1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48
49 #include "tls.h"
50
51 struct tls_decrypt_arg {
52 struct_group(inargs,
53 bool zc;
54 bool async;
55 u8 tail;
56 );
57
58 struct sk_buff *skb;
59 };
60
61 struct tls_decrypt_ctx {
62 struct sock *sk;
63 u8 iv[MAX_IV_SIZE];
64 u8 aad[TLS_MAX_AAD_SIZE];
65 u8 tail;
66 struct scatterlist sg[];
67 };
68
tls_err_abort(struct sock * sk,int err)69 noinline void tls_err_abort(struct sock *sk, int err)
70 {
71 WARN_ON_ONCE(err >= 0);
72 /* sk->sk_err should contain a positive error code. */
73 sk->sk_err = -err;
74 sk_error_report(sk);
75 }
76
__skb_nsg(struct sk_buff * skb,int offset,int len,unsigned int recursion_level)77 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
78 unsigned int recursion_level)
79 {
80 int start = skb_headlen(skb);
81 int i, chunk = start - offset;
82 struct sk_buff *frag_iter;
83 int elt = 0;
84
85 if (unlikely(recursion_level >= 24))
86 return -EMSGSIZE;
87
88 if (chunk > 0) {
89 if (chunk > len)
90 chunk = len;
91 elt++;
92 len -= chunk;
93 if (len == 0)
94 return elt;
95 offset += chunk;
96 }
97
98 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
99 int end;
100
101 WARN_ON(start > offset + len);
102
103 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
104 chunk = end - offset;
105 if (chunk > 0) {
106 if (chunk > len)
107 chunk = len;
108 elt++;
109 len -= chunk;
110 if (len == 0)
111 return elt;
112 offset += chunk;
113 }
114 start = end;
115 }
116
117 if (unlikely(skb_has_frag_list(skb))) {
118 skb_walk_frags(skb, frag_iter) {
119 int end, ret;
120
121 WARN_ON(start > offset + len);
122
123 end = start + frag_iter->len;
124 chunk = end - offset;
125 if (chunk > 0) {
126 if (chunk > len)
127 chunk = len;
128 ret = __skb_nsg(frag_iter, offset - start, chunk,
129 recursion_level + 1);
130 if (unlikely(ret < 0))
131 return ret;
132 elt += ret;
133 len -= chunk;
134 if (len == 0)
135 return elt;
136 offset += chunk;
137 }
138 start = end;
139 }
140 }
141 BUG_ON(len);
142 return elt;
143 }
144
145 /* Return the number of scatterlist elements required to completely map the
146 * skb, or -EMSGSIZE if the recursion depth is exceeded.
147 */
skb_nsg(struct sk_buff * skb,int offset,int len)148 static int skb_nsg(struct sk_buff *skb, int offset, int len)
149 {
150 return __skb_nsg(skb, offset, len, 0);
151 }
152
tls_padding_length(struct tls_prot_info * prot,struct sk_buff * skb,struct tls_decrypt_arg * darg)153 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
154 struct tls_decrypt_arg *darg)
155 {
156 struct strp_msg *rxm = strp_msg(skb);
157 struct tls_msg *tlm = tls_msg(skb);
158 int sub = 0;
159
160 /* Determine zero-padding length */
161 if (prot->version == TLS_1_3_VERSION) {
162 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
163 char content_type = darg->zc ? darg->tail : 0;
164 int err;
165
166 while (content_type == 0) {
167 if (offset < prot->prepend_size)
168 return -EBADMSG;
169 err = skb_copy_bits(skb, rxm->offset + offset,
170 &content_type, 1);
171 if (err)
172 return err;
173 if (content_type)
174 break;
175 sub++;
176 offset--;
177 }
178 tlm->control = content_type;
179 }
180 return sub;
181 }
182
tls_decrypt_done(void * data,int err)183 static void tls_decrypt_done(void *data, int err)
184 {
185 struct aead_request *aead_req = data;
186 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
187 struct scatterlist *sgout = aead_req->dst;
188 struct scatterlist *sgin = aead_req->src;
189 struct tls_sw_context_rx *ctx;
190 struct tls_decrypt_ctx *dctx;
191 struct tls_context *tls_ctx;
192 struct scatterlist *sg;
193 unsigned int pages;
194 struct sock *sk;
195 int aead_size;
196
197 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
198 aead_size = ALIGN(aead_size, __alignof__(*dctx));
199 dctx = (void *)((u8 *)aead_req + aead_size);
200
201 sk = dctx->sk;
202 tls_ctx = tls_get_ctx(sk);
203 ctx = tls_sw_ctx_rx(tls_ctx);
204
205 /* Propagate if there was an err */
206 if (err) {
207 if (err == -EBADMSG)
208 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
209 ctx->async_wait.err = err;
210 tls_err_abort(sk, err);
211 }
212
213 /* Free the destination pages if skb was not decrypted inplace */
214 if (sgout != sgin) {
215 /* Skip the first S/G entry as it points to AAD */
216 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
217 if (!sg)
218 break;
219 put_page(sg_page(sg));
220 }
221 }
222
223 kfree(aead_req);
224
225 spin_lock_bh(&ctx->decrypt_compl_lock);
226 if (!atomic_dec_return(&ctx->decrypt_pending))
227 complete(&ctx->async_wait.completion);
228 spin_unlock_bh(&ctx->decrypt_compl_lock);
229 }
230
tls_do_decryption(struct sock * sk,struct scatterlist * sgin,struct scatterlist * sgout,char * iv_recv,size_t data_len,struct aead_request * aead_req,struct tls_decrypt_arg * darg)231 static int tls_do_decryption(struct sock *sk,
232 struct scatterlist *sgin,
233 struct scatterlist *sgout,
234 char *iv_recv,
235 size_t data_len,
236 struct aead_request *aead_req,
237 struct tls_decrypt_arg *darg)
238 {
239 struct tls_context *tls_ctx = tls_get_ctx(sk);
240 struct tls_prot_info *prot = &tls_ctx->prot_info;
241 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
242 int ret;
243
244 aead_request_set_tfm(aead_req, ctx->aead_recv);
245 aead_request_set_ad(aead_req, prot->aad_size);
246 aead_request_set_crypt(aead_req, sgin, sgout,
247 data_len + prot->tag_size,
248 (u8 *)iv_recv);
249
250 if (darg->async) {
251 aead_request_set_callback(aead_req,
252 CRYPTO_TFM_REQ_MAY_BACKLOG,
253 tls_decrypt_done, aead_req);
254 atomic_inc(&ctx->decrypt_pending);
255 } else {
256 aead_request_set_callback(aead_req,
257 CRYPTO_TFM_REQ_MAY_BACKLOG,
258 crypto_req_done, &ctx->async_wait);
259 }
260
261 ret = crypto_aead_decrypt(aead_req);
262 if (ret == -EINPROGRESS) {
263 if (darg->async)
264 return 0;
265
266 ret = crypto_wait_req(ret, &ctx->async_wait);
267 }
268 darg->async = false;
269
270 return ret;
271 }
272
tls_trim_both_msgs(struct sock * sk,int target_size)273 static void tls_trim_both_msgs(struct sock *sk, int target_size)
274 {
275 struct tls_context *tls_ctx = tls_get_ctx(sk);
276 struct tls_prot_info *prot = &tls_ctx->prot_info;
277 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
278 struct tls_rec *rec = ctx->open_rec;
279
280 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
281 if (target_size > 0)
282 target_size += prot->overhead_size;
283 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
284 }
285
tls_alloc_encrypted_msg(struct sock * sk,int len)286 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
287 {
288 struct tls_context *tls_ctx = tls_get_ctx(sk);
289 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
290 struct tls_rec *rec = ctx->open_rec;
291 struct sk_msg *msg_en = &rec->msg_encrypted;
292
293 return sk_msg_alloc(sk, msg_en, len, 0);
294 }
295
tls_clone_plaintext_msg(struct sock * sk,int required)296 static int tls_clone_plaintext_msg(struct sock *sk, int required)
297 {
298 struct tls_context *tls_ctx = tls_get_ctx(sk);
299 struct tls_prot_info *prot = &tls_ctx->prot_info;
300 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
301 struct tls_rec *rec = ctx->open_rec;
302 struct sk_msg *msg_pl = &rec->msg_plaintext;
303 struct sk_msg *msg_en = &rec->msg_encrypted;
304 int skip, len;
305
306 /* We add page references worth len bytes from encrypted sg
307 * at the end of plaintext sg. It is guaranteed that msg_en
308 * has enough required room (ensured by caller).
309 */
310 len = required - msg_pl->sg.size;
311
312 /* Skip initial bytes in msg_en's data to be able to use
313 * same offset of both plain and encrypted data.
314 */
315 skip = prot->prepend_size + msg_pl->sg.size;
316
317 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
318 }
319
tls_get_rec(struct sock * sk)320 static struct tls_rec *tls_get_rec(struct sock *sk)
321 {
322 struct tls_context *tls_ctx = tls_get_ctx(sk);
323 struct tls_prot_info *prot = &tls_ctx->prot_info;
324 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
325 struct sk_msg *msg_pl, *msg_en;
326 struct tls_rec *rec;
327 int mem_size;
328
329 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
330
331 rec = kzalloc(mem_size, sk->sk_allocation);
332 if (!rec)
333 return NULL;
334
335 msg_pl = &rec->msg_plaintext;
336 msg_en = &rec->msg_encrypted;
337
338 sk_msg_init(msg_pl);
339 sk_msg_init(msg_en);
340
341 sg_init_table(rec->sg_aead_in, 2);
342 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
343 sg_unmark_end(&rec->sg_aead_in[1]);
344
345 sg_init_table(rec->sg_aead_out, 2);
346 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
347 sg_unmark_end(&rec->sg_aead_out[1]);
348
349 rec->sk = sk;
350
351 return rec;
352 }
353
tls_free_rec(struct sock * sk,struct tls_rec * rec)354 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
355 {
356 sk_msg_free(sk, &rec->msg_encrypted);
357 sk_msg_free(sk, &rec->msg_plaintext);
358 kfree(rec);
359 }
360
tls_free_open_rec(struct sock * sk)361 static void tls_free_open_rec(struct sock *sk)
362 {
363 struct tls_context *tls_ctx = tls_get_ctx(sk);
364 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
365 struct tls_rec *rec = ctx->open_rec;
366
367 if (rec) {
368 tls_free_rec(sk, rec);
369 ctx->open_rec = NULL;
370 }
371 }
372
tls_tx_records(struct sock * sk,int flags)373 int tls_tx_records(struct sock *sk, int flags)
374 {
375 struct tls_context *tls_ctx = tls_get_ctx(sk);
376 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
377 struct tls_rec *rec, *tmp;
378 struct sk_msg *msg_en;
379 int tx_flags, rc = 0;
380
381 if (tls_is_partially_sent_record(tls_ctx)) {
382 rec = list_first_entry(&ctx->tx_list,
383 struct tls_rec, list);
384
385 if (flags == -1)
386 tx_flags = rec->tx_flags;
387 else
388 tx_flags = flags;
389
390 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
391 if (rc)
392 goto tx_err;
393
394 /* Full record has been transmitted.
