1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56 TLSV4,
57 TLSV6,
58 TLS_NUM_PROTS,
59 };
60
61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \
62 .iv = cipher ## _IV_SIZE, \
63 .key = cipher ## _KEY_SIZE, \
64 .salt = cipher ## _SALT_SIZE, \
65 .tag = cipher ## _TAG_SIZE, \
66 .rec_seq = cipher ## _REC_SEQ_SIZE, \
67 }
68
69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
70 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
71 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
72 CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
73 CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
74 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
75 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
76 };
77
78 static const struct proto *saved_tcpv6_prot;
79 static DEFINE_MUTEX(tcpv6_prot_mutex);
80 static const struct proto *saved_tcpv4_prot;
81 static DEFINE_MUTEX(tcpv4_prot_mutex);
82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
85 const struct proto *base);
86
update_sk_prot(struct sock * sk,struct tls_context * ctx)87 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
88 {
89 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
90
91 WRITE_ONCE(sk->sk_prot,
92 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
93 WRITE_ONCE(sk->sk_socket->ops,
94 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
95 }
96
wait_on_pending_writer(struct sock * sk,long * timeo)97 int wait_on_pending_writer(struct sock *sk, long *timeo)
98 {
99 int rc = 0;
100 DEFINE_WAIT_FUNC(wait, woken_wake_function);
101
102 add_wait_queue(sk_sleep(sk), &wait);
103 while (1) {
104 if (!*timeo) {
105 rc = -EAGAIN;
106 break;
107 }
108
109 if (signal_pending(current)) {
110 rc = sock_intr_errno(*timeo);
111 break;
112 }
113
114 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
115 break;
116 }
117 remove_wait_queue(sk_sleep(sk), &wait);
118 return rc;
119 }
120
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)121 int tls_push_sg(struct sock *sk,
122 struct tls_context *ctx,
123 struct scatterlist *sg,
124 u16 first_offset,
125 int flags)
126 {
127 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
128 int ret = 0;
129 struct page *p;
130 size_t size;
131 int offset = first_offset;
132
133 size = sg->length - offset;
134 offset += sg->offset;
135
136 ctx->in_tcp_sendpages = true;
137 while (1) {
138 if (sg_is_last(sg))
139 sendpage_flags = flags;
140
141 /* is sending application-limited? */
142 tcp_rate_check_app_limited(sk);
143 p = sg_page(sg);
144 retry:
145 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
146
147 if (ret != size) {
148 if (ret > 0) {
149 offset += ret;
150 size -= ret;
151 goto retry;
152 }
153
154 offset -= sg->offset;
155 ctx->partially_sent_offset = offset;
156 ctx->partially_sent_record = (void *)sg;
157 ctx->in_tcp_sendpages = false;
158 return ret;
159 }
160
161 put_page(p);
162 sk_mem_uncharge(sk, sg->length);
163 sg = sg_next(sg);
164 if (!sg)
165 break;
166
167 offset = sg->offset;
168 size = sg->length;
169 }
170
171 ctx->in_tcp_sendpages = false;
172
173 return 0;
174 }
175
tls_handle_open_record(struct sock * sk,int flags)176 static int tls_handle_open_record(struct sock *sk, int flags)
177 {
178 struct tls_context *ctx = tls_get_ctx(sk);
179
180 if (tls_is_pending_open_record(ctx))
181 return ctx->push_pending_record(sk, flags);
182
183 return 0;
184 }
185
tls_process_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)186 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
187 unsigned char *record_type)
188 {
189 struct cmsghdr *cmsg;
190 int rc = -EINVAL;
191
192 for_each_cmsghdr(cmsg, msg) {
193 if (!CMSG_OK(msg, cmsg))
194 return -EINVAL;
195 if (cmsg->cmsg_level != SOL_TLS)
196 continue;
197
198 switch (cmsg->cmsg_type) {
199 case TLS_SET_RECORD_TYPE:
200 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
201 return -EINVAL;
202
203 if (msg->msg_flags & MSG_MORE)
204 return -EINVAL;
205
206 rc = tls_handle_open_record(sk, msg->msg_flags);
207 if (rc)
208 return rc;
209
210 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
211 rc = 0;
212 break;
213 default:
214 return -EINVAL;
215 }
216 }
217
218 return rc;
219 }
220
tls_push_partial_record(struct sock * sk,struct tls_context * ctx,int flags)221 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
222 int flags)
223 {
224 struct scatterlist *sg;
225 u16 offset;
226
227 sg = ctx->partially_sent_record;
228 offset = ctx->partially_sent_offset;
229
230 ctx->partially_sent_record = NULL;
231 return tls_push_sg(sk, ctx, sg, offset, flags);
232 }
233
tls_free_partial_record(struct sock * sk,struct tls_context * ctx)234 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
235 {
236 struct scatterlist *sg;
237
238 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
239 put_page(sg_page(sg));
240 sk_mem_uncharge(sk, sg->length);
241 }
242 ctx->partially_sent_record = NULL;
243 }
244
tls_write_space(struct sock * sk)245 static void tls_write_space(struct sock *sk)
246 {
247 struct tls_context *ctx = tls_get_ctx(sk);
248
249 /* If in_tcp_sendpages call lower protocol write space handler
250 * to ensure we wake up any waiting operations there. For example
251 * if do_tcp_sendpages where to call sk_wait_event.
