
530
setup_pku(struct cpuinfo_x86 * c)531 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
532 {
533 if (c == &boot_cpu_data) {
534 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
535 return;
536 /*
537 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
538 * bit to be set. Enforce it.
539 */
540 setup_force_cpu_cap(X86_FEATURE_OSPKE);
541
542 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
543 return;
544 }
545
546 cr4_set_bits(X86_CR4_PKE);
547 /* Load the default PKRU value */
548 pkru_write_default();
549 }
550
551 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)552 static __init int setup_disable_pku(char *arg)
553 {
554 /*
555 * Do not clear the X86_FEATURE_PKU bit. All of the
556 * runtime checks are against OSPKE so clearing the
557 * bit does nothing.
558 *
559 * This way, we will see "pku" in cpuinfo, but not
560 * "ospke", which is exactly what we want. It shows
561 * that the CPU has PKU, but the OS has not enabled it.
562 * This happens to be exactly how a system would look
563 * if we disabled the config option.
564 */
565 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
566 pku_disabled = true;
567 return 1;
568 }
569 __setup("nopku", setup_disable_pku);
570 #endif
571
572 #ifdef CONFIG_X86_KERNEL_IBT
573
ibt_save(bool disable)574 __noendbr u64 ibt_save(bool disable)
575 {
576 u64 msr = 0;
577
578 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579 rdmsrl(MSR_IA32_S_CET, msr);
580 if (disable)
581 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
582 }
583
584 return msr;
585 }
586
ibt_restore(u64 save)587 __noendbr void ibt_restore(u64 save)
588 {
589 u64 msr;
590
591 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
592 rdmsrl(MSR_IA32_S_CET, msr);
593 msr &= ~CET_ENDBR_EN;
594 msr |= (save & CET_ENDBR_EN);
595 wrmsrl(MSR_IA32_S_CET, msr);
596 }
597 }
598
599 #endif
600
setup_cet(struct cpuinfo_x86 * c)601 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
602 {
603 u64 msr = CET_ENDBR_EN;
604
605 if (!HAS_KERNEL_IBT ||
606 !cpu_feature_enabled(X86_FEATURE_IBT))
607 return;
608
609 wrmsrl(MSR_IA32_S_CET, msr);
610 cr4_set_bits(X86_CR4_CET);
611
612 if (!ibt_selftest()) {
613 pr_err("IBT selftest: Failed!\n");
614 wrmsrl(MSR_IA32_S_CET, 0);
615 setup_clear_cpu_cap(X86_FEATURE_IBT);
616 return;
617 }
618 }
619
cet_disable(void)620 __noendbr void cet_disable(void)
621 {
622 if (cpu_feature_enabled(X86_FEATURE_IBT))
623 wrmsrl(MSR_IA32_S_CET, 0);
624 }
625
626 /*
627 * Some CPU features depend on higher CPUID levels, which may not always
628 * be available due to CPUID level capping or broken virtualization
629 * software. Add those features to this table to auto-disable them.
630 */
631 struct cpuid_dependent_feature {
632 u32 feature;
633 u32 level;
634 };
635
636 static const struct cpuid_dependent_feature
637 cpuid_dependent_features[] = {
638 { X86_FEATURE_MWAIT, 0x00000005 },
639 { X86_FEATURE_DCA, 0x00000009 },
640 { X86_FEATURE_XSAVE, 0x0000000d },
641 { 0, 0 }
642 };
643
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)644 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
645 {
646 const struct cpuid_dependent_feature *df;
647
648 for (df = cpuid_dependent_features; df->feature; df++) {
649
650 if (!cpu_has(c, df->feature))
651 continue;
652 /*
653 * Note: cpuid_level is set to -1 if unavailable, but
654 * extended_extended_level is set to 0 if unavailable
655 * and the legitimate extended levels are all negative
656 * when signed; hence the weird messing around with
657 * signs here...
658 */
659 if (!((s32)df->level < 0 ?
660 (u32)df->level > (u32)c->extended_cpuid_level :
661 (s32)df->level > (s32)c->cpuid_level))
662 continue;
663
664 clear_cpu_cap(c, df->feature);
665 if (!warn)
666 continue;
667
668 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
669 x86_cap_flag(df->feature), df->level);
670 }
671 }
672
673 /*
674 * Naming convention should be: <Name> [(<Codename>)]
675 * This table only is used unless init_<vendor>() below doesn't set it;
676 * in particular, if CPUID levels 0x80000002..4 are supported, this
677 * isn't used
678 */
679
680 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)681 static const char *table_lookup_model(struct cpuinfo_x86 *c)
682 {
683 #ifdef CONFIG_X86_32
684 const struct legacy_cpu_model_info *info;
685
686 if (c->x86_model >= 16)
687 return NULL; /* Range check */
688
689 if (!this_cpu)
690 return NULL;
691
692 info = this_cpu->legacy_models;
693
694 while (info->family) {
695 if (info->family == c->x86)
696 return info->model_names[c->x86_model];
697 info++;
698 }
699 #endif
700 return NULL; /* Not found */
701 }
702
703 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
704 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
705 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
706
707 #ifdef CONFIG_X86_32
708 /* The 32-bit entry code needs to find cpu_entry_area. */
709 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
710 #endif
711
712 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)713 void load_direct_gdt(int cpu)
714 {
715 struct desc_ptr gdt_descr;
716
717 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
718 gdt_descr.size = GDT_SIZE - 1;
719 load_gdt(&gdt_descr);
720 }
721 EXPORT_SYMBOL_GPL(load_direct_gdt);
722
723 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)724 void load_fixmap_gdt(int cpu)
725 {
726 struct desc_ptr gdt_descr;
727
728 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
729 gdt_descr.size = GDT_SIZE - 1;
730 load_gdt(&gdt_descr);
731 }
732 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
733
734 /**
735 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
736 * @cpu: The CPU number for which this is invoked
737 *
738 * Invoked during early boot to switch from early GDT and early per CPU to
739 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
740 * switch is implicit by loading the direct GDT. On 64bit this requires
741 * to update GSBASE.
742 */
switch_gdt_and_percpu_base(int cpu)743 void __init switch_gdt_and_percpu_base(int cpu)
744 {
745 load_direct_gdt(cpu);
746
747 #ifdef CONFIG_X86_64
748 /*
749 * No need to load %gs. It is already correct.
750 *
751 * Writing %gs on 64bit would zero GSBASE which would make any per
752 * CPU operation up to the point of the wrmsrl() fault.
753 *
754 * Set GSBASE to the new offset. Until the wrmsrl() happens the
755 * early mapping is still valid. That means the GSBASE update will
756 * lose any prior per CPU data which was not copied over in
757 * setup_per_cpu_areas().
