1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
29
30 /*-------------------------------------------------------------------------*/
31
32 /*
33 * Host-side wrappers for standard USB descriptors ... these are parsed
34 * from the data provided by devices. Parsing turns them from a flat
35 * sequence of descriptors into a hierarchy:
36 *
37 * - devices have one (usually) or more configs;
38 * - configs have one (often) or more interfaces;
39 * - interfaces have one (usually) or more settings;
40 * - each interface setting has zero or (usually) more endpoints.
41 * - a SuperSpeed endpoint has a companion descriptor
42 *
43 * And there might be other descriptors mixed in with those.
44 *
45 * Devices may also have class-specific or vendor-specific descriptors.
46 */
47
48 struct ep_device;
49
50 /**
51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
63 *
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
66 */
67 struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct list_head urb_list;
72 void *hcpriv;
73 struct ep_device *ep_dev; /* For sysfs info */
74
75 unsigned char *extra; /* Extra descriptors */
76 int extralen;
77 int enabled;
78 int streams;
79 };
80
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 struct usb_interface_descriptor desc;
84
85 int extralen;
86 unsigned char *extra; /* Extra descriptors */
87
88 /* array of desc.bNumEndpoints endpoints associated with this
89 * interface setting. these will be in no particular order.
90 */
91 struct usb_host_endpoint *endpoint;
92
93 char *string; /* iInterface string, if present */
94 };
95
96 enum usb_interface_condition {
97 USB_INTERFACE_UNBOUND = 0,
98 USB_INTERFACE_BINDING,
99 USB_INTERFACE_BOUND,
100 USB_INTERFACE_UNBINDING,
101 };
102
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 struct usb_endpoint_descriptor **bulk_in,
106 struct usb_endpoint_descriptor **bulk_out,
107 struct usb_endpoint_descriptor **int_in,
108 struct usb_endpoint_descriptor **int_out);
109
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 struct usb_endpoint_descriptor **bulk_in,
113 struct usb_endpoint_descriptor **bulk_out,
114 struct usb_endpoint_descriptor **int_in,
115 struct usb_endpoint_descriptor **int_out);
116
117 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 struct usb_endpoint_descriptor **bulk_in)
120 {
121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123
124 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 struct usb_endpoint_descriptor **bulk_out)
127 {
128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130
131 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 struct usb_endpoint_descriptor **int_in)
134 {
135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137
138 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 struct usb_endpoint_descriptor **int_out)
141 {
142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144
145 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 struct usb_endpoint_descriptor **bulk_in)
148 {
149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151
152 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 struct usb_endpoint_descriptor **bulk_out)
155 {
156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158
159 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 struct usb_endpoint_descriptor **int_in)
162 {
163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165
166 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 struct usb_endpoint_descriptor **int_out)
169 {
170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172
173 /**
174 * struct usb_interface - what usb device drivers talk to
175 * @altsetting: array of interface structures, one for each alternate
176 * setting that may be selected. Each one includes a set of
177 * endpoint configurations. They will be in no particular order.
178 * @cur_altsetting: the current altsetting.
179 * @num_altsetting: number of altsettings defined.
180 * @intf_assoc: interface association descriptor
181 * @minor: the minor number assigned to this interface, if this
182 * interface is bound to a driver that uses the USB major number.
183 * If this interface does not use the USB major, this field should
184 * be unused. The driver should set this value in the probe()
185 * function of the driver, after it has been assigned a minor
186 * number from the USB core by calling usb_register_dev().
187 * @condition: binding state of the interface: not bound, binding
188 * (in probe()), bound to a driver, or unbinding (in disconnect())
189 * @sysfs_files_created: sysfs attributes exist
190 * @ep_devs_created: endpoint child pseudo-devices exist
191 * @unregistering: flag set when the interface is being unregistered
192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193 * capability during autosuspend.
194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195 * has been deferred.
196 * @needs_binding: flag set when the driver should be re-probed or unbound
197 * following a reset or suspend operation it doesn't support.
198 * @authorized: This allows to (de)authorize individual interfaces instead
199 * a whole device in contrast to the device authorization.
200 * @dev: driver model's view of this device
201 * @usb_dev: if an interface is bound to the USB major, this will point
202 * to the sysfs representation for that device.
203 * @reset_ws: Used for scheduling resets from atomic context.
204 * @resetting_device: USB core reset the device, so use alt setting 0 as
205 * current; needs bandwidth alloc after reset.
206 *
207 * USB device drivers attach to interfaces on a physical device. Each
208 * interface encapsulates a single high level function, such as feeding
209 * an audio stream to a speaker or reporting a change in a volume control.
210 * Many USB devices only have one interface. The protocol used to talk to
211 * an interface's endpoints can be defined in a usb "class" specification,
212 * or by a product's vendor. The (default) control endpoint is part of
213 * every interface, but is never listed among the interface's descriptors.
214 *
215 * The driver that is bound to the interface can use standard driver model
216 * calls such as dev_get_drvdata() on the dev member of this structure.
217 *
218 * Each interface may have alternate settings. The initial configuration
219 * of a device sets altsetting 0, but the device driver can change
220 * that setting using usb_set_interface(). Alternate settings are often
221 * used to control the use of periodic endpoints, such as by having
222 * different endpoints use different amounts of reserved USB bandwidth.
223 * All standards-conformant USB devices that use isochronous endpoints
224 * will use them in non-default settings.
225 *
226 * The USB specification says that alternate setting numbers must run from
227 * 0 to one less than the total number of alternate settings. But some
228 * devices manage to mess this up, and the structures aren't necessarily
229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
230 * look up an alternate setting in the altsetting array based on its number.
231 */
232 struct usb_interface {
233 /* array of alternate settings for this interface,
234 * stored in no particular order */
235 struct usb_host_interface *altsetting;
236
237 struct usb_host_interface *cur_altsetting; /* the currently
238 * active alternate setting */
239 unsigned num_altsetting; /* number of alternate settings */
240
241 /* If there is an interface association descriptor then it will list
242 * the associated interfaces */
243 struct usb_interface_assoc_descriptor *intf_assoc;
244
245 int minor; /* minor number this interface is
246 * bound to */
247 enum usb_interface_condition condition; /* state of binding */
248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
249 unsigned ep_devs_created:1; /* endpoint "devices" exist */
250 unsigned unregistering:1; /* unregistration is in progress */
251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
253 unsigned needs_binding:1; /* needs delayed unbind/rebind */
254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
255 unsigned authorized:1; /* used for interface authorization */
256
257 struct device dev; /* interface specific device info */
258 struct device *usb_dev;
259 struct work_struct reset_ws; /* for resets in atomic context */
260 };
261
262 #define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev)
263
usb_get_intfdata(struct usb_interface * intf)264 static inline void *usb_get_intfdata(struct usb_interface *intf)
265 {
266 return dev_get_drvdata(&intf->dev);
267 }
268
269 /**
270 * usb_set_intfdata() - associate driver-specific data with an interface
271 * @intf: USB interface
272 * @data: driver data
273 *
274 * Drivers can use this function in their probe() callbacks to associate
275 * driver-specific data with an interface.
276 *
277 * Note that there is generally no need to clear the driver-data pointer even
278 * if some drivers do so for historical or implementation-specific reasons.
279 */
usb_set_intfdata(struct usb_interface * intf,void * data)280 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
281 {
282 dev_set_drvdata(&intf->dev, data);
283 }
284
285 struct usb_interface *usb_get_intf(struct usb_interface *intf);
286 void usb_put_intf(struct usb_interface *intf);
287
288 /* Hard limit */
289 #define USB_MAXENDPOINTS 30
290 /* this maximum is arbitrary */
291 #define USB_MAXINTERFACES 32
292 #define USB_MAXIADS (USB_MAXINTERFACES/2)
293
294 /*
295 * USB Resume Timer: Every Host controller driver should drive the resume
296 * signalling on the bus for the amount of time defined by this macro.
297 *
298 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
299 *
300 * Note that the USB Specification states we should drive resume for *at least*
301 * 20 ms, but it doesn't give an upper bound. This creates two possible
302 * situations which we want to avoid:
303 *
304 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
305 * us to fail USB Electrical Tests, thus failing Certification
306 *
307 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
308 * and while we can argue that's against the USB Specification, we don't have
309 * control over which devices a certification laboratory will be using for
310 * certification. If CertLab uses a device which was tested against Windows and
311 * that happens to have relaxed resume signalling rules, we might fall into
312 * situations where we fail interoperability and electrical tests.
313 *
314 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
315 * should cope with both LPJ calibration errors and devices not following every
316 * detail of the USB Specification.
317 */
318 #define USB_RESUME_TIMEOUT 40 /* ms */
319
320 /**
321 * struct usb_interface_cache - long-term representation of a device interface
322 * @num_altsetting: number of altsettings defined.