395 * Remove the head of tx_list
396 */
397 list_del(&rec->list);
398 sk_msg_free(sk, &rec->msg_plaintext);
399 kfree(rec);
400 }
401
402 /* Tx all ready records */
403 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
404 if (READ_ONCE(rec->tx_ready)) {
405 if (flags == -1)
406 tx_flags = rec->tx_flags;
407 else
408 tx_flags = flags;
409
410 msg_en = &rec->msg_encrypted;
411 rc = tls_push_sg(sk, tls_ctx,
412 &msg_en->sg.data[msg_en->sg.curr],
413 0, tx_flags);
414 if (rc)
415 goto tx_err;
416
417 list_del(&rec->list);
418 sk_msg_free(sk, &rec->msg_plaintext);
419 kfree(rec);
420 } else {
421 break;
422 }
423 }
424
425 tx_err:
426 if (rc < 0 && rc != -EAGAIN)
427 tls_err_abort(sk, -EBADMSG);
428
429 return rc;
430 }
431
tls_encrypt_done(void * data,int err)432 static void tls_encrypt_done(void *data, int err)
433 {
434 struct tls_sw_context_tx *ctx;
435 struct tls_context *tls_ctx;
436 struct tls_prot_info *prot;
437 struct tls_rec *rec = data;
438 struct scatterlist *sge;
439 struct sk_msg *msg_en;
440 bool ready = false;
441 struct sock *sk;
442 int pending;
443
444 msg_en = &rec->msg_encrypted;
445
446 sk = rec->sk;
447 tls_ctx = tls_get_ctx(sk);
448 prot = &tls_ctx->prot_info;
449 ctx = tls_sw_ctx_tx(tls_ctx);
450
451 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
452 sge->offset -= prot->prepend_size;
453 sge->length += prot->prepend_size;
454
455 /* Check if error is previously set on socket */
456 if (err || sk->sk_err) {
457 rec = NULL;
458
459 /* If err is already set on socket, return the same code */
460 if (sk->sk_err) {
461 ctx->async_wait.err = -sk->sk_err;
462 } else {
463 ctx->async_wait.err = err;
464 tls_err_abort(sk, err);
465 }
466 }
467
468 if (rec) {
469 struct tls_rec *first_rec;
470
471 /* Mark the record as ready for transmission */
472 smp_store_mb(rec->tx_ready, true);
473
474 /* If received record is at head of tx_list, schedule tx */
475 first_rec = list_first_entry(&ctx->tx_list,
476 struct tls_rec, list);
477 if (rec == first_rec)
478 ready = true;
479 }
480
481 spin_lock_bh(&ctx->encrypt_compl_lock);
482 pending = atomic_dec_return(&ctx->encrypt_pending);
483
484 if (!pending && ctx->async_notify)
485 complete(&ctx->async_wait.completion);
486 spin_unlock_bh(&ctx->encrypt_compl_lock);
487
488 if (!ready)
489 return;
490
491 /* Schedule the transmission */
492 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
493 schedule_delayed_work(&ctx->tx_work.work, 1);
494 }
495
tls_do_encryption(struct sock * sk,struct tls_context * tls_ctx,struct tls_sw_context_tx * ctx,struct aead_request * aead_req,size_t data_len,u32 start)496 static int tls_do_encryption(struct sock *sk,
497 struct tls_context *tls_ctx,
498 struct tls_sw_context_tx *ctx,
499 struct aead_request *aead_req,
500 size_t data_len, u32 start)
501 {
502 struct tls_prot_info *prot = &tls_ctx->prot_info;
503 struct tls_rec *rec = ctx->open_rec;
504 struct sk_msg *msg_en = &rec->msg_encrypted;
505 struct scatterlist *sge = sk_msg_elem(msg_en, start);
506 int rc, iv_offset = 0;
507
508 /* For CCM based ciphers, first byte of IV is a constant */
509 switch (prot->cipher_type) {
510 case TLS_CIPHER_AES_CCM_128:
511 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
512 iv_offset = 1;
513 break;
514 case TLS_CIPHER_SM4_CCM:
515 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
516 iv_offset = 1;
517 break;
518 }
519
520 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
521 prot->iv_size + prot->salt_size);
522
523 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
524 tls_ctx->tx.rec_seq);
525
526 sge->offset += prot->prepend_size;
527 sge->length -= prot->prepend_size;
528
529 msg_en->sg.curr = start;
530
531 aead_request_set_tfm(aead_req, ctx->aead_send);
532 aead_request_set_ad(aead_req, prot->aad_size);
533 aead_request_set_crypt(aead_req, rec->sg_aead_in,
534 rec->sg_aead_out,
535 data_len, rec->iv_data);
536
537 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
538 tls_encrypt_done, rec);
539
540 /* Add the record in tx_list */
541 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
542 atomic_inc(&ctx->encrypt_pending);
543
544 rc = crypto_aead_encrypt(aead_req);
545 if (!rc || rc != -EINPROGRESS) {
546 atomic_dec(&ctx->encrypt_pending);
547 sge->offset -= prot->prepend_size;
548 sge->length += prot->prepend_size;
549 }
550
551 if (!rc) {
552 WRITE_ONCE(rec->tx_ready, true);
553 } else if (rc != -EINPROGRESS) {
554 list_del(&rec->list);
555 return rc;
556 }
557
558 /* Unhook the record from context if encryption is not failure */
559 ctx->open_rec = NULL;
560 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
561 return rc;
562 }
563
tls_split_open_record(struct sock * sk,struct tls_rec * from,struct tls_rec ** to,struct sk_msg * msg_opl,struct sk_msg * msg_oen,u32 split_point,u32 tx_overhead_size,u32 * orig_end)564 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
565 struct tls_rec **to, struct sk_msg *msg_opl,
566 struct sk_msg *msg_oen, u32 split_point,
567 u32 tx_overhead_size, u32 *orig_end)
568 {
569 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
570 struct scatterlist *sge, *osge, *nsge;
571 u32 orig_size = msg_opl->sg.size;
572 struct scatterlist tmp = { };
573 struct sk_msg *msg_npl;
574 struct tls_rec *new;
575 int ret;
576
577 new = tls_get_rec(sk);
578 if (!new)
579 return -ENOMEM;
580 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
581 tx_overhead_size, 0);
582 if (ret < 0) {
583 tls_free_rec(sk, new);
584 return ret;
585 }
586
587 *orig_end = msg_opl->sg.end;
588 i = msg_opl->sg.start;
589 sge = sk_msg_elem(msg_opl, i);
590 while (apply && sge->length) {
591 if (sge->length > apply) {
592 u32 len = sge->length - apply;
593
594 get_page(sg_page(sge));
595 sg_set_page(&tmp, sg_page(sge), len,
596 sge->offset + apply);
597 sge->length = apply;
598 bytes += apply;
599 apply = 0;
600 } else {
601 apply -= sge->length;
602 bytes += sge->length;
603 }
604
605 sk_msg_iter_var_next(i);
606 if (i == msg_opl->sg.end)
607 break;
608 sge = sk_msg_elem(msg_opl, i);
609 }
610
611 msg_opl->sg.end = i;
612 msg_opl->sg.curr = i;
613 msg_opl->sg.copybreak = 0;
614 msg_opl->apply_bytes = 0;
615 msg_opl->sg.size = bytes;
616
617 msg_npl = &new->msg_plaintext;
618 msg_npl->apply_bytes = apply;
619 msg_npl->sg.size = orig_size - bytes;
620
621 j = msg_npl->sg.start;
622 nsge = sk_msg_elem(msg_npl, j);
623 if (tmp.length) {
624 memcpy(nsge, &tmp, sizeof(*nsge));
625 sk_msg_iter_var_next(j);
626 nsge = sk_msg_elem(msg_npl, j);
627 }
628
629 osge = sk_msg_elem(msg_opl, i);
630 while (osge->length) {
631 memcpy(nsge, osge, sizeof(*nsge));
632 sg_unmark_end(nsge);
633 sk_msg_iter_var_next(i);
634 sk_msg_iter_var_next(j);
635 if (i == *orig_end)
636 break;
637 osge = sk_msg_elem(msg_opl, i);
638 nsge = sk_msg_elem(msg_npl, j);
639 }
640
641 msg_npl->sg.end = j;
642 msg_npl->sg.curr = j;
643 msg_npl->sg.copybreak = 0;
644
645 *to = new;
646 return 0;
647 }
648
tls_merge_open_record(struct sock * sk,struct tls_rec * to,struct tls_rec * from,u32 orig_end)649 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
650 struct tls_rec *from, u32 orig_end)
651 {
652 struct sk_msg *msg_npl = &from->msg_plaintext;
653 struct sk_msg *msg_opl = &to->msg_plaintext;
654 struct scatterlist *osge, *nsge;
655 u32 i, j;
656
657 i = msg_opl->sg.end;
658 sk_msg_iter_var_prev(i);
659 j = msg_npl->sg.start;
660
661 osge = sk_msg_elem(msg_opl, i);
662 nsge = sk_msg_elem(msg_npl, j);
663
664 if (sg_page(osge) == sg_page(nsge) &&
665 osge->offset + osge->length == nsge->offset) {
666 osge->length += nsge->length;
667 put_page(sg_page(nsge));
668 }
669
670 msg_opl->sg.end = orig_end;
671 msg_opl->sg.curr = orig_end;
672 msg_opl->sg.copybreak = 0;
673 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
674 msg_opl->sg.size += msg_npl->sg.size;
675
676 sk_msg_free(sk, &to->msg_encrypted);
677 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
678
679 kfree(from);
680 }
681
tls_push_record(struct sock * sk,int flags,unsigned char record_type)682 static int tls_push_record(struct sock *sk, int flags,
683 unsigned char record_type)
684 {
685 struct tls_context *tls_ctx = tls_get_ctx(sk);
686 struct tls_prot_info *prot = &tls_ctx->prot_info;
687 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
688 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
689 u32 i, split_point, orig_end;
690 struct sk_msg *msg_pl, *msg_en;
691 struct aead_request *req;
692 bool split;
693 int rc;
694
695 if (!rec)
696 return 0;
697
698 msg_pl = &rec->msg_plaintext;
699 msg_en = &rec->msg_encrypted;
700
701 split_point = msg_pl->apply_bytes;
702 split = split_point && split_point < msg_pl->sg.size;
703 if (unlikely((!split &&
704 msg_pl->sg.size +
705 prot->overhead_size > msg_en->sg.size) ||
706 (split &&
707 split_point +
708 prot->overhead_size > msg_en->sg.size))) {
709 split = true;
710 split_point = msg_en->sg.size;
711 }
712 if (split) {
713 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
714 split_point, prot->overhead_size,
715 &orig_end);
716 if (rc < 0)
717 return rc;
718 /* This can happen if above tls_split_open_record allocates
719 * a single large encryption buffer instead of two smaller
720 * ones. In this case adjust pointers and continue without
721 * split.