758 *
759 * This works even with stackprotector enabled because the
760 * per CPU stack canary is 0 in both per CPU areas.
761 */
762 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
763 #else
764 /*
765 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
766 * it is required to load FS again so that the 'hidden' part is
767 * updated from the new GDT. Up to this point the early per CPU
768 * translation is active. Any content of the early per CPU data
769 * which was not copied over in setup_per_cpu_areas() is lost.
770 */
771 loadsegment(fs, __KERNEL_PERCPU);
772 #endif
773 }
774
775 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
776
get_model_name(struct cpuinfo_x86 * c)777 static void get_model_name(struct cpuinfo_x86 *c)
778 {
779 unsigned int *v;
780 char *p, *q, *s;
781
782 if (c->extended_cpuid_level < 0x80000004)
783 return;
784
785 v = (unsigned int *)c->x86_model_id;
786 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
787 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
788 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
789 c->x86_model_id[48] = 0;
790
791 /* Trim whitespace */
792 p = q = s = &c->x86_model_id[0];
793
794 while (*p == ' ')
795 p++;
796
797 while (*p) {
798 /* Note the last non-whitespace index */
799 if (!isspace(*p))
800 s = q;
801
802 *q++ = *p++;
803 }
804
805 *(s + 1) = '\0';
806 }
807
detect_num_cpu_cores(struct cpuinfo_x86 * c)808 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
809 {
810 unsigned int eax, ebx, ecx, edx;
811
812 c->x86_max_cores = 1;
813 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
814 return;
815
816 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
817 if (eax & 0x1f)
818 c->x86_max_cores = (eax >> 26) + 1;
819 }
820
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)821 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
822 {
823 unsigned int n, dummy, ebx, ecx, edx, l2size;
824
825 n = c->extended_cpuid_level;
826
827 if (n >= 0x80000005) {
828 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
829 c->x86_cache_size = (ecx>>24) + (edx>>24);
830 #ifdef CONFIG_X86_64
831 /* On K8 L1 TLB is inclusive, so don't count it */
832 c->x86_tlbsize = 0;
833 #endif
834 }
835
836 if (n < 0x80000006) /* Some chips just has a large L1. */
837 return;
838
839 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
840 l2size = ecx >> 16;
841
842 #ifdef CONFIG_X86_64
843 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
844 #else
845 /* do processor-specific cache resizing */
846 if (this_cpu->legacy_cache_size)
847 l2size = this_cpu->legacy_cache_size(c, l2size);
848
849 /* Allow user to override all this if necessary. */
850 if (cachesize_override != -1)
851 l2size = cachesize_override;
852
853 if (l2size == 0)
854 return; /* Again, no L2 cache is possible */
855 #endif
856
857 c->x86_cache_size = l2size;
858 }
859
860 u16 __read_mostly tlb_lli_4k[NR_INFO];
861 u16 __read_mostly tlb_lli_2m[NR_INFO];
862 u16 __read_mostly tlb_lli_4m[NR_INFO];
863 u16 __read_mostly tlb_lld_4k[NR_INFO];
864 u16 __read_mostly tlb_lld_2m[NR_INFO];
865 u16 __read_mostly tlb_lld_4m[NR_INFO];
866 u16 __read_mostly tlb_lld_1g[NR_INFO];
867
cpu_detect_tlb(struct cpuinfo_x86 * c)868 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
869 {
870 if (this_cpu->c_detect_tlb)
871 this_cpu->c_detect_tlb(c);
872
873 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
874 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
875 tlb_lli_4m[ENTRIES]);
876
877 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
878 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
879 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
880 }
881
detect_ht_early(struct cpuinfo_x86 * c)882 int detect_ht_early(struct cpuinfo_x86 *c)
883 {
884 #ifdef CONFIG_SMP
885 u32 eax, ebx, ecx, edx;
886
887 if (!cpu_has(c, X86_FEATURE_HT))
888 return -1;
889
890 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
891 return -1;
892
893 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
894 return -1;
895
896 cpuid(1, &eax, &ebx, &ecx, &edx);
897
898 smp_num_siblings = (ebx & 0xff0000) >> 16;
899 if (smp_num_siblings == 1)
900 pr_info_once("CPU0: Hyper-Threading is disabled\n");
901 #endif
902 return 0;
903 }
904
detect_ht(struct cpuinfo_x86 * c)905 void detect_ht(struct cpuinfo_x86 *c)
906 {
907 #ifdef CONFIG_SMP
908 int index_msb, core_bits;
909
910 if (detect_ht_early(c) < 0)
911 return;
912
913 index_msb = get_count_order(smp_num_siblings);
914 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
915
916 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
917
918 index_msb = get_count_order(smp_num_siblings);
919
920 core_bits = get_count_order(c->x86_max_cores);
921
922 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
923 ((1 << core_bits) - 1);
924 #endif
925 }
926
get_cpu_vendor(struct cpuinfo_x86 * c)927 static void get_cpu_vendor(struct cpuinfo_x86 *c)
928 {
929 char *v = c->x86_vendor_id;
930 int i;
931
932 for (i = 0; i < X86_VENDOR_NUM; i++) {
933 if (!cpu_devs[i])
934 break;
935
936 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
937 (cpu_devs[i]->c_ident[1] &&
938 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
939
940 this_cpu = cpu_devs[i];
941 c->x86_vendor = this_cpu->c_x86_vendor;
942 return;
943 }
944 }
945
946 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
947 "CPU: Your system may be unstable.\n", v);
948
949 c->x86_vendor = X86_VENDOR_UNKNOWN;
950 this_cpu = &default_cpu;
951 }
952
cpu_detect(struct cpuinfo_x86 * c)953 void cpu_detect(struct cpuinfo_x86 *c)
954 {
955 /* Get vendor name */
956 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
957 (unsigned int *)&c->x86_vendor_id[0],
958 (unsigned int *)&c->x86_vendor_id[8],
959 (unsigned int *)&c->x86_vendor_id[4]);
960
961 c->x86 = 4;
962 /* Intel-defined flags: level 0x00000001 */
963 if (c->cpuid_level >= 0x00000001) {
964 u32 junk, tfms, cap0, misc;
965
966 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
967 c->x86 = x86_family(tfms);
968 c->x86_model = x86_model(tfms);
969 c->x86_stepping = x86_stepping(tfms);
970
971 if (cap0 & (1<<19)) {
972 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
973 c->x86_cache_alignment = c->x86_clflush_size;
974 }
975 }
976 }
977
apply_forced_caps(struct cpuinfo_x86 * c)978 static void apply_forced_caps(struct cpuinfo_x86 *c)
979 {
980 int i;
981
982 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
983 c->x86_capability[i] &= ~cpu_caps_cleared[i];
984 c->x86_capability[i] |= cpu_caps_set[i];
985 }
986 }
987
init_speculation_control(struct cpuinfo_x86 * c)988 static void init_speculation_control(struct cpuinfo_x86 *c)
989 {
990 /*
991 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
992 * and they also have a different bit for STIBP support. Also,
993 * a hypervisor might have set the individual AMD bits even on
994 * Intel CPUs, for finer-grained selection of what's available.
