1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * This file is part of UBIFS.
4   *
5   * Copyright (C) 2006-2008 Nokia Corporation
6   *
7   * Authors: Adrian Hunter
8   *          Artem Bityutskiy (Битюцкий Артём)
9   */
10  
11  /*
12   * This file implements functions needed to recover from unclean un-mounts.
13   * When UBIFS is mounted, it checks a flag on the master node to determine if
14   * an un-mount was completed successfully. If not, the process of mounting
15   * incorporates additional checking and fixing of on-flash data structures.
16   * UBIFS always cleans away all remnants of an unclean un-mount, so that
17   * errors do not accumulate. However UBIFS defers recovery if it is mounted
18   * read-only, and the flash is not modified in that case.
19   *
20   * The general UBIFS approach to the recovery is that it recovers from
21   * corruptions which could be caused by power cuts, but it refuses to recover
22   * from corruption caused by other reasons. And UBIFS tries to distinguish
23   * between these 2 reasons of corruptions and silently recover in the former
24   * case and loudly complain in the latter case.
25   *
26   * UBIFS writes only to erased LEBs, so it writes only to the flash space
27   * containing only 0xFFs. UBIFS also always writes strictly from the beginning
28   * of the LEB to the end. And UBIFS assumes that the underlying flash media
29   * writes in @c->max_write_size bytes at a time.
30   *
31   * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
32   * I/O unit corresponding to offset X to contain corrupted data, all the
33   * following min. I/O units have to contain empty space (all 0xFFs). If this is
34   * not true, the corruption cannot be the result of a power cut, and UBIFS
35   * refuses to mount.
36   */
37  
38  #include <linux/crc32.h>
39  #include <linux/slab.h>
40  #include "ubifs.h"
41  
42  /**
43   * is_empty - determine whether a buffer is empty (contains all 0xff).
44   * @buf: buffer to clean
45   * @len: length of buffer
46   *
47   * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
48   * %0 is returned.
49   */
is_empty(void * buf,int len)50  static int is_empty(void *buf, int len)
51  {
52  	uint8_t *p = buf;
53  	int i;
54  
55  	for (i = 0; i < len; i++)
56  		if (*p++ != 0xff)
57  			return 0;
58  	return 1;
59  }
60  
61  /**
62   * first_non_ff - find offset of the first non-0xff byte.
63   * @buf: buffer to search in
64   * @len: length of buffer
65   *
66   * This function returns offset of the first non-0xff byte in @buf or %-1 if
67   * the buffer contains only 0xff bytes.
68   */
first_non_ff(void * buf,int len)69  static int first_non_ff(void *buf, int len)
70  {
71  	uint8_t *p = buf;
72  	int i;
73  
74  	for (i = 0; i < len; i++)
75  		if (*p++ != 0xff)
76  			return i;
77  	return -1;
78  }
79  
80  /**
81   * get_master_node - get the last valid master node allowing for corruption.
82   * @c: UBIFS file-system description object
83   * @lnum: LEB number
84   * @pbuf: buffer containing the LEB read, is returned here
85   * @mst: master node, if found, is returned here
86   * @cor: corruption, if found, is returned here
87   *
88   * This function allocates a buffer, reads the LEB into it, and finds and
89   * returns the last valid master node allowing for one area of corruption.
90   * The corrupt area, if there is one, must be consistent with the assumption
91   * that it is the result of an unclean unmount while the master node was being
92   * written. Under those circumstances, it is valid to use the previously written
93   * master node.
94   *
95   * This function returns %0 on success and a negative error code on failure.
96   */
get_master_node(const struct ubifs_info * c,int lnum,void ** pbuf,struct ubifs_mst_node ** mst,void ** cor)97  static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
98  			   struct ubifs_mst_node **mst, void **cor)
99  {
100  	const int sz = c->mst_node_alsz;
101  	int err, offs, len;
102  	void *sbuf, *buf;
103  
104  	sbuf = vmalloc(c->leb_size);
105  	if (!sbuf)
106  		return -ENOMEM;
107  
108  	err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
109  	if (err && err != -EBADMSG)
110  		goto out_free;
111  
112  	/* Find the first position that is definitely not a node */
113  	offs = 0;
114  	buf = sbuf;
115  	len = c->leb_size;
116  	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
117  		struct ubifs_ch *ch = buf;
118  
119  		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
120  			break;
121  		offs += sz;
122  		buf  += sz;
123  		len  -= sz;
124  	}
125  	/* See if there was a valid master node before that */
126  	if (offs) {
127  		int ret;
128  
129  		offs -= sz;
130  		buf  -= sz;
131  		len  += sz;
132  		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
133  		if (ret != SCANNED_A_NODE && offs) {
134  			/* Could have been corruption so check one place back */
135  			offs -= sz;
136  			buf  -= sz;
137  			len  += sz;
138  			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
139  			if (ret != SCANNED_A_NODE)
140  				/*
141  				 * We accept only one area of corruption because
142  				 * we are assuming that it was caused while
143  				 * trying to write a master node.