323 * @ref: reference counter.
324 * @altsetting: variable-length array of interface structures, one for
325 * each alternate setting that may be selected. Each one includes a
326 * set of endpoint configurations. They will be in no particular order.
327 *
328 * These structures persist for the lifetime of a usb_device, unlike
329 * struct usb_interface (which persists only as long as its configuration
330 * is installed). The altsetting arrays can be accessed through these
331 * structures at any time, permitting comparison of configurations and
332 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
333 */
334 struct usb_interface_cache {
335 unsigned num_altsetting; /* number of alternate settings */
336 struct kref ref; /* reference counter */
337
338 /* variable-length array of alternate settings for this interface,
339 * stored in no particular order */
340 struct usb_host_interface altsetting[];
341 };
342 #define ref_to_usb_interface_cache(r) \
343 container_of(r, struct usb_interface_cache, ref)
344 #define altsetting_to_usb_interface_cache(a) \
345 container_of(a, struct usb_interface_cache, altsetting[0])
346
347 /**
348 * struct usb_host_config - representation of a device's configuration
349 * @desc: the device's configuration descriptor.
350 * @string: pointer to the cached version of the iConfiguration string, if
351 * present for this configuration.
352 * @intf_assoc: list of any interface association descriptors in this config
353 * @interface: array of pointers to usb_interface structures, one for each
354 * interface in the configuration. The number of interfaces is stored
355 * in desc.bNumInterfaces. These pointers are valid only while the
356 * configuration is active.
357 * @intf_cache: array of pointers to usb_interface_cache structures, one
358 * for each interface in the configuration. These structures exist
359 * for the entire life of the device.
360 * @extra: pointer to buffer containing all extra descriptors associated
361 * with this configuration (those preceding the first interface
362 * descriptor).
363 * @extralen: length of the extra descriptors buffer.
364 *
365 * USB devices may have multiple configurations, but only one can be active
366 * at any time. Each encapsulates a different operational environment;
367 * for example, a dual-speed device would have separate configurations for
368 * full-speed and high-speed operation. The number of configurations
369 * available is stored in the device descriptor as bNumConfigurations.
370 *
371 * A configuration can contain multiple interfaces. Each corresponds to
372 * a different function of the USB device, and all are available whenever
373 * the configuration is active. The USB standard says that interfaces
374 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
375 * of devices get this wrong. In addition, the interface array is not
376 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
377 * look up an interface entry based on its number.
378 *
379 * Device drivers should not attempt to activate configurations. The choice
380 * of which configuration to install is a policy decision based on such
381 * considerations as available power, functionality provided, and the user's
382 * desires (expressed through userspace tools). However, drivers can call
383 * usb_reset_configuration() to reinitialize the current configuration and
384 * all its interfaces.
385 */
386 struct usb_host_config {
387 struct usb_config_descriptor desc;
388
389 char *string; /* iConfiguration string, if present */
390
391 /* List of any Interface Association Descriptors in this
392 * configuration. */
393 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
394
395 /* the interfaces associated with this configuration,
396 * stored in no particular order */
397 struct usb_interface *interface[USB_MAXINTERFACES];
398
399 /* Interface information available even when this is not the
400 * active configuration */
401 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
402
403 unsigned char *extra; /* Extra descriptors */
404 int extralen;
405 };
406
407 /* USB2.0 and USB3.0 device BOS descriptor set */
408 struct usb_host_bos {
409 struct usb_bos_descriptor *desc;
410
411 /* wireless cap descriptor is handled by wusb */
412 struct usb_ext_cap_descriptor *ext_cap;
413 struct usb_ss_cap_descriptor *ss_cap;
414 struct usb_ssp_cap_descriptor *ssp_cap;
415 struct usb_ss_container_id_descriptor *ss_id;
416 struct usb_ptm_cap_descriptor *ptm_cap;
417 };
418
419 int __usb_get_extra_descriptor(char *buffer, unsigned size,
420 unsigned char type, void **ptr, size_t min);
421 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
422 __usb_get_extra_descriptor((ifpoint)->extra, \
423 (ifpoint)->extralen, \
424 type, (void **)ptr, sizeof(**(ptr)))
425
426 /* ----------------------------------------------------------------------- */
427
428 /* USB device number allocation bitmap */
429 struct usb_devmap {
430 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
431 };
432
433 /*
434 * Allocated per bus (tree of devices) we have:
435 */
436 struct usb_bus {
437 struct device *controller; /* host side hardware */
438 struct device *sysdev; /* as seen from firmware or bus */
439 int busnum; /* Bus number (in order of reg) */
440 const char *bus_name; /* stable id (PCI slot_name etc) */
441 u8 uses_pio_for_control; /*
442 * Does the host controller use PIO
443 * for control transfers?
444 */
445 u8 otg_port; /* 0, or number of OTG/HNP port */
446 unsigned is_b_host:1; /* true during some HNP roleswitches */
447 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
448 unsigned no_stop_on_short:1; /*
449 * Quirk: some controllers don't stop
450 * the ep queue on a short transfer
451 * with the URB_SHORT_NOT_OK flag set.
452 */
453 unsigned no_sg_constraint:1; /* no sg constraint */
454 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
455
456 int devnum_next; /* Next open device number in
457 * round-robin allocation */
458 struct mutex devnum_next_mutex; /* devnum_next mutex */
459
460 struct usb_devmap devmap; /* device address allocation map */
461 struct usb_device *root_hub; /* Root hub */
462 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
463
464 int bandwidth_allocated; /* on this bus: how much of the time
465 * reserved for periodic (intr/iso)
466 * requests is used, on average?
467 * Units: microseconds/frame.
468 * Limits: Full/low speed reserve 90%,
469 * while high speed reserves 80%.
470 */
471 int bandwidth_int_reqs; /* number of Interrupt requests */
472 int bandwidth_isoc_reqs; /* number of Isoc. requests */
473
474 unsigned resuming_ports; /* bit array: resuming root-hub ports */
475
476 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
477 struct mon_bus *mon_bus; /* non-null when associated */
478 int monitored; /* non-zero when monitored */
479 #endif
480 };
481
482 struct usb_dev_state;
483
484 /* ----------------------------------------------------------------------- */
485
486 struct usb_tt;
487
488 enum usb_port_connect_type {
489 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
490 USB_PORT_CONNECT_TYPE_HOT_PLUG,
491 USB_PORT_CONNECT_TYPE_HARD_WIRED,
492 USB_PORT_NOT_USED,
493 };
494
495 /*
496 * USB port quirks.
497 */
498
499 /* For the given port, prefer the old (faster) enumeration scheme. */
500 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
501
502 /* Decrease TRSTRCY to 10ms during device enumeration. */
503 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
504
505 /*
506 * USB 2.0 Link Power Management (LPM) parameters.
507 */
508 struct usb2_lpm_parameters {
509 /* Best effort service latency indicate how long the host will drive
510 * resume on an exit from L1.
511 */
512 unsigned int besl;
513
514 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
515 * When the timer counts to zero, the parent hub will initiate a LPM
516 * transition to L1.
517 */
518 int timeout;
519 };
520
521 /*
522 * USB 3.0 Link Power Management (LPM) parameters.
523 *
524 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
525 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
526 * All three are stored in nanoseconds.
527 */
528 struct usb3_lpm_parameters {
529 /*
530 * Maximum exit latency (MEL) for the host to send a packet to the
531 * device (either a Ping for isoc endpoints, or a data packet for
532 * interrupt endpoints), the hubs to decode the packet, and for all hubs
533 * in the path to transition the links to U0.
534 */
535 unsigned int mel;
536 /*
537 * Maximum exit latency for a device-initiated LPM transition to bring
538 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
539 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
540 */
541 unsigned int pel;
542
543 /*
544 * The System Exit Latency (SEL) includes PEL, and three other
545 * latencies. After a device initiates a U0 transition, it will take
546 * some time from when the device sends the ERDY to when it will finally
547 * receive the data packet. Basically, SEL should be the worse-case
548 * latency from when a device starts initiating a U0 transition to when
549 * it will get data.
550 */
551 unsigned int sel;
552 /*
553 * The idle timeout value that is currently programmed into the parent
554 * hub for this device. When the timer counts to zero, the parent hub
555 * will initiate an LPM transition to either U1 or U2.
556 */
557 int timeout;
558 };
559
560 /**
561 * struct usb_device - kernel's representation of a USB device
562 * @devnum: device number; address on a USB bus
563 * @devpath: device ID string for use in messages (e.g., /port/...)
564 * @route: tree topology hex string for use with xHCI
565 * @state: device state: configured, not attached, etc.
