1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * mapping->i_mmap_rwsem
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in block_dirty_folio)
34 * folio_lock_memcg move_lock (in block_dirty_folio)
35 * i_pages lock (widely used)
36 * lruvec->lru_lock (in folio_lruvec_lock_irq)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * hugetlbfs PageHuge() take locks in this order:
49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50 * vma_lock (hugetlb specific lock for pmd_sharing)
51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52 * page->flags PG_locked (lock_page)
53 */
54
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77
78 #include <asm/tlbflush.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
83
84 #include "internal.h"
85
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88
anon_vma_alloc(void)89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
96 anon_vma->num_children = 0;
97 anon_vma->num_active_vmas = 0;
98 anon_vma->parent = anon_vma;
99 /*
100 * Initialise the anon_vma root to point to itself. If called
101 * from fork, the root will be reset to the parents anon_vma.
102 */
103 anon_vma->root = anon_vma;
104 }
105
106 return anon_vma;
107 }
108
anon_vma_free(struct anon_vma * anon_vma)109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 VM_BUG_ON(atomic_read(&anon_vma->refcount));
112
113 /*
114 * Synchronize against folio_lock_anon_vma_read() such that
115 * we can safely hold the lock without the anon_vma getting
116 * freed.
117 *
118 * Relies on the full mb implied by the atomic_dec_and_test() from
119 * put_anon_vma() against the acquire barrier implied by
120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 *
122 * folio_lock_anon_vma_read() VS put_anon_vma()
123 * down_read_trylock() atomic_dec_and_test()
124 * LOCK MB
125 * atomic_read() rwsem_is_locked()
126 *
127 * LOCK should suffice since the actual taking of the lock must
128 * happen _before_ what follows.
129 */
130 might_sleep();
131 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 anon_vma_lock_write(anon_vma);
133 anon_vma_unlock_write(anon_vma);
134 }
135
136 kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138
anon_vma_chain_alloc(gfp_t gfp)139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 struct anon_vma_chain *avc,
151 struct anon_vma *anon_vma)
152 {
153 avc->vma = vma;
154 avc->anon_vma = anon_vma;
155 list_add(&avc->same_vma, &vma->anon_vma_chain);
156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158
159 /**
160 * __anon_vma_prepare - attach an anon_vma to a memory region
161 * @vma: the memory region in question
162 *
163 * This makes sure the memory mapping described by 'vma' has
164 * an 'anon_vma' attached to it, so that we can associate the
165 * anonymous pages mapped into it with that anon_vma.
166 *
167 * The common case will be that we already have one, which
168 * is handled inline by anon_vma_prepare(). But if
169 * not we either need to find an adjacent mapping that we
170 * can re-use the anon_vma from (very common when the only
171 * reason for splitting a vma has been mprotect()), or we
172 * allocate a new one.
173 *
174 * Anon-vma allocations are very subtle, because we may have
175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176 * and that may actually touch the rwsem even in the newly
177 * allocated vma (it depends on RCU to make sure that the
178 * anon_vma isn't actually destroyed).
179 *
180 * As a result, we need to do proper anon_vma locking even
181 * for the new allocation. At the same time, we do not want
182 * to do any locking for the common case of already having
183 * an anon_vma.
184 *
185 * This must be called with the mmap_lock held for reading.
186 */
__anon_vma_prepare(struct vm_area_struct * vma)187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 struct mm_struct *mm = vma->vm_mm;
190 struct anon_vma *anon_vma, *allocated;
191 struct anon_vma_chain *avc;
192
193 might_sleep();
194
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
196 if (!avc)
197 goto out_enomem;
198
199 anon_vma = find_mergeable_anon_vma(vma);
200 allocated = NULL;
201 if (!anon_vma) {
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
205 anon_vma->num_children++; /* self-parent link for new root */
206 allocated = anon_vma;
207 }
208
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
215 anon_vma->num_active_vmas++;
216 allocated = NULL;
217 avc = NULL;
218 }
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
221
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
224 if (unlikely(avc))
225 anon_vma_chain_free(avc);
226
227 return 0;
228
229 out_enomem_free_avc:
230 anon_vma_chain_free(avc);
231 out_enomem:
232 return -ENOMEM;
233 }
234
235 /*
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238 * have the same vma.
239 *
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
242 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
248 up_write(&root->rwsem);
249 root = new_root;
250 down_write(&root->rwsem);
251 }
252 return root;
253 }
254
unlock_anon_vma_root(struct anon_vma * root)255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 if (root)
258 up_write(&root->rwsem);
259 }
260
261 /*
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
264 *
265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269 * call, we can identify this case by checking (!dst->anon_vma &&
270 * src->anon_vma).
271 *
272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274 * This prevents degradation of anon_vma hierarchy to endless linear chain in
275 * case of constantly forking task. On the other hand, an anon_vma with more
276 * than one child isn't reused even if there was no alive vma, thus rmap
277 * walker has a good chance of avoiding scanning the whole hierarchy when it
278 * searches where page is mapped.
279 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 struct anon_vma_chain *avc, *pavc;
283 struct anon_vma *root = NULL;
284
285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 struct anon_vma *anon_vma;
287
288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 if (unlikely(!avc)) {
290 unlock_anon_vma_root(root);
291 root = NULL;
292 avc = anon_vma_chain_alloc(GFP_KERNEL);
293 if (!avc)
294 goto enomem_failure;
295 }
296 anon_vma = pavc->anon_vma;
297 root = lock_anon_vma_root(root, anon_vma);
298 anon_vma_chain_link(dst, avc, anon_vma);
299
300 /*
301 * Reuse existing anon_vma if it has no vma and only one
302 * anon_vma child.
303 *
304 * Root anon_vma is never reused:
305 * it has self-parent reference and at least one child.
306 */
307 if (!dst->anon_vma && src->anon_vma &&
308 anon_vma->num_children < 2 &&
309 anon_vma->num_active_vmas == 0)
310 dst->anon_vma = anon_vma;
311 }
312 if (dst->anon_vma)
313 dst->anon_vma->num_active_vmas++;
314 unlock_anon_vma_root(root);
315 return 0;
316
317 enomem_failure:
318 /*
319 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 * be incorrectly decremented in unlink_anon_vmas().
321 * We can safely do this because callers of anon_vma_clone() don't care
322 * about dst->anon_vma if anon_vma_clone() failed.
323 */
324 dst->anon_vma = NULL;
325 unlink_anon_vmas(dst);
326 return -ENOMEM;
327 }
328
329 /*
330 * Attach vma to its own anon_vma, as well as to the anon_vmas that
331 * the corresponding VMA in the parent process is attached to.
332 * Returns 0 on success, non-zero on failure.
333 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 struct anon_vma_chain *avc;
337 struct anon_vma *anon_vma;
338 int error;
339
340 /* Don't bother if the parent process has no anon_vma here. */
341 if (!pvma->anon_vma)
342 return 0;
343
344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 vma->anon_vma = NULL;
346
347 /*
348 * First, attach the new VMA to the parent VMA's anon_vmas,
349 * so rmap can find non-COWed pages in child processes.
350 */
351 error = anon_vma_clone(vma, pvma);
352 if (error)
353 return error;
354
355 /* An existing anon_vma has been reused, all done then. */
356 if (vma->anon_vma)
357 return 0;
358
359 /* Then add our own anon_vma. */
360 anon_vma = anon_vma_alloc();
361 if (!anon_vma)
362 goto out_error;
363 anon_vma->num_active_vmas++;
364 avc = anon_vma_chain_alloc(GFP_KERNEL);
365 if (!avc)
366 goto out_error_free_anon_vma;
367
368 /*
369 * The root anon_vma's rwsem is the lock actually used when we
370 * lock any of the anon_vmas in this anon_vma tree.
371 */
372 anon_vma->root = pvma->anon_vma->root;
373 anon_vma->parent = pvma->anon_vma;
374 /*
375 * With refcounts, an anon_vma can stay around longer than the
376 * process it belongs to. The root anon_vma needs to be pinned until
377 * this anon_vma is freed, because the lock lives in the root.
378 */
379 get_anon_vma(anon_vma->root);
380 /* Mark this anon_vma as the one where our new (COWed) pages go. */
381 vma->anon_vma = anon_vma;
382 anon_vma_lock_write(anon_vma);
383 anon_vma_chain_link(vma, avc, anon_vma);
384 anon_vma->parent->num_children++;
385 anon_vma_unlock_write(anon_vma);
386
387 return 0;
388
389 out_error_free_anon_vma:
390 put_anon_vma(anon_vma);
391 out_error:
392 unlink_anon_vmas(vma);
393 return -ENOMEM;
394 }
395
unlink_anon_vmas(struct vm_area_struct * vma)396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 struct anon_vma_chain *avc, *next;
399 struct anon_vma *root = NULL;
400
401 /*
402 * Unlink each anon_vma chained to the VMA. This list is ordered
403 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 */
405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 struct anon_vma *anon_vma = avc->anon_vma;
407
408 root = lock_anon_vma_root(root, anon_vma);
409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410
411 /*
412 * Leave empty anon_vmas on the list - we'll need
413 * to free them outside the lock.
414 */
415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 anon_vma->parent->num_children--;
417 continue;
418 }
419
420 list_del(&avc->same_vma);
421 anon_vma_chain_free(avc);
422 }
423 if (vma->anon_vma) {
424 vma->anon_vma->num_active_vmas--;
425
426 /*
427 * vma would still be needed after unlink, and anon_vma will be prepared
428 * when handle fault.
429 */
430 vma->anon_vma = NULL;
431 }
432 unlock_anon_vma_root(root);
433
434 /*
435 * Iterate the list once more, it now only contains empty and unlinked
436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 * needing to write-acquire the anon_vma->root->rwsem.