995 */
996 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
997 set_cpu_cap(c, X86_FEATURE_IBRS);
998 set_cpu_cap(c, X86_FEATURE_IBPB);
999 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1000 }
1001
1002 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
1003 set_cpu_cap(c, X86_FEATURE_STIBP);
1004
1005 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
1006 cpu_has(c, X86_FEATURE_VIRT_SSBD))
1007 set_cpu_cap(c, X86_FEATURE_SSBD);
1008
1009 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1010 set_cpu_cap(c, X86_FEATURE_IBRS);
1011 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1012 }
1013
1014 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1015 set_cpu_cap(c, X86_FEATURE_IBPB);
1016
1017 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1018 set_cpu_cap(c, X86_FEATURE_STIBP);
1019 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1020 }
1021
1022 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1023 set_cpu_cap(c, X86_FEATURE_SSBD);
1024 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1025 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1026 }
1027 }
1028
get_cpu_cap(struct cpuinfo_x86 * c)1029 void get_cpu_cap(struct cpuinfo_x86 *c)
1030 {
1031 u32 eax, ebx, ecx, edx;
1032
1033 /* Intel-defined flags: level 0x00000001 */
1034 if (c->cpuid_level >= 0x00000001) {
1035 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1036
1037 c->x86_capability[CPUID_1_ECX] = ecx;
1038 c->x86_capability[CPUID_1_EDX] = edx;
1039 }
1040
1041 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1042 if (c->cpuid_level >= 0x00000006)
1043 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1044
1045 /* Additional Intel-defined flags: level 0x00000007 */
1046 if (c->cpuid_level >= 0x00000007) {
1047 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1048 c->x86_capability[CPUID_7_0_EBX] = ebx;
1049 c->x86_capability[CPUID_7_ECX] = ecx;
1050 c->x86_capability[CPUID_7_EDX] = edx;
1051
1052 /* Check valid sub-leaf index before accessing it */
1053 if (eax >= 1) {
1054 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1055 c->x86_capability[CPUID_7_1_EAX] = eax;
1056 }
1057 }
1058
1059 /* Extended state features: level 0x0000000d */
1060 if (c->cpuid_level >= 0x0000000d) {
1061 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1062
1063 c->x86_capability[CPUID_D_1_EAX] = eax;
1064 }
1065
1066 /* AMD-defined flags: level 0x80000001 */
1067 eax = cpuid_eax(0x80000000);
1068 c->extended_cpuid_level = eax;
1069
1070 if ((eax & 0xffff0000) == 0x80000000) {
1071 if (eax >= 0x80000001) {
1072 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1073
1074 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1075 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1076 }
1077 }
1078
1079 if (c->extended_cpuid_level >= 0x80000007) {
1080 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1081
1082 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1083 c->x86_power = edx;
1084 }
1085
1086 if (c->extended_cpuid_level >= 0x80000008) {
1087 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1088 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1089 }
1090
1091 if (c->extended_cpuid_level >= 0x8000000a)
1092 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1093
1094 if (c->extended_cpuid_level >= 0x8000001f)
1095 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1096
1097 if (c->extended_cpuid_level >= 0x80000021)
1098 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1099
1100 init_scattered_cpuid_features(c);
1101 init_speculation_control(c);
1102
1103 /*
1104 * Clear/Set all flags overridden by options, after probe.
1105 * This needs to happen each time we re-probe, which may happen
1106 * several times during CPU initialization.
1107 */
1108 apply_forced_caps(c);
1109 }
1110
get_cpu_address_sizes(struct cpuinfo_x86 * c)1111 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1112 {
1113 u32 eax, ebx, ecx, edx;
1114
1115 if (c->extended_cpuid_level >= 0x80000008) {
1116 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1117
1118 c->x86_virt_bits = (eax >> 8) & 0xff;
1119 c->x86_phys_bits = eax & 0xff;
1120 }
1121 #ifdef CONFIG_X86_32
1122 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1123 c->x86_phys_bits = 36;
1124 #endif
1125 c->x86_cache_bits = c->x86_phys_bits;
1126 }
1127
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1128 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1129 {
1130 #ifdef CONFIG_X86_32
1131 int i;
1132
1133 /*
1134 * First of all, decide if this is a 486 or higher
1135 * It's a 486 if we can modify the AC flag
1136 */
1137 if (flag_is_changeable_p(X86_EFLAGS_AC))
1138 c->x86 = 4;
1139 else
1140 c->x86 = 3;
1141
1142 for (i = 0; i < X86_VENDOR_NUM; i++)
1143 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1144 c->x86_vendor_id[0] = 0;
1145 cpu_devs[i]->c_identify(c);
1146 if (c->x86_vendor_id[0]) {
1147 get_cpu_vendor(c);
1148 break;
1149 }
1150 }
1151 #endif
1152 }
1153
1154 #define NO_SPECULATION BIT(0)
1155 #define NO_MELTDOWN BIT(1)
1156 #define NO_SSB BIT(2)
1157 #define NO_L1TF BIT(3)
1158 #define NO_MDS BIT(4)
1159 #define MSBDS_ONLY BIT(5)
1160 #define NO_SWAPGS BIT(6)
1161 #define NO_ITLB_MULTIHIT BIT(7)
1162 #define NO_SPECTRE_V2 BIT(8)
1163 #define NO_MMIO BIT(9)
1164 #define NO_EIBRS_PBRSB BIT(10)
1165
1166 #define VULNWL(vendor, family, model, whitelist) \
1167 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1168
1169 #define VULNWL_INTEL(model, whitelist) \
1170 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1171
1172 #define VULNWL_AMD(family, whitelist) \
1173 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1174
1175 #define VULNWL_HYGON(family, whitelist) \
1176 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1177
1178 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1179 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1180 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1181 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1182 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1183 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1184 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1185
1186 /* Intel Family 6 */
1187 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1188 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1189 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1190 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1191
1192 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1193 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1194 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1195 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1196 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1197
1198 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1199 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1200 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1201 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1202 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204
1205 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1206
1207 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1208 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1209
1210 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1211 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1212 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1213
1214 /*
1215 * Technically, swapgs isn't serializing on AMD (despite it previously
1216 * being documented as such in the APM). But according to AMD, %gs is
1217 * updated non-speculatively, and the issuing of %gs-relative memory
1218 * operands will be blocked until the %gs update completes, which is
1219 * good enough for our purposes.
