1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2
3 //! A contiguous growable array type with heap-allocated contents, written
4 //! `Vec<T>`.
5 //!
6 //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
7 //! *O*(1) pop (from the end).
8 //!
9 //! Vectors ensure they never allocate more than `isize::MAX` bytes.
10 //!
11 //! # Examples
12 //!
13 //! You can explicitly create a [`Vec`] with [`Vec::new`]:
14 //!
15 //! ```
16 //! let v: Vec<i32> = Vec::new();
17 //! ```
18 //!
19 //! ...or by using the [`vec!`] macro:
20 //!
21 //! ```
22 //! let v: Vec<i32> = vec![];
23 //!
24 //! let v = vec![1, 2, 3, 4, 5];
25 //!
26 //! let v = vec![0; 10]; // ten zeroes
27 //! ```
28 //!
29 //! You can [`push`] values onto the end of a vector (which will grow the vector
30 //! as needed):
31 //!
32 //! ```
33 //! let mut v = vec![1, 2];
34 //!
35 //! v.push(3);
36 //! ```
37 //!
38 //! Popping values works in much the same way:
39 //!
40 //! ```
41 //! let mut v = vec![1, 2];
42 //!
43 //! let two = v.pop();
44 //! ```
45 //!
46 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
47 //!
48 //! ```
49 //! let mut v = vec![1, 2, 3];
50 //! let three = v[2];
51 //! v[1] = v[1] + 5;
52 //! ```
53 //!
54 //! [`push`]: Vec::push
55
56 #![stable(feature = "rust1", since = "1.0.0")]
57
58 #[cfg(not(no_global_oom_handling))]
59 use core::cmp;
60 use core::cmp::Ordering;
61 use core::convert::TryFrom;
62 use core::fmt;
63 use core::hash::{Hash, Hasher};
64 use core::intrinsics::{arith_offset, assume};
65 use core::iter;
66 #[cfg(not(no_global_oom_handling))]
67 use core::iter::FromIterator;
68 use core::marker::PhantomData;
69 use core::mem::{self, ManuallyDrop, MaybeUninit};
70 use core::ops::{self, Index, IndexMut, Range, RangeBounds};
71 use core::ptr::{self, NonNull};
72 use core::slice::{self, SliceIndex};
73
74 use crate::alloc::{Allocator, Global};
75 #[cfg(not(no_borrow))]
76 use crate::borrow::{Cow, ToOwned};
77 use crate::boxed::Box;
78 use crate::collections::TryReserveError;
79 use crate::raw_vec::RawVec;
80
81 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
82 pub use self::drain_filter::DrainFilter;
83
84 mod drain_filter;
85
86 #[cfg(not(no_global_oom_handling))]
87 #[stable(feature = "vec_splice", since = "1.21.0")]
88 pub use self::splice::Splice;
89
90 #[cfg(not(no_global_oom_handling))]
91 mod splice;
92
93 #[stable(feature = "drain", since = "1.6.0")]
94 pub use self::drain::Drain;
95
96 mod drain;
97
98 #[cfg(not(no_borrow))]
99 #[cfg(not(no_global_oom_handling))]
100 mod cow;
101
102 #[cfg(not(no_global_oom_handling))]
103 pub(crate) use self::in_place_collect::AsVecIntoIter;
104 #[stable(feature = "rust1", since = "1.0.0")]
105 pub use self::into_iter::IntoIter;
106
107 mod into_iter;
108
109 #[cfg(not(no_global_oom_handling))]
110 use self::is_zero::IsZero;
111
112 mod is_zero;
113
114 #[cfg(not(no_global_oom_handling))]
115 mod in_place_collect;
116
117 mod partial_eq;
118
119 #[cfg(not(no_global_oom_handling))]
120 use self::spec_from_elem::SpecFromElem;
121
122 #[cfg(not(no_global_oom_handling))]
123 mod spec_from_elem;
124
125 #[cfg(not(no_global_oom_handling))]
126 use self::set_len_on_drop::SetLenOnDrop;
127
128 #[cfg(not(no_global_oom_handling))]
129 mod set_len_on_drop;
130
131 #[cfg(not(no_global_oom_handling))]
132 use self::in_place_drop::InPlaceDrop;
133
134 #[cfg(not(no_global_oom_handling))]
135 mod in_place_drop;
136
137 #[cfg(not(no_global_oom_handling))]
138 use self::spec_from_iter_nested::SpecFromIterNested;
139
140 #[cfg(not(no_global_oom_handling))]
141 mod spec_from_iter_nested;
142
143 #[cfg(not(no_global_oom_handling))]
144 use self::spec_from_iter::SpecFromIter;
145
146 #[cfg(not(no_global_oom_handling))]
147 mod spec_from_iter;
148
149 #[cfg(not(no_global_oom_handling))]
150 use self::spec_extend::SpecExtend;
151
152 #[cfg(not(no_global_oom_handling))]
153 mod spec_extend;
154
155 /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
156 ///
157 /// # Examples
158 ///
159 /// ```
160 /// let mut vec = Vec::new();
161 /// vec.push(1);
162 /// vec.push(2);
163 ///
164 /// assert_eq!(vec.len(), 2);
165 /// assert_eq!(vec[0], 1);
166 ///
167 /// assert_eq!(vec.pop(), Some(2));
168 /// assert_eq!(vec.len(), 1);
169 ///
170 /// vec[0] = 7;
171 /// assert_eq!(vec[0], 7);
172 ///
173 /// vec.extend([1, 2, 3].iter().copied());
174 ///
175 /// for x in &vec {
176 /// println!("{x}");
177 /// }
178 /// assert_eq!(vec, [7, 1, 2, 3]);
179 /// ```
180 ///
181 /// The [`vec!`] macro is provided for convenient initialization:
182 ///
183 /// ```
184 /// let mut vec1 = vec![1, 2, 3];
185 /// vec1.push(4);
186 /// let vec2 = Vec::from([1, 2, 3, 4]);
187 /// assert_eq!(vec1, vec2);
188 /// ```
189 ///
190 /// It can also initialize each element of a `Vec<T>` with a given value.
191 /// This may be more efficient than performing allocation and initialization
192 /// in separate steps, especially when initializing a vector of zeros:
193 ///
194 /// ```
195 /// let vec = vec![0; 5];
196 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
197 ///
198 /// // The following is equivalent, but potentially slower:
199 /// let mut vec = Vec::with_capacity(5);
200 /// vec.resize(5, 0);
201 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
202 /// ```
203 ///
204 /// For more information, see
205 /// [Capacity and Reallocation](#capacity-and-reallocation).
206 ///
207 /// Use a `Vec<T>` as an efficient stack:
208 ///
209 /// ```
210 /// let mut stack = Vec::new();
211 ///
212 /// stack.push(1);
213 /// stack.push(2);
214 /// stack.push(3);
215 ///
216 /// while let Some(top) = stack.pop() {
217 /// // Prints 3, 2, 1
218 /// println!("{top}");
219 /// }
220 /// ```
221 ///
222 /// # Indexing
223 ///
224 /// The `Vec` type allows to access values by index, because it implements the
225 /// [`Index`] trait. An example will be more explicit:
226 ///
227 /// ```
228 /// let v = vec![0, 2, 4, 6];
229 /// println!("{}", v[1]); // it will display '2'
230 /// ```
231 ///
232 /// However be careful: if you try to access an index which isn't in the `Vec`,
233 /// your software will panic! You cannot do this:
234 ///
235 /// ```should_panic
236 /// let v = vec![0, 2, 4, 6];
237 /// println!("{}", v[6]); // it will panic!
238 /// ```
239 ///
240 /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
241 /// the `Vec`.
242 ///
243 /// # Slicing
244 ///
245 /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
246 /// To get a [slice][prim@slice], use [`&`]. Example:
247 ///
248 /// ```
249 /// fn read_slice(slice: &[usize]) {
250 /// // ...
251 /// }
252 ///
253 /// let v = vec![0, 1];
254 /// read_slice(&v);
255 ///
256 /// // ... and that's all!
257 /// // you can also do it like this:
258 /// let u: &[usize] = &v;
259 /// // or like this:
260 /// let u: &[_] = &v;
261 /// ```
262 ///
263 /// In Rust, it's more common to pass slices as arguments rather than vectors
264 /// when you just want to provide read access. The same goes for [`String`] and
265 /// [`&str`].
266 ///
267 /// # Capacity and reallocation
268 ///
269 /// The capacity of a vector is the amount of space allocated for any future
270 /// elements that will be added onto the vector. This is not to be confused with
271 /// the *length* of a vector, which specifies the number of actual elements
272 /// within the vector. If a vector's length exceeds its capacity, its capacity
273 /// will automatically be increased, but its elements will have to be
274 /// reallocated.
275 ///
276 /// For example, a vector with capacity 10 and length 0 would be an empty vector
277 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
278 /// vector will not change its capacity or cause reallocation to occur. However,
279 /// if the vector's length is increased to 11, it will have to reallocate, which
280 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
281 /// whenever possible to specify how big the vector is expected to get.
282 ///
283 /// # Guarantees
284 ///
285 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
286 /// about its design. This ensures that it's as low-overhead as possible in
287 /// the general case, and can be correctly manipulated in primitive ways
288 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
289 /// If additional type parameters are added (e.g., to support custom allocators),
290 /// overriding their defaults may change the behavior.
291 ///
292 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
293 /// triplet. No more, no less. The order of these fields is completely
294 /// unspecified, and you should use the appropriate methods to modify these.
295 /// The pointer will never be null, so this type is null-pointer-optimized.
296 ///
297 /// However, the pointer might not actually point to allocated memory. In particular,
298 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
299 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
300 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
301 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
302 /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
303 /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
304 /// details are very subtle --- if you intend to allocate memory using a `Vec`
305 /// and use it for something else (either to pass to unsafe code, or to build your
306 /// own memory-backed collection), be sure to deallocate this memory by using
307 /// `from_raw_parts` to recover the `Vec` and then dropping it.
308 ///
309 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
310 /// (as defined by the allocator Rust is configured to use by default), and its
311 /// pointer points to [`len`] initialized, contiguous elements in order (what
312 /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
313 /// logically uninitialized, contiguous elements.
314 ///
315 /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
316 /// visualized as below. The top part is the `Vec` struct, it contains a
317 /// pointer to the head of the allocation in the heap, length and capacity.
318 /// The bottom part is the allocation on the heap, a contiguous memory block.
319 ///
320 /// ```text
321 /// ptr len capacity
322 /// +--------+--------+--------+
323 /// | 0x0123 | 2 | 4 |
324 /// +--------+--------+--------+
325 /// |
326 /// v
327 /// Heap +--------+--------+--------+--------+
328 /// | 'a' | 'b' | uninit | uninit |
329 /// +--------+--------+--------+--------+
330 /// ```
331 ///
332 /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
333 /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
334 /// layout (including the order of fields).
335 ///
336 /// `Vec` will never perform a "small optimization" where elements are actually
337 /// stored on the stack for two reasons:
338 ///
339 /// * It would make it more difficult for unsafe code to correctly manipulate
340 /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
341 /// only moved, and it would be more difficult to determine if a `Vec` had
342 /// actually allocated memory.
343 ///
344 /// * It would penalize the general case, incurring an additional branch
345 /// on every access.
346 ///
347 /// `Vec` will never automatically shrink itself, even if completely empty. This
348 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
349 /// and then filling it back up to the same [`len`] should incur no calls to
350 /// the allocator. If you wish to free up unused memory, use
351 /// [`shrink_to_fit`] or [`shrink_to`].
352 ///
353 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
354 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
355 /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
356 /// accurate, and can be relied on. It can even be used to manually free the memory
357 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
358 /// when not necessary.
359 ///
360 /// `Vec` does not guarantee any particular growth strategy when reallocating
361 /// when full, nor when [`reserve`] is called. The current strategy is basic
362 /// and it may prove desirable to use a non-constant growth factor. Whatever
363 /// strategy is used will of course guarantee *O*(1) amortized [`push`].
364 ///
365 /// `vec![x; n]`, `vec![a, b, c, d]`, and
366 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
367 /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
368 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
369 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
370 ///
371 /// `Vec` will not specifically overwrite any data that is removed from it,
372 /// but also won't specifically preserve it. Its uninitialized memory is
373 /// scratch space that it may use however it wants. It will generally just do
374 /// whatever is most efficient or otherwise easy to implement. Do not rely on
375 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
376 /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
377 /// first, that might not actually happen because the optimizer does not consider
378 /// this a side-effect that must be preserved. There is one case which we will
379 /// not break, however: using `unsafe` code to write to the excess capacity,
380 /// and then increasing the length to match, is always valid.
381 ///
382 /// Currently, `Vec` does not guarantee the order in which elements are dropped.
383 /// The order has changed in the past and may change again.
384 ///
385 /// [`get`]: ../../std/vec/struct.Vec.html#method.get
386 /// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
387 /// [`String`]: crate::string::String
388 /// [`&str`]: type@str
389 /// [`shrink_to_fit`]: Vec::shrink_to_fit
390 /// [`shrink_to`]: Vec::shrink_to
391 /// [capacity]: Vec::capacity
392 /// [`capacity`]: Vec::capacity
393 /// [mem::size_of::\<T>]: core::mem::size_of
394 /// [len]: Vec::len
395 /// [`len`]: Vec::len
396 /// [`push`]: Vec::push
397 /// [`insert`]: Vec::insert
398 /// [`reserve`]: Vec::reserve
399 /// [`MaybeUninit`]: core::mem::MaybeUninit
400 /// [owned slice]: Box
401 #[stable(feature = "rust1", since = "1.0.0")]
402 #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
403 #[rustc_insignificant_dtor]
404 pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
405 buf: RawVec<T, A>,
406 len: usize,
407 }
408
409 ////////////////////////////////////////////////////////////////////////////////
410 // Inherent methods
411 ////////////////////////////////////////////////////////////////////////////////
412
413 impl<T> Vec<T> {
414 /// Constructs a new, empty `Vec<T>`.