438 */
439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 struct anon_vma *anon_vma = avc->anon_vma;
441
442 VM_WARN_ON(anon_vma->num_children);
443 VM_WARN_ON(anon_vma->num_active_vmas);
444 put_anon_vma(anon_vma);
445
446 list_del(&avc->same_vma);
447 anon_vma_chain_free(avc);
448 }
449 }
450
anon_vma_ctor(void * data)451 static void anon_vma_ctor(void *data)
452 {
453 struct anon_vma *anon_vma = data;
454
455 init_rwsem(&anon_vma->rwsem);
456 atomic_set(&anon_vma->refcount, 0);
457 anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459
anon_vma_init(void)460 void __init anon_vma_init(void)
461 {
462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 anon_vma_ctor);
465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 SLAB_PANIC|SLAB_ACCOUNT);
467 }
468
469 /*
470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471 *
472 * Since there is no serialization what so ever against page_remove_rmap()
473 * the best this function can do is return a refcount increased anon_vma
474 * that might have been relevant to this page.
475 *
476 * The page might have been remapped to a different anon_vma or the anon_vma
477 * returned may already be freed (and even reused).
478 *
479 * In case it was remapped to a different anon_vma, the new anon_vma will be a
480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481 * ensure that any anon_vma obtained from the page will still be valid for as
482 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483 *
484 * All users of this function must be very careful when walking the anon_vma
485 * chain and verify that the page in question is indeed mapped in it
486 * [ something equivalent to page_mapped_in_vma() ].
487 *
488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
490 * if there is a mapcount, we can dereference the anon_vma after observing
491 * those.
492 */
folio_get_anon_vma(struct folio * folio)493 struct anon_vma *folio_get_anon_vma(struct folio *folio)
494 {
495 struct anon_vma *anon_vma = NULL;
496 unsigned long anon_mapping;
497
498 rcu_read_lock();
499 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
500 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
501 goto out;
502 if (!folio_mapped(folio))
503 goto out;
504
505 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
506 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
507 anon_vma = NULL;
508 goto out;
509 }
510
511 /*
512 * If this folio is still mapped, then its anon_vma cannot have been
513 * freed. But if it has been unmapped, we have no security against the
514 * anon_vma structure being freed and reused (for another anon_vma:
515 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
516 * above cannot corrupt).
517 */
518 if (!folio_mapped(folio)) {
519 rcu_read_unlock();
520 put_anon_vma(anon_vma);
521 return NULL;
522 }
523 out:
524 rcu_read_unlock();
525
526 return anon_vma;
527 }
528
529 /*
530 * Similar to folio_get_anon_vma() except it locks the anon_vma.
531 *
532 * Its a little more complex as it tries to keep the fast path to a single
533 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
534 * reference like with folio_get_anon_vma() and then block on the mutex
535 * on !rwc->try_lock case.
536 */
folio_lock_anon_vma_read(struct folio * folio,struct rmap_walk_control * rwc)537 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
538 struct rmap_walk_control *rwc)
539 {
540 struct anon_vma *anon_vma = NULL;
541 struct anon_vma *root_anon_vma;
542 unsigned long anon_mapping;
543
544 rcu_read_lock();
545 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
546 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
547 goto out;
548 if (!folio_mapped(folio))
549 goto out;
550
551 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
552 root_anon_vma = READ_ONCE(anon_vma->root);
553 if (down_read_trylock(&root_anon_vma->rwsem)) {
554 /*
555 * If the folio is still mapped, then this anon_vma is still
556 * its anon_vma, and holding the mutex ensures that it will
557 * not go away, see anon_vma_free().
558 */
559 if (!folio_mapped(folio)) {
560 up_read(&root_anon_vma->rwsem);
561 anon_vma = NULL;
562 }
563 goto out;
564 }
565
566 if (rwc && rwc->try_lock) {
567 anon_vma = NULL;
568 rwc->contended = true;
569 goto out;
570 }
571
572 /* trylock failed, we got to sleep */
573 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
574 anon_vma = NULL;
575 goto out;
576 }
577
578 if (!folio_mapped(folio)) {
579 rcu_read_unlock();
580 put_anon_vma(anon_vma);
581 return NULL;
582 }
583
584 /* we pinned the anon_vma, its safe to sleep */
585 rcu_read_unlock();
586 anon_vma_lock_read(anon_vma);
587
588 if (atomic_dec_and_test(&anon_vma->refcount)) {
589 /*
590 * Oops, we held the last refcount, release the lock
591 * and bail -- can't simply use put_anon_vma() because
592 * we'll deadlock on the anon_vma_lock_write() recursion.
593 */
594 anon_vma_unlock_read(anon_vma);
595 __put_anon_vma(anon_vma);
596 anon_vma = NULL;
597 }
598
599 return anon_vma;
600
601 out:
602 rcu_read_unlock();
603 return anon_vma;
604 }
605
606 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
607 /*
608 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
609 * important if a PTE was dirty when it was unmapped that it's flushed
610 * before any IO is initiated on the page to prevent lost writes. Similarly,
611 * it must be flushed before freeing to prevent data leakage.
612 */
try_to_unmap_flush(void)613 void try_to_unmap_flush(void)
614 {
615 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
616
617 if (!tlb_ubc->flush_required)
618 return;
619
620 arch_tlbbatch_flush(&tlb_ubc->arch);
621 tlb_ubc->flush_required = false;
622 tlb_ubc->writable = false;
623 }
624
625 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)626 void try_to_unmap_flush_dirty(void)
627 {
628 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
629
630 if (tlb_ubc->writable)
631 try_to_unmap_flush();
632 }
633
634 /*
635 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
636 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
637 */
638 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
639 #define TLB_FLUSH_BATCH_PENDING_MASK \
640 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
641 #define TLB_FLUSH_BATCH_PENDING_LARGE \
642 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
643
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)644 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
645 {
646 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
647 int batch, nbatch;
648
649 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
650 tlb_ubc->flush_required = true;
651
652 /*
653 * Ensure compiler does not re-order the setting of tlb_flush_batched
654 * before the PTE is cleared.
655 */
656 barrier();
657 batch = atomic_read(&mm->tlb_flush_batched);
658 retry:
659 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
660 /*
661 * Prevent `pending' from catching up with `flushed' because of
662 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
663 * `pending' becomes large.
664 */
665 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
666 if (nbatch != batch) {
667 batch = nbatch;
668 goto retry;
669 }
670 } else {
671 atomic_inc(&mm->tlb_flush_batched);
672 }
673
674 /*
675 * If the PTE was dirty then it's best to assume it's writable. The
676 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
677 * before the page is queued for IO.
678 */
679 if (writable)
680 tlb_ubc->writable = true;
681 }
682
683 /*
684 * Returns true if the TLB flush should be deferred to the end of a batch of
685 * unmap operations to reduce IPIs.
686 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)687 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
688 {
689 bool should_defer = false;
690
691 if (!(flags & TTU_BATCH_FLUSH))
692 return false;
693
694 /* If remote CPUs need to be flushed then defer batch the flush */
695 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
696 should_defer = true;
697 put_cpu();
698
699 return should_defer;
700 }
701
702 /*
703 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
704 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
705 * operation such as mprotect or munmap to race between reclaim unmapping
706 * the page and flushing the page. If this race occurs, it potentially allows
707 * access to data via a stale TLB entry. Tracking all mm's that have TLB
708 * batching in flight would be expensive during reclaim so instead track
709 * whether TLB batching occurred in the past and if so then do a flush here
710 * if required. This will cost one additional flush per reclaim cycle paid
711 * by the first operation at risk such as mprotect and mumap.
712 *
713 * This must be called under the PTL so that an access to tlb_flush_batched
714 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
715 * via the PTL.
716 */
flush_tlb_batched_pending(struct mm_struct * mm)717 void flush_tlb_batched_pending(struct mm_struct *mm)
718 {
719 int batch = atomic_read(&mm->tlb_flush_batched);
720 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
721 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
722
723 if (pending != flushed) {
724 flush_tlb_mm(mm);
725 /*
726 * If the new TLB flushing is pending during flushing, leave
727 * mm->tlb_flush_batched as is, to avoid losing flushing.
728 */
729 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
730 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
731 }
732 }
733 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)734 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
735 {
736 }
737
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)738 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
739 {
740 return false;
741 }
742 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
743
744 /*
745 * At what user virtual address is page expected in vma?
746 * Caller should check the page is actually part of the vma.
747 */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)748 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
749 {
750 struct folio *folio = page_folio(page);
751 if (folio_test_anon(folio)) {
752 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
753 /*
754 * Note: swapoff's unuse_vma() is more efficient with this
755 * check, and needs it to match anon_vma when KSM is active.
756 */
757 if (!vma->anon_vma || !page__anon_vma ||
758 vma->anon_vma->root != page__anon_vma->root)
759 return -EFAULT;
760 } else if (!vma->vm_file) {
761 return -EFAULT;
762 } else if (vma->vm_file->f_mapping != folio->mapping) {
763 return -EFAULT;
764 }
765
766 return vma_address(page, vma);
767 }
768
769 /*
770 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
771 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
772 * represents.