1220 */
1221
1222 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1223 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1224 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1225
1226 /* AMD Family 0xf - 0x12 */
1227 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1228 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1229 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1230 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1231
1232 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1233 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1234 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1235
1236 /* Zhaoxin Family 7 */
1237 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1238 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1239 {}
1240 };
1241
1242 #define VULNBL(vendor, family, model, blacklist) \
1243 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1244
1245 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1246 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1247 INTEL_FAM6_##model, steppings, \
1248 X86_FEATURE_ANY, issues)
1249
1250 #define VULNBL_AMD(family, blacklist) \
1251 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1252
1253 #define VULNBL_HYGON(family, blacklist) \
1254 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1255
1256 #define SRBDS BIT(0)
1257 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1258 #define MMIO BIT(1)
1259 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1260 #define MMIO_SBDS BIT(2)
1261 /* CPU is affected by RETbleed, speculating where you would not expect it */
1262 #define RETBLEED BIT(3)
1263 /* CPU is affected by SMT (cross-thread) return predictions */
1264 #define SMT_RSB BIT(4)
1265
1266 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1267 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1268 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1269 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1270 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1271 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1272 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1273 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1274 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1275 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1276 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1277 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED),
1278 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1279 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1280 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1281 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1282 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1283 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO),
1284 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO),
1285 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1286 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1287 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1288 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1289 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED),
1290 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1291 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
1292 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1293
1294 VULNBL_AMD(0x15, RETBLEED),
1295 VULNBL_AMD(0x16, RETBLEED),
1296 VULNBL_AMD(0x17, RETBLEED | SMT_RSB),
1297 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB),
1298 {}
1299 };
1300
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1301 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1302 {
1303 const struct x86_cpu_id *m = x86_match_cpu(table);
1304
1305 return m && !!(m->driver_data & which);
1306 }
1307
x86_read_arch_cap_msr(void)1308 u64 x86_read_arch_cap_msr(void)
1309 {
1310 u64 ia32_cap = 0;
1311
1312 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1313 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1314
1315 return ia32_cap;
1316 }
1317
arch_cap_mmio_immune(u64 ia32_cap)1318 static bool arch_cap_mmio_immune(u64 ia32_cap)
1319 {
1320 return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1321 ia32_cap & ARCH_CAP_PSDP_NO &&
1322 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1323 }
1324
cpu_set_bug_bits(struct cpuinfo_x86 * c)1325 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1326 {
1327 u64 ia32_cap = x86_read_arch_cap_msr();
1328
1329 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1330 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1331 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1332 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1333
1334 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1335 return;
1336
1337 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1338
1339 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1340 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1341
1342 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1343 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1344 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1345 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1346
1347 /*
1348 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1349 * flag and protect from vendor-specific bugs via the whitelist.
1350 */
1351 if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1352 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1353 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1354 !(ia32_cap & ARCH_CAP_PBRSB_NO))
1355 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1356 }
1357
1358 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1359 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1360 setup_force_cpu_bug(X86_BUG_MDS);
1361 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1362 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1363 }
1364
1365 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1366 setup_force_cpu_bug(X86_BUG_SWAPGS);
1367
1368 /*
1369 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1370 * - TSX is supported or
1371 * - TSX_CTRL is present
1372 *
1373 * TSX_CTRL check is needed for cases when TSX could be disabled before
1374 * the kernel boot e.g. kexec.
1375 * TSX_CTRL check alone is not sufficient for cases when the microcode
1376 * update is not present or running as guest that don't get TSX_CTRL.
1377 */
1378 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1379 (cpu_has(c, X86_FEATURE_RTM) ||
1380 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1381 setup_force_cpu_bug(X86_BUG_TAA);
1382
1383 /*
1384 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1385 * in the vulnerability blacklist.
1386 *
1387 * Some of the implications and mitigation of Shared Buffers Data
1388 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1389 * SRBDS.
1390 */
1391 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1392 cpu_has(c, X86_FEATURE_RDSEED)) &&
1393 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1394 setup_force_cpu_bug(X86_BUG_SRBDS);
1395
1396 /*
1397 * Processor MMIO Stale Data bug enumeration
1398 *
1399 * Affected CPU list is generally enough to enumerate the vulnerability,
1400 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1401 * not want the guest to enumerate the bug.
1402 *
1403 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1404 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1405 */
1406 if (!arch_cap_mmio_immune(ia32_cap)) {
1407 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1408 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1409 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1410 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1411 }
1412
1413 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1414 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1415 setup_force_cpu_bug(X86_BUG_RETBLEED);
1416 }
1417
1418 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1419 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1420
1421 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1422 return;
1423
1424 /* Rogue Data Cache Load? No! */
1425 if (ia32_cap & ARCH_CAP_RDCL_NO)
1426 return;
1427
1428 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1429
1430 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1431 return;
1432
1433 setup_force_cpu_bug(X86_BUG_L1TF);
1434 }
1435
1436 /*
1437 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1438 * unfortunately, that's not true in practice because of early VIA
1439 * chips and (more importantly) broken virtualizers that are not easy
1440 * to detect. In the latter case it doesn't even *fail* reliably, so
1441 * probing for it doesn't even work. Disable it completely on 32-bit
1442 * unless we can find a reliable way to detect all the broken cases.
1443 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1444 */
detect_nopl(void)1445 static void detect_nopl(void)
1446 {
1447 #ifdef CONFIG_X86_32
1448 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1449 #else
1450 setup_force_cpu_cap(X86_FEATURE_NOPL);
1451 #endif
1452 }
1453
1454 /*
1455 * We parse cpu parameters early because fpu__init_system() is executed
1456 * before parse_early_param().
1457 */
cpu_parse_early_param(void)1458 static void __init cpu_parse_early_param(void)
1459 {
1460 char arg[128];
1461 char *argptr = arg, *opt;
1462 int arglen, taint = 0;
1463
1464 #ifdef CONFIG_X86_32
1465 if (cmdline_find_option_bool(boot_command_line, "no387"))
1466 #ifdef CONFIG_MATH_EMULATION
1467 setup_clear_cpu_cap(X86_FEATURE_FPU);
1468 #else
1469 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1470 #endif
1471
1472 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1473 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1474 #endif
1475
1476 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1477 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1478
1479 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1480 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1481
1482 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1483 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1484
1485 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1486 if (arglen <= 0)
1487 return;
1488
1489 pr_info("Clearing CPUID bits:");
1490
1491 while (argptr) {
1492 bool found __maybe_unused = false;
1493 unsigned int bit;
1494
1495 opt = strsep(&argptr, ",");
1496
1497 /*
1498 * Handle naked numbers first for feature flags which don't
1499 * have names.