415 ///
416 /// The vector will not allocate until elements are pushed onto it.
417 ///
418 /// # Examples
419 ///
420 /// ```
421 /// # #![allow(unused_mut)]
422 /// let mut vec: Vec<i32> = Vec::new();
423 /// ```
424 #[inline]
425 #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
426 #[stable(feature = "rust1", since = "1.0.0")]
427 #[must_use]
new() -> Self428 pub const fn new() -> Self {
429 Vec { buf: RawVec::NEW, len: 0 }
430 }
431
432 /// Constructs a new, empty `Vec<T>` with the specified capacity.
433 ///
434 /// The vector will be able to hold exactly `capacity` elements without
435 /// reallocating. If `capacity` is 0, the vector will not allocate.
436 ///
437 /// It is important to note that although the returned vector has the
438 /// *capacity* specified, the vector will have a zero *length*. For an
439 /// explanation of the difference between length and capacity, see
440 /// *[Capacity and reallocation]*.
441 ///
442 /// [Capacity and reallocation]: #capacity-and-reallocation
443 ///
444 /// # Panics
445 ///
446 /// Panics if the new capacity exceeds `isize::MAX` bytes.
447 ///
448 /// # Examples
449 ///
450 /// ```
451 /// let mut vec = Vec::with_capacity(10);
452 ///
453 /// // The vector contains no items, even though it has capacity for more
454 /// assert_eq!(vec.len(), 0);
455 /// assert_eq!(vec.capacity(), 10);
456 ///
457 /// // These are all done without reallocating...
458 /// for i in 0..10 {
459 /// vec.push(i);
460 /// }
461 /// assert_eq!(vec.len(), 10);
462 /// assert_eq!(vec.capacity(), 10);
463 ///
464 /// // ...but this may make the vector reallocate
465 /// vec.push(11);
466 /// assert_eq!(vec.len(), 11);
467 /// assert!(vec.capacity() >= 11);
468 /// ```
469 #[cfg(not(no_global_oom_handling))]
470 #[inline]
471 #[stable(feature = "rust1", since = "1.0.0")]
472 #[must_use]
with_capacity(capacity: usize) -> Self473 pub fn with_capacity(capacity: usize) -> Self {
474 Self::with_capacity_in(capacity, Global)
475 }
476
477 /// Tries to construct a new, empty `Vec<T>` with the specified capacity.
478 ///
479 /// The vector will be able to hold exactly `capacity` elements without
480 /// reallocating. If `capacity` is 0, the vector will not allocate.
481 ///
482 /// It is important to note that although the returned vector has the
483 /// *capacity* specified, the vector will have a zero *length*. For an
484 /// explanation of the difference between length and capacity, see
485 /// *[Capacity and reallocation]*.
486 ///
487 /// [Capacity and reallocation]: #capacity-and-reallocation
488 ///
489 /// # Examples
490 ///
491 /// ```
492 /// let mut vec = Vec::try_with_capacity(10).unwrap();
493 ///
494 /// // The vector contains no items, even though it has capacity for more
495 /// assert_eq!(vec.len(), 0);
496 /// assert_eq!(vec.capacity(), 10);
497 ///
498 /// // These are all done without reallocating...
499 /// for i in 0..10 {
500 /// vec.push(i);
501 /// }
502 /// assert_eq!(vec.len(), 10);
503 /// assert_eq!(vec.capacity(), 10);
504 ///
505 /// // ...but this may make the vector reallocate
506 /// vec.push(11);
507 /// assert_eq!(vec.len(), 11);
508 /// assert!(vec.capacity() >= 11);
509 ///
510 /// let mut result = Vec::try_with_capacity(usize::MAX);
511 /// assert!(result.is_err());
512 /// ```
513 #[inline]
514 #[stable(feature = "kernel", since = "1.0.0")]
try_with_capacity(capacity: usize) -> Result<Self, TryReserveError>515 pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
516 Self::try_with_capacity_in(capacity, Global)
517 }
518
519 /// Creates a `Vec<T>` directly from the raw components of another vector.
520 ///
521 /// # Safety
522 ///
523 /// This is highly unsafe, due to the number of invariants that aren't
524 /// checked:
525 ///
526 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
527 /// (at least, it's highly likely to be incorrect if it wasn't).
528 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
529 /// (`T` having a less strict alignment is not sufficient, the alignment really
530 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
531 /// allocated and deallocated with the same layout.)
532 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
533 /// to be the same size as the pointer was allocated with. (Because similar to
534 /// alignment, [`dealloc`] must be called with the same layout `size`.)
535 /// * `length` needs to be less than or equal to `capacity`.
536 ///
537 /// Violating these may cause problems like corrupting the allocator's
538 /// internal data structures. For example it is normally **not** safe
539 /// to build a `Vec<u8>` from a pointer to a C `char` array with length
540 /// `size_t`, doing so is only safe if the array was initially allocated by
541 /// a `Vec` or `String`.
542 /// It's also not safe to build one from a `Vec<u16>` and its length, because
543 /// the allocator cares about the alignment, and these two types have different
544 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
545 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
546 /// these issues, it is often preferable to do casting/transmuting using
547 /// [`slice::from_raw_parts`] instead.
548 ///
549 /// The ownership of `ptr` is effectively transferred to the
550 /// `Vec<T>` which may then deallocate, reallocate or change the
551 /// contents of memory pointed to by the pointer at will. Ensure
552 /// that nothing else uses the pointer after calling this
553 /// function.
554 ///
555 /// [`String`]: crate::string::String
556 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
557 ///
558 /// # Examples
559 ///
560 /// ```
561 /// use std::ptr;
562 /// use std::mem;
563 ///
564 /// let v = vec![1, 2, 3];
565 ///
566 // FIXME Update this when vec_into_raw_parts is stabilized
567 /// // Prevent running `v`'s destructor so we are in complete control
568 /// // of the allocation.
569 /// let mut v = mem::ManuallyDrop::new(v);
570 ///
571 /// // Pull out the various important pieces of information about `v`
572 /// let p = v.as_mut_ptr();
573 /// let len = v.len();
574 /// let cap = v.capacity();
575 ///
576 /// unsafe {
577 /// // Overwrite memory with 4, 5, 6
578 /// for i in 0..len as isize {
579 /// ptr::write(p.offset(i), 4 + i);
580 /// }
581 ///
582 /// // Put everything back together into a Vec
583 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
584 /// assert_eq!(rebuilt, [4, 5, 6]);
585 /// }
586 /// ```
587 #[inline]
588 #[stable(feature = "rust1", since = "1.0.0")]
from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self589 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
590 unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
591 }
592 }
593
594 impl<T, A: Allocator> Vec<T, A> {
595 /// Constructs a new, empty `Vec<T, A>`.
596 ///
597 /// The vector will not allocate until elements are pushed onto it.
598 ///
599 /// # Examples
600 ///
601 /// ```
602 /// #![feature(allocator_api)]
603 ///
604 /// use std::alloc::System;
605 ///
606 /// # #[allow(unused_mut)]
607 /// let mut vec: Vec<i32, _> = Vec::new_in(System);
608 /// ```
609 #[inline]
610 #[unstable(feature = "allocator_api", issue = "32838")]
new_in(alloc: A) -> Self611 pub const fn new_in(alloc: A) -> Self {
612 Vec { buf: RawVec::new_in(alloc), len: 0 }
613 }
614
615 /// Constructs a new, empty `Vec<T, A>` with the specified capacity with the provided
616 /// allocator.
617 ///
618 /// The vector will be able to hold exactly `capacity` elements without
619 /// reallocating. If `capacity` is 0, the vector will not allocate.
620 ///
621 /// It is important to note that although the returned vector has the
622 /// *capacity* specified, the vector will have a zero *length*. For an
623 /// explanation of the difference between length and capacity, see
624 /// *[Capacity and reallocation]*.
625 ///
626 /// [Capacity and reallocation]: #capacity-and-reallocation
627 ///
628 /// # Panics
629 ///
630 /// Panics if the new capacity exceeds `isize::MAX` bytes.
631 ///
632 /// # Examples
633 ///
634 /// ```
635 /// #![feature(allocator_api)]
636 ///
637 /// use std::alloc::System;
638 ///
639 /// let mut vec = Vec::with_capacity_in(10, System);
640 ///
641 /// // The vector contains no items, even though it has capacity for more
642 /// assert_eq!(vec.len(), 0);
643 /// assert_eq!(vec.capacity(), 10);
644 ///
645 /// // These are all done without reallocating...
646 /// for i in 0..10 {
647 /// vec.push(i);
648 /// }
649 /// assert_eq!(vec.len(), 10);
650 /// assert_eq!(vec.capacity(), 10);
651 ///
652 /// // ...but this may make the vector reallocate
653 /// vec.push(11);
654 /// assert_eq!(vec.len(), 11);
655 /// assert!(vec.capacity() >= 11);
656 /// ```
657 #[cfg(not(no_global_oom_handling))]
658 #[inline]
659 #[unstable(feature = "allocator_api", issue = "32838")]
with_capacity_in(capacity: usize, alloc: A) -> Self660 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
661 Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
662 }
663
664 /// Tries to construct a new, empty `Vec<T, A>` with the specified capacity
665 /// with the provided allocator.
666 ///
667 /// The vector will be able to hold exactly `capacity` elements without
668 /// reallocating. If `capacity` is 0, the vector will not allocate.
669 ///
670 /// It is important to note that although the returned vector has the
671 /// *capacity* specified, the vector will have a zero *length*. For an
672 /// explanation of the difference between length and capacity, see
673 /// *[Capacity and reallocation]*.
674 ///
675 /// [Capacity and reallocation]: #capacity-and-reallocation
676 ///
677 /// # Examples
678 ///
679 /// ```
680 /// #![feature(allocator_api)]
681 ///
682 /// use std::alloc::System;
683 ///
684 /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap();
685 ///
686 /// // The vector contains no items, even though it has capacity for more
687 /// assert_eq!(vec.len(), 0);
688 /// assert_eq!(vec.capacity(), 10);
689 ///
690 /// // These are all done without reallocating...
691 /// for i in 0..10 {
692 /// vec.push(i);
693 /// }
694 /// assert_eq!(vec.len(), 10);
695 /// assert_eq!(vec.capacity(), 10);
696 ///
697 /// // ...but this may make the vector reallocate
698 /// vec.push(11);
699 /// assert_eq!(vec.len(), 11);
700 /// assert!(vec.capacity() >= 11);
701 ///
702 /// let mut result = Vec::try_with_capacity_in(usize::MAX, System);
703 /// assert!(result.is_err());
704 /// ```
705 #[inline]
706 #[stable(feature = "kernel", since = "1.0.0")]
try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError>707 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
708 Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
709 }
710
711 /// Creates a `Vec<T, A>` directly from the raw components of another vector.
712 ///
713 /// # Safety
714 ///
715 /// This is highly unsafe, due to the number of invariants that aren't
716 /// checked:
717 ///
718 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
719 /// (at least, it's highly likely to be incorrect if it wasn't).
720 /// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
721 /// (`T` having a less strict alignment is not sufficient, the alignment really
722 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
723 /// allocated and deallocated with the same layout.)
724 /// * `length` needs to be less than or equal to `capacity`.
725 /// * `capacity` needs to be the capacity that the pointer was allocated with.
726 ///
727 /// Violating these may cause problems like corrupting the allocator's
728 /// internal data structures. For example it is **not** safe
729 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
730 /// It's also not safe to build one from a `Vec<u16>` and its length, because
731 /// the allocator cares about the alignment, and these two types have different
732 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
733 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
734 ///
735 /// The ownership of `ptr` is effectively transferred to the
736 /// `Vec<T>` which may then deallocate, reallocate or change the
737 /// contents of memory pointed to by the pointer at will. Ensure
738 /// that nothing else uses the pointer after calling this
739 /// function.
740 ///
741 /// [`String`]: crate::string::String
742 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
743 ///
744 /// # Examples
745 ///
746 /// ```
747 /// #![feature(allocator_api)]
748 ///
749 /// use std::alloc::System;
750 ///
751 /// use std::ptr;
752 /// use std::mem;
753 ///
754 /// let mut v = Vec::with_capacity_in(3, System);
755 /// v.push(1);
756 /// v.push(2);
757 /// v.push(3);
758 ///
759 // FIXME Update this when vec_into_raw_parts is stabilized
760 /// // Prevent running `v`'s destructor so we are in complete control
761 /// // of the allocation.
762 /// let mut v = mem::ManuallyDrop::new(v);
763 ///
764 /// // Pull out the various important pieces of information about `v`
765 /// let p = v.as_mut_ptr();
766 /// let len = v.len();
767 /// let cap = v.capacity();
768 /// let alloc = v.allocator();
769 ///
770 /// unsafe {
771 /// // Overwrite memory with 4, 5, 6
772 /// for i in 0..len as isize {
773 /// ptr::write(p.offset(i), 4 + i);
774 /// }
775 ///
776 /// // Put everything back together into a Vec
777 /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
778 /// assert_eq!(rebuilt, [4, 5, 6]);
779 /// }
780 /// ```
781 #[inline]
782 #[unstable(feature = "allocator_api", issue = "32838")]
from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self783 pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
784 unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
785 }
786
787 /// Decomposes a `Vec<T>` into its raw components.
788 ///
789 /// Returns the raw pointer to the underlying data, the length of
790 /// the vector (in elements), and the allocated capacity of the
791 /// data (in elements). These are the same arguments in the same
792 /// order as the arguments to [`from_raw_parts`].
793 ///
794 /// After calling this function, the caller is responsible for the
795 /// memory previously managed by the `Vec`. The only way to do
796 /// this is to convert the raw pointer, length, and capacity back
797 /// into a `Vec` with the [`from_raw_parts`] function, allowing
798 /// the destructor to perform the cleanup.