773 */
mm_find_pmd(struct mm_struct * mm,unsigned long address)774 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
775 {
776 pgd_t *pgd;
777 p4d_t *p4d;
778 pud_t *pud;
779 pmd_t *pmd = NULL;
780
781 pgd = pgd_offset(mm, address);
782 if (!pgd_present(*pgd))
783 goto out;
784
785 p4d = p4d_offset(pgd, address);
786 if (!p4d_present(*p4d))
787 goto out;
788
789 pud = pud_offset(p4d, address);
790 if (!pud_present(*pud))
791 goto out;
792
793 pmd = pmd_offset(pud, address);
794 out:
795 return pmd;
796 }
797
798 struct folio_referenced_arg {
799 int mapcount;
800 int referenced;
801 unsigned long vm_flags;
802 struct mem_cgroup *memcg;
803 };
804 /*
805 * arg: folio_referenced_arg will be passed
806 */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)807 static bool folio_referenced_one(struct folio *folio,
808 struct vm_area_struct *vma, unsigned long address, void *arg)
809 {
810 struct folio_referenced_arg *pra = arg;
811 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
812 int referenced = 0;
813
814 while (page_vma_mapped_walk(&pvmw)) {
815 address = pvmw.address;
816
817 if ((vma->vm_flags & VM_LOCKED) &&
818 (!folio_test_large(folio) || !pvmw.pte)) {
819 /* Restore the mlock which got missed */
820 mlock_vma_folio(folio, vma, !pvmw.pte);
821 page_vma_mapped_walk_done(&pvmw);
822 pra->vm_flags |= VM_LOCKED;
823 return false; /* To break the loop */
824 }
825
826 if (pvmw.pte) {
827 if (lru_gen_enabled() && pte_young(*pvmw.pte)) {
828 lru_gen_look_around(&pvmw);
829 referenced++;
830 }
831
832 if (ptep_clear_flush_young_notify(vma, address,
833 pvmw.pte))
834 referenced++;
835 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
836 if (pmdp_clear_flush_young_notify(vma, address,
837 pvmw.pmd))
838 referenced++;
839 } else {
840 /* unexpected pmd-mapped folio? */
841 WARN_ON_ONCE(1);
842 }
843
844 pra->mapcount--;
845 }
846
847 if (referenced)
848 folio_clear_idle(folio);
849 if (folio_test_clear_young(folio))
850 referenced++;
851
852 if (referenced) {
853 pra->referenced++;
854 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
855 }
856
857 if (!pra->mapcount)
858 return false; /* To break the loop */
859
860 return true;
861 }
862
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)863 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
864 {
865 struct folio_referenced_arg *pra = arg;
866 struct mem_cgroup *memcg = pra->memcg;
867
868 /*
869 * Ignore references from this mapping if it has no recency. If the
870 * folio has been used in another mapping, we will catch it; if this
871 * other mapping is already gone, the unmap path will have set the
872 * referenced flag or activated the folio in zap_pte_range().
873 */
874 if (!vma_has_recency(vma))
875 return true;
876
877 /*
878 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
879 * of references from different cgroups.
880 */
881 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
882 return true;
883
884 return false;
885 }
886
887 /**
888 * folio_referenced() - Test if the folio was referenced.
889 * @folio: The folio to test.
890 * @is_locked: Caller holds lock on the folio.
891 * @memcg: target memory cgroup
892 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
893 *
894 * Quick test_and_clear_referenced for all mappings of a folio,
895 *
896 * Return: The number of mappings which referenced the folio. Return -1 if
897 * the function bailed out due to rmap lock contention.
898 */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)899 int folio_referenced(struct folio *folio, int is_locked,
900 struct mem_cgroup *memcg, unsigned long *vm_flags)
901 {
902 int we_locked = 0;
903 struct folio_referenced_arg pra = {
904 .mapcount = folio_mapcount(folio),
905 .memcg = memcg,
906 };
907 struct rmap_walk_control rwc = {
908 .rmap_one = folio_referenced_one,
909 .arg = (void *)&pra,
910 .anon_lock = folio_lock_anon_vma_read,
911 .try_lock = true,
912 .invalid_vma = invalid_folio_referenced_vma,
913 };
914
915 *vm_flags = 0;
916 if (!pra.mapcount)
917 return 0;
918
919 if (!folio_raw_mapping(folio))
920 return 0;
921
922 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
923 we_locked = folio_trylock(folio);
924 if (!we_locked)
925 return 1;
926 }
927
928 rmap_walk(folio, &rwc);
929 *vm_flags = pra.vm_flags;
930
931 if (we_locked)
932 folio_unlock(folio);
933
934 return rwc.contended ? -1 : pra.referenced;
935 }
936
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)937 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
938 {
939 int cleaned = 0;
940 struct vm_area_struct *vma = pvmw->vma;
941 struct mmu_notifier_range range;
942 unsigned long address = pvmw->address;
943
944 /*
945 * We have to assume the worse case ie pmd for invalidation. Note that
946 * the folio can not be freed from this function.
947 */
948 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
949 vma->vm_mm, address, vma_address_end(pvmw));
950 mmu_notifier_invalidate_range_start(&range);
951
952 while (page_vma_mapped_walk(pvmw)) {
953 int ret = 0;
954
955 address = pvmw->address;
956 if (pvmw->pte) {
957 pte_t entry;
958 pte_t *pte = pvmw->pte;
959
960 if (!pte_dirty(*pte) && !pte_write(*pte))
961 continue;
962
963 flush_cache_page(vma, address, pte_pfn(*pte));
964 entry = ptep_clear_flush(vma, address, pte);
965 entry = pte_wrprotect(entry);
966 entry = pte_mkclean(entry);
967 set_pte_at(vma->vm_mm, address, pte, entry);
968 ret = 1;
969 } else {
970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
971 pmd_t *pmd = pvmw->pmd;
972 pmd_t entry;
973
974 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
975 continue;
976
977 flush_cache_range(vma, address,
978 address + HPAGE_PMD_SIZE);
979 entry = pmdp_invalidate(vma, address, pmd);
980 entry = pmd_wrprotect(entry);
981 entry = pmd_mkclean(entry);
982 set_pmd_at(vma->vm_mm, address, pmd, entry);
983 ret = 1;
984 #else
985 /* unexpected pmd-mapped folio? */
986 WARN_ON_ONCE(1);
987 #endif
988 }
989
990 /*
991 * No need to call mmu_notifier_invalidate_range() as we are
992 * downgrading page table protection not changing it to point
993 * to a new page.
994 *
995 * See Documentation/mm/mmu_notifier.rst
996 */
997 if (ret)
998 cleaned++;
999 }
1000
1001 mmu_notifier_invalidate_range_end(&range);
1002
1003 return cleaned;
1004 }
1005
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1006 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1007 unsigned long address, void *arg)
1008 {
1009 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1010 int *cleaned = arg;
1011
1012 *cleaned += page_vma_mkclean_one(&pvmw);
1013
1014 return true;
1015 }
1016
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1017 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1018 {
1019 if (vma->vm_flags & VM_SHARED)
1020 return false;
1021
1022 return true;
1023 }
1024
folio_mkclean(struct folio * folio)1025 int folio_mkclean(struct folio *folio)
1026 {
1027 int cleaned = 0;
1028 struct address_space *mapping;
1029 struct rmap_walk_control rwc = {
1030 .arg = (void *)&cleaned,
1031 .rmap_one = page_mkclean_one,
1032 .invalid_vma = invalid_mkclean_vma,
1033 };
1034
1035 BUG_ON(!folio_test_locked(folio));
1036
1037 if (!folio_mapped(folio))
1038 return 0;
1039
1040 mapping = folio_mapping(folio);
1041 if (!mapping)
1042 return 0;
1043
1044 rmap_walk(folio, &rwc);
1045
1046 return cleaned;
1047 }
1048 EXPORT_SYMBOL_GPL(folio_mkclean);
1049
1050 /**
1051 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1052 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1053 * within the @vma of shared mappings. And since clean PTEs
1054 * should also be readonly, write protects them too.
1055 * @pfn: start pfn.
1056 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1057 * @pgoff: page offset that the @pfn mapped with.
1058 * @vma: vma that @pfn mapped within.
1059 *
1060 * Returns the number of cleaned PTEs (including PMDs).
1061 */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1062 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1063 struct vm_area_struct *vma)
1064 {
1065 struct page_vma_mapped_walk pvmw = {
1066 .pfn = pfn,
1067 .nr_pages = nr_pages,
1068 .pgoff = pgoff,
1069 .vma = vma,
1070 .flags = PVMW_SYNC,
1071 };
1072
1073 if (invalid_mkclean_vma(vma, NULL))
1074 return 0;
1075
1076 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1077 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1078
1079 return page_vma_mkclean_one(&pvmw);
1080 }
1081
folio_total_mapcount(struct folio * folio)1082 int folio_total_mapcount(struct folio *folio)
1083 {
1084 int mapcount = folio_entire_mapcount(folio);
1085 int nr_pages;
1086 int i;
1087
1088 /* In the common case, avoid the loop when no pages mapped by PTE */
1089 if (folio_nr_pages_mapped(folio) == 0)
1090 return mapcount;
1091 /*
1092 * Add all the PTE mappings of those pages mapped by PTE.
1093 * Limit the loop to folio_nr_pages_mapped()?
1094 * Perhaps: given all the raciness, that may be a good or a bad idea.
1095 */
1096 nr_pages = folio_nr_pages(folio);
1097 for (i = 0; i < nr_pages; i++)
1098 mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1099
1100 /* But each of those _mapcounts was based on -1 */
1101 mapcount += nr_pages;
1102 return mapcount;
1103 }
1104
1105 /**
1106 * page_move_anon_rmap - move a page to our anon_vma
1107 * @page: the page to move to our anon_vma
1108 * @vma: the vma the page belongs to
1109 *
1110 * When a page belongs exclusively to one process after a COW event,
1111 * that page can be moved into the anon_vma that belongs to just that
1112 * process, so the rmap code will not search the parent or sibling
1113 * processes.