722 */
723 if (!msg_pl->sg.size) {
724 tls_merge_open_record(sk, rec, tmp, orig_end);
725 msg_pl = &rec->msg_plaintext;
726 msg_en = &rec->msg_encrypted;
727 split = false;
728 }
729 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
730 prot->overhead_size);
731 }
732
733 rec->tx_flags = flags;
734 req = &rec->aead_req;
735
736 i = msg_pl->sg.end;
737 sk_msg_iter_var_prev(i);
738
739 rec->content_type = record_type;
740 if (prot->version == TLS_1_3_VERSION) {
741 /* Add content type to end of message. No padding added */
742 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
743 sg_mark_end(&rec->sg_content_type);
744 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
745 &rec->sg_content_type);
746 } else {
747 sg_mark_end(sk_msg_elem(msg_pl, i));
748 }
749
750 if (msg_pl->sg.end < msg_pl->sg.start) {
751 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
752 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
753 msg_pl->sg.data);
754 }
755
756 i = msg_pl->sg.start;
757 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
758
759 i = msg_en->sg.end;
760 sk_msg_iter_var_prev(i);
761 sg_mark_end(sk_msg_elem(msg_en, i));
762
763 i = msg_en->sg.start;
764 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
765
766 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
767 tls_ctx->tx.rec_seq, record_type, prot);
768
769 tls_fill_prepend(tls_ctx,
770 page_address(sg_page(&msg_en->sg.data[i])) +
771 msg_en->sg.data[i].offset,
772 msg_pl->sg.size + prot->tail_size,
773 record_type);
774
775 tls_ctx->pending_open_record_frags = false;
776
777 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
778 msg_pl->sg.size + prot->tail_size, i);
779 if (rc < 0) {
780 if (rc != -EINPROGRESS) {
781 tls_err_abort(sk, -EBADMSG);
782 if (split) {
783 tls_ctx->pending_open_record_frags = true;
784 tls_merge_open_record(sk, rec, tmp, orig_end);
785 }
786 }
787 ctx->async_capable = 1;
788 return rc;
789 } else if (split) {
790 msg_pl = &tmp->msg_plaintext;
791 msg_en = &tmp->msg_encrypted;
792 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
793 tls_ctx->pending_open_record_frags = true;
794 ctx->open_rec = tmp;
795 }
796
797 return tls_tx_records(sk, flags);
798 }
799
bpf_exec_tx_verdict(struct sk_msg * msg,struct sock * sk,bool full_record,u8 record_type,ssize_t * copied,int flags)800 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
801 bool full_record, u8 record_type,
802 ssize_t *copied, int flags)
803 {
804 struct tls_context *tls_ctx = tls_get_ctx(sk);
805 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
806 struct sk_msg msg_redir = { };
807 struct sk_psock *psock;
808 struct sock *sk_redir;
809 struct tls_rec *rec;
810 bool enospc, policy, redir_ingress;
811 int err = 0, send;
812 u32 delta = 0;
813
814 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
815 psock = sk_psock_get(sk);
816 if (!psock || !policy) {
817 err = tls_push_record(sk, flags, record_type);
818 if (err && sk->sk_err == EBADMSG) {
819 *copied -= sk_msg_free(sk, msg);
820 tls_free_open_rec(sk);
821 err = -sk->sk_err;
822 }
823 if (psock)
824 sk_psock_put(sk, psock);
825 return err;
826 }
827 more_data:
828 enospc = sk_msg_full(msg);
829 if (psock->eval == __SK_NONE) {
830 delta = msg->sg.size;
831 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
832 delta -= msg->sg.size;
833 }
834 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
835 !enospc && !full_record) {
836 err = -ENOSPC;
837 goto out_err;
838 }
839 msg->cork_bytes = 0;
840 send = msg->sg.size;
841 if (msg->apply_bytes && msg->apply_bytes < send)
842 send = msg->apply_bytes;
843
844 switch (psock->eval) {
845 case __SK_PASS:
846 err = tls_push_record(sk, flags, record_type);
847 if (err && sk->sk_err == EBADMSG) {
848 *copied -= sk_msg_free(sk, msg);
849 tls_free_open_rec(sk);
850 err = -sk->sk_err;
851 goto out_err;
852 }
853 break;
854 case __SK_REDIRECT:
855 redir_ingress = psock->redir_ingress;
856 sk_redir = psock->sk_redir;
857 memcpy(&msg_redir, msg, sizeof(*msg));
858 if (msg->apply_bytes < send)
859 msg->apply_bytes = 0;
860 else
861 msg->apply_bytes -= send;
862 sk_msg_return_zero(sk, msg, send);
863 msg->sg.size -= send;
864 release_sock(sk);
865 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
866 &msg_redir, send, flags);
867 lock_sock(sk);
868 if (err < 0) {
869 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
870 msg->sg.size = 0;
871 }
872 if (msg->sg.size == 0)
873 tls_free_open_rec(sk);
874 break;
875 case __SK_DROP:
876 default:
877 sk_msg_free_partial(sk, msg, send);
878 if (msg->apply_bytes < send)
879 msg->apply_bytes = 0;
880 else
881 msg->apply_bytes -= send;
882 if (msg->sg.size == 0)
883 tls_free_open_rec(sk);
884 *copied -= (send + delta);
885 err = -EACCES;
886 }
887
888 if (likely(!err)) {
889 bool reset_eval = !ctx->open_rec;
890
891 rec = ctx->open_rec;
892 if (rec) {
893 msg = &rec->msg_plaintext;
894 if (!msg->apply_bytes)
895 reset_eval = true;
896 }
897 if (reset_eval) {
898 psock->eval = __SK_NONE;
899 if (psock->sk_redir) {
900 sock_put(psock->sk_redir);
901 psock->sk_redir = NULL;
902 }
903 }
904 if (rec)
905 goto more_data;
906 }
907 out_err:
908 sk_psock_put(sk, psock);
909 return err;
910 }
911
tls_sw_push_pending_record(struct sock * sk,int flags)912 static int tls_sw_push_pending_record(struct sock *sk, int flags)
913 {
914 struct tls_context *tls_ctx = tls_get_ctx(sk);
915 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
916 struct tls_rec *rec = ctx->open_rec;
917 struct sk_msg *msg_pl;
918 size_t copied;
919
920 if (!rec)
921 return 0;
922
923 msg_pl = &rec->msg_plaintext;
924 copied = msg_pl->sg.size;
925 if (!copied)
926 return 0;
927
928 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
929 &copied, flags);
930 }
931
tls_sw_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)932 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
933 {
934 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
935 struct tls_context *tls_ctx = tls_get_ctx(sk);
936 struct tls_prot_info *prot = &tls_ctx->prot_info;
937 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
938 bool async_capable = ctx->async_capable;
939 unsigned char record_type = TLS_RECORD_TYPE_DATA;
940 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
941 bool eor = !(msg->msg_flags & MSG_MORE);
942 size_t try_to_copy;
943 ssize_t copied = 0;
944 struct sk_msg *msg_pl, *msg_en;
945 struct tls_rec *rec;
946 int required_size;
947 int num_async = 0;
948 bool full_record;
949 int record_room;
950 int num_zc = 0;
951 int orig_size;
952 int ret = 0;
953 int pending;
954
955 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
956 MSG_CMSG_COMPAT))
957 return -EOPNOTSUPP;
958
959 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
960 if (ret)
961 return ret;
962 lock_sock(sk);
963
964 if (unlikely(msg->msg_controllen)) {
965 ret = tls_process_cmsg(sk, msg, &record_type);
966 if (ret) {
967 if (ret == -EINPROGRESS)
968 num_async++;
969 else if (ret != -EAGAIN)
970 goto send_end;
971 }
972 }
973
974 while (msg_data_left(msg)) {
975 if (sk->sk_err) {
976 ret = -sk->sk_err;
977 goto send_end;
978 }
979
980 if (ctx->open_rec)
981 rec = ctx->open_rec;
982 else
983 rec = ctx->open_rec = tls_get_rec(sk);
984 if (!rec) {
985 ret = -ENOMEM;
986 goto send_end;
987 }
988
989 msg_pl = &rec->msg_plaintext;
990 msg_en = &rec->msg_encrypted;
991
992 orig_size = msg_pl->sg.size;
993 full_record = false;
994 try_to_copy = msg_data_left(msg);
995 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
996 if (try_to_copy >= record_room) {
997 try_to_copy = record_room;
998 full_record = true;
999 }
1000
1001 required_size = msg_pl->sg.size + try_to_copy +
1002 prot->overhead_size;
1003
1004 if (!sk_stream_memory_free(sk))
1005 goto wait_for_sndbuf;
1006
1007 alloc_encrypted:
1008 ret = tls_alloc_encrypted_msg(sk, required_size);
1009 if (ret) {
1010 if (ret != -ENOSPC)
1011 goto wait_for_memory;
1012
1013 /* Adjust try_to_copy according to the amount that was
1014 * actually allocated. The difference is due
1015 * to max sg elements limit
1016 */
1017 try_to_copy -= required_size - msg_en->sg.size;
1018 full_record = true;
1019 }
1020
1021 if (!is_kvec && (full_record || eor) && !async_capable) {
1022 u32 first = msg_pl->sg.end;
1023
1024 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1025 msg_pl, try_to_copy);
1026 if (ret)
1027 goto fallback_to_reg_send;
1028
1029 num_zc++;
1030 copied += try_to_copy;
1031
1032 sk_msg_sg_copy_set(msg_pl, first);
1033 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1034 record_type, &copied,
1035 msg->msg_flags);
1036 if (ret) {
1037 if (ret == -EINPROGRESS)
1038 num_async++;
1039 else if (ret == -ENOMEM)
1040 goto wait_for_memory;
1041 else if (ctx->open_rec && ret == -ENOSPC)
1042 goto rollback_iter;
1043 else if (ret != -EAGAIN)
1044 goto send_end;
1045 }
1046 continue;
1047 rollback_iter:
1048 copied -= try_to_copy;
1049 sk_msg_sg_copy_clear(msg_pl, first);
1050 iov_iter_revert(&msg->msg_iter,
1051 msg_pl->sg.size - orig_size);
1052 fallback_to_reg_send:
1053 sk_msg_trim(sk, msg_pl, orig_size);
1054 }
1055
1056 required_size = msg_pl->sg.size + try_to_copy;
1057
1058 ret = tls_clone_plaintext_msg(sk, required_size);
1059 if (ret) {
1060 if (ret != -ENOSPC)
1061 goto send_end;
1062
1063 /* Adjust try_to_copy according to the amount that was
1064 * actually allocated. The difference is due
1065 * to max sg elements limit
1066 */
1067 try_to_copy -= required_size - msg_pl->sg.size;
1068 full_record = true;
1069 sk_msg_trim(sk, msg_en,
1070 msg_pl->sg.size + prot->overhead_size);
1071 }
1072
1073 if (try_to_copy) {
1074 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1075 msg_pl, try_to_copy);
1076 if (ret < 0)
1077 goto trim_sgl;
1078 }
1079
1080 /* Open records defined only if successfully copied, otherwise
1081 * we would trim the sg but not reset the open record frags.