566 * @speed: device speed: high/full/low (or error)
567 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
568 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
569 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
570 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
571 * @ttport: device port on that tt hub
572 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
573 * @parent: our hub, unless we're the root
574 * @bus: bus we're part of
575 * @ep0: endpoint 0 data (default control pipe)
576 * @dev: generic device interface
577 * @descriptor: USB device descriptor
578 * @bos: USB device BOS descriptor set
579 * @config: all of the device's configs
580 * @actconfig: the active configuration
581 * @ep_in: array of IN endpoints
582 * @ep_out: array of OUT endpoints
583 * @rawdescriptors: raw descriptors for each config
584 * @bus_mA: Current available from the bus
585 * @portnum: parent port number (origin 1)
586 * @level: number of USB hub ancestors
587 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
588 * @can_submit: URBs may be submitted
589 * @persist_enabled: USB_PERSIST enabled for this device
590 * @reset_in_progress: the device is being reset
591 * @have_langid: whether string_langid is valid
592 * @authorized: policy has said we can use it;
593 * (user space) policy determines if we authorize this device to be
594 * used or not. By default, wired USB devices are authorized.
595 * WUSB devices are not, until we authorize them from user space.
596 * FIXME -- complete doc
597 * @authenticated: Crypto authentication passed
598 * @wusb: device is Wireless USB
599 * @lpm_capable: device supports LPM
600 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
601 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
602 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
603 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
604 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
605 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
606 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
607 * @string_langid: language ID for strings
608 * @product: iProduct string, if present (static)
609 * @manufacturer: iManufacturer string, if present (static)
610 * @serial: iSerialNumber string, if present (static)
611 * @filelist: usbfs files that are open to this device
612 * @maxchild: number of ports if hub
613 * @quirks: quirks of the whole device
614 * @urbnum: number of URBs submitted for the whole device
615 * @active_duration: total time device is not suspended
616 * @connect_time: time device was first connected
617 * @do_remote_wakeup: remote wakeup should be enabled
618 * @reset_resume: needs reset instead of resume
619 * @port_is_suspended: the upstream port is suspended (L2 or U3)
620 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
621 * specific data for the device.
622 * @slot_id: Slot ID assigned by xHCI
623 * @removable: Device can be physically removed from this port
624 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
625 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
626 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
627 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
628 * to keep track of the number of functions that require USB 3.0 Link Power
629 * Management to be disabled for this usb_device. This count should only
630 * be manipulated by those functions, with the bandwidth_mutex is held.
631 * @hub_delay: cached value consisting of:
632 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
633 * Will be used as wValue for SetIsochDelay requests.
634 * @use_generic_driver: ask driver core to reprobe using the generic driver.
635 *
636 * Notes:
637 * Usbcore drivers should not set usbdev->state directly. Instead use
638 * usb_set_device_state().
639 */
640 struct usb_device {
641 int devnum;
642 char devpath[16];
643 u32 route;
644 enum usb_device_state state;
645 enum usb_device_speed speed;
646 unsigned int rx_lanes;
647 unsigned int tx_lanes;
648 enum usb_ssp_rate ssp_rate;
649
650 struct usb_tt *tt;
651 int ttport;
652
653 unsigned int toggle[2];
654
655 struct usb_device *parent;
656 struct usb_bus *bus;
657 struct usb_host_endpoint ep0;
658
659 struct device dev;
660
661 struct usb_device_descriptor descriptor;
662 struct usb_host_bos *bos;
663 struct usb_host_config *config;
664
665 struct usb_host_config *actconfig;
666 struct usb_host_endpoint *ep_in[16];
667 struct usb_host_endpoint *ep_out[16];
668
669 char **rawdescriptors;
670
671 unsigned short bus_mA;
672 u8 portnum;
673 u8 level;
674 u8 devaddr;
675
676 unsigned can_submit:1;
677 unsigned persist_enabled:1;
678 unsigned reset_in_progress:1;
679 unsigned have_langid:1;
680 unsigned authorized:1;
681 unsigned authenticated:1;
682 unsigned wusb:1;
683 unsigned lpm_capable:1;
684 unsigned lpm_devinit_allow:1;
685 unsigned usb2_hw_lpm_capable:1;
686 unsigned usb2_hw_lpm_besl_capable:1;
687 unsigned usb2_hw_lpm_enabled:1;
688 unsigned usb2_hw_lpm_allowed:1;
689 unsigned usb3_lpm_u1_enabled:1;
690 unsigned usb3_lpm_u2_enabled:1;
691 int string_langid;
692
693 /* static strings from the device */
694 char *product;
695 char *manufacturer;
696 char *serial;
697
698 struct list_head filelist;
699
700 int maxchild;
701
702 u32 quirks;
703 atomic_t urbnum;
704
705 unsigned long active_duration;
706
707 #ifdef CONFIG_PM
708 unsigned long connect_time;
709
710 unsigned do_remote_wakeup:1;
711 unsigned reset_resume:1;
712 unsigned port_is_suspended:1;
713 #endif
714 struct wusb_dev *wusb_dev;
715 int slot_id;
716 struct usb2_lpm_parameters l1_params;
717 struct usb3_lpm_parameters u1_params;
718 struct usb3_lpm_parameters u2_params;
719 unsigned lpm_disable_count;
720
721 u16 hub_delay;
722 unsigned use_generic_driver:1;
723 };
724
725 #define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev)
726
__intf_to_usbdev(struct usb_interface * intf)727 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
728 {
729 return to_usb_device(intf->dev.parent);
730 }
__intf_to_usbdev_const(const struct usb_interface * intf)731 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
732 {
733 return to_usb_device((const struct device *)intf->dev.parent);
734 }
735
736 #define interface_to_usbdev(intf) \
737 _Generic((intf), \
738 const struct usb_interface *: __intf_to_usbdev_const, \
739 struct usb_interface *: __intf_to_usbdev)(intf)
740
741 extern struct usb_device *usb_get_dev(struct usb_device *dev);
742 extern void usb_put_dev(struct usb_device *dev);
743 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
744 int port1);
745
746 /**
747 * usb_hub_for_each_child - iterate over all child devices on the hub
748 * @hdev: USB device belonging to the usb hub
749 * @port1: portnum associated with child device
750 * @child: child device pointer
751 */
752 #define usb_hub_for_each_child(hdev, port1, child) \
753 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
754 port1 <= hdev->maxchild; \
755 child = usb_hub_find_child(hdev, ++port1)) \
756 if (!child) continue; else
757
758 /* USB device locking */
759 #define usb_lock_device(udev) device_lock(&(udev)->dev)
760 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
761 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
762 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
763 extern int usb_lock_device_for_reset(struct usb_device *udev,
764 const struct usb_interface *iface);
765
766 /* USB port reset for device reinitialization */
767 extern int usb_reset_device(struct usb_device *dev);
768 extern void usb_queue_reset_device(struct usb_interface *dev);
769
770 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
771
772 #ifdef CONFIG_ACPI
773 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
774 bool enable);
775 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
776 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
777 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)778 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
779 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)780 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
781 { return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)782 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
783 { return 0; }
784 #endif
785
786 /* USB autosuspend and autoresume */
787 #ifdef CONFIG_PM
788 extern void usb_enable_autosuspend(struct usb_device *udev);
789 extern void usb_disable_autosuspend(struct usb_device *udev);
790
791 extern int usb_autopm_get_interface(struct usb_interface *intf);
792 extern void usb_autopm_put_interface(struct usb_interface *intf);
793 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
794 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
795 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
796 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
797
usb_mark_last_busy(struct usb_device * udev)798 static inline void usb_mark_last_busy(struct usb_device *udev)
799 {
800 pm_runtime_mark_last_busy(&udev->dev);
801 }
802
803 #else
804
usb_enable_autosuspend(struct usb_device * udev)805 static inline int usb_enable_autosuspend(struct usb_device *udev)
806 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)807 static inline int usb_disable_autosuspend(struct usb_device *udev)
808 { return 0; }
809
usb_autopm_get_interface(struct usb_interface * intf)810 static inline int usb_autopm_get_interface(struct usb_interface *intf)
811 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)812 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
813 { return 0; }
814
usb_autopm_put_interface(struct usb_interface * intf)815 static inline void usb_autopm_put_interface(struct usb_interface *intf)
816 { }
usb_autopm_put_interface_async(struct usb_interface * intf)817 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
818 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)819 static inline void usb_autopm_get_interface_no_resume(
820 struct usb_interface *intf)
821 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)822 static inline void usb_autopm_put_interface_no_suspend(
823 struct usb_interface *intf)
824 { }
usb_mark_last_busy(struct usb_device * udev)825 static inline void usb_mark_last_busy(struct usb_device *udev)
826 { }
827 #endif
828
829 extern int usb_disable_lpm(struct usb_device *udev);
830 extern void usb_enable_lpm(struct usb_device *udev);
831 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
832 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
833 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
834
835 extern int usb_disable_ltm(struct usb_device *udev);
836 extern void usb_enable_ltm(struct usb_device *udev);
837
usb_device_supports_ltm(struct usb_device * udev)838 static inline bool usb_device_supports_ltm(struct usb_device *udev)
839 {
840 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
841 return false;
842 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
843 }
844
usb_device_no_sg_constraint(struct usb_device * udev)845 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
846 {
847 return udev && udev->bus && udev->bus->no_sg_constraint;
848 }
849
850
851 /*-------------------------------------------------------------------------*/
852
853 /* for drivers using iso endpoints */
854 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
855
856 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
857 extern int usb_alloc_streams(struct usb_interface *interface,
858 struct usb_host_endpoint **eps, unsigned int num_eps,
859 unsigned int num_streams, gfp_t mem_flags);
860
861 /* Reverts a group of bulk endpoints back to not using stream IDs. */
862 extern int usb_free_streams(struct usb_interface *interface,
863 struct usb_host_endpoint **eps, unsigned int num_eps,
864 gfp_t mem_flags);
865
866 /* used these for multi-interface device registration */
867 extern int usb_driver_claim_interface(struct usb_driver *driver,
868 struct usb_interface *iface, void *data);
869
870 /**
871 * usb_interface_claimed - returns true iff an interface is claimed
872 * @iface: the interface being checked
873 *
874 * Return: %true (nonzero) iff the interface is claimed, else %false
875 * (zero).