252 */
253 if (ctx->in_tcp_sendpages) {
254 ctx->sk_write_space(sk);
255 return;
256 }
257
258 #ifdef CONFIG_TLS_DEVICE
259 if (ctx->tx_conf == TLS_HW)
260 tls_device_write_space(sk, ctx);
261 else
262 #endif
263 tls_sw_write_space(sk, ctx);
264
265 ctx->sk_write_space(sk);
266 }
267
268 /**
269 * tls_ctx_free() - free TLS ULP context
270 * @sk: socket to with @ctx is attached
271 * @ctx: TLS context structure
272 *
273 * Free TLS context. If @sk is %NULL caller guarantees that the socket
274 * to which @ctx was attached has no outstanding references.
275 */
tls_ctx_free(struct sock * sk,struct tls_context * ctx)276 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
277 {
278 if (!ctx)
279 return;
280
281 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
282 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
283 mutex_destroy(&ctx->tx_lock);
284
285 if (sk)
286 kfree_rcu(ctx, rcu);
287 else
288 kfree(ctx);
289 }
290
tls_sk_proto_cleanup(struct sock * sk,struct tls_context * ctx,long timeo)291 static void tls_sk_proto_cleanup(struct sock *sk,
292 struct tls_context *ctx, long timeo)
293 {
294 if (unlikely(sk->sk_write_pending) &&
295 !wait_on_pending_writer(sk, &timeo))
296 tls_handle_open_record(sk, 0);
297
298 /* We need these for tls_sw_fallback handling of other packets */
299 if (ctx->tx_conf == TLS_SW) {
300 kfree(ctx->tx.rec_seq);
301 kfree(ctx->tx.iv);
302 tls_sw_release_resources_tx(sk);
303 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
304 } else if (ctx->tx_conf == TLS_HW) {
305 tls_device_free_resources_tx(sk);
306 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
307 }
308
309 if (ctx->rx_conf == TLS_SW) {
310 tls_sw_release_resources_rx(sk);
311 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
312 } else if (ctx->rx_conf == TLS_HW) {
313 tls_device_offload_cleanup_rx(sk);
314 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
315 }
316 }
317
tls_sk_proto_close(struct sock * sk,long timeout)318 static void tls_sk_proto_close(struct sock *sk, long timeout)
319 {
320 struct inet_connection_sock *icsk = inet_csk(sk);
321 struct tls_context *ctx = tls_get_ctx(sk);
322 long timeo = sock_sndtimeo(sk, 0);
323 bool free_ctx;
324
325 if (ctx->tx_conf == TLS_SW)
326 tls_sw_cancel_work_tx(ctx);
327
328 lock_sock(sk);
329 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
330
331 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
332 tls_sk_proto_cleanup(sk, ctx, timeo);
333
334 write_lock_bh(&sk->sk_callback_lock);
335 if (free_ctx)
336 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
337 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
338 if (sk->sk_write_space == tls_write_space)
339 sk->sk_write_space = ctx->sk_write_space;
340 write_unlock_bh(&sk->sk_callback_lock);
341 release_sock(sk);
342 if (ctx->tx_conf == TLS_SW)
343 tls_sw_free_ctx_tx(ctx);
344 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
345 tls_sw_strparser_done(ctx);
346 if (ctx->rx_conf == TLS_SW)
347 tls_sw_free_ctx_rx(ctx);
348 ctx->sk_proto->close(sk, timeout);
349
350 if (free_ctx)
351 tls_ctx_free(sk, ctx);
352 }
353
do_tls_getsockopt_conf(struct sock * sk,char __user * optval,int __user * optlen,int tx)354 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
355 int __user *optlen, int tx)
356 {
357 int rc = 0;
358 struct tls_context *ctx = tls_get_ctx(sk);
359 struct tls_crypto_info *crypto_info;
360 struct cipher_context *cctx;
361 int len;
362
363 if (get_user(len, optlen))
364 return -EFAULT;
365
366 if (!optval || (len < sizeof(*crypto_info))) {
367 rc = -EINVAL;
368 goto out;
369 }
370
371 if (!ctx) {
372 rc = -EBUSY;
373 goto out;
374 }
375
376 /* get user crypto info */
377 if (tx) {
378 crypto_info = &ctx->crypto_send.info;
379 cctx = &ctx->tx;
380 } else {
381 crypto_info = &ctx->crypto_recv.info;
382 cctx = &ctx->rx;
383 }
384
385 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
386 rc = -EBUSY;
387 goto out;
388 }
389
390 if (len == sizeof(*crypto_info)) {
391 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
392 rc = -EFAULT;
393 goto out;