1082 */
1083 tls_ctx->pending_open_record_frags = true;
1084 copied += try_to_copy;
1085 if (full_record || eor) {
1086 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1087 record_type, &copied,
1088 msg->msg_flags);
1089 if (ret) {
1090 if (ret == -EINPROGRESS)
1091 num_async++;
1092 else if (ret == -ENOMEM)
1093 goto wait_for_memory;
1094 else if (ret != -EAGAIN) {
1095 if (ret == -ENOSPC)
1096 ret = 0;
1097 goto send_end;
1098 }
1099 }
1100 }
1101
1102 continue;
1103
1104 wait_for_sndbuf:
1105 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1106 wait_for_memory:
1107 ret = sk_stream_wait_memory(sk, &timeo);
1108 if (ret) {
1109 trim_sgl:
1110 if (ctx->open_rec)
1111 tls_trim_both_msgs(sk, orig_size);
1112 goto send_end;
1113 }
1114
1115 if (ctx->open_rec && msg_en->sg.size < required_size)
1116 goto alloc_encrypted;
1117 }
1118
1119 if (!num_async) {
1120 goto send_end;
1121 } else if (num_zc) {
1122 /* Wait for pending encryptions to get completed */
1123 spin_lock_bh(&ctx->encrypt_compl_lock);
1124 ctx->async_notify = true;
1125
1126 pending = atomic_read(&ctx->encrypt_pending);
1127 spin_unlock_bh(&ctx->encrypt_compl_lock);
1128 if (pending)
1129 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1130 else
1131 reinit_completion(&ctx->async_wait.completion);
1132
1133 /* There can be no concurrent accesses, since we have no
1134 * pending encrypt operations
1135 */
1136 WRITE_ONCE(ctx->async_notify, false);
1137
1138 if (ctx->async_wait.err) {
1139 ret = ctx->async_wait.err;
1140 copied = 0;
1141 }
1142 }
1143
1144 /* Transmit if any encryptions have completed */
1145 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1146 cancel_delayed_work(&ctx->tx_work.work);
1147 tls_tx_records(sk, msg->msg_flags);
1148 }
1149
1150 send_end:
1151 ret = sk_stream_error(sk, msg->msg_flags, ret);
1152
1153 release_sock(sk);
1154 mutex_unlock(&tls_ctx->tx_lock);
1155 return copied > 0 ? copied : ret;
1156 }
1157
tls_sw_do_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1158 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1159 int offset, size_t size, int flags)
1160 {
1161 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1162 struct tls_context *tls_ctx = tls_get_ctx(sk);
1163 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1164 struct tls_prot_info *prot = &tls_ctx->prot_info;
1165 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1166 struct sk_msg *msg_pl;
1167 struct tls_rec *rec;
1168 int num_async = 0;
1169 ssize_t copied = 0;
1170 bool full_record;
1171 int record_room;
1172 int ret = 0;
1173 bool eor;
1174
1175 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1176 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1177
1178 /* Call the sk_stream functions to manage the sndbuf mem. */
1179 while (size > 0) {
1180 size_t copy, required_size;
1181
1182 if (sk->sk_err) {
1183 ret = -sk->sk_err;
1184 goto sendpage_end;
1185 }
1186
1187 if (ctx->open_rec)
1188 rec = ctx->open_rec;
1189 else
1190 rec = ctx->open_rec = tls_get_rec(sk);
1191 if (!rec) {
1192 ret = -ENOMEM;
1193 goto sendpage_end;
1194 }
1195
1196 msg_pl = &rec->msg_plaintext;
1197
1198 full_record = false;
1199 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1200 copy = size;
1201 if (copy >= record_room) {
1202 copy = record_room;
1203 full_record = true;
1204 }
1205
1206 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1207
1208 if (!sk_stream_memory_free(sk))
1209 goto wait_for_sndbuf;
1210 alloc_payload:
1211 ret = tls_alloc_encrypted_msg(sk, required_size);
1212 if (ret) {
1213 if (ret != -ENOSPC)
1214 goto wait_for_memory;
1215
1216 /* Adjust copy according to the amount that was
1217 * actually allocated. The difference is due
1218 * to max sg elements limit
1219 */
1220 copy -= required_size - msg_pl->sg.size;
1221 full_record = true;
1222 }
1223
1224 sk_msg_page_add(msg_pl, page, copy, offset);
1225 sk_mem_charge(sk, copy);
1226
1227 offset += copy;
1228 size -= copy;
1229 copied += copy;
1230
1231 tls_ctx->pending_open_record_frags = true;
1232 if (full_record || eor || sk_msg_full(msg_pl)) {
1233 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1234 record_type, &copied, flags);
1235 if (ret) {
1236 if (ret == -EINPROGRESS)
1237 num_async++;
1238 else if (ret == -ENOMEM)
1239 goto wait_for_memory;
1240 else if (ret != -EAGAIN) {
1241 if (ret == -ENOSPC)
1242 ret = 0;
1243 goto sendpage_end;
1244 }
1245 }
1246 }
1247 continue;
1248 wait_for_sndbuf:
1249 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1250 wait_for_memory:
1251 ret = sk_stream_wait_memory(sk, &timeo);
1252 if (ret) {
1253 if (ctx->open_rec)
1254 tls_trim_both_msgs(sk, msg_pl->sg.size);
1255 goto sendpage_end;
1256 }
1257
1258 if (ctx->open_rec)
1259 goto alloc_payload;
1260 }
1261
1262 if (num_async) {
1263 /* Transmit if any encryptions have completed */
1264 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1265 cancel_delayed_work(&ctx->tx_work.work);
1266 tls_tx_records(sk, flags);
1267 }
1268 }
1269 sendpage_end:
1270 ret = sk_stream_error(sk, flags, ret);
1271 return copied > 0 ? copied : ret;
1272 }
1273
tls_sw_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1274 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1275 int offset, size_t size, int flags)
1276 {
1277 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1278 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1279 MSG_NO_SHARED_FRAGS))
1280 return -EOPNOTSUPP;
1281
1282 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1283 }
1284
tls_sw_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1285 int tls_sw_sendpage(struct sock *sk, struct page *page,
1286 int offset, size_t size, int flags)
1287 {
1288 struct tls_context *tls_ctx = tls_get_ctx(sk);
1289 int ret;
1290
1291 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1292 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1293 return -EOPNOTSUPP;
1294
1295 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1296 if (ret)
1297 return ret;
1298 lock_sock(sk);
1299 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1300 release_sock(sk);
1301 mutex_unlock(&tls_ctx->tx_lock);
1302 return ret;
1303 }
1304
1305 static int
tls_rx_rec_wait(struct sock * sk,struct sk_psock * psock,bool nonblock,bool released)1306 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1307 bool released)
1308 {
1309 struct tls_context *tls_ctx = tls_get_ctx(sk);
1310 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1311 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1312 long timeo;
1313
1314 timeo = sock_rcvtimeo(sk, nonblock);
1315
1316 while (!tls_strp_msg_ready(ctx)) {
1317 if (!sk_psock_queue_empty(psock))
1318 return 0;
1319
1320 if (sk->sk_err)
1321 return sock_error(sk);
1322
1323 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1324 tls_strp_check_rcv(&ctx->strp);
1325 if (tls_strp_msg_ready(ctx))
1326 break;
1327 }
1328
1329 if (sk->sk_shutdown & RCV_SHUTDOWN)
1330 return 0;
1331
1332 if (sock_flag(sk, SOCK_DONE))
1333 return 0;
1334
1335 if (!timeo)
1336 return -EAGAIN;
1337
1338 released = true;
1339 add_wait_queue(sk_sleep(sk), &wait);
1340 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1341 sk_wait_event(sk, &timeo,
1342 tls_strp_msg_ready(ctx) ||
1343 !sk_psock_queue_empty(psock),
1344 &wait);
1345 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1346 remove_wait_queue(sk_sleep(sk), &wait);
1347
1348 /* Handle signals */
1349 if (signal_pending(current))
1350 return sock_intr_errno(timeo);
1351 }
1352
1353 tls_strp_msg_load(&ctx->strp, released);
1354
1355 return 1;
1356 }
1357
tls_setup_from_iter(struct iov_iter * from,int length,int * pages_used,struct scatterlist * to,int to_max_pages)1358 static int tls_setup_from_iter(struct iov_iter *from,
1359 int length, int *pages_used,
1360 struct scatterlist *to,
1361 int to_max_pages)
1362 {
1363 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1364 struct page *pages[MAX_SKB_FRAGS];
1365 unsigned int size = 0;
1366 ssize_t copied, use;
1367 size_t offset;
1368
1369 while (length > 0) {
1370 i = 0;
1371 maxpages = to_max_pages - num_elem;
1372 if (maxpages == 0) {
1373 rc = -EFAULT;
1374 goto out;
1375 }
1376 copied = iov_iter_get_pages2(from, pages,
1377 length,
1378 maxpages, &offset);
1379 if (copied <= 0) {
1380 rc = -EFAULT;
1381 goto out;
1382 }
1383
1384 length -= copied;
1385 size += copied;
1386 while (copied) {
1387 use = min_t(int, copied, PAGE_SIZE - offset);
1388
1389 sg_set_page(&to[num_elem],
1390 pages[i], use, offset);
1391 sg_unmark_end(&to[num_elem]);
1392 /* We do not uncharge memory from this API */
1393
1394 offset = 0;
1395 copied -= use;
1396
1397 i++;
1398 num_elem++;
1399 }
1400 }
1401 /* Mark the end in the last sg entry if newly added */
1402 if (num_elem > *pages_used)
1403 sg_mark_end(&to[num_elem - 1]);
1404 out:
1405 if (rc)
1406 iov_iter_revert(from, size);
1407 *pages_used = num_elem;
1408
1409 return rc;
1410 }
1411
1412 static struct sk_buff *
tls_alloc_clrtxt_skb(struct sock * sk,struct sk_buff * skb,unsigned int full_len)1413 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1414 unsigned int full_len)
1415 {
1416 struct strp_msg *clr_rxm;
1417 struct sk_buff *clr_skb;
1418 int err;
1419
1420 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1421 &err, sk->sk_allocation);
1422 if (!clr_skb)
1423 return NULL;
1424
1425 skb_copy_header(clr_skb, skb);
1426 clr_skb->len = full_len;
1427 clr_skb->data_len = full_len;
1428
1429 clr_rxm = strp_msg(clr_skb);
1430 clr_rxm->offset = 0;
1431
1432 return clr_skb;
1433 }
1434
1435 /* Decrypt handlers
1436 *
1437 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1438 * They must transform the darg in/out argument are as follows:
1439 * | Input | Output
1440 * -------------------------------------------------------------------
1441 * zc | Zero-copy decrypt allowed | Zero-copy performed
1442 * async | Async decrypt allowed | Async crypto used / in progress
1443 * skb | * | Output skb
1444 *
1445 * If ZC decryption was performed darg.skb will point to the input skb.