876 *
877 * Note:
878 * Callers must own the driver model's usb bus readlock. So driver
879 * probe() entries don't need extra locking, but other call contexts
880 * may need to explicitly claim that lock.
881 *
882 */
usb_interface_claimed(struct usb_interface * iface)883 static inline int usb_interface_claimed(struct usb_interface *iface)
884 {
885 return (iface->dev.driver != NULL);
886 }
887
888 extern void usb_driver_release_interface(struct usb_driver *driver,
889 struct usb_interface *iface);
890 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
891 const struct usb_device_id *id);
892 extern int usb_match_one_id(struct usb_interface *interface,
893 const struct usb_device_id *id);
894
895 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
896 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
897 int minor);
898 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
899 unsigned ifnum);
900 extern struct usb_host_interface *usb_altnum_to_altsetting(
901 const struct usb_interface *intf, unsigned int altnum);
902 extern struct usb_host_interface *usb_find_alt_setting(
903 struct usb_host_config *config,
904 unsigned int iface_num,
905 unsigned int alt_num);
906
907 /* port claiming functions */
908 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
909 struct usb_dev_state *owner);
910 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
911 struct usb_dev_state *owner);
912
913 /**
914 * usb_make_path - returns stable device path in the usb tree
915 * @dev: the device whose path is being constructed
916 * @buf: where to put the string
917 * @size: how big is "buf"?
918 *
919 * Return: Length of the string (> 0) or negative if size was too small.
920 *
921 * Note:
922 * This identifier is intended to be "stable", reflecting physical paths in
923 * hardware such as physical bus addresses for host controllers or ports on
924 * USB hubs. That makes it stay the same until systems are physically
925 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
926 * controllers. Adding and removing devices, including virtual root hubs
927 * in host controller driver modules, does not change these path identifiers;
928 * neither does rebooting or re-enumerating. These are more useful identifiers
929 * than changeable ("unstable") ones like bus numbers or device addresses.
930 *
931 * With a partial exception for devices connected to USB 2.0 root hubs, these
932 * identifiers are also predictable. So long as the device tree isn't changed,
933 * plugging any USB device into a given hub port always gives it the same path.
934 * Because of the use of "companion" controllers, devices connected to ports on
935 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
936 * high speed, and a different one if they are full or low speed.
937 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)938 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
939 {
940 int actual;
941 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
942 dev->devpath);
943 return (actual >= (int)size) ? -1 : actual;
944 }
945
946 /*-------------------------------------------------------------------------*/
947
948 #define USB_DEVICE_ID_MATCH_DEVICE \
949 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
950 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
951 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
952 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
953 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
954 #define USB_DEVICE_ID_MATCH_DEV_INFO \
955 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
956 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
957 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
958 #define USB_DEVICE_ID_MATCH_INT_INFO \
959 (USB_DEVICE_ID_MATCH_INT_CLASS | \
960 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
961 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
962
963 /**
964 * USB_DEVICE - macro used to describe a specific usb device
965 * @vend: the 16 bit USB Vendor ID
966 * @prod: the 16 bit USB Product ID
967 *
968 * This macro is used to create a struct usb_device_id that matches a
969 * specific device.
970 */
971 #define USB_DEVICE(vend, prod) \
972 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
973 .idVendor = (vend), \
974 .idProduct = (prod)
975 /**
976 * USB_DEVICE_VER - describe a specific usb device with a version range
977 * @vend: the 16 bit USB Vendor ID
978 * @prod: the 16 bit USB Product ID
979 * @lo: the bcdDevice_lo value
980 * @hi: the bcdDevice_hi value
981 *
982 * This macro is used to create a struct usb_device_id that matches a
983 * specific device, with a version range.
984 */
985 #define USB_DEVICE_VER(vend, prod, lo, hi) \
986 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
987 .idVendor = (vend), \
988 .idProduct = (prod), \
989 .bcdDevice_lo = (lo), \
990 .bcdDevice_hi = (hi)
991
992 /**
993 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
994 * @vend: the 16 bit USB Vendor ID
995 * @prod: the 16 bit USB Product ID
996 * @cl: bInterfaceClass value
997 *
998 * This macro is used to create a struct usb_device_id that matches a
999 * specific interface class of devices.
1000 */
1001 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1002 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1003 USB_DEVICE_ID_MATCH_INT_CLASS, \
1004 .idVendor = (vend), \
1005 .idProduct = (prod), \
1006 .bInterfaceClass = (cl)
1007
1008 /**
1009 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1010 * @vend: the 16 bit USB Vendor ID
1011 * @prod: the 16 bit USB Product ID
1012 * @pr: bInterfaceProtocol value
1013 *
1014 * This macro is used to create a struct usb_device_id that matches a
1015 * specific interface protocol of devices.
1016 */
1017 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1018 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1019 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1020 .idVendor = (vend), \
1021 .idProduct = (prod), \
1022 .bInterfaceProtocol = (pr)
1023
1024 /**
1025 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1026 * @vend: the 16 bit USB Vendor ID
1027 * @prod: the 16 bit USB Product ID
1028 * @num: bInterfaceNumber value
1029 *
1030 * This macro is used to create a struct usb_device_id that matches a
1031 * specific interface number of devices.
1032 */
1033 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1034 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1035 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1036 .idVendor = (vend), \
1037 .idProduct = (prod), \
1038 .bInterfaceNumber = (num)
1039
1040 /**
1041 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1042 * @cl: bDeviceClass value
1043 * @sc: bDeviceSubClass value
1044 * @pr: bDeviceProtocol value
1045 *
1046 * This macro is used to create a struct usb_device_id that matches a
1047 * specific class of devices.
1048 */
1049 #define USB_DEVICE_INFO(cl, sc, pr) \
1050 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1051 .bDeviceClass = (cl), \
1052 .bDeviceSubClass = (sc), \
1053 .bDeviceProtocol = (pr)
1054
1055 /**
1056 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1057 * @cl: bInterfaceClass value
1058 * @sc: bInterfaceSubClass value
1059 * @pr: bInterfaceProtocol value
1060 *
1061 * This macro is used to create a struct usb_device_id that matches a
1062 * specific class of interfaces.
1063 */
1064 #define USB_INTERFACE_INFO(cl, sc, pr) \
1065 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1066 .bInterfaceClass = (cl), \
1067 .bInterfaceSubClass = (sc), \
1068 .bInterfaceProtocol = (pr)
1069
1070 /**
1071 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1072 * @vend: the 16 bit USB Vendor ID
1073 * @prod: the 16 bit USB Product ID
1074 * @cl: bInterfaceClass value
1075 * @sc: bInterfaceSubClass value
1076 * @pr: bInterfaceProtocol value
1077 *
1078 * This macro is used to create a struct usb_device_id that matches a
1079 * specific device with a specific class of interfaces.
1080 *
1081 * This is especially useful when explicitly matching devices that have
1082 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1083 */
1084 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1085 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1086 | USB_DEVICE_ID_MATCH_DEVICE, \
1087 .idVendor = (vend), \
1088 .idProduct = (prod), \
1089 .bInterfaceClass = (cl), \
1090 .bInterfaceSubClass = (sc), \
1091 .bInterfaceProtocol = (pr)
1092
1093 /**
1094 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1095 * @vend: the 16 bit USB Vendor ID
1096 * @cl: bInterfaceClass value
1097 * @sc: bInterfaceSubClass value
1098 * @pr: bInterfaceProtocol value
1099 *
1100 * This macro is used to create a struct usb_device_id that matches a
1101 * specific vendor with a specific class of interfaces.