394 }
395
396 switch (crypto_info->cipher_type) {
397 case TLS_CIPHER_AES_GCM_128: {
398 struct tls12_crypto_info_aes_gcm_128 *
399 crypto_info_aes_gcm_128 =
400 container_of(crypto_info,
401 struct tls12_crypto_info_aes_gcm_128,
402 info);
403
404 if (len != sizeof(*crypto_info_aes_gcm_128)) {
405 rc = -EINVAL;
406 goto out;
407 }
408 memcpy(crypto_info_aes_gcm_128->iv,
409 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
410 TLS_CIPHER_AES_GCM_128_IV_SIZE);
411 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
412 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
413 if (copy_to_user(optval,
414 crypto_info_aes_gcm_128,
415 sizeof(*crypto_info_aes_gcm_128)))
416 rc = -EFAULT;
417 break;
418 }
419 case TLS_CIPHER_AES_GCM_256: {
420 struct tls12_crypto_info_aes_gcm_256 *
421 crypto_info_aes_gcm_256 =
422 container_of(crypto_info,
423 struct tls12_crypto_info_aes_gcm_256,
424 info);
425
426 if (len != sizeof(*crypto_info_aes_gcm_256)) {
427 rc = -EINVAL;
428 goto out;
429 }
430 memcpy(crypto_info_aes_gcm_256->iv,
431 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
432 TLS_CIPHER_AES_GCM_256_IV_SIZE);
433 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
434 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
435 if (copy_to_user(optval,
436 crypto_info_aes_gcm_256,
437 sizeof(*crypto_info_aes_gcm_256)))
438 rc = -EFAULT;
439 break;
440 }
441 case TLS_CIPHER_AES_CCM_128: {
442 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
443 container_of(crypto_info,
444 struct tls12_crypto_info_aes_ccm_128, info);
445
446 if (len != sizeof(*aes_ccm_128)) {
447 rc = -EINVAL;
448 goto out;
449 }
450 memcpy(aes_ccm_128->iv,
451 cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
452 TLS_CIPHER_AES_CCM_128_IV_SIZE);
453 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
454 TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
455 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
456 rc = -EFAULT;
457 break;
458 }
459 case TLS_CIPHER_CHACHA20_POLY1305: {
460 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
461 container_of(crypto_info,
462 struct tls12_crypto_info_chacha20_poly1305,
463 info);
464
465 if (len != sizeof(*chacha20_poly1305)) {
466 rc = -EINVAL;
467 goto out;
468 }
469 memcpy(chacha20_poly1305->iv,
470 cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
471 TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
472 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
473 TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
474 if (copy_to_user(optval, chacha20_poly1305,
475 sizeof(*chacha20_poly1305)))
476 rc = -EFAULT;
477 break;
478 }
479 case TLS_CIPHER_SM4_GCM: {
480 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
481 container_of(crypto_info,
482 struct tls12_crypto_info_sm4_gcm, info);
483
484 if (len != sizeof(*sm4_gcm_info)) {
485 rc = -EINVAL;
486 goto out;
487 }
488 memcpy(sm4_gcm_info->iv,
489 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
490 TLS_CIPHER_SM4_GCM_IV_SIZE);
491 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
492 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
493 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
494 rc = -EFAULT;
495 break;
496 }
497 case TLS_CIPHER_SM4_CCM: {
498 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
499 container_of(crypto_info,
500 struct tls12_crypto_info_sm4_ccm, info);
501
502 if (len != sizeof(*sm4_ccm_info)) {
503 rc = -EINVAL;
504 goto out;
505 }
506 memcpy(sm4_ccm_info->iv,
507 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
508 TLS_CIPHER_SM4_CCM_IV_SIZE);
509 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
510 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
511 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
512 rc = -EFAULT;
513 break;
514 }
515 case TLS_CIPHER_ARIA_GCM_128: {
516 struct tls12_crypto_info_aria_gcm_128 *
517 crypto_info_aria_gcm_128 =
518 container_of(crypto_info,
519 struct tls12_crypto_info_aria_gcm_128,
520 info);
521
522 if (len != sizeof(*crypto_info_aria_gcm_128)) {
523 rc = -EINVAL;
524 goto out;
525 }