799 ///
800 /// [`from_raw_parts`]: Vec::from_raw_parts
801 ///
802 /// # Examples
803 ///
804 /// ```
805 /// #![feature(vec_into_raw_parts)]
806 /// let v: Vec<i32> = vec![-1, 0, 1];
807 ///
808 /// let (ptr, len, cap) = v.into_raw_parts();
809 ///
810 /// let rebuilt = unsafe {
811 /// // We can now make changes to the components, such as
812 /// // transmuting the raw pointer to a compatible type.
813 /// let ptr = ptr as *mut u32;
814 ///
815 /// Vec::from_raw_parts(ptr, len, cap)
816 /// };
817 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
818 /// ```
819 #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts(self) -> (*mut T, usize, usize)820 pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
821 let mut me = ManuallyDrop::new(self);
822 (me.as_mut_ptr(), me.len(), me.capacity())
823 }
824
825 /// Decomposes a `Vec<T>` into its raw components.
826 ///
827 /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
828 /// the allocated capacity of the data (in elements), and the allocator. These are the same
829 /// arguments in the same order as the arguments to [`from_raw_parts_in`].
830 ///
831 /// After calling this function, the caller is responsible for the
832 /// memory previously managed by the `Vec`. The only way to do
833 /// this is to convert the raw pointer, length, and capacity back
834 /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
835 /// the destructor to perform the cleanup.
836 ///
837 /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
838 ///
839 /// # Examples
840 ///
841 /// ```
842 /// #![feature(allocator_api, vec_into_raw_parts)]
843 ///
844 /// use std::alloc::System;
845 ///
846 /// let mut v: Vec<i32, System> = Vec::new_in(System);
847 /// v.push(-1);
848 /// v.push(0);
849 /// v.push(1);
850 ///
851 /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
852 ///
853 /// let rebuilt = unsafe {
854 /// // We can now make changes to the components, such as
855 /// // transmuting the raw pointer to a compatible type.
856 /// let ptr = ptr as *mut u32;
857 ///
858 /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
859 /// };
860 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
861 /// ```
862 #[unstable(feature = "allocator_api", issue = "32838")]
863 // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A)864 pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
865 let mut me = ManuallyDrop::new(self);
866 let len = me.len();
867 let capacity = me.capacity();
868 let ptr = me.as_mut_ptr();
869 let alloc = unsafe { ptr::read(me.allocator()) };
870 (ptr, len, capacity, alloc)
871 }
872
873 /// Returns the number of elements the vector can hold without
874 /// reallocating.
875 ///
876 /// # Examples
877 ///
878 /// ```
879 /// let vec: Vec<i32> = Vec::with_capacity(10);
880 /// assert_eq!(vec.capacity(), 10);
881 /// ```
882 #[inline]
883 #[stable(feature = "rust1", since = "1.0.0")]
capacity(&self) -> usize884 pub fn capacity(&self) -> usize {
885 self.buf.capacity()
886 }
887
888 /// Reserves capacity for at least `additional` more elements to be inserted
889 /// in the given `Vec<T>`. The collection may reserve more space to avoid
890 /// frequent reallocations. After calling `reserve`, capacity will be
891 /// greater than or equal to `self.len() + additional`. Does nothing if
892 /// capacity is already sufficient.
893 ///
894 /// # Panics
895 ///
896 /// Panics if the new capacity exceeds `isize::MAX` bytes.
897 ///
898 /// # Examples
899 ///
900 /// ```
901 /// let mut vec = vec![1];
902 /// vec.reserve(10);
903 /// assert!(vec.capacity() >= 11);
904 /// ```
905 #[cfg(not(no_global_oom_handling))]
906 #[stable(feature = "rust1", since = "1.0.0")]
reserve(&mut self, additional: usize)907 pub fn reserve(&mut self, additional: usize) {
908 self.buf.reserve(self.len, additional);
909 }
910
911 /// Reserves the minimum capacity for exactly `additional` more elements to
912 /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
913 /// capacity will be greater than or equal to `self.len() + additional`.
914 /// Does nothing if the capacity is already sufficient.
915 ///
916 /// Note that the allocator may give the collection more space than it
917 /// requests. Therefore, capacity can not be relied upon to be precisely
918 /// minimal. Prefer [`reserve`] if future insertions are expected.
919 ///
920 /// [`reserve`]: Vec::reserve
921 ///
922 /// # Panics
923 ///
924 /// Panics if the new capacity exceeds `isize::MAX` bytes.
925 ///
926 /// # Examples
927 ///
928 /// ```
929 /// let mut vec = vec![1];
930 /// vec.reserve_exact(10);
931 /// assert!(vec.capacity() >= 11);
932 /// ```
933 #[cfg(not(no_global_oom_handling))]
934 #[stable(feature = "rust1", since = "1.0.0")]
reserve_exact(&mut self, additional: usize)935 pub fn reserve_exact(&mut self, additional: usize) {
936 self.buf.reserve_exact(self.len, additional);
937 }
938
939 /// Tries to reserve capacity for at least `additional` more elements to be inserted
940 /// in the given `Vec<T>`. The collection may reserve more space to avoid
941 /// frequent reallocations. After calling `try_reserve`, capacity will be
942 /// greater than or equal to `self.len() + additional`. Does nothing if
943 /// capacity is already sufficient.
944 ///
945 /// # Errors
946 ///
947 /// If the capacity overflows, or the allocator reports a failure, then an error
948 /// is returned.
949 ///
950 /// # Examples
951 ///
952 /// ```
953 /// use std::collections::TryReserveError;
954 ///
955 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
956 /// let mut output = Vec::new();
957 ///
958 /// // Pre-reserve the memory, exiting if we can't
959 /// output.try_reserve(data.len())?;
960 ///
961 /// // Now we know this can't OOM in the middle of our complex work
962 /// output.extend(data.iter().map(|&val| {
963 /// val * 2 + 5 // very complicated
964 /// }));
965 ///
966 /// Ok(output)
967 /// }
968 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
969 /// ```
970 #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>971 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
972 self.buf.try_reserve(self.len, additional)
973 }
974
975 /// Tries to reserve the minimum capacity for exactly `additional`
976 /// elements to be inserted in the given `Vec<T>`. After calling
977 /// `try_reserve_exact`, capacity will be greater than or equal to
978 /// `self.len() + additional` if it returns `Ok(())`.
979 /// Does nothing if the capacity is already sufficient.
980 ///
981 /// Note that the allocator may give the collection more space than it
982 /// requests. Therefore, capacity can not be relied upon to be precisely
983 /// minimal. Prefer [`try_reserve`] if future insertions are expected.
984 ///
985 /// [`try_reserve`]: Vec::try_reserve
986 ///
987 /// # Errors
988 ///
989 /// If the capacity overflows, or the allocator reports a failure, then an error
990 /// is returned.
991 ///
992 /// # Examples
993 ///
994 /// ```
995 /// use std::collections::TryReserveError;
996 ///
997 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
998 /// let mut output = Vec::new();
999 ///
1000 /// // Pre-reserve the memory, exiting if we can't
1001 /// output.try_reserve_exact(data.len())?;
1002 ///
1003 /// // Now we know this can't OOM in the middle of our complex work
1004 /// output.extend(data.iter().map(|&val| {
1005 /// val * 2 + 5 // very complicated
1006 /// }));
1007 ///
1008 /// Ok(output)
1009 /// }
1010 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1011 /// ```
1012 #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError>1013 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1014 self.buf.try_reserve_exact(self.len, additional)
1015 }
1016
1017 /// Shrinks the capacity of the vector as much as possible.
1018 ///
1019 /// It will drop down as close as possible to the length but the allocator
1020 /// may still inform the vector that there is space for a few more elements.
1021 ///
1022 /// # Examples
1023 ///
1024 /// ```
1025 /// let mut vec = Vec::with_capacity(10);
1026 /// vec.extend([1, 2, 3]);
1027 /// assert_eq!(vec.capacity(), 10);
1028 /// vec.shrink_to_fit();
1029 /// assert!(vec.capacity() >= 3);
1030 /// ```
1031 #[cfg(not(no_global_oom_handling))]
1032 #[stable(feature = "rust1", since = "1.0.0")]
shrink_to_fit(&mut self)1033 pub fn shrink_to_fit(&mut self) {
1034 // The capacity is never less than the length, and there's nothing to do when
1035 // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1036 // by only calling it with a greater capacity.
1037 if self.capacity() > self.len {
1038 self.buf.shrink_to_fit(self.len);
1039 }
1040 }
1041
1042 /// Shrinks the capacity of the vector with a lower bound.
1043 ///
1044 /// The capacity will remain at least as large as both the length
1045 /// and the supplied value.
1046 ///
1047 /// If the current capacity is less than the lower limit, this is a no-op.
1048 ///
1049 /// # Examples
1050 ///
1051 /// ```
1052 /// let mut vec = Vec::with_capacity(10);
1053 /// vec.extend([1, 2, 3]);
1054 /// assert_eq!(vec.capacity(), 10);
1055 /// vec.shrink_to(4);
1056 /// assert!(vec.capacity() >= 4);
1057 /// vec.shrink_to(0);
1058 /// assert!(vec.capacity() >= 3);
1059 /// ```
1060 #[cfg(not(no_global_oom_handling))]
1061 #[stable(feature = "shrink_to", since = "1.56.0")]
shrink_to(&mut self, min_capacity: usize)1062 pub fn shrink_to(&mut self, min_capacity: usize) {
1063 if self.capacity() > min_capacity {
1064 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1065 }
1066 }
1067
1068 /// Converts the vector into [`Box<[T]>`][owned slice].
1069 ///
1070 /// Note that this will drop any excess capacity.
1071 ///
1072 /// [owned slice]: Box
1073 ///
1074 /// # Examples
1075 ///
1076 /// ```
1077 /// let v = vec![1, 2, 3];
1078 ///
1079 /// let slice = v.into_boxed_slice();
1080 /// ```
1081 ///
1082 /// Any excess capacity is removed:
1083 ///
1084 /// ```
1085 /// let mut vec = Vec::with_capacity(10);
1086 /// vec.extend([1, 2, 3]);
1087 ///
1088 /// assert_eq!(vec.capacity(), 10);
1089 /// let slice = vec.into_boxed_slice();
1090 /// assert_eq!(slice.into_vec().capacity(), 3);
1091 /// ```
1092 #[cfg(not(no_global_oom_handling))]
1093 #[stable(feature = "rust1", since = "1.0.0")]
into_boxed_slice(mut self) -> Box<[T], A>1094 pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1095 unsafe {
1096 self.shrink_to_fit();
1097 let me = ManuallyDrop::new(self);
1098 let buf = ptr::read(&me.buf);
1099 let len = me.len();
1100 buf.into_box(len).assume_init()
1101 }
1102 }
1103
1104 /// Shortens the vector, keeping the first `len` elements and dropping
1105 /// the rest.
1106 ///
1107 /// If `len` is greater than the vector's current length, this has no
1108 /// effect.
1109 ///
1110 /// The [`drain`] method can emulate `truncate`, but causes the excess
1111 /// elements to be returned instead of dropped.
1112 ///
1113 /// Note that this method has no effect on the allocated capacity
1114 /// of the vector.
1115 ///
1116 /// # Examples
1117 ///
1118 /// Truncating a five element vector to two elements:
1119 ///
1120 /// ```
1121 /// let mut vec = vec![1, 2, 3, 4, 5];
1122 /// vec.truncate(2);
1123 /// assert_eq!(vec, [1, 2]);
1124 /// ```
1125 ///
1126 /// No truncation occurs when `len` is greater than the vector's current
1127 /// length:
1128 ///
1129 /// ```
1130 /// let mut vec = vec![1, 2, 3];
1131 /// vec.truncate(8);
1132 /// assert_eq!(vec, [1, 2, 3]);
1133 /// ```
1134 ///
1135 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1136 /// method.
1137 ///
1138 /// ```
1139 /// let mut vec = vec![1, 2, 3];
1140 /// vec.truncate(0);
1141 /// assert_eq!(vec, []);
1142 /// ```
1143 ///
1144 /// [`clear`]: Vec::clear
1145 /// [`drain`]: Vec::drain
1146 #[stable(feature = "rust1", since = "1.0.0")]
truncate(&mut self, len: usize)1147 pub fn truncate(&mut self, len: usize) {
1148 // This is safe because:
1149 //
1150 // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1151 // case avoids creating an invalid slice, and
1152 // * the `len` of the vector is shrunk before calling `drop_in_place`,
1153 // such that no value will be dropped twice in case `drop_in_place`
1154 // were to panic once (if it panics twice, the program aborts).
1155 unsafe {
1156 // Note: It's intentional that this is `>` and not `>=`.
1157 // Changing it to `>=` has negative performance
1158 // implications in some cases. See #78884 for more.
1159 if len > self.len {
1160 return;
1161 }
1162 let remaining_len = self.len - len;
1163 let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1164 self.len = len;
1165 ptr::drop_in_place(s);
1166 }
1167 }
1168
1169 /// Extracts a slice containing the entire vector.
1170 ///
1171 /// Equivalent to `&s[..]`.
1172 ///
1173 /// # Examples
1174 ///
1175 /// ```
1176 /// use std::io::{self, Write};
1177 /// let buffer = vec![1, 2, 3, 5, 8];
1178 /// io::sink().write(buffer.as_slice()).unwrap();
1179 /// ```
1180 #[inline]
1181 #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_slice(&self) -> &[T]1182 pub fn as_slice(&self) -> &[T] {
1183 self
1184 }
1185
1186 /// Extracts a mutable slice of the entire vector.
1187 ///
1188 /// Equivalent to `&mut s[..]`.
1189 ///
1190 /// # Examples
1191 ///
1192 /// ```
1193 /// use std::io::{self, Read};
1194 /// let mut buffer = vec![0; 3];
1195 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1196 /// ```
1197 #[inline]
1198 #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_mut_slice(&mut self) -> &mut [T]1199 pub fn as_mut_slice(&mut self) -> &mut [T] {
1200 self
1201 }
1202
1203 /// Returns a raw pointer to the vector's buffer.