1102 *
1103 * This is especially useful when explicitly matching devices that have
1104 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1105 */
1106 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1107 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1108 | USB_DEVICE_ID_MATCH_VENDOR, \
1109 .idVendor = (vend), \
1110 .bInterfaceClass = (cl), \
1111 .bInterfaceSubClass = (sc), \
1112 .bInterfaceProtocol = (pr)
1113
1114 /* ----------------------------------------------------------------------- */
1115
1116 /* Stuff for dynamic usb ids */
1117 struct usb_dynids {
1118 spinlock_t lock;
1119 struct list_head list;
1120 };
1121
1122 struct usb_dynid {
1123 struct list_head node;
1124 struct usb_device_id id;
1125 };
1126
1127 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1128 const struct usb_device_id *id_table,
1129 struct device_driver *driver,
1130 const char *buf, size_t count);
1131
1132 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1133
1134 /**
1135 * struct usbdrv_wrap - wrapper for driver-model structure
1136 * @driver: The driver-model core driver structure.
1137 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1138 */
1139 struct usbdrv_wrap {
1140 struct device_driver driver;
1141 int for_devices;
1142 };
1143
1144 /**
1145 * struct usb_driver - identifies USB interface driver to usbcore
1146 * @name: The driver name should be unique among USB drivers,
1147 * and should normally be the same as the module name.
1148 * @probe: Called to see if the driver is willing to manage a particular
1149 * interface on a device. If it is, probe returns zero and uses
1150 * usb_set_intfdata() to associate driver-specific data with the
1151 * interface. It may also use usb_set_interface() to specify the
1152 * appropriate altsetting. If unwilling to manage the interface,
1153 * return -ENODEV, if genuine IO errors occurred, an appropriate
1154 * negative errno value.
1155 * @disconnect: Called when the interface is no longer accessible, usually
1156 * because its device has been (or is being) disconnected or the
1157 * driver module is being unloaded.
1158 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1159 * the "usbfs" filesystem. This lets devices provide ways to
1160 * expose information to user space regardless of where they
1161 * do (or don't) show up otherwise in the filesystem.
1162 * @suspend: Called when the device is going to be suspended by the
1163 * system either from system sleep or runtime suspend context. The
1164 * return value will be ignored in system sleep context, so do NOT
1165 * try to continue using the device if suspend fails in this case.
1166 * Instead, let the resume or reset-resume routine recover from
1167 * the failure.
1168 * @resume: Called when the device is being resumed by the system.
1169 * @reset_resume: Called when the suspended device has been reset instead
1170 * of being resumed.
1171 * @pre_reset: Called by usb_reset_device() when the device is about to be
1172 * reset. This routine must not return until the driver has no active
1173 * URBs for the device, and no more URBs may be submitted until the
1174 * post_reset method is called.
1175 * @post_reset: Called by usb_reset_device() after the device
1176 * has been reset
1177 * @id_table: USB drivers use ID table to support hotplugging.
1178 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1179 * or your driver's probe function will never get called.
1180 * @dev_groups: Attributes attached to the device that will be created once it
1181 * is bound to the driver.
1182 * @dynids: used internally to hold the list of dynamically added device
1183 * ids for this driver.
1184 * @drvwrap: Driver-model core structure wrapper.
1185 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1186 * added to this driver by preventing the sysfs file from being created.
1187 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1188 * for interfaces bound to this driver.
1189 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1190 * endpoints before calling the driver's disconnect method.
1191 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1192 * to initiate lower power link state transitions when an idle timeout
1193 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1194 *
1195 * USB interface drivers must provide a name, probe() and disconnect()
1196 * methods, and an id_table. Other driver fields are optional.
1197 *
1198 * The id_table is used in hotplugging. It holds a set of descriptors,
1199 * and specialized data may be associated with each entry. That table
1200 * is used by both user and kernel mode hotplugging support.
1201 *
1202 * The probe() and disconnect() methods are called in a context where
1203 * they can sleep, but they should avoid abusing the privilege. Most
1204 * work to connect to a device should be done when the device is opened,
1205 * and undone at the last close. The disconnect code needs to address
1206 * concurrency issues with respect to open() and close() methods, as
1207 * well as forcing all pending I/O requests to complete (by unlinking
1208 * them as necessary, and blocking until the unlinks complete).
1209 */
1210 struct usb_driver {
1211 const char *name;
1212
1213 int (*probe) (struct usb_interface *intf,
1214 const struct usb_device_id *id);
1215
1216 void (*disconnect) (struct usb_interface *intf);
1217
1218 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1219 void *buf);
1220
1221 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1222 int (*resume) (struct usb_interface *intf);
1223 int (*reset_resume)(struct usb_interface *intf);
1224
1225 int (*pre_reset)(struct usb_interface *intf);
1226 int (*post_reset)(struct usb_interface *intf);
1227
1228 const struct usb_device_id *id_table;
1229 const struct attribute_group **dev_groups;
1230
1231 struct usb_dynids dynids;
1232 struct usbdrv_wrap drvwrap;
1233 unsigned int no_dynamic_id:1;
1234 unsigned int supports_autosuspend:1;
1235 unsigned int disable_hub_initiated_lpm:1;
1236 unsigned int soft_unbind:1;
1237 };
1238 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1239
1240 /**
1241 * struct usb_device_driver - identifies USB device driver to usbcore
1242 * @name: The driver name should be unique among USB drivers,
1243 * and should normally be the same as the module name.
1244 * @match: If set, used for better device/driver matching.
1245 * @probe: Called to see if the driver is willing to manage a particular
1246 * device. If it is, probe returns zero and uses dev_set_drvdata()
1247 * to associate driver-specific data with the device. If unwilling
1248 * to manage the device, return a negative errno value.
1249 * @disconnect: Called when the device is no longer accessible, usually
1250 * because it has been (or is being) disconnected or the driver's
1251 * module is being unloaded.
1252 * @suspend: Called when the device is going to be suspended by the system.
1253 * @resume: Called when the device is being resumed by the system.
1254 * @dev_groups: Attributes attached to the device that will be created once it
1255 * is bound to the driver.
1256 * @drvwrap: Driver-model core structure wrapper.
1257 * @id_table: used with @match() to select better matching driver at
1258 * probe() time.
1259 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1260 * for devices bound to this driver.
1261 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1262 * resume and suspend functions will be called in addition to the driver's
1263 * own, so this part of the setup does not need to be replicated.
1264 *
1265 * USB drivers must provide all the fields listed above except drvwrap,
1266 * match, and id_table.
1267 */
1268 struct usb_device_driver {
1269 const char *name;
1270
1271 bool (*match) (struct usb_device *udev);
1272 int (*probe) (struct usb_device *udev);
1273 void (*disconnect) (struct usb_device *udev);
1274
1275 int (*suspend) (struct usb_device *udev, pm_message_t message);
1276 int (*resume) (struct usb_device *udev, pm_message_t message);
1277 const struct attribute_group **dev_groups;
1278 struct usbdrv_wrap drvwrap;
1279 const struct usb_device_id *id_table;
1280 unsigned int supports_autosuspend:1;
1281 unsigned int generic_subclass:1;
1282 };
1283 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1284 drvwrap.driver)
1285
1286 /**
1287 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1288 * @name: the usb class device name for this driver. Will show up in sysfs.
1289 * @devnode: Callback to provide a naming hint for a possible
1290 * device node to create.
1291 * @fops: pointer to the struct file_operations of this driver.
1292 * @minor_base: the start of the minor range for this driver.
1293 *
1294 * This structure is used for the usb_register_dev() and
1295 * usb_deregister_dev() functions, to consolidate a number of the
1296 * parameters used for them.