1500 */
1501 if (!kstrtouint(opt, 10, &bit)) {
1502 if (bit < NCAPINTS * 32) {
1503
1504 #ifdef CONFIG_X86_FEATURE_NAMES
1505 /* empty-string, i.e., ""-defined feature flags */
1506 if (!x86_cap_flags[bit])
1507 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1508 else
1509 #endif
1510 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1511
1512 setup_clear_cpu_cap(bit);
1513 taint++;
1514 }
1515 /*
1516 * The assumption is that there are no feature names with only
1517 * numbers in the name thus go to the next argument.
1518 */
1519 continue;
1520 }
1521
1522 #ifdef CONFIG_X86_FEATURE_NAMES
1523 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1524 if (!x86_cap_flag(bit))
1525 continue;
1526
1527 if (strcmp(x86_cap_flag(bit), opt))
1528 continue;
1529
1530 pr_cont(" %s", opt);
1531 setup_clear_cpu_cap(bit);
1532 taint++;
1533 found = true;
1534 break;
1535 }
1536
1537 if (!found)
1538 pr_cont(" (unknown: %s)", opt);
1539 #endif
1540 }
1541 pr_cont("\n");
1542
1543 if (taint)
1544 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1545 }
1546
1547 /*
1548 * Do minimum CPU detection early.
1549 * Fields really needed: vendor, cpuid_level, family, model, mask,
1550 * cache alignment.
1551 * The others are not touched to avoid unwanted side effects.
1552 *
1553 * WARNING: this function is only called on the boot CPU. Don't add code
1554 * here that is supposed to run on all CPUs.
1555 */
early_identify_cpu(struct cpuinfo_x86 * c)1556 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1557 {
1558 #ifdef CONFIG_X86_64
1559 c->x86_clflush_size = 64;
1560 c->x86_phys_bits = 36;
1561 c->x86_virt_bits = 48;
1562 #else
1563 c->x86_clflush_size = 32;
1564 c->x86_phys_bits = 32;
1565 c->x86_virt_bits = 32;
1566 #endif
1567 c->x86_cache_alignment = c->x86_clflush_size;
1568
1569 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1570 c->extended_cpuid_level = 0;
1571
1572 if (!have_cpuid_p())
1573 identify_cpu_without_cpuid(c);
1574
1575 /* cyrix could have cpuid enabled via c_identify()*/
1576 if (have_cpuid_p()) {
1577 cpu_detect(c);
1578 get_cpu_vendor(c);
1579 get_cpu_cap(c);
1580 get_cpu_address_sizes(c);
1581 setup_force_cpu_cap(X86_FEATURE_CPUID);
1582 cpu_parse_early_param();
1583
1584 if (this_cpu->c_early_init)
1585 this_cpu->c_early_init(c);
1586
1587 c->cpu_index = 0;
1588 filter_cpuid_features(c, false);
1589
1590 if (this_cpu->c_bsp_init)
1591 this_cpu->c_bsp_init(c);
1592 } else {
1593 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1594 }
1595
1596 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1597
1598 cpu_set_bug_bits(c);
1599
1600 sld_setup(c);
1601
1602 fpu__init_system(c);
1603
1604 init_sigframe_size();
1605
1606 #ifdef CONFIG_X86_32
1607 /*
1608 * Regardless of whether PCID is enumerated, the SDM says
1609 * that it can't be enabled in 32-bit mode.
1610 */
1611 setup_clear_cpu_cap(X86_FEATURE_PCID);
1612 #endif
1613
1614 /*
1615 * Later in the boot process pgtable_l5_enabled() relies on
1616 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1617 * enabled by this point we need to clear the feature bit to avoid
1618 * false-positives at the later stage.
1619 *
1620 * pgtable_l5_enabled() can be false here for several reasons:
1621 * - 5-level paging is disabled compile-time;
1622 * - it's 32-bit kernel;
1623 * - machine doesn't support 5-level paging;
1624 * - user specified 'no5lvl' in kernel command line.
1625 */
1626 if (!pgtable_l5_enabled())
1627 setup_clear_cpu_cap(X86_FEATURE_LA57);
1628
1629 detect_nopl();
1630 }
1631
early_cpu_init(void)1632 void __init early_cpu_init(void)
1633 {
1634 const struct cpu_dev *const *cdev;
1635 int count = 0;
1636
1637 #ifdef CONFIG_PROCESSOR_SELECT
1638 pr_info("KERNEL supported cpus:\n");
1639 #endif
1640
1641 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1642 const struct cpu_dev *cpudev = *cdev;
1643
1644 if (count >= X86_VENDOR_NUM)
1645 break;
1646 cpu_devs[count] = cpudev;
1647 count++;
1648
1649 #ifdef CONFIG_PROCESSOR_SELECT
1650 {
1651 unsigned int j;
1652
1653 for (j = 0; j < 2; j++) {
1654 if (!cpudev->c_ident[j])
1655 continue;
1656 pr_info(" %s %s\n", cpudev->c_vendor,
1657 cpudev->c_ident[j]);
1658 }
1659 }
1660 #endif
1661 }
1662 early_identify_cpu(&boot_cpu_data);
1663 }
1664
detect_null_seg_behavior(void)1665 static bool detect_null_seg_behavior(void)
1666 {
1667 /*
1668 * Empirically, writing zero to a segment selector on AMD does
1669 * not clear the base, whereas writing zero to a segment
1670 * selector on Intel does clear the base. Intel's behavior
1671 * allows slightly faster context switches in the common case
1672 * where GS is unused by the prev and next threads.
1673 *
1674 * Since neither vendor documents this anywhere that I can see,
1675 * detect it directly instead of hard-coding the choice by
1676 * vendor.
1677 *
1678 * I've designated AMD's behavior as the "bug" because it's
1679 * counterintuitive and less friendly.
1680 */
1681
1682 unsigned long old_base, tmp;
1683 rdmsrl(MSR_FS_BASE, old_base);
1684 wrmsrl(MSR_FS_BASE, 1);
1685 loadsegment(fs, 0);
1686 rdmsrl(MSR_FS_BASE, tmp);
1687 wrmsrl(MSR_FS_BASE, old_base);
1688 return tmp == 0;
1689 }
1690
check_null_seg_clears_base(struct cpuinfo_x86 * c)1691 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1692 {
1693 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1694 if (!IS_ENABLED(CONFIG_X86_64))
1695 return;
1696
1697 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1698 return;
1699
1700 /*
1701 * CPUID bit above wasn't set. If this kernel is still running
1702 * as a HV guest, then the HV has decided not to advertize
1703 * that CPUID bit for whatever reason. For example, one
1704 * member of the migration pool might be vulnerable. Which
1705 * means, the bug is present: set the BUG flag and return.