1446 */
1447
1448 /* This function decrypts the input skb into either out_iov or in out_sg
1449 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1450 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1451 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1452 * NULL, then the decryption happens inside skb buffers itself, i.e.
1453 * zero-copy gets disabled and 'darg->zc' is updated.
1454 */
tls_decrypt_sg(struct sock * sk,struct iov_iter * out_iov,struct scatterlist * out_sg,struct tls_decrypt_arg * darg)1455 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1456 struct scatterlist *out_sg,
1457 struct tls_decrypt_arg *darg)
1458 {
1459 struct tls_context *tls_ctx = tls_get_ctx(sk);
1460 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1461 struct tls_prot_info *prot = &tls_ctx->prot_info;
1462 int n_sgin, n_sgout, aead_size, err, pages = 0;
1463 struct sk_buff *skb = tls_strp_msg(ctx);
1464 const struct strp_msg *rxm = strp_msg(skb);
1465 const struct tls_msg *tlm = tls_msg(skb);
1466 struct aead_request *aead_req;
1467 struct scatterlist *sgin = NULL;
1468 struct scatterlist *sgout = NULL;
1469 const int data_len = rxm->full_len - prot->overhead_size;
1470 int tail_pages = !!prot->tail_size;
1471 struct tls_decrypt_ctx *dctx;
1472 struct sk_buff *clear_skb;
1473 int iv_offset = 0;
1474 u8 *mem;
1475
1476 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1477 rxm->full_len - prot->prepend_size);
1478 if (n_sgin < 1)
1479 return n_sgin ?: -EBADMSG;
1480
1481 if (darg->zc && (out_iov || out_sg)) {
1482 clear_skb = NULL;
1483
1484 if (out_iov)
1485 n_sgout = 1 + tail_pages +
1486 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1487 else
1488 n_sgout = sg_nents(out_sg);
1489 } else {
1490 darg->zc = false;
1491
1492 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1493 if (!clear_skb)
1494 return -ENOMEM;
1495
1496 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1497 }
1498
1499 /* Increment to accommodate AAD */
1500 n_sgin = n_sgin + 1;
1501
1502 /* Allocate a single block of memory which contains
1503 * aead_req || tls_decrypt_ctx.
1504 * Both structs are variable length.
1505 */
1506 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1507 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1508 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1509 sk->sk_allocation);
1510 if (!mem) {
1511 err = -ENOMEM;
1512 goto exit_free_skb;
1513 }
1514
1515 /* Segment the allocated memory */
1516 aead_req = (struct aead_request *)mem;
1517 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1518 dctx->sk = sk;
1519 sgin = &dctx->sg[0];
1520 sgout = &dctx->sg[n_sgin];
1521
1522 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1523 switch (prot->cipher_type) {
1524 case TLS_CIPHER_AES_CCM_128:
1525 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1526 iv_offset = 1;
1527 break;
1528 case TLS_CIPHER_SM4_CCM:
1529 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1530 iv_offset = 1;
1531 break;
1532 }
1533
1534 /* Prepare IV */
1535 if (prot->version == TLS_1_3_VERSION ||
1536 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1537 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1538 prot->iv_size + prot->salt_size);
1539 } else {
1540 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1541 &dctx->iv[iv_offset] + prot->salt_size,
1542 prot->iv_size);
1543 if (err < 0)
1544 goto exit_free;
1545 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1546 }
1547 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1548
1549 /* Prepare AAD */
1550 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1551 prot->tail_size,
1552 tls_ctx->rx.rec_seq, tlm->control, prot);
1553
1554 /* Prepare sgin */
1555 sg_init_table(sgin, n_sgin);
1556 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1557 err = skb_to_sgvec(skb, &sgin[1],
1558 rxm->offset + prot->prepend_size,
1559 rxm->full_len - prot->prepend_size);
1560 if (err < 0)
1561 goto exit_free;
1562
1563 if (clear_skb) {
1564 sg_init_table(sgout, n_sgout);
1565 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1566
1567 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1568 data_len + prot->tail_size);
1569 if (err < 0)
1570 goto exit_free;
1571 } else if (out_iov) {
1572 sg_init_table(sgout, n_sgout);
1573 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1574
1575 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1576 (n_sgout - 1 - tail_pages));
1577 if (err < 0)
1578 goto exit_free_pages;
1579
1580 if (prot->tail_size) {
1581 sg_unmark_end(&sgout[pages]);
1582 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1583 prot->tail_size);
1584 sg_mark_end(&sgout[pages + 1]);
1585 }
1586 } else if (out_sg) {
1587 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1588 }
1589
1590 /* Prepare and submit AEAD request */
1591 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1592 data_len + prot->tail_size, aead_req, darg);
1593 if (err)
1594 goto exit_free_pages;
1595
1596 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1597 clear_skb = NULL;
1598
1599 if (unlikely(darg->async)) {
1600 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1601 if (err)
1602 __skb_queue_tail(&ctx->async_hold, darg->skb);
1603 return err;
1604 }
1605
1606 if (prot->tail_size)
1607 darg->tail = dctx->tail;
1608
1609 exit_free_pages:
1610 /* Release the pages in case iov was mapped to pages */
1611 for (; pages > 0; pages--)
1612 put_page(sg_page(&sgout[pages]));
1613 exit_free:
1614 kfree(mem);
1615 exit_free_skb:
1616 consume_skb(clear_skb);
1617 return err;
1618 }
1619
1620 static int
tls_decrypt_sw(struct sock * sk,struct tls_context * tls_ctx,struct msghdr * msg,struct tls_decrypt_arg * darg)1621 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1622 struct msghdr *msg, struct tls_decrypt_arg *darg)
1623 {
1624 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1625 struct tls_prot_info *prot = &tls_ctx->prot_info;
1626 struct strp_msg *rxm;
1627 int pad, err;
1628
1629 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1630 if (err < 0) {
1631 if (err == -EBADMSG)
1632 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1633 return err;
1634 }
1635 /* keep going even for ->async, the code below is TLS 1.3 */
1636
1637 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1638 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1639 darg->tail != TLS_RECORD_TYPE_DATA)) {
1640 darg->zc = false;
1641 if (!darg->tail)
1642 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1643 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1644 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1645 }
1646
1647 pad = tls_padding_length(prot, darg->skb, darg);
1648 if (pad < 0) {
1649 if (darg->skb != tls_strp_msg(ctx))
1650 consume_skb(darg->skb);
1651 return pad;
1652 }
1653
1654 rxm = strp_msg(darg->skb);
1655 rxm->full_len -= pad;
1656
1657 return 0;
1658 }
1659
1660 static int
tls_decrypt_device(struct sock * sk,struct msghdr * msg,struct tls_context * tls_ctx,struct tls_decrypt_arg * darg)1661 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1662 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1663 {
1664 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1665 struct tls_prot_info *prot = &tls_ctx->prot_info;
1666 struct strp_msg *rxm;
1667 int pad, err;
1668
1669 if (tls_ctx->rx_conf != TLS_HW)
1670 return 0;
1671
1672 err = tls_device_decrypted(sk, tls_ctx);
1673 if (err <= 0)
1674 return err;
1675
1676 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1677 if (pad < 0)
1678 return pad;
1679
1680 darg->async = false;
1681 darg->skb = tls_strp_msg(ctx);
1682 /* ->zc downgrade check, in case TLS 1.3 gets here */
1683 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1684 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1685
1686 rxm = strp_msg(darg->skb);
1687 rxm->full_len -= pad;
1688
1689 if (!darg->zc) {
1690 /* Non-ZC case needs a real skb */
1691 darg->skb = tls_strp_msg_detach(ctx);
1692 if (!darg->skb)
1693 return -ENOMEM;
1694 } else {
1695 unsigned int off, len;
1696
1697 /* In ZC case nobody cares about the output skb.
1698 * Just copy the data here. Note the skb is not fully trimmed.
1699 */
1700 off = rxm->offset + prot->prepend_size;
1701 len = rxm->full_len - prot->overhead_size;
1702
1703 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1704 if (err)
1705 return err;
1706 }
1707 return 1;
1708 }
1709
tls_rx_one_record(struct sock * sk,struct msghdr * msg,struct tls_decrypt_arg * darg)1710 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1711 struct tls_decrypt_arg *darg)
1712 {
1713 struct tls_context *tls_ctx = tls_get_ctx(sk);
1714 struct tls_prot_info *prot = &tls_ctx->prot_info;
1715 struct strp_msg *rxm;
1716 int err;
1717
1718 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1719 if (!err)
1720 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1721 if (err < 0)
1722 return err;
1723
1724 rxm = strp_msg(darg->skb);
1725 rxm->offset += prot->prepend_size;
1726 rxm->full_len -= prot->overhead_size;
1727 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1728
1729 return 0;
1730 }
1731
decrypt_skb(struct sock * sk,struct scatterlist * sgout)1732 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1733 {
1734 struct tls_decrypt_arg darg = { .zc = true, };
1735
1736 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1737 }
1738
tls_record_content_type(struct msghdr * msg,struct tls_msg * tlm,u8 * control)1739 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1740 u8 *control)
1741 {
1742 int err;
1743
1744 if (!*control) {
1745 *control = tlm->control;
1746 if (!*control)
1747 return -EBADMSG;
1748
1749 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1750 sizeof(*control), control);
1751 if (*control != TLS_RECORD_TYPE_DATA) {
1752 if (err || msg->msg_flags & MSG_CTRUNC)
1753 return -EIO;
1754 }
1755 } else if (*control != tlm->control) {
1756 return 0;
1757 }
1758
1759 return 1;
1760 }
1761
tls_rx_rec_done(struct tls_sw_context_rx * ctx)1762 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1763 {
1764 tls_strp_msg_done(&ctx->strp);
1765 }
1766
1767 /* This function traverses the rx_list in tls receive context to copies the
1768 * decrypted records into the buffer provided by caller zero copy is not
1769 * true. Further, the records are removed from the rx_list if it is not a peek
1770 * case and the record has been consumed completely.