1297 */
1298 struct usb_class_driver {
1299 char *name;
1300 char *(*devnode)(const struct device *dev, umode_t *mode);
1301 const struct file_operations *fops;
1302 int minor_base;
1303 };
1304
1305 /*
1306 * use these in module_init()/module_exit()
1307 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1308 */
1309 extern int usb_register_driver(struct usb_driver *, struct module *,
1310 const char *);
1311
1312 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1313 #define usb_register(driver) \
1314 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1315
1316 extern void usb_deregister(struct usb_driver *);
1317
1318 /**
1319 * module_usb_driver() - Helper macro for registering a USB driver
1320 * @__usb_driver: usb_driver struct
1321 *
1322 * Helper macro for USB drivers which do not do anything special in module
1323 * init/exit. This eliminates a lot of boilerplate. Each module may only
1324 * use this macro once, and calling it replaces module_init() and module_exit()
1325 */
1326 #define module_usb_driver(__usb_driver) \
1327 module_driver(__usb_driver, usb_register, \
1328 usb_deregister)
1329
1330 extern int usb_register_device_driver(struct usb_device_driver *,
1331 struct module *);
1332 extern void usb_deregister_device_driver(struct usb_device_driver *);
1333
1334 extern int usb_register_dev(struct usb_interface *intf,
1335 struct usb_class_driver *class_driver);
1336 extern void usb_deregister_dev(struct usb_interface *intf,
1337 struct usb_class_driver *class_driver);
1338
1339 extern int usb_disabled(void);
1340
1341 /* ----------------------------------------------------------------------- */
1342
1343 /*
1344 * URB support, for asynchronous request completions
1345 */
1346
1347 /*
1348 * urb->transfer_flags:
1349 *
1350 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1351 */
1352 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1353 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1354 * slot in the schedule */
1355 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1356 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1357 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1358 * needed */
1359 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1360
1361 /* The following flags are used internally by usbcore and HCDs */
1362 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1363 #define URB_DIR_OUT 0
1364 #define URB_DIR_MASK URB_DIR_IN
1365
1366 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1367 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1368 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1369 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1370 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1371 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1372 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1373 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1374
1375 struct usb_iso_packet_descriptor {
1376 unsigned int offset;
1377 unsigned int length; /* expected length */
1378 unsigned int actual_length;
1379 int status;
1380 };
1381
1382 struct urb;
1383
1384 struct usb_anchor {
1385 struct list_head urb_list;
1386 wait_queue_head_t wait;
1387 spinlock_t lock;
1388 atomic_t suspend_wakeups;
1389 unsigned int poisoned:1;
1390 };
1391
init_usb_anchor(struct usb_anchor * anchor)1392 static inline void init_usb_anchor(struct usb_anchor *anchor)
1393 {
1394 memset(anchor, 0, sizeof(*anchor));
1395 INIT_LIST_HEAD(&anchor->urb_list);
1396 init_waitqueue_head(&anchor->wait);
1397 spin_lock_init(&anchor->lock);
1398 }
1399
1400 typedef void (*usb_complete_t)(struct urb *);
1401
1402 /**
1403 * struct urb - USB Request Block
1404 * @urb_list: For use by current owner of the URB.
1405 * @anchor_list: membership in the list of an anchor
1406 * @anchor: to anchor URBs to a common mooring
1407 * @ep: Points to the endpoint's data structure. Will eventually
1408 * replace @pipe.
1409 * @pipe: Holds endpoint number, direction, type, and more.
1410 * Create these values with the eight macros available;
1411 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1412 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1413 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1414 * numbers range from zero to fifteen. Note that "in" endpoint two
1415 * is a different endpoint (and pipe) from "out" endpoint two.
1416 * The current configuration controls the existence, type, and
1417 * maximum packet size of any given endpoint.
1418 * @stream_id: the endpoint's stream ID for bulk streams
1419 * @dev: Identifies the USB device to perform the request.
1420 * @status: This is read in non-iso completion functions to get the
1421 * status of the particular request. ISO requests only use it
1422 * to tell whether the URB was unlinked; detailed status for
1423 * each frame is in the fields of the iso_frame-desc.
1424 * @transfer_flags: A variety of flags may be used to affect how URB
1425 * submission, unlinking, or operation are handled. Different
1426 * kinds of URB can use different flags.
1427 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1428 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1429 * (however, do not leave garbage in transfer_buffer even then).
1430 * This buffer must be suitable for DMA; allocate it with
1431 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1432 * of this buffer will be modified. This buffer is used for the data
1433 * stage of control transfers.
1434 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1435 * the device driver is saying that it provided this DMA address,
1436 * which the host controller driver should use in preference to the
1437 * transfer_buffer.
1438 * @sg: scatter gather buffer list, the buffer size of each element in
1439 * the list (except the last) must be divisible by the endpoint's
1440 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1441 * @num_mapped_sgs: (internal) number of mapped sg entries
1442 * @num_sgs: number of entries in the sg list
1443 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1444 * be broken up into chunks according to the current maximum packet
1445 * size for the endpoint, which is a function of the configuration
1446 * and is encoded in the pipe. When the length is zero, neither
1447 * transfer_buffer nor transfer_dma is used.
1448 * @actual_length: This is read in non-iso completion functions, and
1449 * it tells how many bytes (out of transfer_buffer_length) were
1450 * transferred. It will normally be the same as requested, unless
1451 * either an error was reported or a short read was performed.
1452 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1453 * short reads be reported as errors.
1454 * @setup_packet: Only used for control transfers, this points to eight bytes
1455 * of setup data. Control transfers always start by sending this data
1456 * to the device. Then transfer_buffer is read or written, if needed.
1457 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1458 * this field; setup_packet must point to a valid buffer.
1459 * @start_frame: Returns the initial frame for isochronous transfers.
1460 * @number_of_packets: Lists the number of ISO transfer buffers.
1461 * @interval: Specifies the polling interval for interrupt or isochronous
1462 * transfers. The units are frames (milliseconds) for full and low
1463 * speed devices, and microframes (1/8 millisecond) for highspeed
1464 * and SuperSpeed devices.
1465 * @error_count: Returns the number of ISO transfers that reported errors.
1466 * @context: For use in completion functions. This normally points to
1467 * request-specific driver context.
1468 * @complete: Completion handler. This URB is passed as the parameter to the
1469 * completion function. The completion function may then do what
1470 * it likes with the URB, including resubmitting or freeing it.
1471 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1472 * collect the transfer status for each buffer.
1473 *
1474 * This structure identifies USB transfer requests. URBs must be allocated by
1475 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1476 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1477 * are submitted using usb_submit_urb(), and pending requests may be canceled
1478 * using usb_unlink_urb() or usb_kill_urb().
1479 *
1480 * Data Transfer Buffers:
1481 *
1482 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1483 * taken from the general page pool. That is provided by transfer_buffer
1484 * (control requests also use setup_packet), and host controller drivers
1485 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1486 * mapping operations can be expensive on some platforms (perhaps using a dma
1487 * bounce buffer or talking to an IOMMU),
1488 * although they're cheap on commodity x86 and ppc hardware.
1489 *
1490 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1491 * which tells the host controller driver that no such mapping is needed for
1492 * the transfer_buffer since
1493 * the device driver is DMA-aware. For example, a device driver might
1494 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1495 * When this transfer flag is provided, host controller drivers will
1496 * attempt to use the dma address found in the transfer_dma
1497 * field rather than determining a dma address themselves.
1498 *
1499 * Note that transfer_buffer must still be set if the controller
1500 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1501 * to root hub. If you have to transfer between highmem zone and the device
1502 * on such controller, create a bounce buffer or bail out with an error.
1503 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1504 * capable, assign NULL to it, so that usbmon knows not to use the value.
1505 * The setup_packet must always be set, so it cannot be located in highmem.
1506 *
1507 * Initialization:
1508 *
1509 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1510 * zero), and complete fields. All URBs must also initialize
1511 * transfer_buffer and transfer_buffer_length. They may provide the
1512 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1513 * to be treated as errors; that flag is invalid for write requests.
1514 *
1515 * Bulk URBs may
1516 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1517 * should always terminate with a short packet, even if it means adding an
1518 * extra zero length packet.
1519 *
1520 * Control URBs must provide a valid pointer in the setup_packet field.
1521 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1522 * beforehand.
1523 *
1524 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1525 * or, for highspeed devices, 125 microsecond units)
1526 * to poll for transfers. After the URB has been submitted, the interval
1527 * field reflects how the transfer was actually scheduled.
1528 * The polling interval may be more frequent than requested.
1529 * For example, some controllers have a maximum interval of 32 milliseconds,
1530 * while others support intervals of up to 1024 milliseconds.
1531 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1532 * endpoints, as well as high speed interrupt endpoints, the encoding of
1533 * the transfer interval in the endpoint descriptor is logarithmic.
1534 * Device drivers must convert that value to linear units themselves.)
1535 *
1536 * If an isochronous endpoint queue isn't already running, the host
1537 * controller will schedule a new URB to start as soon as bandwidth
1538 * utilization allows. If the queue is running then a new URB will be
1539 * scheduled to start in the first transfer slot following the end of the
1540 * preceding URB, if that slot has not already expired. If the slot has
1541 * expired (which can happen when IRQ delivery is delayed for a long time),
1542 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1543 * is clear then the URB will be scheduled to start in the expired slot,
1544 * implying that some of its packets will not be transferred; if the flag
1545 * is set then the URB will be scheduled in the first unexpired slot,
1546 * breaking the queue's synchronization. Upon URB completion, the
1547 * start_frame field will be set to the (micro)frame number in which the
1548 * transfer was scheduled. Ranges for frame counter values are HC-specific
1549 * and can go from as low as 256 to as high as 65536 frames.
1550 *
1551 * Isochronous URBs have a different data transfer model, in part because
1552 * the quality of service is only "best effort". Callers provide specially
1553 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1554 * at the end. Each such packet is an individual ISO transfer. Isochronous
1555 * URBs are normally queued, submitted by drivers to arrange that
1556 * transfers are at least double buffered, and then explicitly resubmitted
1557 * in completion handlers, so
1558 * that data (such as audio or video) streams at as constant a rate as the
1559 * host controller scheduler can support.