1706 */
1707 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1708 set_cpu_bug(c, X86_BUG_NULL_SEG);
1709 return;
1710 }
1711
1712 /*
1713 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1714 * 0x18 is the respective family for Hygon.
1715 */
1716 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1717 detect_null_seg_behavior())
1718 return;
1719
1720 /* All the remaining ones are affected */
1721 set_cpu_bug(c, X86_BUG_NULL_SEG);
1722 }
1723
generic_identify(struct cpuinfo_x86 * c)1724 static void generic_identify(struct cpuinfo_x86 *c)
1725 {
1726 c->extended_cpuid_level = 0;
1727
1728 if (!have_cpuid_p())
1729 identify_cpu_without_cpuid(c);
1730
1731 /* cyrix could have cpuid enabled via c_identify()*/
1732 if (!have_cpuid_p())
1733 return;
1734
1735 cpu_detect(c);
1736
1737 get_cpu_vendor(c);
1738
1739 get_cpu_cap(c);
1740
1741 get_cpu_address_sizes(c);
1742
1743 if (c->cpuid_level >= 0x00000001) {
1744 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1745 #ifdef CONFIG_X86_32
1746 # ifdef CONFIG_SMP
1747 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1748 # else
1749 c->apicid = c->initial_apicid;
1750 # endif
1751 #endif
1752 c->phys_proc_id = c->initial_apicid;
1753 }
1754
1755 get_model_name(c); /* Default name */
1756
1757 /*
1758 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1759 * systems that run Linux at CPL > 0 may or may not have the
1760 * issue, but, even if they have the issue, there's absolutely
1761 * nothing we can do about it because we can't use the real IRET
1762 * instruction.
1763 *
1764 * NB: For the time being, only 32-bit kernels support
1765 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1766 * whether to apply espfix using paravirt hooks. If any
1767 * non-paravirt system ever shows up that does *not* have the
1768 * ESPFIX issue, we can change this.
1769 */
1770 #ifdef CONFIG_X86_32
1771 set_cpu_bug(c, X86_BUG_ESPFIX);
1772 #endif
1773 }
1774
1775 /*
1776 * Validate that ACPI/mptables have the same information about the
1777 * effective APIC id and update the package map.
1778 */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1779 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1780 {
1781 #ifdef CONFIG_SMP
1782 unsigned int apicid, cpu = smp_processor_id();
1783
1784 apicid = apic->cpu_present_to_apicid(cpu);
1785
1786 if (apicid != c->apicid) {
1787 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1788 cpu, apicid, c->initial_apicid);
1789 }
1790 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1791 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1792 #else
1793 c->logical_proc_id = 0;
1794 #endif
1795 }
1796
1797 /*
1798 * This does the hard work of actually picking apart the CPU stuff...
1799 */
identify_cpu(struct cpuinfo_x86 * c)1800 static void identify_cpu(struct cpuinfo_x86 *c)
1801 {
1802 int i;
1803
1804 c->loops_per_jiffy = loops_per_jiffy;
1805 c->x86_cache_size = 0;
1806 c->x86_vendor = X86_VENDOR_UNKNOWN;
1807 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1808 c->x86_vendor_id[0] = '\0'; /* Unset */
1809 c->x86_model_id[0] = '\0'; /* Unset */
1810 c->x86_max_cores = 1;
1811 c->x86_coreid_bits = 0;
1812 c->cu_id = 0xff;
1813 #ifdef CONFIG_X86_64
1814 c->x86_clflush_size = 64;
1815 c->x86_phys_bits = 36;
1816 c->x86_virt_bits = 48;
1817 #else
1818 c->cpuid_level = -1; /* CPUID not detected */
1819 c->x86_clflush_size = 32;
1820 c->x86_phys_bits = 32;
1821 c->x86_virt_bits = 32;
1822 #endif
1823 c->x86_cache_alignment = c->x86_clflush_size;
1824 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1825 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1826 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1827 #endif
1828
1829 generic_identify(c);
1830
1831 if (this_cpu->c_identify)
1832 this_cpu->c_identify(c);
1833
1834 /* Clear/Set all flags overridden by options, after probe */
1835 apply_forced_caps(c);
1836
1837 #ifdef CONFIG_X86_64
1838 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1839 #endif
1840
1841 /*
1842 * Vendor-specific initialization. In this section we
1843 * canonicalize the feature flags, meaning if there are
1844 * features a certain CPU supports which CPUID doesn't
1845 * tell us, CPUID claiming incorrect flags, or other bugs,
1846 * we handle them here.
1847 *
1848 * At the end of this section, c->x86_capability better
1849 * indicate the features this CPU genuinely supports!
1850 */
1851 if (this_cpu->c_init)
1852 this_cpu->c_init(c);
1853
1854 /* Disable the PN if appropriate */
1855 squash_the_stupid_serial_number(c);
1856
1857 /* Set up SMEP/SMAP/UMIP */
1858 setup_smep(c);
1859 setup_smap(c);
1860 setup_umip(c);
1861
1862 /* Enable FSGSBASE instructions if available. */
1863 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1864 cr4_set_bits(X86_CR4_FSGSBASE);
1865 elf_hwcap2 |= HWCAP2_FSGSBASE;
1866 }
1867
1868 /*
1869 * The vendor-specific functions might have changed features.
1870 * Now we do "generic changes."
1871 */
1872
1873 /* Filter out anything that depends on CPUID levels we don't have */
1874 filter_cpuid_features(c, true);
1875
1876 /* If the model name is still unset, do table lookup. */
1877 if (!c->x86_model_id[0]) {
1878 const char *p;
1879 p = table_lookup_model(c);
1880 if (p)
1881 strcpy(c->x86_model_id, p);
1882 else
1883 /* Last resort... */
1884 sprintf(c->x86_model_id, "%02x/%02x",
1885 c->x86, c->x86_model);
1886 }
1887
1888 #ifdef CONFIG_X86_64
1889 detect_ht(c);
1890 #endif
1891
1892 x86_init_rdrand(c);
1893 setup_pku(c);
1894 setup_cet(c);
1895
1896 /*
1897 * Clear/Set all flags overridden by options, need do it
1898 * before following smp all cpus cap AND.
1899 */
1900 apply_forced_caps(c);
1901
1902 /*
1903 * On SMP, boot_cpu_data holds the common feature set between
1904 * all CPUs; so make sure that we indicate which features are
1905 * common between the CPUs. The first time this routine gets
1906 * executed, c == &boot_cpu_data.