526 memcpy(crypto_info_aria_gcm_128->iv,
527 cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
528 TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
529 memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
530 TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
531 if (copy_to_user(optval,
532 crypto_info_aria_gcm_128,
533 sizeof(*crypto_info_aria_gcm_128)))
534 rc = -EFAULT;
535 break;
536 }
537 case TLS_CIPHER_ARIA_GCM_256: {
538 struct tls12_crypto_info_aria_gcm_256 *
539 crypto_info_aria_gcm_256 =
540 container_of(crypto_info,
541 struct tls12_crypto_info_aria_gcm_256,
542 info);
543
544 if (len != sizeof(*crypto_info_aria_gcm_256)) {
545 rc = -EINVAL;
546 goto out;
547 }
548 memcpy(crypto_info_aria_gcm_256->iv,
549 cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
550 TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
551 memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
552 TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
553 if (copy_to_user(optval,
554 crypto_info_aria_gcm_256,
555 sizeof(*crypto_info_aria_gcm_256)))
556 rc = -EFAULT;
557 break;
558 }
559 default:
560 rc = -EINVAL;
561 }
562
563 out:
564 return rc;
565 }
566
do_tls_getsockopt_tx_zc(struct sock * sk,char __user * optval,int __user * optlen)567 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
568 int __user *optlen)
569 {
570 struct tls_context *ctx = tls_get_ctx(sk);
571 unsigned int value;
572 int len;
573
574 if (get_user(len, optlen))
575 return -EFAULT;
576
577 if (len != sizeof(value))
578 return -EINVAL;
579
580 value = ctx->zerocopy_sendfile;
581 if (copy_to_user(optval, &value, sizeof(value)))
582 return -EFAULT;
583
584 return 0;
585 }
586
do_tls_getsockopt_no_pad(struct sock * sk,char __user * optval,int __user * optlen)587 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
588 int __user *optlen)
589 {
590 struct tls_context *ctx = tls_get_ctx(sk);
591 int value, len;
592
593 if (ctx->prot_info.version != TLS_1_3_VERSION)
594 return -EINVAL;
595
596 if (get_user(len, optlen))
597 return -EFAULT;
598 if (len < sizeof(value))
599 return -EINVAL;
600
601 value = -EINVAL;
602 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
603 value = ctx->rx_no_pad;
604 if (value < 0)
605 return value;
606
607 if (put_user(sizeof(value), optlen))
608 return -EFAULT;
609 if (copy_to_user(optval, &value, sizeof(value)))
610 return -EFAULT;
611
612 return 0;
613 }
614
do_tls_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)615 static int do_tls_getsockopt(struct sock *sk, int optname,
616 char __user *optval, int __user *optlen)
617 {
618 int rc = 0;
619
620 lock_sock(sk);
621
622 switch (optname) {
623 case TLS_TX:
624 case TLS_RX:
625 rc = do_tls_getsockopt_conf(sk, optval, optlen,
626 optname == TLS_TX);
627 break;
628 case TLS_TX_ZEROCOPY_RO:
629 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
630 break;
631 case TLS_RX_EXPECT_NO_PAD:
632 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
633 break;
634 default:
635 rc = -ENOPROTOOPT;
636 break;
637 }
638
639 release_sock(sk);
640
641 return rc;
642 }
643
tls_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)644 static int tls_getsockopt(struct sock *sk, int level, int optname,
645 char __user *optval, int __user *optlen)
646 {
647 struct tls_context *ctx = tls_get_ctx(sk);
648
649 if (level != SOL_TLS)
650 return ctx->sk_proto->getsockopt(sk, level,
651 optname, optval, optlen);
652
653 return do_tls_getsockopt(sk, optname, optval, optlen);
654 }
655
do_tls_setsockopt_conf(struct sock * sk,sockptr_t optval,unsigned int optlen,int tx)656 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
657 unsigned int optlen, int tx)
658 {
659 struct tls_crypto_info *crypto_info;
660 struct tls_crypto_info *alt_crypto_info;
661 struct tls_context *ctx = tls_get_ctx(sk);
662 size_t optsize;
663 int rc = 0;
664 int conf;
665
666 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
667 return -EINVAL;
668
669 if (tx) {
670 crypto_info = &ctx->crypto_send.info;
671 alt_crypto_info = &ctx->crypto_recv.info;
672 } else {