1114 */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma)1115 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1116 {
1117 void *anon_vma = vma->anon_vma;
1118 struct folio *folio = page_folio(page);
1119
1120 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1121 VM_BUG_ON_VMA(!anon_vma, vma);
1122
1123 anon_vma += PAGE_MAPPING_ANON;
1124 /*
1125 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1126 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1127 * folio_test_anon()) will not see one without the other.
1128 */
1129 WRITE_ONCE(folio->mapping, anon_vma);
1130 SetPageAnonExclusive(page);
1131 }
1132
1133 /**
1134 * __page_set_anon_rmap - set up new anonymous rmap
1135 * @folio: Folio which contains page.
1136 * @page: Page to add to rmap.
1137 * @vma: VM area to add page to.
1138 * @address: User virtual address of the mapping
1139 * @exclusive: the page is exclusively owned by the current process
1140 */
__page_set_anon_rmap(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1141 static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1142 struct vm_area_struct *vma, unsigned long address, int exclusive)
1143 {
1144 struct anon_vma *anon_vma = vma->anon_vma;
1145
1146 BUG_ON(!anon_vma);
1147
1148 if (folio_test_anon(folio))
1149 goto out;
1150
1151 /*
1152 * If the page isn't exclusively mapped into this vma,
1153 * we must use the _oldest_ possible anon_vma for the
1154 * page mapping!
1155 */
1156 if (!exclusive)
1157 anon_vma = anon_vma->root;
1158
1159 /*
1160 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1161 * Make sure the compiler doesn't split the stores of anon_vma and
1162 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1163 * could mistake the mapping for a struct address_space and crash.
1164 */
1165 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1166 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1167 folio->index = linear_page_index(vma, address);
1168 out:
1169 if (exclusive)
1170 SetPageAnonExclusive(page);
1171 }
1172
1173 /**
1174 * __page_check_anon_rmap - sanity check anonymous rmap addition
1175 * @page: the page to add the mapping to
1176 * @vma: the vm area in which the mapping is added
1177 * @address: the user virtual address mapped
1178 */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1179 static void __page_check_anon_rmap(struct page *page,
1180 struct vm_area_struct *vma, unsigned long address)
1181 {
1182 struct folio *folio = page_folio(page);
1183 /*
1184 * The page's anon-rmap details (mapping and index) are guaranteed to
1185 * be set up correctly at this point.
1186 *
1187 * We have exclusion against page_add_anon_rmap because the caller
1188 * always holds the page locked.
1189 *
1190 * We have exclusion against page_add_new_anon_rmap because those pages
1191 * are initially only visible via the pagetables, and the pte is locked
1192 * over the call to page_add_new_anon_rmap.
1193 */
1194 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1195 folio);
1196 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1197 page);
1198 }
1199
1200 /**
1201 * page_add_anon_rmap - add pte mapping to an anonymous page
1202 * @page: the page to add the mapping to
1203 * @vma: the vm area in which the mapping is added
1204 * @address: the user virtual address mapped
1205 * @flags: the rmap flags
1206 *
1207 * The caller needs to hold the pte lock, and the page must be locked in
1208 * the anon_vma case: to serialize mapping,index checking after setting,
1209 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1210 * (but PageKsm is never downgraded to PageAnon).
1211 */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1212 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1213 unsigned long address, rmap_t flags)
1214 {
1215 struct folio *folio = page_folio(page);
1216 atomic_t *mapped = &folio->_nr_pages_mapped;
1217 int nr = 0, nr_pmdmapped = 0;
1218 bool compound = flags & RMAP_COMPOUND;
1219 bool first = true;
1220
1221 /* Is page being mapped by PTE? Is this its first map to be added? */
1222 if (likely(!compound)) {
1223 first = atomic_inc_and_test(&page->_mapcount);
1224 nr = first;
1225 if (first && folio_test_large(folio)) {
1226 nr = atomic_inc_return_relaxed(mapped);
1227 nr = (nr < COMPOUND_MAPPED);
1228 }
1229 } else if (folio_test_pmd_mappable(folio)) {
1230 /* That test is redundant: it's for safety or to optimize out */
1231
1232 first = atomic_inc_and_test(&folio->_entire_mapcount);
1233 if (first) {
1234 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1235 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1236 nr_pmdmapped = folio_nr_pages(folio);
1237 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1238 /* Raced ahead of a remove and another add? */
1239 if (unlikely(nr < 0))
1240 nr = 0;
1241 } else {
1242 /* Raced ahead of a remove of COMPOUND_MAPPED */
1243 nr = 0;
1244 }
1245 }
1246 }
1247
1248 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1249 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1250
1251 if (nr_pmdmapped)
1252 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1253 if (nr)
1254 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1255
1256 if (likely(!folio_test_ksm(folio))) {
1257 /* address might be in next vma when migration races vma_merge */
1258 if (first)
1259 __page_set_anon_rmap(folio, page, vma, address,
1260 !!(flags & RMAP_EXCLUSIVE));
1261 else
1262 __page_check_anon_rmap(page, vma, address);
1263 }
1264
1265 mlock_vma_folio(folio, vma, compound);
1266 }
1267
1268 /**
1269 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1270 * @folio: The folio to add the mapping to.
1271 * @vma: the vm area in which the mapping is added
1272 * @address: the user virtual address mapped
1273 *
1274 * Like page_add_anon_rmap() but must only be called on *new* folios.
1275 * This means the inc-and-test can be bypassed.
1276 * The folio does not have to be locked.
1277 *
1278 * If the folio is large, it is accounted as a THP. As the folio
1279 * is new, it's assumed to be mapped exclusively by a single process.
1280 */
folio_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address)1281 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1282 unsigned long address)
1283 {
1284 int nr;
1285
1286 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1287 __folio_set_swapbacked(folio);
1288
1289 if (likely(!folio_test_pmd_mappable(folio))) {
1290 /* increment count (starts at -1) */
1291 atomic_set(&folio->_mapcount, 0);
1292 nr = 1;
1293 } else {
1294 /* increment count (starts at -1) */
1295 atomic_set(&folio->_entire_mapcount, 0);
1296 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1297 nr = folio_nr_pages(folio);
1298 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1299 }
1300
1301 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1302 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1303 }
1304
1305 /**
1306 * page_add_file_rmap - add pte mapping to a file page
1307 * @page: the page to add the mapping to
1308 * @vma: the vm area in which the mapping is added
1309 * @compound: charge the page as compound or small page
1310 *
1311 * The caller needs to hold the pte lock.
1312 */
page_add_file_rmap(struct page * page,struct vm_area_struct * vma,bool compound)1313 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1314 bool compound)
1315 {
1316 struct folio *folio = page_folio(page);
1317 atomic_t *mapped = &folio->_nr_pages_mapped;
1318 int nr = 0, nr_pmdmapped = 0;
1319 bool first;
1320
1321 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1322
1323 /* Is page being mapped by PTE? Is this its first map to be added? */
1324 if (likely(!compound)) {
1325 first = atomic_inc_and_test(&page->_mapcount);
1326 nr = first;
1327 if (first && folio_test_large(folio)) {
1328 nr = atomic_inc_return_relaxed(mapped);
1329 nr = (nr < COMPOUND_MAPPED);
1330 }
1331 } else if (folio_test_pmd_mappable(folio)) {
1332 /* That test is redundant: it's for safety or to optimize out */
1333
1334 first = atomic_inc_and_test(&folio->_entire_mapcount);
1335 if (first) {
1336 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1337 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1338 nr_pmdmapped = folio_nr_pages(folio);
1339 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1340 /* Raced ahead of a remove and another add? */
1341 if (unlikely(nr < 0))
1342 nr = 0;
1343 } else {
1344 /* Raced ahead of a remove of COMPOUND_MAPPED */
1345 nr = 0;
1346 }
1347 }
1348 }
1349
1350 if (nr_pmdmapped)
1351 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1352 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1353 if (nr)
1354 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1355
1356 mlock_vma_folio(folio, vma, compound);
1357 }
1358
1359 /**
1360 * page_remove_rmap - take down pte mapping from a page
1361 * @page: page to remove mapping from
1362 * @vma: the vm area from which the mapping is removed
1363 * @compound: uncharge the page as compound or small page
1364 *
1365 * The caller needs to hold the pte lock.
1366 */
page_remove_rmap(struct page * page,struct vm_area_struct * vma,bool compound)1367 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1368 bool compound)
1369 {
1370 struct folio *folio = page_folio(page);
1371 atomic_t *mapped = &folio->_nr_pages_mapped;
1372 int nr = 0, nr_pmdmapped = 0;
1373 bool last;
1374 enum node_stat_item idx;
1375
1376 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1377
1378 /* Hugetlb pages are not counted in NR_*MAPPED */
1379 if (unlikely(folio_test_hugetlb(folio))) {
1380 /* hugetlb pages are always mapped with pmds */
1381 atomic_dec(&folio->_entire_mapcount);
1382 return;
1383 }
1384
1385 /* Is page being unmapped by PTE? Is this its last map to be removed? */
1386 if (likely(!compound)) {
1387 last = atomic_add_negative(-1, &page->_mapcount);
1388 nr = last;
1389 if (last && folio_test_large(folio)) {
1390 nr = atomic_dec_return_relaxed(mapped);
1391 nr = (nr < COMPOUND_MAPPED);
1392 }
1393 } else if (folio_test_pmd_mappable(folio)) {
1394 /* That test is redundant: it's for safety or to optimize out */
1395
1396 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1397 if (last) {
1398 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1399 if (likely(nr < COMPOUND_MAPPED)) {
1400 nr_pmdmapped = folio_nr_pages(folio);
1401 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1402 /* Raced ahead of another remove and an add? */
1403 if (unlikely(nr < 0))
1404 nr = 0;
1405 } else {
1406 /* An add of COMPOUND_MAPPED raced ahead */
1407 nr = 0;
1408 }
1409 }
1410 }
1411
1412 if (nr_pmdmapped) {
1413 if (folio_test_anon(folio))
1414 idx = NR_ANON_THPS;
1415 else if (folio_test_swapbacked(folio))
1416 idx = NR_SHMEM_PMDMAPPED;
1417 else
1418 idx = NR_FILE_PMDMAPPED;
1419 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1420 }
1421 if (nr) {
1422 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1423 __lruvec_stat_mod_folio(folio, idx, -nr);
1424
1425 /*
1426 * Queue anon THP for deferred split if at least one
1427 * page of the folio is unmapped and at least one page
1428 * is still mapped.