1907 */
1908 if (c != &boot_cpu_data) {
1909 /* AND the already accumulated flags with these */
1910 for (i = 0; i < NCAPINTS; i++)
1911 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1912
1913 /* OR, i.e. replicate the bug flags */
1914 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1915 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1916 }
1917
1918 ppin_init(c);
1919
1920 /* Init Machine Check Exception if available. */
1921 mcheck_cpu_init(c);
1922
1923 select_idle_routine(c);
1924
1925 #ifdef CONFIG_NUMA
1926 numa_add_cpu(smp_processor_id());
1927 #endif
1928 }
1929
1930 /*
1931 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1932 * on 32-bit kernels:
1933 */
1934 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1935 void enable_sep_cpu(void)
1936 {
1937 struct tss_struct *tss;
1938 int cpu;
1939
1940 if (!boot_cpu_has(X86_FEATURE_SEP))
1941 return;
1942
1943 cpu = get_cpu();
1944 tss = &per_cpu(cpu_tss_rw, cpu);
1945
1946 /*
1947 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1948 * see the big comment in struct x86_hw_tss's definition.
1949 */
1950
1951 tss->x86_tss.ss1 = __KERNEL_CS;
1952 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1953 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1954 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1955
1956 put_cpu();
1957 }
1958 #endif
1959
identify_boot_cpu(void)1960 void __init identify_boot_cpu(void)
1961 {
1962 identify_cpu(&boot_cpu_data);
1963 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1964 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1965 #ifdef CONFIG_X86_32
1966 enable_sep_cpu();
1967 #endif
1968 cpu_detect_tlb(&boot_cpu_data);
1969 setup_cr_pinning();
1970
1971 tsx_init();
1972 lkgs_init();
1973 }
1974
identify_secondary_cpu(struct cpuinfo_x86 * c)1975 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1976 {
1977 BUG_ON(c == &boot_cpu_data);
1978 identify_cpu(c);
1979 #ifdef CONFIG_X86_32
1980 enable_sep_cpu();
1981 #endif
1982 validate_apic_and_package_id(c);
1983 x86_spec_ctrl_setup_ap();
1984 update_srbds_msr();
1985
1986 tsx_ap_init();
1987 }
1988
print_cpu_info(struct cpuinfo_x86 * c)1989 void print_cpu_info(struct cpuinfo_x86 *c)
1990 {
1991 const char *vendor = NULL;
1992
1993 if (c->x86_vendor < X86_VENDOR_NUM) {
1994 vendor = this_cpu->c_vendor;
1995 } else {
1996 if (c->cpuid_level >= 0)
1997 vendor = c->x86_vendor_id;
1998 }
1999
2000 if (vendor && !strstr(c->x86_model_id, vendor))
2001 pr_cont("%s ", vendor);
2002
2003 if (c->x86_model_id[0])
2004 pr_cont("%s", c->x86_model_id);
2005 else
2006 pr_cont("%d86", c->x86);
2007
2008 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2009
2010 if (c->x86_stepping || c->cpuid_level >= 0)
2011 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2012 else
2013 pr_cont(")\n");
2014 }
2015
2016 /*
2017 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2018 * function prevents it from becoming an environment variable for init.
2019 */
setup_clearcpuid(char * arg)2020 static __init int setup_clearcpuid(char *arg)
2021 {
2022 return 1;
2023 }
2024 __setup("clearcpuid=", setup_clearcpuid);
2025
2026 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2027 .current_task = &init_task,
2028 .preempt_count = INIT_PREEMPT_COUNT,
2029 .top_of_stack = TOP_OF_INIT_STACK,
2030 };
2031 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2032
2033 #ifdef CONFIG_X86_64
2034 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2035 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2036 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2037
wrmsrl_cstar(unsigned long val)2038 static void wrmsrl_cstar(unsigned long val)
2039 {
2040 /*
2041 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2042 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2043 * guest. Avoid the pointless write on all Intel CPUs.
2044 */
2045 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2046 wrmsrl(MSR_CSTAR, val);
2047 }
2048
2049 /* May not be marked __init: used by software suspend */
syscall_init(void)2050 void syscall_init(void)
2051 {
2052 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2053 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2054
2055 #ifdef CONFIG_IA32_EMULATION
2056 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2057 /*
2058 * This only works on Intel CPUs.
2059 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2060 * This does not cause SYSENTER to jump to the wrong location, because
2061 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2062 */
2063 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2064 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2065 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2066 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2067 #else
2068 wrmsrl_cstar((unsigned long)ignore_sysret);
2069 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2070 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2071 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2072 #endif
2073
2074 /*
2075 * Flags to clear on syscall; clear as much as possible
2076 * to minimize user space-kernel interference.
2077 */
2078 wrmsrl(MSR_SYSCALL_MASK,
2079 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2080 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2081 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2082 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2083 X86_EFLAGS_AC|X86_EFLAGS_ID);
2084 }
2085
2086 #else /* CONFIG_X86_64 */
2087
2088 #ifdef CONFIG_STACKPROTECTOR
2089 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2090 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2091 #endif
2092
2093 #endif /* CONFIG_X86_64 */
2094
2095 /*
2096 * Clear all 6 debug registers:
2097 */
clear_all_debug_regs(void)2098 static void clear_all_debug_regs(void)
2099 {
2100 int i;
2101
2102 for (i = 0; i < 8; i++) {
2103 /* Ignore db4, db5 */
2104 if ((i == 4) || (i == 5))
2105 continue;
2106
2107 set_debugreg(0, i);
2108 }
2109 }
2110
2111 #ifdef CONFIG_KGDB
2112 /*
2113 * Restore debug regs if using kgdbwait and you have a kernel debugger
2114 * connection established.