1560 *
1561 * Completion Callbacks:
1562 *
1563 * The completion callback is made in_interrupt(), and one of the first
1564 * things that a completion handler should do is check the status field.
1565 * The status field is provided for all URBs. It is used to report
1566 * unlinked URBs, and status for all non-ISO transfers. It should not
1567 * be examined before the URB is returned to the completion handler.
1568 *
1569 * The context field is normally used to link URBs back to the relevant
1570 * driver or request state.
1571 *
1572 * When the completion callback is invoked for non-isochronous URBs, the
1573 * actual_length field tells how many bytes were transferred. This field
1574 * is updated even when the URB terminated with an error or was unlinked.
1575 *
1576 * ISO transfer status is reported in the status and actual_length fields
1577 * of the iso_frame_desc array, and the number of errors is reported in
1578 * error_count. Completion callbacks for ISO transfers will normally
1579 * (re)submit URBs to ensure a constant transfer rate.
1580 *
1581 * Note that even fields marked "public" should not be touched by the driver
1582 * when the urb is owned by the hcd, that is, since the call to
1583 * usb_submit_urb() till the entry into the completion routine.
1584 */
1585 struct urb {
1586 /* private: usb core and host controller only fields in the urb */
1587 struct kref kref; /* reference count of the URB */
1588 int unlinked; /* unlink error code */
1589 void *hcpriv; /* private data for host controller */
1590 atomic_t use_count; /* concurrent submissions counter */
1591 atomic_t reject; /* submissions will fail */
1592
1593 /* public: documented fields in the urb that can be used by drivers */
1594 struct list_head urb_list; /* list head for use by the urb's
1595 * current owner */
1596 struct list_head anchor_list; /* the URB may be anchored */
1597 struct usb_anchor *anchor;
1598 struct usb_device *dev; /* (in) pointer to associated device */
1599 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1600 unsigned int pipe; /* (in) pipe information */
1601 unsigned int stream_id; /* (in) stream ID */
1602 int status; /* (return) non-ISO status */
1603 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1604 void *transfer_buffer; /* (in) associated data buffer */
1605 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1606 struct scatterlist *sg; /* (in) scatter gather buffer list */
1607 int num_mapped_sgs; /* (internal) mapped sg entries */
1608 int num_sgs; /* (in) number of entries in the sg list */
1609 u32 transfer_buffer_length; /* (in) data buffer length */
1610 u32 actual_length; /* (return) actual transfer length */
1611 unsigned char *setup_packet; /* (in) setup packet (control only) */
1612 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1613 int start_frame; /* (modify) start frame (ISO) */
1614 int number_of_packets; /* (in) number of ISO packets */
1615 int interval; /* (modify) transfer interval
1616 * (INT/ISO) */
1617 int error_count; /* (return) number of ISO errors */
1618 void *context; /* (in) context for completion */
1619 usb_complete_t complete; /* (in) completion routine */
1620 struct usb_iso_packet_descriptor iso_frame_desc[];
1621 /* (in) ISO ONLY */
1622 };
1623
1624 /* ----------------------------------------------------------------------- */
1625
1626 /**
1627 * usb_fill_control_urb - initializes a control urb
1628 * @urb: pointer to the urb to initialize.
1629 * @dev: pointer to the struct usb_device for this urb.
1630 * @pipe: the endpoint pipe
1631 * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1632 * suitable for DMA.
1633 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1634 * suitable for DMA.
1635 * @buffer_length: length of the transfer buffer
1636 * @complete_fn: pointer to the usb_complete_t function
1637 * @context: what to set the urb context to.
1638 *
1639 * Initializes a control urb with the proper information needed to submit
1640 * it to a device.
1641 *
1642 * The transfer buffer and the setup_packet buffer will most likely be filled
1643 * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1644 * allocating it via kmalloc() or equivalent, even for very small buffers.
1645 * If the buffers are embedded in a bigger structure, there is a risk that
1646 * the buffer itself, the previous fields and/or the next fields are corrupted
1647 * due to cache incoherencies; or slowed down if they are evicted from the
1648 * cache. For more information, check &struct urb.
1649 *
1650 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1651 static inline void usb_fill_control_urb(struct urb *urb,
1652 struct usb_device *dev,
1653 unsigned int pipe,
1654 unsigned char *setup_packet,
1655 void *transfer_buffer,
1656 int buffer_length,
1657 usb_complete_t complete_fn,
1658 void *context)
1659 {
1660 urb->dev = dev;
1661 urb->pipe = pipe;
1662 urb->setup_packet = setup_packet;
1663 urb->transfer_buffer = transfer_buffer;
1664 urb->transfer_buffer_length = buffer_length;
1665 urb->complete = complete_fn;
1666 urb->context = context;
1667 }
1668
1669 /**
1670 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1671 * @urb: pointer to the urb to initialize.
1672 * @dev: pointer to the struct usb_device for this urb.
1673 * @pipe: the endpoint pipe
1674 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1675 * suitable for DMA.
1676 * @buffer_length: length of the transfer buffer
1677 * @complete_fn: pointer to the usb_complete_t function
1678 * @context: what to set the urb context to.
1679 *
1680 * Initializes a bulk urb with the proper information needed to submit it
1681 * to a device.
1682 *
1683 * Refer to usb_fill_control_urb() for a description of the requirements for
1684 * transfer_buffer.
1685 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1686 static inline void usb_fill_bulk_urb(struct urb *urb,
1687 struct usb_device *dev,
1688 unsigned int pipe,
1689 void *transfer_buffer,
1690 int buffer_length,
1691 usb_complete_t complete_fn,
1692 void *context)
1693 {
1694 urb->dev = dev;
1695 urb->pipe = pipe;
1696 urb->transfer_buffer = transfer_buffer;
1697 urb->transfer_buffer_length = buffer_length;
1698 urb->complete = complete_fn;
1699 urb->context = context;
1700 }
1701
1702 /**
1703 * usb_fill_int_urb - macro to help initialize a interrupt urb
1704 * @urb: pointer to the urb to initialize.
1705 * @dev: pointer to the struct usb_device for this urb.
1706 * @pipe: the endpoint pipe
1707 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1708 * suitable for DMA.
1709 * @buffer_length: length of the transfer buffer
1710 * @complete_fn: pointer to the usb_complete_t function
1711 * @context: what to set the urb context to.
1712 * @interval: what to set the urb interval to, encoded like
1713 * the endpoint descriptor's bInterval value.
1714 *
1715 * Initializes a interrupt urb with the proper information needed to submit
1716 * it to a device.
1717 *
1718 * Refer to usb_fill_control_urb() for a description of the requirements for
1719 * transfer_buffer.
1720 *
1721 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1722 * encoding of the endpoint interval, and express polling intervals in
1723 * microframes (eight per millisecond) rather than in frames (one per
1724 * millisecond).
1725 *
1726 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1727 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1728 * through to the host controller, rather than being translated into microframe
1729 * units.
1730 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1731 static inline void usb_fill_int_urb(struct urb *urb,
1732 struct usb_device *dev,
1733 unsigned int pipe,
1734 void *transfer_buffer,
1735 int buffer_length,
1736 usb_complete_t complete_fn,
1737 void *context,
1738 int interval)
1739 {
1740 urb->dev = dev;
1741 urb->pipe = pipe;
1742 urb->transfer_buffer = transfer_buffer;
1743 urb->transfer_buffer_length = buffer_length;
1744 urb->complete = complete_fn;
1745 urb->context = context;
1746
1747 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1748 /* make sure interval is within allowed range */
1749 interval = clamp(interval, 1, 16);
1750
1751 urb->interval = 1 << (interval - 1);
1752 } else {
1753 urb->interval = interval;
1754 }
1755
1756 urb->start_frame = -1;
1757 }
1758
1759 extern void usb_init_urb(struct urb *urb);
1760 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1761 extern void usb_free_urb(struct urb *urb);
1762 #define usb_put_urb usb_free_urb
1763 extern struct urb *usb_get_urb(struct urb *urb);
1764 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1765 extern int usb_unlink_urb(struct urb *urb);
1766 extern void usb_kill_urb(struct urb *urb);
1767 extern void usb_poison_urb(struct urb *urb);
1768 extern void usb_unpoison_urb(struct urb *urb);
1769 extern void usb_block_urb(struct urb *urb);
1770 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1771 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1772 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1773 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1774 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1775 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1776 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1777 extern void usb_unanchor_urb(struct urb *urb);
1778 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1779 unsigned int timeout);
1780 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1781 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1782 extern int usb_anchor_empty(struct usb_anchor *anchor);
1783
1784 #define usb_unblock_urb usb_unpoison_urb
1785
1786 /**
1787 * usb_urb_dir_in - check if an URB describes an IN transfer
1788 * @urb: URB to be checked
1789 *
1790 * Return: 1 if @urb describes an IN transfer (device-to-host),
1791 * otherwise 0.