673 crypto_info = &ctx->crypto_recv.info;
674 alt_crypto_info = &ctx->crypto_send.info;
675 }
676
677 /* Currently we don't support set crypto info more than one time */
678 if (TLS_CRYPTO_INFO_READY(crypto_info))
679 return -EBUSY;
680
681 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
682 if (rc) {
683 rc = -EFAULT;
684 goto err_crypto_info;
685 }
686
687 /* check version */
688 if (crypto_info->version != TLS_1_2_VERSION &&
689 crypto_info->version != TLS_1_3_VERSION) {
690 rc = -EINVAL;
691 goto err_crypto_info;
692 }
693
694 /* Ensure that TLS version and ciphers are same in both directions */
695 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
696 if (alt_crypto_info->version != crypto_info->version ||
697 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
698 rc = -EINVAL;
699 goto err_crypto_info;
700 }
701 }
702
703 switch (crypto_info->cipher_type) {
704 case TLS_CIPHER_AES_GCM_128:
705 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
706 break;
707 case TLS_CIPHER_AES_GCM_256: {
708 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
709 break;
710 }
711 case TLS_CIPHER_AES_CCM_128:
712 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
713 break;
714 case TLS_CIPHER_CHACHA20_POLY1305:
715 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
716 break;
717 case TLS_CIPHER_SM4_GCM:
718 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
719 break;
720 case TLS_CIPHER_SM4_CCM:
721 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
722 break;
723 case TLS_CIPHER_ARIA_GCM_128:
724 if (crypto_info->version != TLS_1_2_VERSION) {
725 rc = -EINVAL;
726 goto err_crypto_info;
727 }
728 optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
729 break;
730 case TLS_CIPHER_ARIA_GCM_256:
731 if (crypto_info->version != TLS_1_2_VERSION) {
732 rc = -EINVAL;
733 goto err_crypto_info;
734 }
735 optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
736 break;
737 default:
738 rc = -EINVAL;
739 goto err_crypto_info;
740 }
741
742 if (optlen != optsize) {
743 rc = -EINVAL;
744 goto err_crypto_info;
745 }
746
747 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
748 sizeof(*crypto_info),
749 optlen - sizeof(*crypto_info));
750 if (rc) {
751 rc = -EFAULT;
752 goto err_crypto_info;
753 }
754
755 if (tx) {
756 rc = tls_set_device_offload(sk, ctx);
757 conf = TLS_HW;
758 if (!rc) {
759 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
760 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
761 } else {
762 rc = tls_set_sw_offload(sk, ctx, 1);
763 if (rc)
764 goto err_crypto_info;
765 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
766 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
767 conf = TLS_SW;
768 }
769 } else {
770 rc = tls_set_device_offload_rx(sk, ctx);
771 conf = TLS_HW;
772 if (!rc) {
773 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
774 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
775 } else {
776 rc = tls_set_sw_offload(sk, ctx, 0);
777 if (rc)
778 goto err_crypto_info;
779 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
780 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
781 conf = TLS_SW;
782 }
783 tls_sw_strparser_arm(sk, ctx);
784 }
785
786 if (tx)
787 ctx->tx_conf = conf;
788 else
789 ctx->rx_conf = conf;
790 update_sk_prot(sk, ctx);
791 if (tx) {
792 ctx->sk_write_space = sk->sk_write_space;
793 sk->sk_write_space = tls_write_space;
794 } else {
795 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
796
797 tls_strp_check_rcv(&rx_ctx->strp);
798 }
799 return 0;
800
801 err_crypto_info:
802 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
803 return rc;
804 }
805
do_tls_setsockopt_tx_zc(struct sock * sk,sockptr_t optval,unsigned int optlen)806 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
807 unsigned int optlen)
808 {
809 struct tls_context *ctx = tls_get_ctx(sk);
810 unsigned int value;
811
812 if (sockptr_is_null(optval) || optlen != sizeof(value))
813 return -EINVAL;
814
815 if (copy_from_sockptr(&value, optval, sizeof(value)))
816 return -EFAULT;
817
818 if (value > 1)
819 return -EINVAL;