1429 */
1430 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1431 if (!compound || nr < nr_pmdmapped)
1432 deferred_split_folio(folio);
1433 }
1434
1435 /*
1436 * It would be tidy to reset folio_test_anon mapping when fully
1437 * unmapped, but that might overwrite a racing page_add_anon_rmap
1438 * which increments mapcount after us but sets mapping before us:
1439 * so leave the reset to free_pages_prepare, and remember that
1440 * it's only reliable while mapped.
1441 */
1442
1443 munlock_vma_folio(folio, vma, compound);
1444 }
1445
1446 /*
1447 * @arg: enum ttu_flags will be passed to this argument
1448 */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1449 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1450 unsigned long address, void *arg)
1451 {
1452 struct mm_struct *mm = vma->vm_mm;
1453 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1454 pte_t pteval;
1455 struct page *subpage;
1456 bool anon_exclusive, ret = true;
1457 struct mmu_notifier_range range;
1458 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1459
1460 /*
1461 * When racing against e.g. zap_pte_range() on another cpu,
1462 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1463 * try_to_unmap() may return before page_mapped() has become false,
1464 * if page table locking is skipped: use TTU_SYNC to wait for that.
1465 */
1466 if (flags & TTU_SYNC)
1467 pvmw.flags = PVMW_SYNC;
1468
1469 if (flags & TTU_SPLIT_HUGE_PMD)
1470 split_huge_pmd_address(vma, address, false, folio);
1471
1472 /*
1473 * For THP, we have to assume the worse case ie pmd for invalidation.
1474 * For hugetlb, it could be much worse if we need to do pud
1475 * invalidation in the case of pmd sharing.
1476 *
1477 * Note that the folio can not be freed in this function as call of
1478 * try_to_unmap() must hold a reference on the folio.
1479 */
1480 range.end = vma_address_end(&pvmw);
1481 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1482 address, range.end);
1483 if (folio_test_hugetlb(folio)) {
1484 /*
1485 * If sharing is possible, start and end will be adjusted
1486 * accordingly.
1487 */
1488 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1489 &range.end);
1490 }
1491 mmu_notifier_invalidate_range_start(&range);
1492
1493 while (page_vma_mapped_walk(&pvmw)) {
1494 /* Unexpected PMD-mapped THP? */
1495 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1496
1497 /*
1498 * If the folio is in an mlock()d vma, we must not swap it out.
1499 */
1500 if (!(flags & TTU_IGNORE_MLOCK) &&
1501 (vma->vm_flags & VM_LOCKED)) {
1502 /* Restore the mlock which got missed */
1503 mlock_vma_folio(folio, vma, false);
1504 page_vma_mapped_walk_done(&pvmw);
1505 ret = false;
1506 break;
1507 }
1508
1509 subpage = folio_page(folio,
1510 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1511 address = pvmw.address;
1512 anon_exclusive = folio_test_anon(folio) &&
1513 PageAnonExclusive(subpage);
1514
1515 if (folio_test_hugetlb(folio)) {
1516 bool anon = folio_test_anon(folio);
1517
1518 /*
1519 * The try_to_unmap() is only passed a hugetlb page
1520 * in the case where the hugetlb page is poisoned.
1521 */
1522 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1523 /*
1524 * huge_pmd_unshare may unmap an entire PMD page.
1525 * There is no way of knowing exactly which PMDs may
1526 * be cached for this mm, so we must flush them all.
1527 * start/end were already adjusted above to cover this
1528 * range.
1529 */
1530 flush_cache_range(vma, range.start, range.end);
1531
1532 /*
1533 * To call huge_pmd_unshare, i_mmap_rwsem must be
1534 * held in write mode. Caller needs to explicitly
1535 * do this outside rmap routines.
1536 *
1537 * We also must hold hugetlb vma_lock in write mode.
1538 * Lock order dictates acquiring vma_lock BEFORE
1539 * i_mmap_rwsem. We can only try lock here and fail
1540 * if unsuccessful.
1541 */
1542 if (!anon) {
1543 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1544 if (!hugetlb_vma_trylock_write(vma)) {
1545 page_vma_mapped_walk_done(&pvmw);
1546 ret = false;
1547 break;
1548 }
1549 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1550 hugetlb_vma_unlock_write(vma);
1551 flush_tlb_range(vma,
1552 range.start, range.end);
1553 mmu_notifier_invalidate_range(mm,
1554 range.start, range.end);
1555 /*
1556 * The ref count of the PMD page was
1557 * dropped which is part of the way map
1558 * counting is done for shared PMDs.
1559 * Return 'true' here. When there is
1560 * no other sharing, huge_pmd_unshare
1561 * returns false and we will unmap the
1562 * actual page and drop map count
1563 * to zero.
1564 */
1565 page_vma_mapped_walk_done(&pvmw);
1566 break;
1567 }
1568 hugetlb_vma_unlock_write(vma);
1569 }
1570 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1571 } else {
1572 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1573 /* Nuke the page table entry. */
1574 if (should_defer_flush(mm, flags)) {
1575 /*
1576 * We clear the PTE but do not flush so potentially
1577 * a remote CPU could still be writing to the folio.
1578 * If the entry was previously clean then the
1579 * architecture must guarantee that a clear->dirty
1580 * transition on a cached TLB entry is written through
1581 * and traps if the PTE is unmapped.
1582 */
1583 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1584
1585 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1586 } else {
1587 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1588 }
1589 }
1590
1591 /*
1592 * Now the pte is cleared. If this pte was uffd-wp armed,
1593 * we may want to replace a none pte with a marker pte if
1594 * it's file-backed, so we don't lose the tracking info.
1595 */
1596 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1597
1598 /* Set the dirty flag on the folio now the pte is gone. */
1599 if (pte_dirty(pteval))
1600 folio_mark_dirty(folio);
1601
1602 /* Update high watermark before we lower rss */
1603 update_hiwater_rss(mm);
1604
1605 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1606 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1607 if (folio_test_hugetlb(folio)) {
1608 hugetlb_count_sub(folio_nr_pages(folio), mm);
1609 set_huge_pte_at(mm, address, pvmw.pte, pteval);
1610 } else {
1611 dec_mm_counter(mm, mm_counter(&folio->page));
1612 set_pte_at(mm, address, pvmw.pte, pteval);
1613 }
1614
1615 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1616 /*
1617 * The guest indicated that the page content is of no
1618 * interest anymore. Simply discard the pte, vmscan
1619 * will take care of the rest.
1620 * A future reference will then fault in a new zero
1621 * page. When userfaultfd is active, we must not drop
1622 * this page though, as its main user (postcopy
1623 * migration) will not expect userfaults on already
1624 * copied pages.
1625 */
1626 dec_mm_counter(mm, mm_counter(&folio->page));
1627 /* We have to invalidate as we cleared the pte */
1628 mmu_notifier_invalidate_range(mm, address,
1629 address + PAGE_SIZE);
1630 } else if (folio_test_anon(folio)) {
1631 swp_entry_t entry = { .val = page_private(subpage) };
1632 pte_t swp_pte;
1633 /*
1634 * Store the swap location in the pte.
1635 * See handle_pte_fault() ...
1636 */
1637 if (unlikely(folio_test_swapbacked(folio) !=
1638 folio_test_swapcache(folio))) {
1639 WARN_ON_ONCE(1);
1640 ret = false;
1641 /* We have to invalidate as we cleared the pte */
1642 mmu_notifier_invalidate_range(mm, address,
1643 address + PAGE_SIZE);
1644 page_vma_mapped_walk_done(&pvmw);
1645 break;
1646 }
1647
1648 /* MADV_FREE page check */
1649 if (!folio_test_swapbacked(folio)) {
1650 int ref_count, map_count;
1651
1652 /*
1653 * Synchronize with gup_pte_range():
1654 * - clear PTE; barrier; read refcount
1655 * - inc refcount; barrier; read PTE
1656 */
1657 smp_mb();
1658
1659 ref_count = folio_ref_count(folio);
1660 map_count = folio_mapcount(folio);
1661
1662 /*
1663 * Order reads for page refcount and dirty flag
1664 * (see comments in __remove_mapping()).
1665 */
1666 smp_rmb();
1667
1668 /*
1669 * The only page refs must be one from isolation
1670 * plus the rmap(s) (dropped by discard:).
1671 */
1672 if (ref_count == 1 + map_count &&
1673 !folio_test_dirty(folio)) {
1674 /* Invalidate as we cleared the pte */
1675 mmu_notifier_invalidate_range(mm,
1676 address, address + PAGE_SIZE);
1677 dec_mm_counter(mm, MM_ANONPAGES);
1678 goto discard;
1679 }
1680
1681 /*
1682 * If the folio was redirtied, it cannot be
1683 * discarded. Remap the page to page table.