1204 ///
1205 /// The caller must ensure that the vector outlives the pointer this
1206 /// function returns, or else it will end up pointing to garbage.
1207 /// Modifying the vector may cause its buffer to be reallocated,
1208 /// which would also make any pointers to it invalid.
1209 ///
1210 /// The caller must also ensure that the memory the pointer (non-transitively) points to
1211 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1212 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1213 ///
1214 /// # Examples
1215 ///
1216 /// ```
1217 /// let x = vec![1, 2, 4];
1218 /// let x_ptr = x.as_ptr();
1219 ///
1220 /// unsafe {
1221 /// for i in 0..x.len() {
1222 /// assert_eq!(*x_ptr.add(i), 1 << i);
1223 /// }
1224 /// }
1225 /// ```
1226 ///
1227 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1228 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1229 #[inline]
as_ptr(&self) -> *const T1230 pub fn as_ptr(&self) -> *const T {
1231 // We shadow the slice method of the same name to avoid going through
1232 // `deref`, which creates an intermediate reference.
1233 let ptr = self.buf.ptr();
1234 unsafe {
1235 assume(!ptr.is_null());
1236 }
1237 ptr
1238 }
1239
1240 /// Returns an unsafe mutable pointer to the vector's buffer.
1241 ///
1242 /// The caller must ensure that the vector outlives the pointer this
1243 /// function returns, or else it will end up pointing to garbage.
1244 /// Modifying the vector may cause its buffer to be reallocated,
1245 /// which would also make any pointers to it invalid.
1246 ///
1247 /// # Examples
1248 ///
1249 /// ```
1250 /// // Allocate vector big enough for 4 elements.
1251 /// let size = 4;
1252 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1253 /// let x_ptr = x.as_mut_ptr();
1254 ///
1255 /// // Initialize elements via raw pointer writes, then set length.
1256 /// unsafe {
1257 /// for i in 0..size {
1258 /// *x_ptr.add(i) = i as i32;
1259 /// }
1260 /// x.set_len(size);
1261 /// }
1262 /// assert_eq!(&*x, &[0, 1, 2, 3]);
1263 /// ```
1264 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1265 #[inline]
as_mut_ptr(&mut self) -> *mut T1266 pub fn as_mut_ptr(&mut self) -> *mut T {
1267 // We shadow the slice method of the same name to avoid going through
1268 // `deref_mut`, which creates an intermediate reference.
1269 let ptr = self.buf.ptr();
1270 unsafe {
1271 assume(!ptr.is_null());
1272 }
1273 ptr
1274 }
1275
1276 /// Returns a reference to the underlying allocator.
1277 #[unstable(feature = "allocator_api", issue = "32838")]
1278 #[inline]
allocator(&self) -> &A1279 pub fn allocator(&self) -> &A {
1280 self.buf.allocator()
1281 }
1282
1283 /// Forces the length of the vector to `new_len`.
1284 ///
1285 /// This is a low-level operation that maintains none of the normal
1286 /// invariants of the type. Normally changing the length of a vector
1287 /// is done using one of the safe operations instead, such as
1288 /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1289 ///
1290 /// [`truncate`]: Vec::truncate
1291 /// [`resize`]: Vec::resize
1292 /// [`extend`]: Extend::extend
1293 /// [`clear`]: Vec::clear
1294 ///
1295 /// # Safety
1296 ///
1297 /// - `new_len` must be less than or equal to [`capacity()`].
1298 /// - The elements at `old_len..new_len` must be initialized.
1299 ///
1300 /// [`capacity()`]: Vec::capacity
1301 ///
1302 /// # Examples
1303 ///
1304 /// This method can be useful for situations in which the vector
1305 /// is serving as a buffer for other code, particularly over FFI:
1306 ///
1307 /// ```no_run
1308 /// # #![allow(dead_code)]
1309 /// # // This is just a minimal skeleton for the doc example;
1310 /// # // don't use this as a starting point for a real library.
1311 /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1312 /// # const Z_OK: i32 = 0;
1313 /// # extern "C" {
1314 /// # fn deflateGetDictionary(
1315 /// # strm: *mut std::ffi::c_void,
1316 /// # dictionary: *mut u8,
1317 /// # dictLength: *mut usize,
1318 /// # ) -> i32;
1319 /// # }
1320 /// # impl StreamWrapper {
1321 /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1322 /// // Per the FFI method's docs, "32768 bytes is always enough".
1323 /// let mut dict = Vec::with_capacity(32_768);
1324 /// let mut dict_length = 0;
1325 /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1326 /// // 1. `dict_length` elements were initialized.
1327 /// // 2. `dict_length` <= the capacity (32_768)
1328 /// // which makes `set_len` safe to call.
1329 /// unsafe {
1330 /// // Make the FFI call...
1331 /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1332 /// if r == Z_OK {
1333 /// // ...and update the length to what was initialized.
1334 /// dict.set_len(dict_length);
1335 /// Some(dict)
1336 /// } else {
1337 /// None
1338 /// }
1339 /// }
1340 /// }
1341 /// # }
1342 /// ```
1343 ///
1344 /// While the following example is sound, there is a memory leak since
1345 /// the inner vectors were not freed prior to the `set_len` call:
1346 ///
1347 /// ```
1348 /// let mut vec = vec![vec![1, 0, 0],
1349 /// vec![0, 1, 0],
1350 /// vec![0, 0, 1]];
1351 /// // SAFETY:
1352 /// // 1. `old_len..0` is empty so no elements need to be initialized.
1353 /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1354 /// unsafe {
1355 /// vec.set_len(0);
1356 /// }
1357 /// ```
1358 ///
1359 /// Normally, here, one would use [`clear`] instead to correctly drop
1360 /// the contents and thus not leak memory.
1361 #[inline]
1362 #[stable(feature = "rust1", since = "1.0.0")]
set_len(&mut self, new_len: usize)1363 pub unsafe fn set_len(&mut self, new_len: usize) {
1364 debug_assert!(new_len <= self.capacity());
1365
1366 self.len = new_len;
1367 }
1368
1369 /// Removes an element from the vector and returns it.
1370 ///
1371 /// The removed element is replaced by the last element of the vector.
1372 ///
1373 /// This does not preserve ordering, but is *O*(1).
1374 /// If you need to preserve the element order, use [`remove`] instead.
1375 ///
1376 /// [`remove`]: Vec::remove
1377 ///
1378 /// # Panics
1379 ///
1380 /// Panics if `index` is out of bounds.
1381 ///
1382 /// # Examples
1383 ///
1384 /// ```
1385 /// let mut v = vec!["foo", "bar", "baz", "qux"];
1386 ///
1387 /// assert_eq!(v.swap_remove(1), "bar");
1388 /// assert_eq!(v, ["foo", "qux", "baz"]);
1389 ///
1390 /// assert_eq!(v.swap_remove(0), "foo");
1391 /// assert_eq!(v, ["baz", "qux"]);
1392 /// ```
1393 #[inline]
1394 #[stable(feature = "rust1", since = "1.0.0")]
swap_remove(&mut self, index: usize) -> T1395 pub fn swap_remove(&mut self, index: usize) -> T {
1396 #[cold]
1397 #[inline(never)]
1398 fn assert_failed(index: usize, len: usize) -> ! {
1399 panic!("swap_remove index (is {index}) should be < len (is {len})");
1400 }
1401
1402 let len = self.len();
1403 if index >= len {
1404 assert_failed(index, len);
1405 }
1406 unsafe {
1407 // We replace self[index] with the last element. Note that if the
1408 // bounds check above succeeds there must be a last element (which
1409 // can be self[index] itself).
1410 let value = ptr::read(self.as_ptr().add(index));
1411 let base_ptr = self.as_mut_ptr();
1412 ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1413 self.set_len(len - 1);
1414 value
1415 }
1416 }
1417
1418 /// Inserts an element at position `index` within the vector, shifting all
1419 /// elements after it to the right.
1420 ///
1421 /// # Panics
1422 ///
1423 /// Panics if `index > len`.
1424 ///
1425 /// # Examples
1426 ///
1427 /// ```
1428 /// let mut vec = vec![1, 2, 3];
1429 /// vec.insert(1, 4);
1430 /// assert_eq!(vec, [1, 4, 2, 3]);
1431 /// vec.insert(4, 5);
1432 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1433 /// ```
1434 #[cfg(not(no_global_oom_handling))]
1435 #[stable(feature = "rust1", since = "1.0.0")]
insert(&mut self, index: usize, element: T)1436 pub fn insert(&mut self, index: usize, element: T) {
1437 #[cold]
1438 #[inline(never)]
1439 fn assert_failed(index: usize, len: usize) -> ! {
1440 panic!("insertion index (is {index}) should be <= len (is {len})");
1441 }
1442
1443 let len = self.len();
1444 if index > len {
1445 assert_failed(index, len);
1446 }
1447
1448 // space for the new element
1449 if len == self.buf.capacity() {
1450 self.reserve(1);
1451 }
1452
1453 unsafe {
1454 // infallible
1455 // The spot to put the new value
1456 {
1457 let p = self.as_mut_ptr().add(index);
1458 // Shift everything over to make space. (Duplicating the
1459 // `index`th element into two consecutive places.)
1460 ptr::copy(p, p.offset(1), len - index);
1461 // Write it in, overwriting the first copy of the `index`th
1462 // element.
1463 ptr::write(p, element);
1464 }
1465 self.set_len(len + 1);
1466 }
1467 }
1468
1469 /// Removes and returns the element at position `index` within the vector,
1470 /// shifting all elements after it to the left.
1471 ///
1472 /// Note: Because this shifts over the remaining elements, it has a
1473 /// worst-case performance of *O*(*n*). If you don't need the order of elements
1474 /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1475 /// elements from the beginning of the `Vec`, consider using
1476 /// [`VecDeque::pop_front`] instead.
1477 ///
1478 /// [`swap_remove`]: Vec::swap_remove
1479 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1480 ///
1481 /// # Panics
1482 ///
1483 /// Panics if `index` is out of bounds.
1484 ///
1485 /// # Examples
1486 ///
1487 /// ```
1488 /// let mut v = vec![1, 2, 3];
1489 /// assert_eq!(v.remove(1), 2);
1490 /// assert_eq!(v, [1, 3]);
1491 /// ```
1492 #[stable(feature = "rust1", since = "1.0.0")]
1493 #[track_caller]
remove(&mut self, index: usize) -> T1494 pub fn remove(&mut self, index: usize) -> T {
1495 #[cold]
1496 #[inline(never)]
1497 #[track_caller]
1498 fn assert_failed(index: usize, len: usize) -> ! {
1499 panic!("removal index (is {index}) should be < len (is {len})");
1500 }
1501
1502 let len = self.len();
1503 if index >= len {
1504 assert_failed(index, len);
1505 }
1506 unsafe {
1507 // infallible
1508 let ret;
1509 {
1510 // the place we are taking from.
1511 let ptr = self.as_mut_ptr().add(index);
1512 // copy it out, unsafely having a copy of the value on
1513 // the stack and in the vector at the same time.
1514 ret = ptr::read(ptr);
1515
1516 // Shift everything down to fill in that spot.
1517 ptr::copy(ptr.offset(1), ptr, len - index - 1);
1518 }
1519 self.set_len(len - 1);
1520 ret
1521 }
1522 }
1523
1524 /// Retains only the elements specified by the predicate.
1525 ///
1526 /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1527 /// This method operates in place, visiting each element exactly once in the
1528 /// original order, and preserves the order of the retained elements.
1529 ///
1530 /// # Examples
1531 ///
1532 /// ```
1533 /// let mut vec = vec![1, 2, 3, 4];
1534 /// vec.retain(|&x| x % 2 == 0);
1535 /// assert_eq!(vec, [2, 4]);
1536 /// ```
1537 ///
1538 /// Because the elements are visited exactly once in the original order,
1539 /// external state may be used to decide which elements to keep.
1540 ///
1541 /// ```
1542 /// let mut vec = vec![1, 2, 3, 4, 5];
1543 /// let keep = [false, true, true, false, true];
1544 /// let mut iter = keep.iter();
1545 /// vec.retain(|_| *iter.next().unwrap());
1546 /// assert_eq!(vec, [2, 3, 5]);
1547 /// ```
1548 #[stable(feature = "rust1", since = "1.0.0")]
retain<F>(&mut self, mut f: F) where F: FnMut(&T) -> bool,1549 pub fn retain<F>(&mut self, mut f: F)
1550 where
1551 F: FnMut(&T) -> bool,
1552 {
1553 self.retain_mut(|elem| f(elem));
1554 }
1555
1556 /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1557 ///
1558 /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1559 /// This method operates in place, visiting each element exactly once in the
1560 /// original order, and preserves the order of the retained elements.
1561 ///
1562 /// # Examples
1563 ///
1564 /// ```
1565 /// let mut vec = vec![1, 2, 3, 4];
1566 /// vec.retain_mut(|x| if *x > 3 {
1567 /// false
1568 /// } else {
1569 /// *x += 1;
1570 /// true
1571 /// });
1572 /// assert_eq!(vec, [2, 3, 4]);
1573 /// ```
1574 #[stable(feature = "vec_retain_mut", since = "1.61.0")]
retain_mut<F>(&mut self, mut f: F) where F: FnMut(&mut T) -> bool,1575 pub fn retain_mut<F>(&mut self, mut f: F)
1576 where
1577 F: FnMut(&mut T) -> bool,
1578 {
1579 let original_len = self.len();
1580 // Avoid double drop if the drop guard is not executed,
1581 // since we may make some holes during the process.
1582 unsafe { self.set_len(0) };
1583
1584 // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1585 // |<- processed len ->| ^- next to check
1586 // |<- deleted cnt ->|
1587 // |<- original_len ->|
1588 // Kept: Elements which predicate returns true on.