820
821 ctx->zerocopy_sendfile = value;
822
823 return 0;
824 }
825
do_tls_setsockopt_no_pad(struct sock * sk,sockptr_t optval,unsigned int optlen)826 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
827 unsigned int optlen)
828 {
829 struct tls_context *ctx = tls_get_ctx(sk);
830 u32 val;
831 int rc;
832
833 if (ctx->prot_info.version != TLS_1_3_VERSION ||
834 sockptr_is_null(optval) || optlen < sizeof(val))
835 return -EINVAL;
836
837 rc = copy_from_sockptr(&val, optval, sizeof(val));
838 if (rc)
839 return -EFAULT;
840 if (val > 1)
841 return -EINVAL;
842 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
843 if (rc < 1)
844 return rc == 0 ? -EINVAL : rc;
845
846 lock_sock(sk);
847 rc = -EINVAL;
848 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
849 ctx->rx_no_pad = val;
850 tls_update_rx_zc_capable(ctx);
851 rc = 0;
852 }
853 release_sock(sk);
854
855 return rc;
856 }
857
do_tls_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)858 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
859 unsigned int optlen)
860 {
861 int rc = 0;
862
863 switch (optname) {
864 case TLS_TX:
865 case TLS_RX:
866 lock_sock(sk);
867 rc = do_tls_setsockopt_conf(sk, optval, optlen,
868 optname == TLS_TX);
869 release_sock(sk);
870 break;
871 case TLS_TX_ZEROCOPY_RO:
872 lock_sock(sk);
873 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
874 release_sock(sk);
875 break;
876 case TLS_RX_EXPECT_NO_PAD:
877 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
878 break;
879 default:
880 rc = -ENOPROTOOPT;
881 break;
882 }
883 return rc;
884 }
885
tls_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)886 static int tls_setsockopt(struct sock *sk, int level, int optname,
887 sockptr_t optval, unsigned int optlen)
888 {
889 struct tls_context *ctx = tls_get_ctx(sk);
890
891 if (level != SOL_TLS)
892 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
893 optlen);
894
895 return do_tls_setsockopt(sk, optname, optval, optlen);
896 }
897
tls_ctx_create(struct sock * sk)898 struct tls_context *tls_ctx_create(struct sock *sk)
899 {
900 struct inet_connection_sock *icsk = inet_csk(sk);
901 struct tls_context *ctx;
902
903 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
904 if (!ctx)
905 return NULL;
906
907 mutex_init(&ctx->tx_lock);
908 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
909 ctx->sk_proto = READ_ONCE(sk->sk_prot);
910 ctx->sk = sk;
911 return ctx;
912 }
913
build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto_ops * base)914 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
915 const struct proto_ops *base)
916 {
917 ops[TLS_BASE][TLS_BASE] = *base;
918
919 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
920 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
921
922 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
923 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
924
925 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
926 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
927
928 #ifdef CONFIG_TLS_DEVICE
929 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
930 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL;
931
932 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
933 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL;
934
935 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
936
937 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
938
939 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
940 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL;
941 #endif
942 #ifdef CONFIG_TLS_TOE
943 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
944 #endif
945 }
946
tls_build_proto(struct sock * sk)947 static void tls_build_proto(struct sock *sk)
948 {
949 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
950 struct proto *prot = READ_ONCE(sk->sk_prot);
951
952 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
953 if (ip_ver == TLSV6 &&
954 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
955 mutex_lock(&tcpv6_prot_mutex);
956 if (likely(prot != saved_tcpv6_prot)) {