1684 */
1685 set_pte_at(mm, address, pvmw.pte, pteval);
1686 folio_set_swapbacked(folio);
1687 ret = false;
1688 page_vma_mapped_walk_done(&pvmw);
1689 break;
1690 }
1691
1692 if (swap_duplicate(entry) < 0) {
1693 set_pte_at(mm, address, pvmw.pte, pteval);
1694 ret = false;
1695 page_vma_mapped_walk_done(&pvmw);
1696 break;
1697 }
1698 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1699 swap_free(entry);
1700 set_pte_at(mm, address, pvmw.pte, pteval);
1701 ret = false;
1702 page_vma_mapped_walk_done(&pvmw);
1703 break;
1704 }
1705
1706 /* See page_try_share_anon_rmap(): clear PTE first. */
1707 if (anon_exclusive &&
1708 page_try_share_anon_rmap(subpage)) {
1709 swap_free(entry);
1710 set_pte_at(mm, address, pvmw.pte, pteval);
1711 ret = false;
1712 page_vma_mapped_walk_done(&pvmw);
1713 break;
1714 }
1715 if (list_empty(&mm->mmlist)) {
1716 spin_lock(&mmlist_lock);
1717 if (list_empty(&mm->mmlist))
1718 list_add(&mm->mmlist, &init_mm.mmlist);
1719 spin_unlock(&mmlist_lock);
1720 }
1721 dec_mm_counter(mm, MM_ANONPAGES);
1722 inc_mm_counter(mm, MM_SWAPENTS);
1723 swp_pte = swp_entry_to_pte(entry);
1724 if (anon_exclusive)
1725 swp_pte = pte_swp_mkexclusive(swp_pte);
1726 if (pte_soft_dirty(pteval))
1727 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1728 if (pte_uffd_wp(pteval))
1729 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1730 set_pte_at(mm, address, pvmw.pte, swp_pte);
1731 /* Invalidate as we cleared the pte */
1732 mmu_notifier_invalidate_range(mm, address,
1733 address + PAGE_SIZE);
1734 } else {
1735 /*
1736 * This is a locked file-backed folio,
1737 * so it cannot be removed from the page
1738 * cache and replaced by a new folio before
1739 * mmu_notifier_invalidate_range_end, so no
1740 * concurrent thread might update its page table
1741 * to point at a new folio while a device is
1742 * still using this folio.
1743 *
1744 * See Documentation/mm/mmu_notifier.rst
1745 */
1746 dec_mm_counter(mm, mm_counter_file(&folio->page));
1747 }
1748 discard:
1749 /*
1750 * No need to call mmu_notifier_invalidate_range() it has be
1751 * done above for all cases requiring it to happen under page
1752 * table lock before mmu_notifier_invalidate_range_end()
1753 *
1754 * See Documentation/mm/mmu_notifier.rst
1755 */
1756 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1757 if (vma->vm_flags & VM_LOCKED)
1758 mlock_drain_local();
1759 folio_put(folio);
1760 }
1761
1762 mmu_notifier_invalidate_range_end(&range);
1763
1764 return ret;
1765 }
1766
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1767 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1768 {
1769 return vma_is_temporary_stack(vma);
1770 }
1771
folio_not_mapped(struct folio * folio)1772 static int folio_not_mapped(struct folio *folio)
1773 {
1774 return !folio_mapped(folio);
1775 }
1776
1777 /**
1778 * try_to_unmap - Try to remove all page table mappings to a folio.
1779 * @folio: The folio to unmap.
1780 * @flags: action and flags
1781 *
1782 * Tries to remove all the page table entries which are mapping this
1783 * folio. It is the caller's responsibility to check if the folio is
1784 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1785 *
1786 * Context: Caller must hold the folio lock.
1787 */
try_to_unmap(struct folio * folio,enum ttu_flags flags)1788 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1789 {
1790 struct rmap_walk_control rwc = {
1791 .rmap_one = try_to_unmap_one,
1792 .arg = (void *)flags,
1793 .done = folio_not_mapped,
1794 .anon_lock = folio_lock_anon_vma_read,
1795 };
1796
1797 if (flags & TTU_RMAP_LOCKED)
1798 rmap_walk_locked(folio, &rwc);
1799 else
1800 rmap_walk(folio, &rwc);
1801 }
1802
1803 /*
1804 * @arg: enum ttu_flags will be passed to this argument.
1805 *
1806 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1807 * containing migration entries.
1808 */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1809 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1810 unsigned long address, void *arg)
1811 {
1812 struct mm_struct *mm = vma->vm_mm;
1813 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1814 pte_t pteval;
1815 struct page *subpage;
1816 bool anon_exclusive, ret = true;
1817 struct mmu_notifier_range range;
1818 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1819
1820 /*
1821 * When racing against e.g. zap_pte_range() on another cpu,
1822 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1823 * try_to_migrate() may return before page_mapped() has become false,
1824 * if page table locking is skipped: use TTU_SYNC to wait for that.
1825 */
1826 if (flags & TTU_SYNC)
1827 pvmw.flags = PVMW_SYNC;
1828
1829 /*
1830 * unmap_page() in mm/huge_memory.c is the only user of migration with
1831 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1832 */
1833 if (flags & TTU_SPLIT_HUGE_PMD)
1834 split_huge_pmd_address(vma, address, true, folio);
1835
1836 /*
1837 * For THP, we have to assume the worse case ie pmd for invalidation.
1838 * For hugetlb, it could be much worse if we need to do pud
1839 * invalidation in the case of pmd sharing.
1840 *
1841 * Note that the page can not be free in this function as call of
1842 * try_to_unmap() must hold a reference on the page.
1843 */
1844 range.end = vma_address_end(&pvmw);
1845 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1846 address, range.end);
1847 if (folio_test_hugetlb(folio)) {
1848 /*
1849 * If sharing is possible, start and end will be adjusted
1850 * accordingly.
1851 */
1852 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1853 &range.end);
1854 }
1855 mmu_notifier_invalidate_range_start(&range);
1856
1857 while (page_vma_mapped_walk(&pvmw)) {
1858 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1859 /* PMD-mapped THP migration entry */
1860 if (!pvmw.pte) {
1861 subpage = folio_page(folio,
1862 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1863 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1864 !folio_test_pmd_mappable(folio), folio);
1865
1866 if (set_pmd_migration_entry(&pvmw, subpage)) {
1867 ret = false;
1868 page_vma_mapped_walk_done(&pvmw);
1869 break;
1870 }
1871 continue;
1872 }
1873 #endif
1874
1875 /* Unexpected PMD-mapped THP? */
1876 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1877
1878 if (folio_is_zone_device(folio)) {
1879 /*
1880 * Our PTE is a non-present device exclusive entry and
1881 * calculating the subpage as for the common case would
1882 * result in an invalid pointer.
1883 *
1884 * Since only PAGE_SIZE pages can currently be
1885 * migrated, just set it to page. This will need to be
1886 * changed when hugepage migrations to device private
1887 * memory are supported.
1888 */
1889 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1890 subpage = &folio->page;
1891 } else {
1892 subpage = folio_page(folio,
1893 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1894 }
1895 address = pvmw.address;
1896 anon_exclusive = folio_test_anon(folio) &&
1897 PageAnonExclusive(subpage);
1898
1899 if (folio_test_hugetlb(folio)) {
1900 bool anon = folio_test_anon(folio);
1901
1902 /*
1903 * huge_pmd_unshare may unmap an entire PMD page.
1904 * There is no way of knowing exactly which PMDs may
1905 * be cached for this mm, so we must flush them all.
1906 * start/end were already adjusted above to cover this
1907 * range.
1908 */
1909 flush_cache_range(vma, range.start, range.end);
1910
1911 /*
1912 * To call huge_pmd_unshare, i_mmap_rwsem must be
1913 * held in write mode. Caller needs to explicitly
1914 * do this outside rmap routines.
1915 *
1916 * We also must hold hugetlb vma_lock in write mode.
1917 * Lock order dictates acquiring vma_lock BEFORE
1918 * i_mmap_rwsem. We can only try lock here and
1919 * fail if unsuccessful.
1920 */
1921 if (!anon) {
1922 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1923 if (!hugetlb_vma_trylock_write(vma)) {
1924 page_vma_mapped_walk_done(&pvmw);
1925 ret = false;
1926 break;
1927 }
1928 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1929 hugetlb_vma_unlock_write(vma);
1930 flush_tlb_range(vma,
1931 range.start, range.end);
1932 mmu_notifier_invalidate_range(mm,
1933 range.start, range.end);
1934
1935 /*
1936 * The ref count of the PMD page was
1937 * dropped which is part of the way map
1938 * counting is done for shared PMDs.
1939 * Return 'true' here. When there is
1940 * no other sharing, huge_pmd_unshare
1941 * returns false and we will unmap the
1942 * actual page and drop map count
1943 * to zero.
1944 */
1945 page_vma_mapped_walk_done(&pvmw);
1946 break;
1947 }
1948 hugetlb_vma_unlock_write(vma);
1949 }
1950 /* Nuke the hugetlb page table entry */
1951 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1952 } else {
1953 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1954 /* Nuke the page table entry. */
1955 if (should_defer_flush(mm, flags)) {
1956 /*
1957 * We clear the PTE but do not flush so potentially
1958 * a remote CPU could still be writing to the folio.
1959 * If the entry was previously clean then the
1960 * architecture must guarantee that a clear->dirty
1961 * transition on a cached TLB entry is written through
1962 * and traps if the PTE is unmapped.