1589 // Hole: Moved or dropped element slot.
1590 // Unchecked: Unchecked valid elements.
1591 //
1592 // This drop guard will be invoked when predicate or `drop` of element panicked.
1593 // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1594 // In cases when predicate and `drop` never panick, it will be optimized out.
1595 struct BackshiftOnDrop<'a, T, A: Allocator> {
1596 v: &'a mut Vec<T, A>,
1597 processed_len: usize,
1598 deleted_cnt: usize,
1599 original_len: usize,
1600 }
1601
1602 impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1603 fn drop(&mut self) {
1604 if self.deleted_cnt > 0 {
1605 // SAFETY: Trailing unchecked items must be valid since we never touch them.
1606 unsafe {
1607 ptr::copy(
1608 self.v.as_ptr().add(self.processed_len),
1609 self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1610 self.original_len - self.processed_len,
1611 );
1612 }
1613 }
1614 // SAFETY: After filling holes, all items are in contiguous memory.
1615 unsafe {
1616 self.v.set_len(self.original_len - self.deleted_cnt);
1617 }
1618 }
1619 }
1620
1621 let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1622
1623 fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1624 original_len: usize,
1625 f: &mut F,
1626 g: &mut BackshiftOnDrop<'_, T, A>,
1627 ) where
1628 F: FnMut(&mut T) -> bool,
1629 {
1630 while g.processed_len != original_len {
1631 // SAFETY: Unchecked element must be valid.
1632 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1633 if !f(cur) {
1634 // Advance early to avoid double drop if `drop_in_place` panicked.
1635 g.processed_len += 1;
1636 g.deleted_cnt += 1;
1637 // SAFETY: We never touch this element again after dropped.
1638 unsafe { ptr::drop_in_place(cur) };
1639 // We already advanced the counter.
1640 if DELETED {
1641 continue;
1642 } else {
1643 break;
1644 }
1645 }
1646 if DELETED {
1647 // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1648 // We use copy for move, and never touch this element again.
1649 unsafe {
1650 let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1651 ptr::copy_nonoverlapping(cur, hole_slot, 1);
1652 }
1653 }
1654 g.processed_len += 1;
1655 }
1656 }
1657
1658 // Stage 1: Nothing was deleted.
1659 process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1660
1661 // Stage 2: Some elements were deleted.
1662 process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1663
1664 // All item are processed. This can be optimized to `set_len` by LLVM.
1665 drop(g);
1666 }
1667
1668 /// Removes all but the first of consecutive elements in the vector that resolve to the same
1669 /// key.
1670 ///
1671 /// If the vector is sorted, this removes all duplicates.
1672 ///
1673 /// # Examples
1674 ///
1675 /// ```
1676 /// let mut vec = vec![10, 20, 21, 30, 20];
1677 ///
1678 /// vec.dedup_by_key(|i| *i / 10);
1679 ///
1680 /// assert_eq!(vec, [10, 20, 30, 20]);
1681 /// ```
1682 #[stable(feature = "dedup_by", since = "1.16.0")]
1683 #[inline]
dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq,1684 pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1685 where
1686 F: FnMut(&mut T) -> K,
1687 K: PartialEq,
1688 {
1689 self.dedup_by(|a, b| key(a) == key(b))
1690 }
1691
1692 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1693 /// relation.
1694 ///
1695 /// The `same_bucket` function is passed references to two elements from the vector and
1696 /// must determine if the elements compare equal. The elements are passed in opposite order
1697 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1698 ///
1699 /// If the vector is sorted, this removes all duplicates.
1700 ///
1701 /// # Examples
1702 ///
1703 /// ```
1704 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1705 ///
1706 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1707 ///
1708 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1709 /// ```
1710 #[stable(feature = "dedup_by", since = "1.16.0")]
dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool,1711 pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1712 where
1713 F: FnMut(&mut T, &mut T) -> bool,
1714 {
1715 let len = self.len();
1716 if len <= 1 {
1717 return;
1718 }
1719
1720 /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1721 struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1722 /* Offset of the element we want to check if it is duplicate */
1723 read: usize,
1724
1725 /* Offset of the place where we want to place the non-duplicate
1726 * when we find it. */
1727 write: usize,
1728
1729 /* The Vec that would need correction if `same_bucket` panicked */
1730 vec: &'a mut Vec<T, A>,
1731 }
1732
1733 impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1734 fn drop(&mut self) {
1735 /* This code gets executed when `same_bucket` panics */
1736
1737 /* SAFETY: invariant guarantees that `read - write`
1738 * and `len - read` never overflow and that the copy is always
1739 * in-bounds. */
1740 unsafe {
1741 let ptr = self.vec.as_mut_ptr();
1742 let len = self.vec.len();
1743
1744 /* How many items were left when `same_bucket` panicked.
1745 * Basically vec[read..].len() */
1746 let items_left = len.wrapping_sub(self.read);
1747
1748 /* Pointer to first item in vec[write..write+items_left] slice */
1749 let dropped_ptr = ptr.add(self.write);
1750 /* Pointer to first item in vec[read..] slice */
1751 let valid_ptr = ptr.add(self.read);
1752
1753 /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1754 * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1755 ptr::copy(valid_ptr, dropped_ptr, items_left);
1756
1757 /* How many items have been already dropped
1758 * Basically vec[read..write].len() */
1759 let dropped = self.read.wrapping_sub(self.write);
1760
1761 self.vec.set_len(len - dropped);
1762 }
1763 }
1764 }
1765
1766 let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1767 let ptr = gap.vec.as_mut_ptr();
1768
1769 /* Drop items while going through Vec, it should be more efficient than
1770 * doing slice partition_dedup + truncate */
1771
1772 /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1773 * are always in-bounds and read_ptr never aliases prev_ptr */
1774 unsafe {
1775 while gap.read < len {
1776 let read_ptr = ptr.add(gap.read);
1777 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1778
1779 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1780 // Increase `gap.read` now since the drop may panic.
1781 gap.read += 1;
1782 /* We have found duplicate, drop it in-place */
1783 ptr::drop_in_place(read_ptr);
1784 } else {
1785 let write_ptr = ptr.add(gap.write);
1786
1787 /* Because `read_ptr` can be equal to `write_ptr`, we either
1788 * have to use `copy` or conditional `copy_nonoverlapping`.
1789 * Looks like the first option is faster. */
1790 ptr::copy(read_ptr, write_ptr, 1);
1791
1792 /* We have filled that place, so go further */
1793 gap.write += 1;
1794 gap.read += 1;
1795 }
1796 }
1797
1798 /* Technically we could let `gap` clean up with its Drop, but
1799 * when `same_bucket` is guaranteed to not panic, this bloats a little
1800 * the codegen, so we just do it manually */
1801 gap.vec.set_len(gap.write);
1802 mem::forget(gap);
1803 }
1804 }
1805
1806 /// Appends an element to the back of a collection.
1807 ///
1808 /// # Panics
1809 ///
1810 /// Panics if the new capacity exceeds `isize::MAX` bytes.
1811 ///
1812 /// # Examples
1813 ///
1814 /// ```
1815 /// let mut vec = vec![1, 2];
1816 /// vec.push(3);
1817 /// assert_eq!(vec, [1, 2, 3]);
1818 /// ```
1819 #[cfg(not(no_global_oom_handling))]
1820 #[inline]
1821 #[stable(feature = "rust1", since = "1.0.0")]
push(&mut self, value: T)1822 pub fn push(&mut self, value: T) {
1823 // This will panic or abort if we would allocate > isize::MAX bytes
1824 // or if the length increment would overflow for zero-sized types.
1825 if self.len == self.buf.capacity() {
1826 self.buf.reserve_for_push(self.len);
1827 }
1828 unsafe {
1829 let end = self.as_mut_ptr().add(self.len);
1830 ptr::write(end, value);
1831 self.len += 1;
1832 }
1833 }
1834
1835 /// Tries to append an element to the back of a collection.
1836 ///
1837 /// # Examples
1838 ///
1839 /// ```
1840 /// let mut vec = vec![1, 2];
1841 /// vec.try_push(3).unwrap();
1842 /// assert_eq!(vec, [1, 2, 3]);
1843 /// ```
1844 #[inline]
1845 #[stable(feature = "kernel", since = "1.0.0")]
try_push(&mut self, value: T) -> Result<(), TryReserveError>1846 pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
1847 if self.len == self.buf.capacity() {
1848 self.buf.try_reserve_for_push(self.len)?;
1849 }
1850 unsafe {
1851 let end = self.as_mut_ptr().add(self.len);
1852 ptr::write(end, value);
1853 self.len += 1;
1854 }
1855 Ok(())
1856 }
1857
1858 /// Removes the last element from a vector and returns it, or [`None`] if it
1859 /// is empty.
1860 ///
1861 /// If you'd like to pop the first element, consider using
1862 /// [`VecDeque::pop_front`] instead.
1863 ///
1864 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1865 ///
1866 /// # Examples
1867 ///
1868 /// ```
1869 /// let mut vec = vec![1, 2, 3];
1870 /// assert_eq!(vec.pop(), Some(3));
1871 /// assert_eq!(vec, [1, 2]);
1872 /// ```
1873 #[inline]
1874 #[stable(feature = "rust1", since = "1.0.0")]
pop(&mut self) -> Option<T>1875 pub fn pop(&mut self) -> Option<T> {
1876 if self.len == 0 {
1877 None
1878 } else {
1879 unsafe {
1880 self.len -= 1;
1881 Some(ptr::read(self.as_ptr().add(self.len())))
1882 }
1883 }
1884 }
1885
1886 /// Moves all the elements of `other` into `self`, leaving `other` empty.
1887 ///
1888 /// # Panics
1889 ///
1890 /// Panics if the number of elements in the vector overflows a `usize`.
1891 ///
1892 /// # Examples
1893 ///
1894 /// ```
1895 /// let mut vec = vec![1, 2, 3];
1896 /// let mut vec2 = vec![4, 5, 6];
1897 /// vec.append(&mut vec2);
1898 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1899 /// assert_eq!(vec2, []);
1900 /// ```
1901 #[cfg(not(no_global_oom_handling))]
1902 #[inline]
1903 #[stable(feature = "append", since = "1.4.0")]
append(&mut self, other: &mut Self)1904 pub fn append(&mut self, other: &mut Self) {
1905 unsafe {
1906 self.append_elements(other.as_slice() as _);
1907 other.set_len(0);
1908 }
1909 }
1910
1911 /// Appends elements to `self` from other buffer.
1912 #[cfg(not(no_global_oom_handling))]
1913 #[inline]
append_elements(&mut self, other: *const [T])1914 unsafe fn append_elements(&mut self, other: *const [T]) {
1915 let count = unsafe { (*other).len() };
1916 self.reserve(count);
1917 let len = self.len();
1918 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
1919 self.len += count;
1920 }
1921
1922 /// Removes the specified range from the vector in bulk, returning all
1923 /// removed elements as an iterator. If the iterator is dropped before
1924 /// being fully consumed, it drops the remaining removed elements.
1925 ///
1926 /// The returned iterator keeps a mutable borrow on the vector to optimize
1927 /// its implementation.
1928 ///
1929 /// # Panics
1930 ///
1931 /// Panics if the starting point is greater than the end point or if
1932 /// the end point is greater than the length of the vector.
1933 ///
1934 /// # Leaking
1935 ///
1936 /// If the returned iterator goes out of scope without being dropped (due to
1937 /// [`mem::forget`], for example), the vector may have lost and leaked
1938 /// elements arbitrarily, including elements outside the range.
1939 ///
1940 /// # Examples
1941 ///
1942 /// ```
1943 /// let mut v = vec![1, 2, 3];
1944 /// let u: Vec<_> = v.drain(1..).collect();
1945 /// assert_eq!(v, &[1]);
1946 /// assert_eq!(u, &[2, 3]);
1947 ///
1948 /// // A full range clears the vector, like `clear()` does
1949 /// v.drain(..);
1950 /// assert_eq!(v, &[]);
1951 /// ```
1952 #[stable(feature = "drain", since = "1.6.0")]
drain<R>(&mut self, range: R) -> Drain<'_, T, A> where R: RangeBounds<usize>,1953 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
1954 where
1955 R: RangeBounds<usize>,
1956 {
1957 // Memory safety
1958 //
1959 // When the Drain is first created, it shortens the length of
1960 // the source vector to make sure no uninitialized or moved-from elements
1961 // are accessible at all if the Drain's destructor never gets to run.
1962 //
1963 // Drain will ptr::read out the values to remove.
1964 // When finished, remaining tail of the vec is copied back to cover
1965 // the hole, and the vector length is restored to the new length.
1966 //
1967 let len = self.len();
1968 let Range { start, end } = slice::range(range, ..len);
1969
1970 unsafe {
1971 // set self.vec length's to start, to be safe in case Drain is leaked
1972 self.set_len(start);
1973 // Use the borrow in the IterMut to indicate borrowing behavior of the
1974 // whole Drain iterator (like &mut T).
1975 let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
1976 Drain {
1977 tail_start: end,
1978 tail_len: len - end,
1979 iter: range_slice.iter(),
1980 vec: NonNull::from(self),
1981 }
1982 }
1983 }
1984
1985 /// Clears the vector, removing all values.
1986 ///
1987 /// Note that this method has no effect on the allocated capacity
1988 /// of the vector.
1989 ///
1990 /// # Examples
1991 ///
1992 /// ```
1993 /// let mut v = vec![1, 2, 3];
1994 ///
1995 /// v.clear();
1996 ///
1997 /// assert!(v.is_empty());
1998 /// ```
1999 #[inline]
2000 #[stable(feature = "rust1", since = "1.0.0")]
clear(&mut self)2001 pub fn clear(&mut self) {
2002 let elems: *mut [T] = self.as_mut_slice();
2003
2004 // SAFETY:
2005 // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2006 // - Setting `self.len` before calling `drop_in_place` means that,
2007 // if an element's `Drop` impl panics, the vector's `Drop` impl will
2008 // do nothing (leaking the rest of the elements) instead of dropping
2009 // some twice.