1771 */
process_rx_list(struct tls_sw_context_rx * ctx,struct msghdr * msg,u8 * control,size_t skip,size_t len,bool is_peek)1772 static int process_rx_list(struct tls_sw_context_rx *ctx,
1773 struct msghdr *msg,
1774 u8 *control,
1775 size_t skip,
1776 size_t len,
1777 bool is_peek)
1778 {
1779 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1780 struct tls_msg *tlm;
1781 ssize_t copied = 0;
1782 int err;
1783
1784 while (skip && skb) {
1785 struct strp_msg *rxm = strp_msg(skb);
1786 tlm = tls_msg(skb);
1787
1788 err = tls_record_content_type(msg, tlm, control);
1789 if (err <= 0)
1790 goto out;
1791
1792 if (skip < rxm->full_len)
1793 break;
1794
1795 skip = skip - rxm->full_len;
1796 skb = skb_peek_next(skb, &ctx->rx_list);
1797 }
1798
1799 while (len && skb) {
1800 struct sk_buff *next_skb;
1801 struct strp_msg *rxm = strp_msg(skb);
1802 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1803
1804 tlm = tls_msg(skb);
1805
1806 err = tls_record_content_type(msg, tlm, control);
1807 if (err <= 0)
1808 goto out;
1809
1810 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1811 msg, chunk);
1812 if (err < 0)
1813 goto out;
1814
1815 len = len - chunk;
1816 copied = copied + chunk;
1817
1818 /* Consume the data from record if it is non-peek case*/
1819 if (!is_peek) {
1820 rxm->offset = rxm->offset + chunk;
1821 rxm->full_len = rxm->full_len - chunk;
1822
1823 /* Return if there is unconsumed data in the record */
1824 if (rxm->full_len - skip)
1825 break;
1826 }
1827
1828 /* The remaining skip-bytes must lie in 1st record in rx_list.
1829 * So from the 2nd record, 'skip' should be 0.
1830 */
1831 skip = 0;
1832
1833 if (msg)
1834 msg->msg_flags |= MSG_EOR;
1835
1836 next_skb = skb_peek_next(skb, &ctx->rx_list);
1837
1838 if (!is_peek) {
1839 __skb_unlink(skb, &ctx->rx_list);
1840 consume_skb(skb);
1841 }
1842
1843 skb = next_skb;
1844 }
1845 err = 0;
1846
1847 out:
1848 return copied ? : err;
1849 }
1850
1851 static bool
tls_read_flush_backlog(struct sock * sk,struct tls_prot_info * prot,size_t len_left,size_t decrypted,ssize_t done,size_t * flushed_at)1852 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1853 size_t len_left, size_t decrypted, ssize_t done,
1854 size_t *flushed_at)
1855 {
1856 size_t max_rec;
1857
1858 if (len_left <= decrypted)
1859 return false;
1860
1861 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1862 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1863 return false;
1864
1865 *flushed_at = done;
1866 return sk_flush_backlog(sk);
1867 }
1868
tls_rx_reader_lock(struct sock * sk,struct tls_sw_context_rx * ctx,bool nonblock)1869 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1870 bool nonblock)
1871 {
1872 long timeo;
1873 int err;
1874
1875 lock_sock(sk);
1876
1877 timeo = sock_rcvtimeo(sk, nonblock);
1878
1879 while (unlikely(ctx->reader_present)) {
1880 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1881
1882 ctx->reader_contended = 1;
1883
1884 add_wait_queue(&ctx->wq, &wait);
1885 sk_wait_event(sk, &timeo,
1886 !READ_ONCE(ctx->reader_present), &wait);
1887 remove_wait_queue(&ctx->wq, &wait);
1888
1889 if (timeo <= 0) {
1890 err = -EAGAIN;
1891 goto err_unlock;
1892 }
1893 if (signal_pending(current)) {
1894 err = sock_intr_errno(timeo);
1895 goto err_unlock;
1896 }
1897 }
1898
1899 WRITE_ONCE(ctx->reader_present, 1);
1900
1901 return 0;
1902
1903 err_unlock:
1904 release_sock(sk);
1905 return err;
1906 }
1907
tls_rx_reader_unlock(struct sock * sk,struct tls_sw_context_rx * ctx)1908 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1909 {
1910 if (unlikely(ctx->reader_contended)) {
1911 if (wq_has_sleeper(&ctx->wq))
1912 wake_up(&ctx->wq);
1913 else
1914 ctx->reader_contended = 0;
1915
1916 WARN_ON_ONCE(!ctx->reader_present);
1917 }
1918
1919 WRITE_ONCE(ctx->reader_present, 0);
1920 release_sock(sk);
1921 }
1922
tls_sw_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1923 int tls_sw_recvmsg(struct sock *sk,
1924 struct msghdr *msg,
1925 size_t len,
1926 int flags,
1927 int *addr_len)
1928 {
1929 struct tls_context *tls_ctx = tls_get_ctx(sk);
1930 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1931 struct tls_prot_info *prot = &tls_ctx->prot_info;
1932 ssize_t decrypted = 0, async_copy_bytes = 0;
1933 struct sk_psock *psock;
1934 unsigned char control = 0;
1935 size_t flushed_at = 0;
1936 struct strp_msg *rxm;
1937 struct tls_msg *tlm;
1938 ssize_t copied = 0;
1939 bool async = false;
1940 int target, err;
1941 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1942 bool is_peek = flags & MSG_PEEK;
1943 bool released = true;
1944 bool bpf_strp_enabled;
1945 bool zc_capable;
1946
1947 if (unlikely(flags & MSG_ERRQUEUE))
1948 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1949
1950 psock = sk_psock_get(sk);
1951 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1952 if (err < 0)
1953 return err;
1954 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1955
1956 /* If crypto failed the connection is broken */
1957 err = ctx->async_wait.err;
1958 if (err)
1959 goto end;
1960
1961 /* Process pending decrypted records. It must be non-zero-copy */
1962 err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1963 if (err < 0)
1964 goto end;
1965
1966 copied = err;
1967 if (len <= copied)
1968 goto end;
1969
1970 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1971 len = len - copied;
1972
1973 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1974 ctx->zc_capable;
1975 decrypted = 0;
1976 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1977 struct tls_decrypt_arg darg;
1978 int to_decrypt, chunk;
1979
1980 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1981 released);
1982 if (err <= 0) {
1983 if (psock) {
1984 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1985 flags);
1986 if (chunk > 0) {
1987 decrypted += chunk;
1988 len -= chunk;
1989 continue;
1990 }
1991 }
1992 goto recv_end;
1993 }
1994
1995 memset(&darg.inargs, 0, sizeof(darg.inargs));
1996
1997 rxm = strp_msg(tls_strp_msg(ctx));
1998 tlm = tls_msg(tls_strp_msg(ctx));
1999
2000 to_decrypt = rxm->full_len - prot->overhead_size;
2001
2002 if (zc_capable && to_decrypt <= len &&
2003 tlm->control == TLS_RECORD_TYPE_DATA)
2004 darg.zc = true;
2005
2006 /* Do not use async mode if record is non-data */
2007 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2008 darg.async = ctx->async_capable;
2009 else
2010 darg.async = false;
2011
2012 err = tls_rx_one_record(sk, msg, &darg);
2013 if (err < 0) {
2014 tls_err_abort(sk, -EBADMSG);
2015 goto recv_end;
2016 }
2017
2018 async |= darg.async;
2019
2020 /* If the type of records being processed is not known yet,
2021 * set it to record type just dequeued. If it is already known,
2022 * but does not match the record type just dequeued, go to end.
2023 * We always get record type here since for tls1.2, record type
2024 * is known just after record is dequeued from stream parser.
2025 * For tls1.3, we disable async.