144  				 */
145  				goto out_err;
146  		}
147  		if (ret == SCANNED_A_NODE) {
148  			struct ubifs_ch *ch = buf;
149  
150  			if (ch->node_type != UBIFS_MST_NODE)
151  				goto out_err;
152  			dbg_rcvry("found a master node at %d:%d", lnum, offs);
153  			*mst = buf;
154  			offs += sz;
155  			buf  += sz;
156  			len  -= sz;
157  		}
158  	}
159  	/* Check for corruption */
160  	if (offs < c->leb_size) {
161  		if (!is_empty(buf, min_t(int, len, sz))) {
162  			*cor = buf;
163  			dbg_rcvry("found corruption at %d:%d", lnum, offs);
164  		}
165  		offs += sz;
166  		buf  += sz;
167  		len  -= sz;
168  	}
169  	/* Check remaining empty space */
170  	if (offs < c->leb_size)
171  		if (!is_empty(buf, len))
172  			goto out_err;
173  	*pbuf = sbuf;
174  	return 0;
175  
176  out_err:
177  	err = -EINVAL;
178  out_free:
179  	vfree(sbuf);
180  	*mst = NULL;
181  	*cor = NULL;
182  	return err;
183  }
184  
185  /**
186   * write_rcvrd_mst_node - write recovered master node.
187   * @c: UBIFS file-system description object
188   * @mst: master node
189   *
190   * This function returns %0 on success and a negative error code on failure.
191   */
write_rcvrd_mst_node(struct ubifs_info * c,struct ubifs_mst_node * mst)192  static int write_rcvrd_mst_node(struct ubifs_info *c,
193  				struct ubifs_mst_node *mst)
194  {
195  	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
196  	__le32 save_flags;
197  
198  	dbg_rcvry("recovery");
199  
200  	save_flags = mst->flags;
201  	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
202  
203  	err = ubifs_prepare_node_hmac(c, mst, UBIFS_MST_NODE_SZ,
204  				      offsetof(struct ubifs_mst_node, hmac), 1);
205  	if (err)
206  		goto out;
207  	err = ubifs_leb_change(c, lnum, mst, sz);
208  	if (err)
209  		goto out;
210  	err = ubifs_leb_change(c, lnum + 1, mst, sz);
211  	if (err)
212  		goto out;
213  out:
214  	mst->flags = save_flags;
215  	return err;
216  }
217  
218  /**
219   * ubifs_recover_master_node - recover the master node.
220   * @c: UBIFS file-system description object
221   *
222   * This function recovers the master node from corruption that may occur due to
223   * an unclean unmount.
224   *
225   * This function returns %0 on success and a negative error code on failure.
226   */
ubifs_recover_master_node(struct ubifs_info * c)227  int ubifs_recover_master_node(struct ubifs_info *c)
228  {
229  	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
230  	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
231  	const int sz = c->mst_node_alsz;
232  	int err, offs1, offs2;
233  
234  	dbg_rcvry("recovery");
235  
236  	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
237  	if (err)
238  		goto out_free;
239  
240  	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
241  	if (err)
242  		goto out_free;
243  
244  	if (mst1) {
245  		offs1 = (void *)mst1 - buf1;
246  		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
247  		    (offs1 == 0 && !cor1)) {
248  			/*
249  			 * mst1 was written by recovery at offset 0 with no
250  			 * corruption.