2010 unsafe {
2011 self.len = 0;
2012 ptr::drop_in_place(elems);
2013 }
2014 }
2015
2016 /// Returns the number of elements in the vector, also referred to
2017 /// as its 'length'.
2018 ///
2019 /// # Examples
2020 ///
2021 /// ```
2022 /// let a = vec![1, 2, 3];
2023 /// assert_eq!(a.len(), 3);
2024 /// ```
2025 #[inline]
2026 #[stable(feature = "rust1", since = "1.0.0")]
len(&self) -> usize2027 pub fn len(&self) -> usize {
2028 self.len
2029 }
2030
2031 /// Returns `true` if the vector contains no elements.
2032 ///
2033 /// # Examples
2034 ///
2035 /// ```
2036 /// let mut v = Vec::new();
2037 /// assert!(v.is_empty());
2038 ///
2039 /// v.push(1);
2040 /// assert!(!v.is_empty());
2041 /// ```
2042 #[stable(feature = "rust1", since = "1.0.0")]
is_empty(&self) -> bool2043 pub fn is_empty(&self) -> bool {
2044 self.len() == 0
2045 }
2046
2047 /// Splits the collection into two at the given index.
2048 ///
2049 /// Returns a newly allocated vector containing the elements in the range
2050 /// `[at, len)`. After the call, the original vector will be left containing
2051 /// the elements `[0, at)` with its previous capacity unchanged.
2052 ///
2053 /// # Panics
2054 ///
2055 /// Panics if `at > len`.
2056 ///
2057 /// # Examples
2058 ///
2059 /// ```
2060 /// let mut vec = vec![1, 2, 3];
2061 /// let vec2 = vec.split_off(1);
2062 /// assert_eq!(vec, [1]);
2063 /// assert_eq!(vec2, [2, 3]);
2064 /// ```
2065 #[cfg(not(no_global_oom_handling))]
2066 #[inline]
2067 #[must_use = "use `.truncate()` if you don't need the other half"]
2068 #[stable(feature = "split_off", since = "1.4.0")]
split_off(&mut self, at: usize) -> Self where A: Clone,2069 pub fn split_off(&mut self, at: usize) -> Self
2070 where
2071 A: Clone,
2072 {
2073 #[cold]
2074 #[inline(never)]
2075 fn assert_failed(at: usize, len: usize) -> ! {
2076 panic!("`at` split index (is {at}) should be <= len (is {len})");
2077 }
2078
2079 if at > self.len() {
2080 assert_failed(at, self.len());
2081 }
2082
2083 if at == 0 {
2084 // the new vector can take over the original buffer and avoid the copy
2085 return mem::replace(
2086 self,
2087 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
2088 );
2089 }
2090
2091 let other_len = self.len - at;
2092 let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2093
2094 // Unsafely `set_len` and copy items to `other`.
2095 unsafe {
2096 self.set_len(at);
2097 other.set_len(other_len);
2098
2099 ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2100 }
2101 other
2102 }
2103
2104 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2105 ///
2106 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2107 /// difference, with each additional slot filled with the result of
2108 /// calling the closure `f`. The return values from `f` will end up
2109 /// in the `Vec` in the order they have been generated.
2110 ///
2111 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2112 ///
2113 /// This method uses a closure to create new values on every push. If
2114 /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2115 /// want to use the [`Default`] trait to generate values, you can
2116 /// pass [`Default::default`] as the second argument.
2117 ///
2118 /// # Examples
2119 ///
2120 /// ```
2121 /// let mut vec = vec![1, 2, 3];
2122 /// vec.resize_with(5, Default::default);
2123 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2124 ///
2125 /// let mut vec = vec![];
2126 /// let mut p = 1;
2127 /// vec.resize_with(4, || { p *= 2; p });
2128 /// assert_eq!(vec, [2, 4, 8, 16]);
2129 /// ```
2130 #[cfg(not(no_global_oom_handling))]
2131 #[stable(feature = "vec_resize_with", since = "1.33.0")]
resize_with<F>(&mut self, new_len: usize, f: F) where F: FnMut() -> T,2132 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2133 where
2134 F: FnMut() -> T,
2135 {
2136 let len = self.len();
2137 if new_len > len {
2138 self.extend_with(new_len - len, ExtendFunc(f));
2139 } else {
2140 self.truncate(new_len);
2141 }
2142 }
2143
2144 /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2145 /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2146 /// `'a`. If the type has only static references, or none at all, then this
2147 /// may be chosen to be `'static`.
2148 ///
2149 /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2150 /// so the leaked allocation may include unused capacity that is not part
2151 /// of the returned slice.
2152 ///
2153 /// This function is mainly useful for data that lives for the remainder of
2154 /// the program's life. Dropping the returned reference will cause a memory
2155 /// leak.
2156 ///
2157 /// # Examples
2158 ///
2159 /// Simple usage:
2160 ///
2161 /// ```
2162 /// let x = vec![1, 2, 3];
2163 /// let static_ref: &'static mut [usize] = x.leak();
2164 /// static_ref[0] += 1;
2165 /// assert_eq!(static_ref, &[2, 2, 3]);
2166 /// ```
2167 #[cfg(not(no_global_oom_handling))]
2168 #[stable(feature = "vec_leak", since = "1.47.0")]
2169 #[inline]
leak<'a>(self) -> &'a mut [T] where A: 'a,2170 pub fn leak<'a>(self) -> &'a mut [T]
2171 where
2172 A: 'a,
2173 {
2174 let mut me = ManuallyDrop::new(self);
2175 unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2176 }
2177
2178 /// Returns the remaining spare capacity of the vector as a slice of
2179 /// `MaybeUninit<T>`.
2180 ///
2181 /// The returned slice can be used to fill the vector with data (e.g. by
2182 /// reading from a file) before marking the data as initialized using the
2183 /// [`set_len`] method.
2184 ///
2185 /// [`set_len`]: Vec::set_len
2186 ///
2187 /// # Examples
2188 ///
2189 /// ```
2190 /// // Allocate vector big enough for 10 elements.
2191 /// let mut v = Vec::with_capacity(10);
2192 ///
2193 /// // Fill in the first 3 elements.
2194 /// let uninit = v.spare_capacity_mut();
2195 /// uninit[0].write(0);
2196 /// uninit[1].write(1);
2197 /// uninit[2].write(2);
2198 ///
2199 /// // Mark the first 3 elements of the vector as being initialized.
2200 /// unsafe {
2201 /// v.set_len(3);
2202 /// }
2203 ///
2204 /// assert_eq!(&v, &[0, 1, 2]);
2205 /// ```
2206 #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2207 #[inline]
spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]2208 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2209 // Note:
2210 // This method is not implemented in terms of `split_at_spare_mut`,
2211 // to prevent invalidation of pointers to the buffer.
2212 unsafe {
2213 slice::from_raw_parts_mut(
2214 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2215 self.buf.capacity() - self.len,
2216 )
2217 }
2218 }
2219
2220 /// Returns vector content as a slice of `T`, along with the remaining spare
2221 /// capacity of the vector as a slice of `MaybeUninit<T>`.
2222 ///
2223 /// The returned spare capacity slice can be used to fill the vector with data
2224 /// (e.g. by reading from a file) before marking the data as initialized using
2225 /// the [`set_len`] method.
2226 ///
2227 /// [`set_len`]: Vec::set_len
2228 ///
2229 /// Note that this is a low-level API, which should be used with care for
2230 /// optimization purposes. If you need to append data to a `Vec`
2231 /// you can use [`push`], [`extend`], [`extend_from_slice`],
2232 /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2233 /// [`resize_with`], depending on your exact needs.
2234 ///
2235 /// [`push`]: Vec::push
2236 /// [`extend`]: Vec::extend
2237 /// [`extend_from_slice`]: Vec::extend_from_slice
2238 /// [`extend_from_within`]: Vec::extend_from_within
2239 /// [`insert`]: Vec::insert
2240 /// [`append`]: Vec::append
2241 /// [`resize`]: Vec::resize
2242 /// [`resize_with`]: Vec::resize_with
2243 ///
2244 /// # Examples
2245 ///
2246 /// ```
2247 /// #![feature(vec_split_at_spare)]
2248 ///
2249 /// let mut v = vec![1, 1, 2];
2250 ///
2251 /// // Reserve additional space big enough for 10 elements.
2252 /// v.reserve(10);
2253 ///
2254 /// let (init, uninit) = v.split_at_spare_mut();
2255 /// let sum = init.iter().copied().sum::<u32>();
2256 ///
2257 /// // Fill in the next 4 elements.
2258 /// uninit[0].write(sum);
2259 /// uninit[1].write(sum * 2);
2260 /// uninit[2].write(sum * 3);
2261 /// uninit[3].write(sum * 4);
2262 ///
2263 /// // Mark the 4 elements of the vector as being initialized.
2264 /// unsafe {
2265 /// let len = v.len();
2266 /// v.set_len(len + 4);
2267 /// }
2268 ///
2269 /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2270 /// ```
2271 #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2272 #[inline]
split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>])2273 pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2274 // SAFETY:
2275 // - len is ignored and so never changed
2276 let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2277 (init, spare)
2278 }
2279
2280 /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2281 ///
2282 /// This method provides unique access to all vec parts at once in `extend_from_within`.
split_at_spare_mut_with_len( &mut self, ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize)2283 unsafe fn split_at_spare_mut_with_len(
2284 &mut self,
2285 ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2286 let ptr = self.as_mut_ptr();
2287 // SAFETY:
2288 // - `ptr` is guaranteed to be valid for `self.len` elements
2289 // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2290 // uninitialized
2291 let spare_ptr = unsafe { ptr.add(self.len) };
2292 let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2293 let spare_len = self.buf.capacity() - self.len;
2294
2295 // SAFETY:
2296 // - `ptr` is guaranteed to be valid for `self.len` elements
2297 // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2298 unsafe {
2299 let initialized = slice::from_raw_parts_mut(ptr, self.len);
2300 let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2301
2302 (initialized, spare, &mut self.len)
2303 }
2304 }
2305 }
2306
2307 impl<T: Clone, A: Allocator> Vec<T, A> {
2308 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2309 ///
2310 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2311 /// difference, with each additional slot filled with `value`.
2312 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2313 ///
2314 /// This method requires `T` to implement [`Clone`],
2315 /// in order to be able to clone the passed value.
2316 /// If you need more flexibility (or want to rely on [`Default`] instead of
2317 /// [`Clone`]), use [`Vec::resize_with`].
2318 /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2319 ///
2320 /// # Examples
2321 ///
2322 /// ```
2323 /// let mut vec = vec!["hello"];
2324 /// vec.resize(3, "world");
2325 /// assert_eq!(vec, ["hello", "world", "world"]);
2326 ///
2327 /// let mut vec = vec![1, 2, 3, 4];
2328 /// vec.resize(2, 0);
2329 /// assert_eq!(vec, [1, 2]);
2330 /// ```
2331 #[cfg(not(no_global_oom_handling))]
2332 #[stable(feature = "vec_resize", since = "1.5.0")]
resize(&mut self, new_len: usize, value: T)2333 pub fn resize(&mut self, new_len: usize, value: T) {
2334 let len = self.len();
2335
2336 if new_len > len {
2337 self.extend_with(new_len - len, ExtendElement(value))
2338 } else {
2339 self.truncate(new_len);
2340 }
2341 }
2342
2343 /// Clones and appends all elements in a slice to the `Vec`.
2344 ///
2345 /// Iterates over the slice `other`, clones each element, and then appends
2346 /// it to this `Vec`. The `other` slice is traversed in-order.
2347 ///
2348 /// Note that this function is same as [`extend`] except that it is
2349 /// specialized to work with slices instead. If and when Rust gets
2350 /// specialization this function will likely be deprecated (but still
2351 /// available).
2352 ///
2353 /// # Examples
2354 ///
2355 /// ```
2356 /// let mut vec = vec![1];
2357 /// vec.extend_from_slice(&[2, 3, 4]);
2358 /// assert_eq!(vec, [1, 2, 3, 4]);
2359 /// ```
2360 ///
2361 /// [`extend`]: Vec::extend
2362 #[cfg(not(no_global_oom_handling))]
2363 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
extend_from_slice(&mut self, other: &[T])2364 pub fn extend_from_slice(&mut self, other: &[T]) {
2365 self.spec_extend(other.iter())
2366 }
2367
2368 /// Copies elements from `src` range to the end of the vector.
2369 ///
2370 /// # Panics
2371 ///
2372 /// Panics if the starting point is greater than the end point or if
2373 /// the end point is greater than the length of the vector.
2374 ///
2375 /// # Examples
2376 ///
2377 /// ```
2378 /// let mut vec = vec![0, 1, 2, 3, 4];
2379 ///
2380 /// vec.extend_from_within(2..);
2381 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2382 ///
2383 /// vec.extend_from_within(..2);
2384 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2385 ///
2386 /// vec.extend_from_within(4..8);
2387 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2388 /// ```
2389 #[cfg(not(no_global_oom_handling))]
2390 #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
extend_from_within<R>(&mut self, src: R) where R: RangeBounds<usize>,2391 pub fn extend_from_within<R>(&mut self, src: R)
2392 where
2393 R: RangeBounds<usize>,
2394 {
2395 let range = slice::range(src, ..self.len());
2396 self.reserve(range.len());
2397
2398 // SAFETY:
2399 // - `slice::range` guarantees that the given range is valid for indexing self
2400 unsafe {
2401 self.spec_extend_from_within(range);
2402 }
2403 }
2404 }
2405
2406 impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2407 /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2408 ///
2409 /// # Panics
2410 ///
2411 /// Panics if the length of the resulting vector would overflow a `usize`.