1963 */
1964 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1965
1966 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1967 } else {
1968 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1969 }
1970 }
1971
1972 /* Set the dirty flag on the folio now the pte is gone. */
1973 if (pte_dirty(pteval))
1974 folio_mark_dirty(folio);
1975
1976 /* Update high watermark before we lower rss */
1977 update_hiwater_rss(mm);
1978
1979 if (folio_is_device_private(folio)) {
1980 unsigned long pfn = folio_pfn(folio);
1981 swp_entry_t entry;
1982 pte_t swp_pte;
1983
1984 if (anon_exclusive)
1985 BUG_ON(page_try_share_anon_rmap(subpage));
1986
1987 /*
1988 * Store the pfn of the page in a special migration
1989 * pte. do_swap_page() will wait until the migration
1990 * pte is removed and then restart fault handling.
1991 */
1992 entry = pte_to_swp_entry(pteval);
1993 if (is_writable_device_private_entry(entry))
1994 entry = make_writable_migration_entry(pfn);
1995 else if (anon_exclusive)
1996 entry = make_readable_exclusive_migration_entry(pfn);
1997 else
1998 entry = make_readable_migration_entry(pfn);
1999 swp_pte = swp_entry_to_pte(entry);
2000
2001 /*
2002 * pteval maps a zone device page and is therefore
2003 * a swap pte.
2004 */
2005 if (pte_swp_soft_dirty(pteval))
2006 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2007 if (pte_swp_uffd_wp(pteval))
2008 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2009 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2010 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2011 compound_order(&folio->page));
2012 /*
2013 * No need to invalidate here it will synchronize on
2014 * against the special swap migration pte.
2015 */
2016 } else if (PageHWPoison(subpage)) {
2017 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2018 if (folio_test_hugetlb(folio)) {
2019 hugetlb_count_sub(folio_nr_pages(folio), mm);
2020 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2021 } else {
2022 dec_mm_counter(mm, mm_counter(&folio->page));
2023 set_pte_at(mm, address, pvmw.pte, pteval);
2024 }
2025
2026 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2027 /*
2028 * The guest indicated that the page content is of no
2029 * interest anymore. Simply discard the pte, vmscan
2030 * will take care of the rest.
2031 * A future reference will then fault in a new zero
2032 * page. When userfaultfd is active, we must not drop
2033 * this page though, as its main user (postcopy
2034 * migration) will not expect userfaults on already
2035 * copied pages.
2036 */
2037 dec_mm_counter(mm, mm_counter(&folio->page));
2038 /* We have to invalidate as we cleared the pte */
2039 mmu_notifier_invalidate_range(mm, address,
2040 address + PAGE_SIZE);
2041 } else {
2042 swp_entry_t entry;
2043 pte_t swp_pte;
2044
2045 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2046 if (folio_test_hugetlb(folio))
2047 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2048 else
2049 set_pte_at(mm, address, pvmw.pte, pteval);
2050 ret = false;
2051 page_vma_mapped_walk_done(&pvmw);
2052 break;
2053 }
2054 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2055 !anon_exclusive, subpage);
2056
2057 /* See page_try_share_anon_rmap(): clear PTE first. */
2058 if (anon_exclusive &&
2059 page_try_share_anon_rmap(subpage)) {
2060 if (folio_test_hugetlb(folio))
2061 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2062 else
2063 set_pte_at(mm, address, pvmw.pte, pteval);
2064 ret = false;
2065 page_vma_mapped_walk_done(&pvmw);
2066 break;
2067 }
2068
2069 /*
2070 * Store the pfn of the page in a special migration
2071 * pte. do_swap_page() will wait until the migration
2072 * pte is removed and then restart fault handling.
2073 */
2074 if (pte_write(pteval))
2075 entry = make_writable_migration_entry(
2076 page_to_pfn(subpage));
2077 else if (anon_exclusive)
2078 entry = make_readable_exclusive_migration_entry(
2079 page_to_pfn(subpage));
2080 else
2081 entry = make_readable_migration_entry(
2082 page_to_pfn(subpage));
2083 if (pte_young(pteval))
2084 entry = make_migration_entry_young(entry);
2085 if (pte_dirty(pteval))
2086 entry = make_migration_entry_dirty(entry);
2087 swp_pte = swp_entry_to_pte(entry);
2088 if (pte_soft_dirty(pteval))
2089 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2090 if (pte_uffd_wp(pteval))
2091 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2092 if (folio_test_hugetlb(folio))
2093 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2094 else
2095 set_pte_at(mm, address, pvmw.pte, swp_pte);
2096 trace_set_migration_pte(address, pte_val(swp_pte),
2097 compound_order(&folio->page));
2098 /*
2099 * No need to invalidate here it will synchronize on
2100 * against the special swap migration pte.
2101 */
2102 }
2103
2104 /*
2105 * No need to call mmu_notifier_invalidate_range() it has be
2106 * done above for all cases requiring it to happen under page
2107 * table lock before mmu_notifier_invalidate_range_end()
2108 *
2109 * See Documentation/mm/mmu_notifier.rst
2110 */
2111 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2112 if (vma->vm_flags & VM_LOCKED)
2113 mlock_drain_local();
2114 folio_put(folio);
2115 }
2116
2117 mmu_notifier_invalidate_range_end(&range);
2118
2119 return ret;
2120 }
2121
2122 /**
2123 * try_to_migrate - try to replace all page table mappings with swap entries
2124 * @folio: the folio to replace page table entries for
2125 * @flags: action and flags
2126 *
2127 * Tries to remove all the page table entries which are mapping this folio and
2128 * replace them with special swap entries. Caller must hold the folio lock.
2129 */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2130 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2131 {
2132 struct rmap_walk_control rwc = {
2133 .rmap_one = try_to_migrate_one,
2134 .arg = (void *)flags,
2135 .done = folio_not_mapped,
2136 .anon_lock = folio_lock_anon_vma_read,
2137 };
2138
2139 /*
2140 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2141 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2142 */
2143 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2144 TTU_SYNC | TTU_BATCH_FLUSH)))
2145 return;
2146
2147 if (folio_is_zone_device(folio) &&
2148 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2149 return;
2150
2151 /*
2152 * During exec, a temporary VMA is setup and later moved.
2153 * The VMA is moved under the anon_vma lock but not the
2154 * page tables leading to a race where migration cannot
2155 * find the migration ptes. Rather than increasing the
2156 * locking requirements of exec(), migration skips
2157 * temporary VMAs until after exec() completes.
2158 */
2159 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2160 rwc.invalid_vma = invalid_migration_vma;
2161
2162 if (flags & TTU_RMAP_LOCKED)
2163 rmap_walk_locked(folio, &rwc);
2164 else
2165 rmap_walk(folio, &rwc);
2166 }
2167
2168 #ifdef CONFIG_DEVICE_PRIVATE
2169 struct make_exclusive_args {
2170 struct mm_struct *mm;
2171 unsigned long address;
2172 void *owner;
2173 bool valid;
2174 };
2175
page_make_device_exclusive_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * priv)2176 static bool page_make_device_exclusive_one(struct folio *folio,
2177 struct vm_area_struct *vma, unsigned long address, void *priv)
2178 {
2179 struct mm_struct *mm = vma->vm_mm;
2180 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2181 struct make_exclusive_args *args = priv;
2182 pte_t pteval;
2183 struct page *subpage;
2184 bool ret = true;
2185 struct mmu_notifier_range range;
2186 swp_entry_t entry;
2187 pte_t swp_pte;
2188
2189 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2190 vma->vm_mm, address, min(vma->vm_end,
2191 address + folio_size(folio)),
2192 args->owner);
2193 mmu_notifier_invalidate_range_start(&range);
2194
2195 while (page_vma_mapped_walk(&pvmw)) {
2196 /* Unexpected PMD-mapped THP? */
2197 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2198
2199 if (!pte_present(*pvmw.pte)) {
2200 ret = false;
2201 page_vma_mapped_walk_done(&pvmw);
2202 break;
2203 }
2204
2205 subpage = folio_page(folio,
2206 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2207 address = pvmw.address;
2208
2209 /* Nuke the page table entry. */
2210 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2211 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2212
2213 /* Set the dirty flag on the folio now the pte is gone. */
2214 if (pte_dirty(pteval))
2215 folio_mark_dirty(folio);
2216
2217 /*
2218 * Check that our target page is still mapped at the expected
2219 * address.
2220 */
2221 if (args->mm == mm && args->address == address &&
2222 pte_write(pteval))
2223 args->valid = true;
2224
2225 /*
2226 * Store the pfn of the page in a special migration
2227 * pte. do_swap_page() will wait until the migration
2228 * pte is removed and then restart fault handling.
2229 */
2230 if (pte_write(pteval))
2231 entry = make_writable_device_exclusive_entry(
2232 page_to_pfn(subpage));
2233 else
2234 entry = make_readable_device_exclusive_entry(
2235 page_to_pfn(subpage));
2236 swp_pte = swp_entry_to_pte(entry);
2237 if (pte_soft_dirty(pteval))
2238 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2239 if (pte_uffd_wp(pteval))
2240 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2241
2242 set_pte_at(mm, address, pvmw.pte, swp_pte);
2243
2244 /*
2245 * There is a reference on the page for the swap entry which has
2246 * been removed, so shouldn't take another.
2247 */
2248 page_remove_rmap(subpage, vma, false);
2249 }
2250
2251 mmu_notifier_invalidate_range_end(&range);
2252
2253 return ret;
2254 }
2255
2256 /**
2257 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2258 * @folio: The folio to replace page table entries for.
2259 * @mm: The mm_struct where the folio is expected to be mapped.
2260 * @address: Address where the folio is expected to be mapped.