2026 */
2027 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2028 if (err <= 0) {
2029 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2030 tls_rx_rec_done(ctx);
2031 put_on_rx_list_err:
2032 __skb_queue_tail(&ctx->rx_list, darg.skb);
2033 goto recv_end;
2034 }
2035
2036 /* periodically flush backlog, and feed strparser */
2037 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2038 decrypted + copied,
2039 &flushed_at);
2040
2041 /* TLS 1.3 may have updated the length by more than overhead */
2042 rxm = strp_msg(darg.skb);
2043 chunk = rxm->full_len;
2044 tls_rx_rec_done(ctx);
2045
2046 if (!darg.zc) {
2047 bool partially_consumed = chunk > len;
2048 struct sk_buff *skb = darg.skb;
2049
2050 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2051
2052 if (async) {
2053 /* TLS 1.2-only, to_decrypt must be text len */
2054 chunk = min_t(int, to_decrypt, len);
2055 async_copy_bytes += chunk;
2056 put_on_rx_list:
2057 decrypted += chunk;
2058 len -= chunk;
2059 __skb_queue_tail(&ctx->rx_list, skb);
2060 continue;
2061 }
2062
2063 if (bpf_strp_enabled) {
2064 released = true;
2065 err = sk_psock_tls_strp_read(psock, skb);
2066 if (err != __SK_PASS) {
2067 rxm->offset = rxm->offset + rxm->full_len;
2068 rxm->full_len = 0;
2069 if (err == __SK_DROP)
2070 consume_skb(skb);
2071 continue;
2072 }
2073 }
2074
2075 if (partially_consumed)
2076 chunk = len;
2077
2078 err = skb_copy_datagram_msg(skb, rxm->offset,
2079 msg, chunk);
2080 if (err < 0)
2081 goto put_on_rx_list_err;
2082
2083 if (is_peek)
2084 goto put_on_rx_list;
2085
2086 if (partially_consumed) {
2087 rxm->offset += chunk;
2088 rxm->full_len -= chunk;
2089 goto put_on_rx_list;
2090 }
2091
2092 consume_skb(skb);
2093 }
2094
2095 decrypted += chunk;
2096 len -= chunk;
2097
2098 /* Return full control message to userspace before trying
2099 * to parse another message type
2100 */
2101 msg->msg_flags |= MSG_EOR;
2102 if (control != TLS_RECORD_TYPE_DATA)
2103 break;
2104 }
2105
2106 recv_end:
2107 if (async) {
2108 int ret, pending;
2109
2110 /* Wait for all previously submitted records to be decrypted */
2111 spin_lock_bh(&ctx->decrypt_compl_lock);
2112 reinit_completion(&ctx->async_wait.completion);
2113 pending = atomic_read(&ctx->decrypt_pending);
2114 spin_unlock_bh(&ctx->decrypt_compl_lock);
2115 ret = 0;
2116 if (pending)
2117 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2118 __skb_queue_purge(&ctx->async_hold);
2119
2120 if (ret) {
2121 if (err >= 0 || err == -EINPROGRESS)
2122 err = ret;
2123 decrypted = 0;
2124 goto end;
2125 }
2126
2127 /* Drain records from the rx_list & copy if required */
2128 if (is_peek || is_kvec)
2129 err = process_rx_list(ctx, msg, &control, copied,
2130 decrypted, is_peek);
2131 else
2132 err = process_rx_list(ctx, msg, &control, 0,
2133 async_copy_bytes, is_peek);
2134 decrypted += max(err, 0);
2135 }
2136
2137 copied += decrypted;
2138
2139 end:
2140 tls_rx_reader_unlock(sk, ctx);
2141 if (psock)
2142 sk_psock_put(sk, psock);
2143 return copied ? : err;
2144 }
2145
tls_sw_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2146 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2147 struct pipe_inode_info *pipe,
2148 size_t len, unsigned int flags)
2149 {
2150 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2151 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2152 struct strp_msg *rxm = NULL;
2153 struct sock *sk = sock->sk;
2154 struct tls_msg *tlm;
2155 struct sk_buff *skb;
2156 ssize_t copied = 0;
2157 int chunk;
2158 int err;
2159
2160 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2161 if (err < 0)
2162 return err;
2163
2164 if (!skb_queue_empty(&ctx->rx_list)) {
2165 skb = __skb_dequeue(&ctx->rx_list);
2166 } else {
2167 struct tls_decrypt_arg darg;
2168
2169 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2170 true);
2171 if (err <= 0)
2172 goto splice_read_end;
2173
2174 memset(&darg.inargs, 0, sizeof(darg.inargs));
2175
2176 err = tls_rx_one_record(sk, NULL, &darg);
2177 if (err < 0) {
2178 tls_err_abort(sk, -EBADMSG);
2179 goto splice_read_end;
2180 }
2181
2182 tls_rx_rec_done(ctx);
2183 skb = darg.skb;
2184 }
2185
2186 rxm = strp_msg(skb);
2187 tlm = tls_msg(skb);
2188
2189 /* splice does not support reading control messages */
2190 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2191 err = -EINVAL;
2192 goto splice_requeue;
2193 }
2194
2195 chunk = min_t(unsigned int, rxm->full_len, len);
2196 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2197 if (copied < 0)
2198 goto splice_requeue;
2199
2200 if (chunk < rxm->full_len) {
2201 rxm->offset += len;
2202 rxm->full_len -= len;
2203 goto splice_requeue;
2204 }
2205
2206 consume_skb(skb);
2207
2208 splice_read_end:
2209 tls_rx_reader_unlock(sk, ctx);
2210 return copied ? : err;
2211
2212 splice_requeue:
2213 __skb_queue_head(&ctx->rx_list, skb);
2214 goto splice_read_end;
2215 }
2216
tls_sw_sock_is_readable(struct sock * sk)2217 bool tls_sw_sock_is_readable(struct sock *sk)
2218 {
2219 struct tls_context *tls_ctx = tls_get_ctx(sk);
2220 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2221 bool ingress_empty = true;
2222 struct sk_psock *psock;
2223
2224 rcu_read_lock();
2225 psock = sk_psock(sk);
2226 if (psock)
2227 ingress_empty = list_empty(&psock->ingress_msg);
2228 rcu_read_unlock();
2229
2230 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2231 !skb_queue_empty(&ctx->rx_list);
2232 }
2233
tls_rx_msg_size(struct tls_strparser * strp,struct sk_buff * skb)2234 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2235 {
2236 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2237 struct tls_prot_info *prot = &tls_ctx->prot_info;
2238 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2239 size_t cipher_overhead;
2240 size_t data_len = 0;
2241 int ret;
2242
2243 /* Verify that we have a full TLS header, or wait for more data */
2244 if (strp->stm.offset + prot->prepend_size > skb->len)
2245 return 0;
2246
2247 /* Sanity-check size of on-stack buffer. */
2248 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2249 ret = -EINVAL;
2250 goto read_failure;
2251 }
2252
2253 /* Linearize header to local buffer */
2254 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2255 if (ret < 0)
2256 goto read_failure;
2257
2258 strp->mark = header[0];
2259
2260 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2261
2262 cipher_overhead = prot->tag_size;
2263 if (prot->version != TLS_1_3_VERSION &&
2264 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2265 cipher_overhead += prot->iv_size;
2266
2267 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2268 prot->tail_size) {
2269 ret = -EMSGSIZE;
2270 goto read_failure;
2271 }
2272 if (data_len < cipher_overhead) {
2273 ret = -EBADMSG;
2274 goto read_failure;
2275 }
2276
2277 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2278 if (header[1] != TLS_1_2_VERSION_MINOR ||
2279 header[2] != TLS_1_2_VERSION_MAJOR) {
2280 ret = -EINVAL;
2281 goto read_failure;
2282 }
2283
2284 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2285 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2286 return data_len + TLS_HEADER_SIZE;
2287
2288 read_failure:
2289 tls_err_abort(strp->sk, ret);
2290
2291 return ret;
2292 }
2293
tls_rx_msg_ready(struct tls_strparser * strp)2294 void tls_rx_msg_ready(struct tls_strparser *strp)
2295 {
2296 struct tls_sw_context_rx *ctx;
2297
2298 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2299 ctx->saved_data_ready(strp->sk);
2300 }
2301
tls_data_ready(struct sock * sk)2302 static void tls_data_ready(struct sock *sk)
2303 {
2304 struct tls_context *tls_ctx = tls_get_ctx(sk);
2305 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2306 struct sk_psock *psock;
2307
2308 trace_sk_data_ready(sk);
2309
2310 tls_strp_data_ready(&ctx->strp);
2311
2312 psock = sk_psock_get(sk);
2313 if (psock) {
2314 if (!list_empty(&psock->ingress_msg))
2315 ctx->saved_data_ready(sk);
2316 sk_psock_put(sk, psock);
2317 }
2318 }
2319
tls_sw_cancel_work_tx(struct tls_context * tls_ctx)2320 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2321 {
2322 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2323
2324 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2325 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2326 cancel_delayed_work_sync(&ctx->tx_work.work);
2327 }
2328
tls_sw_release_resources_tx(struct sock * sk)2329 void tls_sw_release_resources_tx(struct sock *sk)
2330 {
2331 struct tls_context *tls_ctx = tls_get_ctx(sk);
2332 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2333 struct tls_rec *rec, *tmp;
2334 int pending;
2335
2336 /* Wait for any pending async encryptions to complete */
2337 spin_lock_bh(&ctx->encrypt_compl_lock);
2338 ctx->async_notify = true;
2339 pending = atomic_read(&ctx->encrypt_pending);
2340 spin_unlock_bh(&ctx->encrypt_compl_lock);
2341
2342 if (pending)
2343 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2344
2345 tls_tx_records(sk, -1);
2346
2347 /* Free up un-sent records in tx_list. First, free
2348 * the partially sent record if any at head of tx_list.
2349 */
2350 if (tls_ctx->partially_sent_record) {
2351 tls_free_partial_record(sk, tls_ctx);
2352 rec = list_first_entry(&ctx->tx_list,
2353 struct tls_rec, list);
2354 list_del(&rec->list);
2355 sk_msg_free(sk, &rec->msg_plaintext);
2356 kfree(rec);
2357 }
2358
2359 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2360 list_del(&rec->list);
2361 sk_msg_free(sk, &rec->msg_encrypted);
2362 sk_msg_free(sk, &rec->msg_plaintext);
2363 kfree(rec);
2364 }
2365
2366 crypto_free_aead(ctx->aead_send);
2367 tls_free_open_rec(sk);
2368 }
2369
tls_sw_free_ctx_tx(struct tls_context * tls_ctx)2370 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2371 {
2372 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2373
2374 kfree(ctx);
2375 }
2376
tls_sw_release_resources_rx(struct sock * sk)2377 void tls_sw_release_resources_rx(struct sock *sk)
2378 {
2379 struct tls_context *tls_ctx = tls_get_ctx(sk);
2380 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2381
2382 kfree(tls_ctx->rx.rec_seq);
2383 kfree(tls_ctx->rx.iv);
2384
2385 if (ctx->aead_recv) {
2386 __skb_queue_purge(&ctx->rx_list);
2387 crypto_free_aead(ctx->aead_recv);
2388 tls_strp_stop(&ctx->strp);
2389 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2390 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2391 * never swapped.
2392 */
2393 if (ctx->saved_data_ready) {
2394 write_lock_bh(&sk->sk_callback_lock);
2395 sk->sk_data_ready = ctx->saved_data_ready;
2396 write_unlock_bh(&sk->sk_callback_lock);
2397 }
2398 }
2399 }
2400
tls_sw_strparser_done(struct tls_context * tls_ctx)2401 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2402 {
2403 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2404
2405 tls_strp_done(&ctx->strp);
2406 }
2407
tls_sw_free_ctx_rx(struct tls_context * tls_ctx)2408 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2409 {
2410 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2411
2412 kfree(ctx);
2413 }
2414
tls_sw_free_resources_rx(struct sock * sk)2415 void tls_sw_free_resources_rx(struct sock *sk)
2416 {
2417 struct tls_context *tls_ctx = tls_get_ctx(sk);
2418
2419 tls_sw_release_resources_rx(sk);
2420 tls_sw_free_ctx_rx(tls_ctx);
2421 }
2422
2423 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct * work)2424 static void tx_work_handler(struct work_struct *work)
2425 {
2426 struct delayed_work *delayed_work = to_delayed_work(work);
2427 struct tx_work *tx_work = container_of(delayed_work,
2428 struct tx_work, work);
2429 struct sock *sk = tx_work->sk;
2430 struct tls_context *tls_ctx = tls_get_ctx(sk);
2431 struct tls_sw_context_tx *ctx;
2432
2433 if (unlikely(!tls_ctx))
2434 return;
2435
2436 ctx = tls_sw_ctx_tx(tls_ctx);
2437 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2438 return;
2439
2440 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2441 return;
2442
2443 if (mutex_trylock(&tls_ctx->tx_lock)) {
2444 lock_sock(sk);
2445 tls_tx_records(sk, -1);
2446 release_sock(sk);
2447 mutex_unlock(&tls_ctx->tx_lock);
2448 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2449 /* Someone is holding the tx_lock, they will likely run Tx
2450 * and cancel the work on their way out of the lock section.