2412 ///
2413 /// This is only possible when flattening a vector of arrays of zero-sized
2414 /// types, and thus tends to be irrelevant in practice. If
2415 /// `size_of::<T>() > 0`, this will never panic.
2416 ///
2417 /// # Examples
2418 ///
2419 /// ```
2420 /// #![feature(slice_flatten)]
2421 ///
2422 /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2423 /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2424 ///
2425 /// let mut flattened = vec.into_flattened();
2426 /// assert_eq!(flattened.pop(), Some(6));
2427 /// ```
2428 #[unstable(feature = "slice_flatten", issue = "95629")]
into_flattened(self) -> Vec<T, A>2429 pub fn into_flattened(self) -> Vec<T, A> {
2430 let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2431 let (new_len, new_cap) = if mem::size_of::<T>() == 0 {
2432 (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2433 } else {
2434 // SAFETY:
2435 // - `cap * N` cannot overflow because the allocation is already in
2436 // the address space.
2437 // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2438 // valid elements in the allocation.
2439 unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2440 };
2441 // SAFETY:
2442 // - `ptr` was allocated by `self`
2443 // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2444 // - `new_cap` refers to the same sized allocation as `cap` because
2445 // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2446 // - `len` <= `cap`, so `len * N` <= `cap * N`.
2447 unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2448 }
2449 }
2450
2451 // This code generalizes `extend_with_{element,default}`.
2452 trait ExtendWith<T> {
next(&mut self) -> T2453 fn next(&mut self) -> T;
last(self) -> T2454 fn last(self) -> T;
2455 }
2456
2457 struct ExtendElement<T>(T);
2458 impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
next(&mut self) -> T2459 fn next(&mut self) -> T {
2460 self.0.clone()
2461 }
last(self) -> T2462 fn last(self) -> T {
2463 self.0
2464 }
2465 }
2466
2467 struct ExtendFunc<F>(F);
2468 impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
next(&mut self) -> T2469 fn next(&mut self) -> T {
2470 (self.0)()
2471 }
last(mut self) -> T2472 fn last(mut self) -> T {
2473 (self.0)()
2474 }
2475 }
2476
2477 impl<T, A: Allocator> Vec<T, A> {
2478 #[cfg(not(no_global_oom_handling))]
2479 /// Extend the vector by `n` values, using the given generator.
extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E)2480 fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
2481 self.reserve(n);
2482
2483 unsafe {
2484 let mut ptr = self.as_mut_ptr().add(self.len());
2485 // Use SetLenOnDrop to work around bug where compiler
2486 // might not realize the store through `ptr` through self.set_len()
2487 // don't alias.
2488 let mut local_len = SetLenOnDrop::new(&mut self.len);
2489
2490 // Write all elements except the last one
2491 for _ in 1..n {
2492 ptr::write(ptr, value.next());
2493 ptr = ptr.offset(1);
2494 // Increment the length in every step in case next() panics
2495 local_len.increment_len(1);
2496 }
2497
2498 if n > 0 {
2499 // We can write the last element directly without cloning needlessly
2500 ptr::write(ptr, value.last());
2501 local_len.increment_len(1);
2502 }
2503
2504 // len set by scope guard
2505 }
2506 }
2507 }
2508
2509 impl<T: PartialEq, A: Allocator> Vec<T, A> {
2510 /// Removes consecutive repeated elements in the vector according to the
2511 /// [`PartialEq`] trait implementation.
2512 ///
2513 /// If the vector is sorted, this removes all duplicates.
2514 ///
2515 /// # Examples
2516 ///
2517 /// ```
2518 /// let mut vec = vec![1, 2, 2, 3, 2];
2519 ///
2520 /// vec.dedup();
2521 ///
2522 /// assert_eq!(vec, [1, 2, 3, 2]);
2523 /// ```
2524 #[stable(feature = "rust1", since = "1.0.0")]
2525 #[inline]
dedup(&mut self)2526 pub fn dedup(&mut self) {
2527 self.dedup_by(|a, b| a == b)
2528 }
2529 }
2530
2531 ////////////////////////////////////////////////////////////////////////////////
2532 // Internal methods and functions
2533 ////////////////////////////////////////////////////////////////////////////////
2534
2535 #[doc(hidden)]
2536 #[cfg(not(no_global_oom_handling))]
2537 #[stable(feature = "rust1", since = "1.0.0")]
from_elem<T: Clone>(elem: T, n: usize) -> Vec<T>2538 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2539 <T as SpecFromElem>::from_elem(elem, n, Global)
2540 }
2541
2542 #[doc(hidden)]
2543 #[cfg(not(no_global_oom_handling))]
2544 #[unstable(feature = "allocator_api", issue = "32838")]
from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A>2545 pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2546 <T as SpecFromElem>::from_elem(elem, n, alloc)
2547 }
2548
2549 trait ExtendFromWithinSpec {
2550 /// # Safety
2551 ///
2552 /// - `src` needs to be valid index
2553 /// - `self.capacity() - self.len()` must be `>= src.len()`
spec_extend_from_within(&mut self, src: Range<usize>)2554 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2555 }
2556
2557 impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2558 default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2559 // SAFETY:
2560 // - len is increased only after initializing elements
2561 let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2562
2563 // SAFETY:
2564 // - caller guaratees that src is a valid index
2565 let to_clone = unsafe { this.get_unchecked(src) };
2566
2567 iter::zip(to_clone, spare)
2568 .map(|(src, dst)| dst.write(src.clone()))
2569 // Note:
2570 // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2571 // - len is increased after each element to prevent leaks (see issue #82533)
2572 .for_each(|_| *len += 1);
2573 }
2574 }
2575
2576 impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2577 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2578 let count = src.len();
2579 {
2580 let (init, spare) = self.split_at_spare_mut();
2581
2582 // SAFETY:
2583 // - caller guaratees that `src` is a valid index
2584 let source = unsafe { init.get_unchecked(src) };
2585
2586 // SAFETY:
2587 // - Both pointers are created from unique slice references (`&mut [_]`)
2588 // so they are valid and do not overlap.
2589 // - Elements are :Copy so it's OK to to copy them, without doing
2590 // anything with the original values
2591 // - `count` is equal to the len of `source`, so source is valid for
2592 // `count` reads
2593 // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2594 // is valid for `count` writes
2595 unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2596 }
2597
2598 // SAFETY:
2599 // - The elements were just initialized by `copy_nonoverlapping`
2600 self.len += count;
2601 }
2602 }
2603
2604 ////////////////////////////////////////////////////////////////////////////////
2605 // Common trait implementations for Vec
2606 ////////////////////////////////////////////////////////////////////////////////
2607
2608 #[stable(feature = "rust1", since = "1.0.0")]
2609 impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2610 type Target = [T];
2611
deref(&self) -> &[T]2612 fn deref(&self) -> &[T] {
2613 unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2614 }
2615 }
2616
2617 #[stable(feature = "rust1", since = "1.0.0")]
2618 impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
deref_mut(&mut self) -> &mut [T]2619 fn deref_mut(&mut self) -> &mut [T] {
2620 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2621 }
2622 }
2623
2624 #[cfg(not(no_global_oom_handling))]
2625 trait SpecCloneFrom {
clone_from(this: &mut Self, other: &Self)2626 fn clone_from(this: &mut Self, other: &Self);
2627 }
2628
2629 #[cfg(not(no_global_oom_handling))]
2630 impl<T: Clone, A: Allocator> SpecCloneFrom for Vec<T, A> {
clone_from(this: &mut Self, other: &Self)2631 default fn clone_from(this: &mut Self, other: &Self) {
2632 // drop anything that will not be overwritten
2633 this.truncate(other.len());
2634
2635 // self.len <= other.len due to the truncate above, so the
2636 // slices here are always in-bounds.
2637 let (init, tail) = other.split_at(this.len());
2638
2639 // reuse the contained values' allocations/resources.
2640 this.clone_from_slice(init);
2641 this.extend_from_slice(tail);
2642 }
2643 }
2644
2645 #[cfg(not(no_global_oom_handling))]
2646 impl<T: Copy, A: Allocator> SpecCloneFrom for Vec<T, A> {
clone_from(this: &mut Self, other: &Self)2647 fn clone_from(this: &mut Self, other: &Self) {
2648 this.clear();
2649 this.extend_from_slice(other);
2650 }
2651 }
2652
2653 #[cfg(not(no_global_oom_handling))]
2654 #[stable(feature = "rust1", since = "1.0.0")]
2655 impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2656 #[cfg(not(test))]
clone(&self) -> Self2657 fn clone(&self) -> Self {
2658 let alloc = self.allocator().clone();
2659 <[T]>::to_vec_in(&**self, alloc)
2660 }
2661
2662 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2663 // required for this method definition, is not available. Instead use the
2664 // `slice::to_vec` function which is only available with cfg(test)
2665 // NB see the slice::hack module in slice.rs for more information
2666 #[cfg(test)]
clone(&self) -> Self2667 fn clone(&self) -> Self {
2668 let alloc = self.allocator().clone();
2669 crate::slice::to_vec(&**self, alloc)
2670 }
2671
clone_from(&mut self, other: &Self)2672 fn clone_from(&mut self, other: &Self) {
2673 SpecCloneFrom::clone_from(self, other)
2674 }
2675 }
2676
2677 /// The hash of a vector is the same as that of the corresponding slice,
2678 /// as required by the `core::borrow::Borrow` implementation.
2679 ///
2680 /// ```
2681 /// #![feature(build_hasher_simple_hash_one)]
2682 /// use std::hash::BuildHasher;
2683 ///
2684 /// let b = std::collections::hash_map::RandomState::new();
2685 /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2686 /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2687 /// assert_eq!(b.hash_one(v), b.hash_one(s));
2688 /// ```
2689 #[stable(feature = "rust1", since = "1.0.0")]
2690 impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2691 #[inline]
hash<H: Hasher>(&self, state: &mut H)2692 fn hash<H: Hasher>(&self, state: &mut H) {
2693 Hash::hash(&**self, state)
2694 }
2695 }
2696
2697 #[stable(feature = "rust1", since = "1.0.0")]
2698 #[rustc_on_unimplemented(
2699 message = "vector indices are of type `usize` or ranges of `usize`",
2700 label = "vector indices are of type `usize` or ranges of `usize`"
2701 )]
2702 impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2703 type Output = I::Output;
2704
2705 #[inline]
index(&self, index: I) -> &Self::Output2706 fn index(&self, index: I) -> &Self::Output {
2707 Index::index(&**self, index)
2708 }
2709 }
2710
2711 #[stable(feature = "rust1", since = "1.0.0")]
2712 #[rustc_on_unimplemented(
2713 message = "vector indices are of type `usize` or ranges of `usize`",
2714 label = "vector indices are of type `usize` or ranges of `usize`"
2715 )]
2716 impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2717 #[inline]
index_mut(&mut self, index: I) -> &mut Self::Output2718 fn index_mut(&mut self, index: I) -> &mut Self::Output {
2719 IndexMut::index_mut(&mut **self, index)
2720 }
2721 }
2722
2723 #[cfg(not(no_global_oom_handling))]
2724 #[stable(feature = "rust1", since = "1.0.0")]
2725 impl<T> FromIterator<T> for Vec<T> {
2726 #[inline]
from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T>2727 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2728 <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2729 }
2730 }
2731
2732 #[stable(feature = "rust1", since = "1.0.0")]
2733 impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2734 type Item = T;
2735 type IntoIter = IntoIter<T, A>;
2736
2737 /// Creates a consuming iterator, that is, one that moves each value out of
2738 /// the vector (from start to end). The vector cannot be used after calling
2739 /// this.
2740 ///
2741 /// # Examples
2742 ///
2743 /// ```
2744 /// let v = vec!["a".to_string(), "b".to_string()];
2745 /// for s in v.into_iter() {
2746 /// // s has type String, not &String
2747 /// println!("{s}");
2748 /// }
2749 /// ```
2750 #[inline]
into_iter(self) -> IntoIter<T, A>2751 fn into_iter(self) -> IntoIter<T, A> {
2752 unsafe {
2753 let mut me = ManuallyDrop::new(self);
2754 let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2755 let begin = me.as_mut_ptr();
2756 let end = if mem::size_of::<T>() == 0 {
2757 arith_offset(begin as *const i8, me.len() as isize) as *const T
2758 } else {
2759 begin.add(me.len()) as *const T
2760 };
2761 let cap = me.buf.capacity();
2762 IntoIter {
2763 buf: NonNull::new_unchecked(begin),
2764 phantom: PhantomData,
2765 cap,
2766 alloc,
2767 ptr: begin,
2768 end,
2769 }
2770 }
2771 }
2772 }
2773
2774 #[stable(feature = "rust1", since = "1.0.0")]
2775 impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
2776 type Item = &'a T;
2777 type IntoIter = slice::Iter<'a, T>;
2778
into_iter(self) -> slice::Iter<'a, T>2779 fn into_iter(self) -> slice::Iter<'a, T> {
2780 self.iter()
2781 }
2782 }
2783
2784 #[stable(feature = "rust1", since = "1.0.0")]
2785 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
2786 type Item = &'a mut T;
2787 type IntoIter = slice::IterMut<'a, T>;
2788
into_iter(self) -> slice::IterMut<'a, T>2789 fn into_iter(self) -> slice::IterMut<'a, T> {
2790 self.iter_mut()
2791 }
2792 }
2793
2794 #[cfg(not(no_global_oom_handling))]
2795 #[stable(feature = "rust1", since = "1.0.0")]
2796 impl<T, A: Allocator> Extend<T> for Vec<T, A> {
2797 #[inline]
extend<I: IntoIterator<Item = T>>(&mut self, iter: I)2798 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2799 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
2800 }
2801
2802 #[inline]
extend_one(&mut self, item: T)2803 fn extend_one(&mut self, item: T) {
2804 self.push(item);
2805 }
2806
2807 #[inline]
extend_reserve(&mut self, additional: usize)2808 fn extend_reserve(&mut self, additional: usize) {
2809 self.reserve(additional);
2810 }
2811 }
2812
2813 impl<T, A: Allocator> Vec<T, A> {
2814 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
2815 // they have no further optimizations to apply
2816 #[cfg(not(no_global_oom_handling))]
extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I)2817 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
2818 // This is the case for a general iterator.