1792 */
usb_urb_dir_in(struct urb * urb)1793 static inline int usb_urb_dir_in(struct urb *urb)
1794 {
1795 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1796 }
1797
1798 /**
1799 * usb_urb_dir_out - check if an URB describes an OUT transfer
1800 * @urb: URB to be checked
1801 *
1802 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1803 * otherwise 0.
1804 */
usb_urb_dir_out(struct urb * urb)1805 static inline int usb_urb_dir_out(struct urb *urb)
1806 {
1807 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1808 }
1809
1810 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1811 int usb_urb_ep_type_check(const struct urb *urb);
1812
1813 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1814 gfp_t mem_flags, dma_addr_t *dma);
1815 void usb_free_coherent(struct usb_device *dev, size_t size,
1816 void *addr, dma_addr_t dma);
1817
1818 #if 0
1819 struct urb *usb_buffer_map(struct urb *urb);
1820 void usb_buffer_dmasync(struct urb *urb);
1821 void usb_buffer_unmap(struct urb *urb);
1822 #endif
1823
1824 struct scatterlist;
1825 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1826 struct scatterlist *sg, int nents);
1827 #if 0
1828 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1829 struct scatterlist *sg, int n_hw_ents);
1830 #endif
1831 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1832 struct scatterlist *sg, int n_hw_ents);
1833
1834 /*-------------------------------------------------------------------*
1835 * SYNCHRONOUS CALL SUPPORT *
1836 *-------------------------------------------------------------------*/
1837
1838 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1839 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1840 void *data, __u16 size, int timeout);
1841 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1842 void *data, int len, int *actual_length, int timeout);
1843 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1844 void *data, int len, int *actual_length,
1845 int timeout);
1846
1847 /* wrappers around usb_control_msg() for the most common standard requests */
1848 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1849 __u8 requesttype, __u16 value, __u16 index,
1850 const void *data, __u16 size, int timeout,
1851 gfp_t memflags);
1852 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1853 __u8 requesttype, __u16 value, __u16 index,
1854 void *data, __u16 size, int timeout,
1855 gfp_t memflags);
1856 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1857 unsigned char descindex, void *buf, int size);
1858 extern int usb_get_status(struct usb_device *dev,
1859 int recip, int type, int target, void *data);
1860
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1861 static inline int usb_get_std_status(struct usb_device *dev,
1862 int recip, int target, void *data)
1863 {
1864 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1865 data);
1866 }
1867
usb_get_ptm_status(struct usb_device * dev,void * data)1868 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1869 {
1870 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1871 0, data);
1872 }
1873
1874 extern int usb_string(struct usb_device *dev, int index,
1875 char *buf, size_t size);
1876 extern char *usb_cache_string(struct usb_device *udev, int index);
1877
1878 /* wrappers that also update important state inside usbcore */
1879 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1880 extern int usb_reset_configuration(struct usb_device *dev);
1881 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1882 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1883
1884 /* this request isn't really synchronous, but it belongs with the others */
1885 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1886
1887 /* choose and set configuration for device */
1888 extern int usb_choose_configuration(struct usb_device *udev);
1889 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1890
1891 /*
1892 * timeouts, in milliseconds, used for sending/receiving control messages
1893 * they typically complete within a few frames (msec) after they're issued
1894 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1895 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1896 */
1897 #define USB_CTRL_GET_TIMEOUT 5000
1898 #define USB_CTRL_SET_TIMEOUT 5000
1899
1900
1901 /**
1902 * struct usb_sg_request - support for scatter/gather I/O
1903 * @status: zero indicates success, else negative errno
1904 * @bytes: counts bytes transferred.
1905 *
1906 * These requests are initialized using usb_sg_init(), and then are used
1907 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1908 * members of the request object aren't for driver access.
1909 *
1910 * The status and bytecount values are valid only after usb_sg_wait()
1911 * returns. If the status is zero, then the bytecount matches the total
1912 * from the request.
1913 *
1914 * After an error completion, drivers may need to clear a halt condition
1915 * on the endpoint.
1916 */
1917 struct usb_sg_request {
1918 int status;
1919 size_t bytes;
1920
1921 /* private:
1922 * members below are private to usbcore,
1923 * and are not provided for driver access!
1924 */
1925 spinlock_t lock;
1926
1927 struct usb_device *dev;
1928 int pipe;
1929
1930 int entries;
1931 struct urb **urbs;
1932
1933 int count;
1934 struct completion complete;
1935 };
1936
1937 int usb_sg_init(
1938 struct usb_sg_request *io,
1939 struct usb_device *dev,
1940 unsigned pipe,
1941 unsigned period,
1942 struct scatterlist *sg,
1943 int nents,
1944 size_t length,
1945 gfp_t mem_flags
1946 );
1947 void usb_sg_cancel(struct usb_sg_request *io);
1948 void usb_sg_wait(struct usb_sg_request *io);
1949
1950
1951 /* ----------------------------------------------------------------------- */
1952
1953 /*
1954 * For various legacy reasons, Linux has a small cookie that's paired with
1955 * a struct usb_device to identify an endpoint queue. Queue characteristics
1956 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1957 * an unsigned int encoded as:
1958 *
1959 * - direction: bit 7 (0 = Host-to-Device [Out],
1960 * 1 = Device-to-Host [In] ...
1961 * like endpoint bEndpointAddress)
1962 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1963 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1964 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1965 * 10 = control, 11 = bulk)
1966 *
1967 * Given the device address and endpoint descriptor, pipes are redundant.
1968 */
1969
1970 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1971 /* (yet ... they're the values used by usbfs) */
1972 #define PIPE_ISOCHRONOUS 0
1973 #define PIPE_INTERRUPT 1
1974 #define PIPE_CONTROL 2
1975 #define PIPE_BULK 3
1976
1977 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1978 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1979
1980 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1981 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1982
1983 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1984 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1985 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1986 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1987 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1988
__create_pipe(struct usb_device * dev,unsigned int endpoint)1989 static inline unsigned int __create_pipe(struct usb_device *dev,
1990 unsigned int endpoint)
1991 {
1992 return (dev->devnum << 8) | (endpoint << 15);
1993 }
1994
1995 /* Create various pipes... */
1996 #define usb_sndctrlpipe(dev, endpoint) \
1997 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1998 #define usb_rcvctrlpipe(dev, endpoint) \
1999 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2000 #define usb_sndisocpipe(dev, endpoint) \
2001 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2002 #define usb_rcvisocpipe(dev, endpoint) \
2003 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2004 #define usb_sndbulkpipe(dev, endpoint) \
2005 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2006 #define usb_rcvbulkpipe(dev, endpoint) \
2007 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2008 #define usb_sndintpipe(dev, endpoint) \
2009 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2010 #define usb_rcvintpipe(dev, endpoint) \
2011 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2012
2013 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)2014 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2015 {
2016 struct usb_host_endpoint **eps;
2017 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2018 return eps[usb_pipeendpoint(pipe)];
2019 }
2020
usb_maxpacket(struct usb_device * udev,int pipe)2021 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2022 {
2023 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2024
2025 if (!ep)
2026 return 0;
2027
2028 /* NOTE: only 0x07ff bits are for packet size... */
2029 return usb_endpoint_maxp(&ep->desc);
2030 }
2031
2032 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2033 static inline int usb_translate_errors(int error_code)
2034 {
2035 switch (error_code) {
2036 case 0:
2037 case -ENOMEM:
2038 case -ENODEV:
2039 case -EOPNOTSUPP:
2040 return error_code;
2041 default:
2042 return -EIO;
2043 }
2044 }
2045
2046 /* Events from the usb core */
2047 #define USB_DEVICE_ADD 0x0001
2048 #define USB_DEVICE_REMOVE 0x0002
2049 #define USB_BUS_ADD 0x0003
2050 #define USB_BUS_REMOVE 0x0004
2051 extern void usb_register_notify(struct notifier_block *nb);
2052 extern void usb_unregister_notify(struct notifier_block *nb);
2053
2054 /* debugfs stuff */
2055 extern struct dentry *usb_debug_root;
2056
2057 /* LED triggers */
2058 enum usb_led_event {
2059 USB_LED_EVENT_HOST = 0,
2060 USB_LED_EVENT_GADGET = 1,
2061 };
2062
2063 #ifdef CONFIG_USB_LED_TRIG
2064 extern void usb_led_activity(enum usb_led_event ev);
2065 #else
usb_led_activity(enum usb_led_event ev)2066 static inline void usb_led_activity(enum usb_led_event ev) {}
2067 #endif
2068
2069 #endif /* __KERNEL__ */
2070
2071 #endif
2072