2261 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2262 *
2263 * Tries to remove all the page table entries which are mapping this
2264 * folio and replace them with special device exclusive swap entries to
2265 * grant a device exclusive access to the folio.
2266 *
2267 * Context: Caller must hold the folio lock.
2268 * Return: false if the page is still mapped, or if it could not be unmapped
2269 * from the expected address. Otherwise returns true (success).
2270 */
folio_make_device_exclusive(struct folio * folio,struct mm_struct * mm,unsigned long address,void * owner)2271 static bool folio_make_device_exclusive(struct folio *folio,
2272 struct mm_struct *mm, unsigned long address, void *owner)
2273 {
2274 struct make_exclusive_args args = {
2275 .mm = mm,
2276 .address = address,
2277 .owner = owner,
2278 .valid = false,
2279 };
2280 struct rmap_walk_control rwc = {
2281 .rmap_one = page_make_device_exclusive_one,
2282 .done = folio_not_mapped,
2283 .anon_lock = folio_lock_anon_vma_read,
2284 .arg = &args,
2285 };
2286
2287 /*
2288 * Restrict to anonymous folios for now to avoid potential writeback
2289 * issues.
2290 */
2291 if (!folio_test_anon(folio))
2292 return false;
2293
2294 rmap_walk(folio, &rwc);
2295
2296 return args.valid && !folio_mapcount(folio);
2297 }
2298
2299 /**
2300 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2301 * @mm: mm_struct of associated target process
2302 * @start: start of the region to mark for exclusive device access
2303 * @end: end address of region
2304 * @pages: returns the pages which were successfully marked for exclusive access
2305 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2306 *
2307 * Returns: number of pages found in the range by GUP. A page is marked for
2308 * exclusive access only if the page pointer is non-NULL.
2309 *
2310 * This function finds ptes mapping page(s) to the given address range, locks
2311 * them and replaces mappings with special swap entries preventing userspace CPU
2312 * access. On fault these entries are replaced with the original mapping after
2313 * calling MMU notifiers.
2314 *
2315 * A driver using this to program access from a device must use a mmu notifier
2316 * critical section to hold a device specific lock during programming. Once
2317 * programming is complete it should drop the page lock and reference after
2318 * which point CPU access to the page will revoke the exclusive access.
2319 */
make_device_exclusive_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct page ** pages,void * owner)2320 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2321 unsigned long end, struct page **pages,
2322 void *owner)
2323 {
2324 long npages = (end - start) >> PAGE_SHIFT;
2325 long i;
2326
2327 npages = get_user_pages_remote(mm, start, npages,
2328 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2329 pages, NULL, NULL);
2330 if (npages < 0)
2331 return npages;
2332
2333 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2334 struct folio *folio = page_folio(pages[i]);
2335 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2336 folio_put(folio);
2337 pages[i] = NULL;
2338 continue;
2339 }
2340
2341 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2342 folio_unlock(folio);
2343 folio_put(folio);
2344 pages[i] = NULL;
2345 }
2346 }
2347
2348 return npages;
2349 }
2350 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2351 #endif
2352
__put_anon_vma(struct anon_vma * anon_vma)2353 void __put_anon_vma(struct anon_vma *anon_vma)
2354 {
2355 struct anon_vma *root = anon_vma->root;
2356
2357 anon_vma_free(anon_vma);
2358 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2359 anon_vma_free(root);
2360 }
2361
rmap_walk_anon_lock(struct folio * folio,struct rmap_walk_control * rwc)2362 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2363 struct rmap_walk_control *rwc)
2364 {
2365 struct anon_vma *anon_vma;
2366
2367 if (rwc->anon_lock)
2368 return rwc->anon_lock(folio, rwc);
2369
2370 /*
2371 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2372 * because that depends on page_mapped(); but not all its usages
2373 * are holding mmap_lock. Users without mmap_lock are required to
2374 * take a reference count to prevent the anon_vma disappearing
2375 */
2376 anon_vma = folio_anon_vma(folio);
2377 if (!anon_vma)
2378 return NULL;
2379
2380 if (anon_vma_trylock_read(anon_vma))
2381 goto out;
2382
2383 if (rwc->try_lock) {
2384 anon_vma = NULL;
2385 rwc->contended = true;
2386 goto out;
2387 }
2388
2389 anon_vma_lock_read(anon_vma);
2390 out:
2391 return anon_vma;
2392 }
2393
2394 /*
2395 * rmap_walk_anon - do something to anonymous page using the object-based
2396 * rmap method
2397 * @page: the page to be handled
2398 * @rwc: control variable according to each walk type
2399 *
2400 * Find all the mappings of a page using the mapping pointer and the vma chains
2401 * contained in the anon_vma struct it points to.
2402 */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2403 static void rmap_walk_anon(struct folio *folio,
2404 struct rmap_walk_control *rwc, bool locked)
2405 {
2406 struct anon_vma *anon_vma;
2407 pgoff_t pgoff_start, pgoff_end;
2408 struct anon_vma_chain *avc;
2409
2410 if (locked) {
2411 anon_vma = folio_anon_vma(folio);
2412 /* anon_vma disappear under us? */
2413 VM_BUG_ON_FOLIO(!anon_vma, folio);
2414 } else {
2415 anon_vma = rmap_walk_anon_lock(folio, rwc);
2416 }
2417 if (!anon_vma)
2418 return;
2419
2420 pgoff_start = folio_pgoff(folio);
2421 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2422 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2423 pgoff_start, pgoff_end) {
2424 struct vm_area_struct *vma = avc->vma;
2425 unsigned long address = vma_address(&folio->page, vma);
2426
2427 VM_BUG_ON_VMA(address == -EFAULT, vma);
2428 cond_resched();
2429
2430 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2431 continue;
2432
2433 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2434 break;
2435 if (rwc->done && rwc->done(folio))
2436 break;
2437 }
2438
2439 if (!locked)
2440 anon_vma_unlock_read(anon_vma);
2441 }
2442
2443 /*
2444 * rmap_walk_file - do something to file page using the object-based rmap method
2445 * @page: the page to be handled
2446 * @rwc: control variable according to each walk type
2447 *
2448 * Find all the mappings of a page using the mapping pointer and the vma chains
2449 * contained in the address_space struct it points to.
2450 */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2451 static void rmap_walk_file(struct folio *folio,
2452 struct rmap_walk_control *rwc, bool locked)
2453 {
2454 struct address_space *mapping = folio_mapping(folio);
2455 pgoff_t pgoff_start, pgoff_end;
2456 struct vm_area_struct *vma;
2457
2458 /*
2459 * The page lock not only makes sure that page->mapping cannot
2460 * suddenly be NULLified by truncation, it makes sure that the
2461 * structure at mapping cannot be freed and reused yet,
2462 * so we can safely take mapping->i_mmap_rwsem.
2463 */
2464 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2465
2466 if (!mapping)
2467 return;
2468
2469 pgoff_start = folio_pgoff(folio);
2470 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2471 if (!locked) {
2472 if (i_mmap_trylock_read(mapping))
2473 goto lookup;
2474
2475 if (rwc->try_lock) {
2476 rwc->contended = true;
2477 return;
2478 }
2479
2480 i_mmap_lock_read(mapping);
2481 }
2482 lookup:
2483 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2484 pgoff_start, pgoff_end) {
2485 unsigned long address = vma_address(&folio->page, vma);
2486
2487 VM_BUG_ON_VMA(address == -EFAULT, vma);
2488 cond_resched();
2489
2490 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2491 continue;
2492
2493 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2494 goto done;
2495 if (rwc->done && rwc->done(folio))
2496 goto done;
2497 }
2498
2499 done:
2500 if (!locked)
2501 i_mmap_unlock_read(mapping);
2502 }
2503
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2504 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2505 {
2506 if (unlikely(folio_test_ksm(folio)))
2507 rmap_walk_ksm(folio, rwc);
2508 else if (folio_test_anon(folio))
2509 rmap_walk_anon(folio, rwc, false);
2510 else
2511 rmap_walk_file(folio, rwc, false);
2512 }
2513
2514 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2515 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2516 {
2517 /* no ksm support for now */
2518 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2519 if (folio_test_anon(folio))
2520 rmap_walk_anon(folio, rwc, true);
2521 else
2522 rmap_walk_file(folio, rwc, true);
2523 }
2524
2525 #ifdef CONFIG_HUGETLB_PAGE
2526 /*
2527 * The following two functions are for anonymous (private mapped) hugepages.
2528 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2529 * and no lru code, because we handle hugepages differently from common pages.
2530 *
2531 * RMAP_COMPOUND is ignored.
2532 */
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2533 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2534 unsigned long address, rmap_t flags)
2535 {
2536 struct folio *folio = page_folio(page);
2537 struct anon_vma *anon_vma = vma->anon_vma;
2538 int first;
2539
2540 BUG_ON(!folio_test_locked(folio));
2541 BUG_ON(!anon_vma);
2542 /* address might be in next vma when migration races vma_merge */
2543 first = atomic_inc_and_test(&folio->_entire_mapcount);
2544 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2545 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2546 if (first)
2547 __page_set_anon_rmap(folio, page, vma, address,
2548 !!(flags & RMAP_EXCLUSIVE));
2549 }
2550
hugepage_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address)2551 void hugepage_add_new_anon_rmap(struct folio *folio,
2552 struct vm_area_struct *vma, unsigned long address)
2553 {
2554 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2555 /* increment count (starts at -1) */
2556 atomic_set(&folio->_entire_mapcount, 0);
2557 folio_clear_hugetlb_restore_reserve(folio);
2558 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2559 }
2560 #endif /* CONFIG_HUGETLB_PAGE */
2561