957 build_protos(tls_prots[TLSV6], prot);
958 build_proto_ops(tls_proto_ops[TLSV6],
959 sk->sk_socket->ops);
960 smp_store_release(&saved_tcpv6_prot, prot);
961 }
962 mutex_unlock(&tcpv6_prot_mutex);
963 }
964
965 if (ip_ver == TLSV4 &&
966 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
967 mutex_lock(&tcpv4_prot_mutex);
968 if (likely(prot != saved_tcpv4_prot)) {
969 build_protos(tls_prots[TLSV4], prot);
970 build_proto_ops(tls_proto_ops[TLSV4],
971 sk->sk_socket->ops);
972 smp_store_release(&saved_tcpv4_prot, prot);
973 }
974 mutex_unlock(&tcpv4_prot_mutex);
975 }
976 }
977
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto * base)978 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
979 const struct proto *base)
980 {
981 prot[TLS_BASE][TLS_BASE] = *base;
982 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
983 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
984 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
985
986 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
987 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
988 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
989
990 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
991 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
992 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
993 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
994
995 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
996 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
997 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
998 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
999
1000 #ifdef CONFIG_TLS_DEVICE
1001 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1002 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
1003 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
1004
1005 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1006 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
1007 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
1008
1009 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1010
1011 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1012
1013 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1014 #endif
1015 #ifdef CONFIG_TLS_TOE
1016 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1017 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
1018 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
1019 #endif
1020 }
1021
tls_init(struct sock * sk)1022 static int tls_init(struct sock *sk)
1023 {
1024 struct tls_context *ctx;
1025 int rc = 0;
1026
1027 tls_build_proto(sk);
1028
1029 #ifdef CONFIG_TLS_TOE
1030 if (tls_toe_bypass(sk))
1031 return 0;
1032 #endif
1033
1034 /* The TLS ulp is currently supported only for TCP sockets
1035 * in ESTABLISHED state.
1036 * Supporting sockets in LISTEN state will require us
1037 * to modify the accept implementation to clone rather then
1038 * share the ulp context.
1039 */
1040 if (sk->sk_state != TCP_ESTABLISHED)
1041 return -ENOTCONN;
1042
1043 /* allocate tls context */
1044 write_lock_bh(&sk->sk_callback_lock);
1045 ctx = tls_ctx_create(sk);
1046 if (!ctx) {
1047 rc = -ENOMEM;
1048 goto out;
1049 }
1050
1051 ctx->tx_conf = TLS_BASE;
1052 ctx->rx_conf = TLS_BASE;
1053 update_sk_prot(sk, ctx);
1054 out:
1055 write_unlock_bh(&sk->sk_callback_lock);
1056 return rc;
1057 }
1058
tls_update(struct sock * sk,struct proto * p,void (* write_space)(struct sock * sk))1059 static void tls_update(struct sock *sk, struct proto *p,
1060 void (*write_space)(struct sock *sk))
1061 {
1062 struct tls_context *ctx;
1063
1064 WARN_ON_ONCE(sk->sk_prot == p);
1065
1066 ctx = tls_get_ctx(sk);
1067 if (likely(ctx)) {
1068 ctx->sk_write_space = write_space;
1069 ctx->sk_proto = p;
1070 } else {
1071 /* Pairs with lockless read in sk_clone_lock(). */
1072 WRITE_ONCE(sk->sk_prot, p);
1073 sk->sk_write_space = write_space;
1074 }
1075 }
1076
tls_user_config(struct tls_context * ctx,bool tx)1077 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1078 {
1079 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1080
1081 switch (config) {