2451 * Schedule a long delay just in case.
2452 */
2453 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2454 }
2455 }
2456
tls_is_tx_ready(struct tls_sw_context_tx * ctx)2457 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2458 {
2459 struct tls_rec *rec;
2460
2461 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2462 if (!rec)
2463 return false;
2464
2465 return READ_ONCE(rec->tx_ready);
2466 }
2467
tls_sw_write_space(struct sock * sk,struct tls_context * ctx)2468 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2469 {
2470 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2471
2472 /* Schedule the transmission if tx list is ready */
2473 if (tls_is_tx_ready(tx_ctx) &&
2474 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2475 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2476 }
2477
tls_sw_strparser_arm(struct sock * sk,struct tls_context * tls_ctx)2478 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2479 {
2480 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2481
2482 write_lock_bh(&sk->sk_callback_lock);
2483 rx_ctx->saved_data_ready = sk->sk_data_ready;
2484 sk->sk_data_ready = tls_data_ready;
2485 write_unlock_bh(&sk->sk_callback_lock);
2486 }
2487
tls_update_rx_zc_capable(struct tls_context * tls_ctx)2488 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2489 {
2490 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2491
2492 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2493 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2494 }
2495
tls_set_sw_offload(struct sock * sk,struct tls_context * ctx,int tx)2496 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2497 {
2498 struct tls_context *tls_ctx = tls_get_ctx(sk);
2499 struct tls_prot_info *prot = &tls_ctx->prot_info;
2500 struct tls_crypto_info *crypto_info;
2501 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2502 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2503 struct cipher_context *cctx;
2504 struct crypto_aead **aead;
2505 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2506 struct crypto_tfm *tfm;
2507 char *iv, *rec_seq, *key, *salt, *cipher_name;
2508 size_t keysize;
2509 int rc = 0;
2510
2511 if (!ctx) {
2512 rc = -EINVAL;
2513 goto out;
2514 }
2515
2516 if (tx) {
2517 if (!ctx->priv_ctx_tx) {
2518 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2519 if (!sw_ctx_tx) {
2520 rc = -ENOMEM;
2521 goto out;
2522 }
2523 ctx->priv_ctx_tx = sw_ctx_tx;
2524 } else {
2525 sw_ctx_tx =
2526 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2527 }
2528 } else {
2529 if (!ctx->priv_ctx_rx) {
2530 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2531 if (!sw_ctx_rx) {
2532 rc = -ENOMEM;
2533 goto out;
2534 }
2535 ctx->priv_ctx_rx = sw_ctx_rx;
2536 } else {
2537 sw_ctx_rx =
2538 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2539 }
2540 }
2541
2542 if (tx) {
2543 crypto_init_wait(&sw_ctx_tx->async_wait);
2544 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2545 crypto_info = &ctx->crypto_send.info;
2546 cctx = &ctx->tx;
2547 aead = &sw_ctx_tx->aead_send;
2548 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2549 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2550 sw_ctx_tx->tx_work.sk = sk;
2551 } else {
2552 crypto_init_wait(&sw_ctx_rx->async_wait);
2553 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2554 init_waitqueue_head(&sw_ctx_rx->wq);
2555 crypto_info = &ctx->crypto_recv.info;
2556 cctx = &ctx->rx;
2557 skb_queue_head_init(&sw_ctx_rx->rx_list);
2558 skb_queue_head_init(&sw_ctx_rx->async_hold);
2559 aead = &sw_ctx_rx->aead_recv;
2560 }
2561
2562 switch (crypto_info->cipher_type) {
2563 case TLS_CIPHER_AES_GCM_128: {
2564 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2565
2566 gcm_128_info = (void *)crypto_info;
2567 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2568 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2569 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2570 iv = gcm_128_info->iv;
2571 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2572 rec_seq = gcm_128_info->rec_seq;
2573 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2574 key = gcm_128_info->key;
2575 salt = gcm_128_info->salt;
2576 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2577 cipher_name = "gcm(aes)";
2578 break;
2579 }
2580 case TLS_CIPHER_AES_GCM_256: {
2581 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2582
2583 gcm_256_info = (void *)crypto_info;
2584 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2585 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2586 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2587 iv = gcm_256_info->iv;
2588 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2589 rec_seq = gcm_256_info->rec_seq;
2590 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2591 key = gcm_256_info->key;
2592 salt = gcm_256_info->salt;
2593 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2594 cipher_name = "gcm(aes)";
2595 break;
2596 }
2597 case TLS_CIPHER_AES_CCM_128: {
2598 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2599
2600 ccm_128_info = (void *)crypto_info;
2601 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2602 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2603 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2604 iv = ccm_128_info->iv;
2605 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2606 rec_seq = ccm_128_info->rec_seq;
2607 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2608 key = ccm_128_info->key;
2609 salt = ccm_128_info->salt;
2610 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2611 cipher_name = "ccm(aes)";
2612 break;
2613 }
2614 case TLS_CIPHER_CHACHA20_POLY1305: {
2615 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2616
2617 chacha20_poly1305_info = (void *)crypto_info;
2618 nonce_size = 0;
2619 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2620 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2621 iv = chacha20_poly1305_info->iv;
2622 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2623 rec_seq = chacha20_poly1305_info->rec_seq;
2624 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2625 key = chacha20_poly1305_info->key;
2626 salt = chacha20_poly1305_info->salt;
2627 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2628 cipher_name = "rfc7539(chacha20,poly1305)";
2629 break;
2630 }
2631 case TLS_CIPHER_SM4_GCM: {
2632 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2633
2634 sm4_gcm_info = (void *)crypto_info;
2635 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2636 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2637 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2638 iv = sm4_gcm_info->iv;
2639 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2640 rec_seq = sm4_gcm_info->rec_seq;
2641 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2642 key = sm4_gcm_info->key;
2643 salt = sm4_gcm_info->salt;
2644 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2645 cipher_name = "gcm(sm4)";
2646 break;
2647 }
2648 case TLS_CIPHER_SM4_CCM: {
2649 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2650
2651 sm4_ccm_info = (void *)crypto_info;
2652 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2653 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2654 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2655 iv = sm4_ccm_info->iv;
2656 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2657 rec_seq = sm4_ccm_info->rec_seq;
2658 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2659 key = sm4_ccm_info->key;
2660 salt = sm4_ccm_info->salt;
2661 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2662 cipher_name = "ccm(sm4)";
2663 break;
2664 }
2665 case TLS_CIPHER_ARIA_GCM_128: {
2666 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2667
2668 aria_gcm_128_info = (void *)crypto_info;
2669 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2670 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2671 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2672 iv = aria_gcm_128_info->iv;
2673 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2674 rec_seq = aria_gcm_128_info->rec_seq;
2675 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2676 key = aria_gcm_128_info->key;
2677 salt = aria_gcm_128_info->salt;
2678 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2679 cipher_name = "gcm(aria)";
2680 break;
2681 }
2682 case TLS_CIPHER_ARIA_GCM_256: {
2683 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2684
2685 gcm_256_info = (void *)crypto_info;
2686 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2687 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2688 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2689 iv = gcm_256_info->iv;
2690 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2691 rec_seq = gcm_256_info->rec_seq;
2692 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2693 key = gcm_256_info->key;
2694 salt = gcm_256_info->salt;
2695 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2696 cipher_name = "gcm(aria)";
2697 break;
2698 }
2699 default:
2700 rc = -EINVAL;
2701 goto free_priv;
2702 }
2703
2704 if (crypto_info->version == TLS_1_3_VERSION) {
2705 nonce_size = 0;
2706 prot->aad_size = TLS_HEADER_SIZE;
2707 prot->tail_size = 1;
2708 } else {
2709 prot->aad_size = TLS_AAD_SPACE_SIZE;
2710 prot->tail_size = 0;
2711 }
2712
2713 /* Sanity-check the sizes for stack allocations. */
2714 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2715 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2716 prot->aad_size > TLS_MAX_AAD_SIZE) {
2717 rc = -EINVAL;
2718 goto free_priv;
2719 }
2720
2721 prot->version = crypto_info->version;
2722 prot->cipher_type = crypto_info->cipher_type;
2723 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2724 prot->tag_size = tag_size;
2725 prot->overhead_size = prot->prepend_size +
2726 prot->tag_size + prot->tail_size;
2727 prot->iv_size = iv_size;
2728 prot->salt_size = salt_size;
2729 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2730 if (!cctx->iv) {
2731 rc = -ENOMEM;
2732 goto free_priv;
2733 }
2734 /* Note: 128 & 256 bit salt are the same size */
2735 prot->rec_seq_size = rec_seq_size;
2736 memcpy(cctx->iv, salt, salt_size);
2737 memcpy(cctx->iv + salt_size, iv, iv_size);
2738 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2739 if (!cctx->rec_seq) {
2740 rc = -ENOMEM;
2741 goto free_iv;
2742 }
2743
2744 if (!*aead) {
2745 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2746 if (IS_ERR(*aead)) {
2747 rc = PTR_ERR(*aead);
2748 *aead = NULL;
2749 goto free_rec_seq;
2750 }
2751 }
2752
2753 ctx->push_pending_record = tls_sw_push_pending_record;
2754
2755 rc = crypto_aead_setkey(*aead, key, keysize);
2756
2757 if (rc)
2758 goto free_aead;
2759
2760 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2761 if (rc)
2762 goto free_aead;
2763
2764 if (sw_ctx_rx) {
2765 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2766
2767 tls_update_rx_zc_capable(ctx);
2768 sw_ctx_rx->async_capable =
2769 crypto_info->version != TLS_1_3_VERSION &&
2770 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2771
2772 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2773 if (rc)
2774 goto free_aead;
2775 }
2776
2777 goto out;
2778
2779 free_aead:
2780 crypto_free_aead(*aead);
2781 *aead = NULL;
2782 free_rec_seq:
2783 kfree(cctx->rec_seq);
2784 cctx->rec_seq = NULL;
2785 free_iv:
2786 kfree(cctx->iv);
2787 cctx->iv = NULL;
2788 free_priv:
2789 if (tx) {
2790 kfree(ctx->priv_ctx_tx);
2791 ctx->priv_ctx_tx = NULL;
2792 } else {
2793 kfree(ctx->priv_ctx_rx);
2794 ctx->priv_ctx_rx = NULL;
2795 }
2796 out:
2797 return rc;
2798 }
2799