2819 //
2820 // This function should be the moral equivalent of:
2821 //
2822 // for item in iterator {
2823 // self.push(item);
2824 // }
2825 while let Some(element) = iterator.next() {
2826 let len = self.len();
2827 if len == self.capacity() {
2828 let (lower, _) = iterator.size_hint();
2829 self.reserve(lower.saturating_add(1));
2830 }
2831 unsafe {
2832 ptr::write(self.as_mut_ptr().add(len), element);
2833 // Since next() executes user code which can panic we have to bump the length
2834 // after each step.
2835 // NB can't overflow since we would have had to alloc the address space
2836 self.set_len(len + 1);
2837 }
2838 }
2839 }
2840
2841 /// Creates a splicing iterator that replaces the specified range in the vector
2842 /// with the given `replace_with` iterator and yields the removed items.
2843 /// `replace_with` does not need to be the same length as `range`.
2844 ///
2845 /// `range` is removed even if the iterator is not consumed until the end.
2846 ///
2847 /// It is unspecified how many elements are removed from the vector
2848 /// if the `Splice` value is leaked.
2849 ///
2850 /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
2851 ///
2852 /// This is optimal if:
2853 ///
2854 /// * The tail (elements in the vector after `range`) is empty,
2855 /// * or `replace_with` yields fewer or equal elements than `range`’s length
2856 /// * or the lower bound of its `size_hint()` is exact.
2857 ///
2858 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
2859 ///
2860 /// # Panics
2861 ///
2862 /// Panics if the starting point is greater than the end point or if
2863 /// the end point is greater than the length of the vector.
2864 ///
2865 /// # Examples
2866 ///
2867 /// ```
2868 /// let mut v = vec![1, 2, 3, 4];
2869 /// let new = [7, 8, 9];
2870 /// let u: Vec<_> = v.splice(1..3, new).collect();
2871 /// assert_eq!(v, &[1, 7, 8, 9, 4]);
2872 /// assert_eq!(u, &[2, 3]);
2873 /// ```
2874 #[cfg(not(no_global_oom_handling))]
2875 #[inline]
2876 #[stable(feature = "vec_splice", since = "1.21.0")]
splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> where R: RangeBounds<usize>, I: IntoIterator<Item = T>,2877 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
2878 where
2879 R: RangeBounds<usize>,
2880 I: IntoIterator<Item = T>,
2881 {
2882 Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
2883 }
2884
2885 /// Creates an iterator which uses a closure to determine if an element should be removed.
2886 ///
2887 /// If the closure returns true, then the element is removed and yielded.
2888 /// If the closure returns false, the element will remain in the vector and will not be yielded
2889 /// by the iterator.
2890 ///
2891 /// Using this method is equivalent to the following code:
2892 ///
2893 /// ```
2894 /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
2895 /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
2896 /// let mut i = 0;
2897 /// while i < vec.len() {
2898 /// if some_predicate(&mut vec[i]) {
2899 /// let val = vec.remove(i);
2900 /// // your code here
2901 /// } else {
2902 /// i += 1;
2903 /// }
2904 /// }
2905 ///
2906 /// # assert_eq!(vec, vec![1, 4, 5]);
2907 /// ```
2908 ///
2909 /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
2910 /// because it can backshift the elements of the array in bulk.
2911 ///
2912 /// Note that `drain_filter` also lets you mutate every element in the filter closure,
2913 /// regardless of whether you choose to keep or remove it.
2914 ///
2915 /// # Examples
2916 ///
2917 /// Splitting an array into evens and odds, reusing the original allocation:
2918 ///
2919 /// ```
2920 /// #![feature(drain_filter)]
2921 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
2922 ///
2923 /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
2924 /// let odds = numbers;
2925 ///
2926 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
2927 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
2928 /// ```
2929 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A> where F: FnMut(&mut T) -> bool,2930 pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
2931 where
2932 F: FnMut(&mut T) -> bool,
2933 {
2934 let old_len = self.len();
2935
2936 // Guard against us getting leaked (leak amplification)
2937 unsafe {
2938 self.set_len(0);
2939 }
2940
2941 DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
2942 }
2943 }
2944
2945 /// Extend implementation that copies elements out of references before pushing them onto the Vec.
2946 ///
2947 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
2948 /// append the entire slice at once.
2949 ///
2950 /// [`copy_from_slice`]: slice::copy_from_slice
2951 #[cfg(not(no_global_oom_handling))]
2952 #[stable(feature = "extend_ref", since = "1.2.0")]
2953 impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)2954 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
2955 self.spec_extend(iter.into_iter())
2956 }
2957
2958 #[inline]
extend_one(&mut self, &item: &'a T)2959 fn extend_one(&mut self, &item: &'a T) {
2960 self.push(item);
2961 }
2962
2963 #[inline]
extend_reserve(&mut self, additional: usize)2964 fn extend_reserve(&mut self, additional: usize) {
2965 self.reserve(additional);
2966 }
2967 }
2968
2969 /// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
2970 #[stable(feature = "rust1", since = "1.0.0")]
2971 impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
2972 #[inline]
partial_cmp(&self, other: &Self) -> Option<Ordering>2973 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2974 PartialOrd::partial_cmp(&**self, &**other)
2975 }
2976 }
2977
2978 #[stable(feature = "rust1", since = "1.0.0")]
2979 impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
2980
2981 /// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
2982 #[stable(feature = "rust1", since = "1.0.0")]
2983 impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
2984 #[inline]
cmp(&self, other: &Self) -> Ordering2985 fn cmp(&self, other: &Self) -> Ordering {
2986 Ord::cmp(&**self, &**other)
2987 }
2988 }
2989
2990 #[stable(feature = "rust1", since = "1.0.0")]
2991 unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
drop(&mut self)2992 fn drop(&mut self) {
2993 unsafe {
2994 // use drop for [T]
2995 // use a raw slice to refer to the elements of the vector as weakest necessary type;
2996 // could avoid questions of validity in certain cases
2997 ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
2998 }
2999 // RawVec handles deallocation
3000 }
3001 }
3002
3003 #[stable(feature = "rust1", since = "1.0.0")]
3004 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
3005 impl<T> const Default for Vec<T> {
3006 /// Creates an empty `Vec<T>`.
default() -> Vec<T>3007 fn default() -> Vec<T> {
3008 Vec::new()
3009 }
3010 }
3011
3012 #[stable(feature = "rust1", since = "1.0.0")]
3013 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result3014 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3015 fmt::Debug::fmt(&**self, f)
3016 }
3017 }
3018
3019 #[stable(feature = "rust1", since = "1.0.0")]
3020 impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
as_ref(&self) -> &Vec<T, A>3021 fn as_ref(&self) -> &Vec<T, A> {
3022 self
3023 }
3024 }
3025
3026 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3027 impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
as_mut(&mut self) -> &mut Vec<T, A>3028 fn as_mut(&mut self) -> &mut Vec<T, A> {
3029 self
3030 }
3031 }
3032
3033 #[stable(feature = "rust1", since = "1.0.0")]
3034 impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
as_ref(&self) -> &[T]3035 fn as_ref(&self) -> &[T] {
3036 self
3037 }
3038 }
3039
3040 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3041 impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
as_mut(&mut self) -> &mut [T]3042 fn as_mut(&mut self) -> &mut [T] {
3043 self
3044 }
3045 }
3046
3047 #[cfg(not(no_global_oom_handling))]
3048 #[stable(feature = "rust1", since = "1.0.0")]
3049 impl<T: Clone> From<&[T]> for Vec<T> {
3050 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3051 ///
3052 /// # Examples
3053 ///
3054 /// ```
3055 /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3056 /// ```
3057 #[cfg(not(test))]
from(s: &[T]) -> Vec<T>3058 fn from(s: &[T]) -> Vec<T> {
3059 s.to_vec()
3060 }
3061 #[cfg(test)]
from(s: &[T]) -> Vec<T>3062 fn from(s: &[T]) -> Vec<T> {
3063 crate::slice::to_vec(s, Global)
3064 }
3065 }
3066
3067 #[cfg(not(no_global_oom_handling))]
3068 #[stable(feature = "vec_from_mut", since = "1.19.0")]
3069 impl<T: Clone> From<&mut [T]> for Vec<T> {
3070 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3071 ///
3072 /// # Examples
3073 ///
3074 /// ```
3075 /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3076 /// ```
3077 #[cfg(not(test))]
from(s: &mut [T]) -> Vec<T>3078 fn from(s: &mut [T]) -> Vec<T> {
3079 s.to_vec()
3080 }
3081 #[cfg(test)]
from(s: &mut [T]) -> Vec<T>3082 fn from(s: &mut [T]) -> Vec<T> {
3083 crate::slice::to_vec(s, Global)
3084 }
3085 }
3086
3087 #[cfg(not(no_global_oom_handling))]
3088 #[stable(feature = "vec_from_array", since = "1.44.0")]
3089 impl<T, const N: usize> From<[T; N]> for Vec<T> {
3090 /// Allocate a `Vec<T>` and move `s`'s items into it.
3091 ///
3092 /// # Examples
3093 ///
3094 /// ```
3095 /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3096 /// ```
3097 #[cfg(not(test))]
from(s: [T; N]) -> Vec<T>3098 fn from(s: [T; N]) -> Vec<T> {
3099 <[T]>::into_vec(box s)
3100 }
3101
3102 #[cfg(test)]
from(s: [T; N]) -> Vec<T>3103 fn from(s: [T; N]) -> Vec<T> {
3104 crate::slice::into_vec(box s)
3105 }
3106 }
3107
3108 #[cfg(not(no_borrow))]
3109 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3110 impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3111 where
3112 [T]: ToOwned<Owned = Vec<T>>,
3113 {
3114 /// Convert a clone-on-write slice into a vector.
3115 ///
3116 /// If `s` already owns a `Vec<T>`, it will be returned directly.
3117 /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3118 /// filled by cloning `s`'s items into it.
3119 ///
3120 /// # Examples
3121 ///
3122 /// ```
3123 /// # use std::borrow::Cow;
3124 /// let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]);
3125 /// let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]);
3126 /// assert_eq!(Vec::from(o), Vec::from(b));
3127 /// ```
from(s: Cow<'a, [T]>) -> Vec<T>3128 fn from(s: Cow<'a, [T]>) -> Vec<T> {
3129 s.into_owned()
3130 }
3131 }
3132
3133 // note: test pulls in libstd, which causes errors here
3134 #[cfg(not(test))]
3135 #[stable(feature = "vec_from_box", since = "1.18.0")]
3136 impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3137 /// Convert a boxed slice into a vector by transferring ownership of
3138 /// the existing heap allocation.
3139 ///
3140 /// # Examples
3141 ///
3142 /// ```
3143 /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3144 /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3145 /// ```
from(s: Box<[T], A>) -> Self3146 fn from(s: Box<[T], A>) -> Self {
3147 s.into_vec()
3148 }
3149 }
3150
3151 // note: test pulls in libstd, which causes errors here
3152 #[cfg(not(no_global_oom_handling))]
3153 #[cfg(not(test))]
3154 #[stable(feature = "box_from_vec", since = "1.20.0")]
3155 impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3156 /// Convert a vector into a boxed slice.
3157 ///
3158 /// If `v` has excess capacity, its items will be moved into a
3159 /// newly-allocated buffer with exactly the right capacity.
3160 ///
3161 /// # Examples
3162 ///
3163 /// ```
3164 /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3165 /// ```
from(v: Vec<T, A>) -> Self3166 fn from(v: Vec<T, A>) -> Self {
3167 v.into_boxed_slice()
3168 }
3169 }
3170
3171 #[cfg(not(no_global_oom_handling))]
3172 #[stable(feature = "rust1", since = "1.0.0")]
3173 impl From<&str> for Vec<u8> {
3174 /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3175 ///
3176 /// # Examples
3177 ///
3178 /// ```
3179 /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3180 /// ```
from(s: &str) -> Vec<u8>3181 fn from(s: &str) -> Vec<u8> {
3182 From::from(s.as_bytes())
3183 }
3184 }
3185
3186 #[stable(feature = "array_try_from_vec", since = "1.48.0")]
3187 impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3188 type Error = Vec<T, A>;
3189
3190 /// Gets the entire contents of the `Vec<T>` as an array,
3191 /// if its size exactly matches that of the requested array.
3192 ///
3193 /// # Examples
3194 ///
3195 /// ```
3196 /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3197 /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3198 /// ```
3199 ///
3200 /// If the length doesn't match, the input comes back in `Err`:
3201 /// ```
3202 /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3203 /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3204 /// ```
3205 ///
3206 /// If you're fine with just getting a prefix of the `Vec<T>`,
3207 /// you can call [`.truncate(N)`](Vec::truncate) first.
3208 /// ```
3209 /// let mut v = String::from("hello world").into_bytes();
3210 /// v.sort();
3211 /// v.truncate(2);
3212 /// let [a, b]: [_; 2] = v.try_into().unwrap();
3213 /// assert_eq!(a, b' ');
3214 /// assert_eq!(b, b'd');
3215 /// ```
try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>>3216 fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3217 if vec.len() != N {
3218 return Err(vec);
3219 }
3220
3221 // SAFETY: `.set_len(0)` is always sound.
3222 unsafe { vec.set_len(0) };
3223
3224 // SAFETY: A `Vec`'s pointer is always aligned properly, and
3225 // the alignment the array needs is the same as the items.
3226 // We checked earlier that we have sufficient items.
3227 // The items will not double-drop as the `set_len`
3228 // tells the `Vec` not to also drop them.
3229 let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3230 Ok(array)
3231 }
3232 }
3233