2115 */
dbg_restore_debug_regs(void)2116 static void dbg_restore_debug_regs(void)
2117 {
2118 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2119 arch_kgdb_ops.correct_hw_break();
2120 }
2121 #else /* ! CONFIG_KGDB */
2122 #define dbg_restore_debug_regs()
2123 #endif /* ! CONFIG_KGDB */
2124
wait_for_master_cpu(int cpu)2125 static void wait_for_master_cpu(int cpu)
2126 {
2127 #ifdef CONFIG_SMP
2128 /*
2129 * wait for ACK from master CPU before continuing
2130 * with AP initialization
2131 */
2132 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
2133 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
2134 cpu_relax();
2135 #endif
2136 }
2137
setup_getcpu(int cpu)2138 static inline void setup_getcpu(int cpu)
2139 {
2140 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2141 struct desc_struct d = { };
2142
2143 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2144 wrmsr(MSR_TSC_AUX, cpudata, 0);
2145
2146 /* Store CPU and node number in limit. */
2147 d.limit0 = cpudata;
2148 d.limit1 = cpudata >> 16;
2149
2150 d.type = 5; /* RO data, expand down, accessed */
2151 d.dpl = 3; /* Visible to user code */
2152 d.s = 1; /* Not a system segment */
2153 d.p = 1; /* Present */
2154 d.d = 1; /* 32-bit */
2155
2156 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2157 }
2158
2159 #ifdef CONFIG_X86_64
ucode_cpu_init(int cpu)2160 static inline void ucode_cpu_init(int cpu)
2161 {
2162 if (cpu)
2163 load_ucode_ap();
2164 }
2165
tss_setup_ist(struct tss_struct * tss)2166 static inline void tss_setup_ist(struct tss_struct *tss)
2167 {
2168 /* Set up the per-CPU TSS IST stacks */
2169 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2170 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2171 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2172 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2173 /* Only mapped when SEV-ES is active */
2174 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2175 }
2176
2177 #else /* CONFIG_X86_64 */
2178
ucode_cpu_init(int cpu)2179 static inline void ucode_cpu_init(int cpu)
2180 {
2181 show_ucode_info_early();
2182 }
2183
tss_setup_ist(struct tss_struct * tss)2184 static inline void tss_setup_ist(struct tss_struct *tss) { }
2185
2186 #endif /* !CONFIG_X86_64 */
2187
tss_setup_io_bitmap(struct tss_struct * tss)2188 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2189 {
2190 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2191
2192 #ifdef CONFIG_X86_IOPL_IOPERM
2193 tss->io_bitmap.prev_max = 0;
2194 tss->io_bitmap.prev_sequence = 0;
2195 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2196 /*
2197 * Invalidate the extra array entry past the end of the all
2198 * permission bitmap as required by the hardware.
2199 */
2200 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2201 #endif
2202 }
2203
2204 /*
2205 * Setup everything needed to handle exceptions from the IDT, including the IST
2206 * exceptions which use paranoid_entry().
2207 */
cpu_init_exception_handling(void)2208 void cpu_init_exception_handling(void)
2209 {
2210 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2211 int cpu = raw_smp_processor_id();
2212
2213 /* paranoid_entry() gets the CPU number from the GDT */
2214 setup_getcpu(cpu);
2215
2216 /* IST vectors need TSS to be set up. */
2217 tss_setup_ist(tss);
2218 tss_setup_io_bitmap(tss);
2219 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2220
2221 load_TR_desc();
2222
2223 /* GHCB needs to be setup to handle #VC. */
2224 setup_ghcb();
2225
2226 /* Finally load the IDT */
2227 load_current_idt();
2228 }
2229
2230 /*
2231 * cpu_init() initializes state that is per-CPU. Some data is already
2232 * initialized (naturally) in the bootstrap process, such as the GDT. We
2233 * reload it nevertheless, this function acts as a 'CPU state barrier',
2234 * nothing should get across.
2235 */
cpu_init(void)2236 void cpu_init(void)
2237 {
2238 struct task_struct *cur = current;
2239 int cpu = raw_smp_processor_id();
2240
2241 wait_for_master_cpu(cpu);
2242
2243 ucode_cpu_init(cpu);
2244
2245 #ifdef CONFIG_NUMA
2246 if (this_cpu_read(numa_node) == 0 &&
2247 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2248 set_numa_node(early_cpu_to_node(cpu));
2249 #endif
2250 pr_debug("Initializing CPU#%d\n", cpu);
2251
2252 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2253 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2254 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2255
2256 if (IS_ENABLED(CONFIG_X86_64)) {
2257 loadsegment(fs, 0);
2258 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2259 syscall_init();
2260
2261 wrmsrl(MSR_FS_BASE, 0);
2262 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2263 barrier();
2264
2265 x2apic_setup();
2266 }
2267
2268 mmgrab(&init_mm);
2269 cur->active_mm = &init_mm;
2270 BUG_ON(cur->mm);
2271 initialize_tlbstate_and_flush();
2272 enter_lazy_tlb(&init_mm, cur);
2273
2274 /*
2275 * sp0 points to the entry trampoline stack regardless of what task
2276 * is running.
2277 */
2278 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2279
2280 load_mm_ldt(&init_mm);
2281
2282 clear_all_debug_regs();
2283 dbg_restore_debug_regs();
2284
2285 doublefault_init_cpu_tss();
2286
2287 fpu__init_cpu();
2288
2289 if (is_uv_system())
2290 uv_cpu_init();
2291
2292 load_fixmap_gdt(cpu);
2293 }
2294
2295 #ifdef CONFIG_SMP
cpu_init_secondary(void)2296 void cpu_init_secondary(void)
2297 {
2298 /*
2299 * Relies on the BP having set-up the IDT tables, which are loaded
2300 * on this CPU in cpu_init_exception_handling().
2301 */
2302 cpu_init_exception_handling();
2303 cpu_init();
2304 }
2305 #endif
2306
2307 #ifdef CONFIG_MICROCODE_LATE_LOADING
2308 /**
2309 * store_cpu_caps() - Store a snapshot of CPU capabilities
2310 * @curr_info: Pointer where to store it
2311 *
2312 * Returns: None
2313 */
store_cpu_caps(struct cpuinfo_x86 * curr_info)2314 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2315 {
2316 /* Reload CPUID max function as it might've changed. */
2317 curr_info->cpuid_level = cpuid_eax(0);
2318
2319 /* Copy all capability leafs and pick up the synthetic ones. */
2320 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2321 sizeof(curr_info->x86_capability));
2322
2323 /* Get the hardware CPUID leafs */
2324 get_cpu_cap(curr_info);
2325 }
2326
2327 /**
2328 * microcode_check() - Check if any CPU capabilities changed after an update.
2329 * @prev_info: CPU capabilities stored before an update.
2330 *
2331 * The microcode loader calls this upon late microcode load to recheck features,
2332 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2333 * hotplug lock.
2334 *
2335 * Return: None
2336 */
microcode_check(struct cpuinfo_x86 * prev_info)2337 void microcode_check(struct cpuinfo_x86 *prev_info)
2338 {
2339 struct cpuinfo_x86 curr_info;
2340
2341 perf_check_microcode();
2342
2343 store_cpu_caps(&curr_info);
2344
2345 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2346 sizeof(prev_info->x86_capability)))
2347 return;
2348
2349 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2350 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2351 }
2352 #endif
2353
2354 /*
2355 * Invoked from core CPU hotplug code after hotplug operations
2356 */
arch_smt_update(void)2357 void arch_smt_update(void)
2358 {
2359 /* Handle the speculative execution misfeatures */
2360 cpu_bugs_smt_update();
2361 /* Check whether IPI broadcasting can be enabled */
2362 apic_smt_update();
2363 }
2364