1082 case TLS_BASE:
1083 return TLS_CONF_BASE;
1084 case TLS_SW:
1085 return TLS_CONF_SW;
1086 case TLS_HW:
1087 return TLS_CONF_HW;
1088 case TLS_HW_RECORD:
1089 return TLS_CONF_HW_RECORD;
1090 }
1091 return 0;
1092 }
1093
tls_get_info(const struct sock * sk,struct sk_buff * skb)1094 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1095 {
1096 u16 version, cipher_type;
1097 struct tls_context *ctx;
1098 struct nlattr *start;
1099 int err;
1100
1101 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1102 if (!start)
1103 return -EMSGSIZE;
1104
1105 rcu_read_lock();
1106 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1107 if (!ctx) {
1108 err = 0;
1109 goto nla_failure;
1110 }
1111 version = ctx->prot_info.version;
1112 if (version) {
1113 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1114 if (err)
1115 goto nla_failure;
1116 }
1117 cipher_type = ctx->prot_info.cipher_type;
1118 if (cipher_type) {
1119 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1120 if (err)
1121 goto nla_failure;
1122 }
1123 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1124 if (err)
1125 goto nla_failure;
1126
1127 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1128 if (err)
1129 goto nla_failure;
1130
1131 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1132 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1133 if (err)
1134 goto nla_failure;
1135 }
1136 if (ctx->rx_no_pad) {
1137 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1138 if (err)
1139 goto nla_failure;
1140 }
1141
1142 rcu_read_unlock();
1143 nla_nest_end(skb, start);
1144 return 0;
1145
1146 nla_failure:
1147 rcu_read_unlock();
1148 nla_nest_cancel(skb, start);
1149 return err;
1150 }
1151
tls_get_info_size(const struct sock * sk)1152 static size_t tls_get_info_size(const struct sock *sk)
1153 {
1154 size_t size = 0;
1155
1156 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
1157 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
1158 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
1159 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
1160 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
1161 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */
1162 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */
1163 0;
1164
1165 return size;
1166 }
1167
tls_init_net(struct net * net)1168 static int __net_init tls_init_net(struct net *net)
1169 {
1170 int err;
1171
1172 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1173 if (!net->mib.tls_statistics)
1174 return -ENOMEM;
1175
1176 err = tls_proc_init(net);
1177 if (err)
1178 goto err_free_stats;
1179
1180 return 0;
1181 err_free_stats:
1182 free_percpu(net->mib.tls_statistics);
1183 return err;
1184 }
1185
tls_exit_net(struct net * net)1186 static void __net_exit tls_exit_net(struct net *net)
1187 {
1188 tls_proc_fini(net);
1189 free_percpu(net->mib.tls_statistics);
1190 }
1191
1192 static struct pernet_operations tls_proc_ops = {
1193 .init = tls_init_net,
1194 .exit = tls_exit_net,
1195 };
1196
1197 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1198 .name = "tls",
1199 .owner = THIS_MODULE,
1200 .init = tls_init,
1201 .update = tls_update,
1202 .get_info = tls_get_info,
1203 .get_info_size = tls_get_info_size,
1204 };
1205
tls_register(void)1206 static int __init tls_register(void)
1207 {
1208 int err;
1209
1210 err = register_pernet_subsys(&tls_proc_ops);
1211 if (err)
1212 return err;
1213
1214 err = tls_strp_dev_init();
1215 if (err)
1216 goto err_pernet;
1217
1218 err = tls_device_init();
1219 if (err)
1220 goto err_strp;
1221
1222 tcp_register_ulp(&tcp_tls_ulp_ops);
1223
1224 return 0;
1225 err_strp:
1226 tls_strp_dev_exit();
1227 err_pernet:
1228 unregister_pernet_subsys(&tls_proc_ops);
1229 return err;
1230 }
1231
tls_unregister(void)1232 static void __exit tls_unregister(void)
1233 {
1234 tcp_unregister_ulp(&tcp_tls_ulp_ops);
1235 tls_strp_dev_exit();
1236 tls_device_cleanup();
1237 unregister_pernet_subsys(&tls_proc_ops);
1238 }
1239
1240 module_init(tls_register);
1241 module_exit(tls_unregister);
1242