251  			 */
252  			dbg_rcvry("recovery recovery");
253  			mst = mst1;
254  		} else if (mst2) {
255  			offs2 = (void *)mst2 - buf2;
256  			if (offs1 == offs2) {
257  				/* Same offset, so must be the same */
258  				if (ubifs_compare_master_node(c, mst1, mst2))
259  					goto out_err;
260  				mst = mst1;
261  			} else if (offs2 + sz == offs1) {
262  				/* 1st LEB was written, 2nd was not */
263  				if (cor1)
264  					goto out_err;
265  				mst = mst1;
266  			} else if (offs1 == 0 &&
267  				   c->leb_size - offs2 - sz < sz) {
268  				/* 1st LEB was unmapped and written, 2nd not */
269  				if (cor1)
270  					goto out_err;
271  				mst = mst1;
272  			} else
273  				goto out_err;
274  		} else {
275  			/*
276  			 * 2nd LEB was unmapped and about to be written, so
277  			 * there must be only one master node in the first LEB
278  			 * and no corruption.
279  			 */
280  			if (offs1 != 0 || cor1)
281  				goto out_err;
282  			mst = mst1;
283  		}
284  	} else {
285  		if (!mst2)
286  			goto out_err;
287  		/*
288  		 * 1st LEB was unmapped and about to be written, so there must
289  		 * be no room left in 2nd LEB.
290  		 */
291  		offs2 = (void *)mst2 - buf2;
292  		if (offs2 + sz + sz <= c->leb_size)
293  			goto out_err;
294  		mst = mst2;
295  	}
296  
297  	ubifs_msg(c, "recovered master node from LEB %d",
298  		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
299  
300  	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
301  
302  	if (c->ro_mount) {
303  		/* Read-only mode. Keep a copy for switching to rw mode */
304  		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
305  		if (!c->rcvrd_mst_node) {
306  			err = -ENOMEM;
307  			goto out_free;
308  		}
309  		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
310  
311  		/*
312  		 * We had to recover the master node, which means there was an
313  		 * unclean reboot. However, it is possible that the master node
314  		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
315  		 * E.g., consider the following chain of events:
316  		 *
317  		 * 1. UBIFS was cleanly unmounted, so the master node is clean
318  		 * 2. UBIFS is being mounted R/W and starts changing the master
319  		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
320  		 *    so this LEB ends up with some amount of garbage at the
321  		 *    end.
322  		 * 3. UBIFS is being mounted R/O. We reach this place and
323  		 *    recover the master node from the second LEB
324  		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
325  		 *    because we are being mounted R/O. We have to defer the
326  		 *    operation.
327  		 * 4. However, this master node (@c->mst_node) is marked as
328  		 *    clean (since the step 1). And if we just return, the
329  		 *    mount code will be confused and won't recover the master
330  		 *    node when it is re-mounter R/W later.
331  		 *
332  		 *    Thus, to force the recovery by marking the master node as
333  		 *    dirty.
334  		 */
335  		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
336  	} else {
337  		/* Write the recovered master node */
338  		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
339  		err = write_rcvrd_mst_node(c, c->mst_node);
340  		if (err)
341  			goto out_free;
342  	}
343  
344  	vfree(buf2);
345  	vfree(buf1);
346  
347  	return 0;
348  
349  out_err:
350  	err = -EINVAL;
351  out_free:
352  	ubifs_err(c, "failed to recover master node");
353  	if (mst1) {
354  		ubifs_err(c, "dumping first master node");
355  		ubifs_dump_node(c, mst1, c->leb_size - ((void *)mst1 - buf1));
356  	}
357  	if (mst2) {
358  		ubifs_err(c, "dumping second master node");
359  		ubifs_dump_node(c, mst2, c->leb_size - ((void *)mst2 - buf2));
360  	}
361  	vfree(buf2);
362  	vfree(buf1);
363  	return err;
364  }
365  
366  /**
367   * ubifs_write_rcvrd_mst_node - write the recovered master node.
368   * @c: UBIFS file-system description object
369   *
370   * This function writes the master node that was recovered during mounting in
371   * read-only mode and must now be written because we are remounting rw.
372   *
373   * This function returns %0 on success and a negative error code on failure.
374   */
ubifs_write_rcvrd_mst_node(struct ubifs_info * c)375  int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
376  {
377  	int err;
378  
379  	if (!c->rcvrd_mst_node)
380  		return 0;
381  	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
382  	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
383  	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
384  	if (err)
385  		return err;
386  	kfree(c->rcvrd_mst_node);
387  	c->rcvrd_mst_node = NULL;
388  	return 0;
389  }
390  
391  /**
392   * is_last_write - determine if an offset was in the last write to a LEB.
393   * @c: UBIFS file-system description object
394   * @buf: buffer to check
395   * @offs: offset to check
396   *
397   * This function returns %1 if @offs was in the last write to the LEB whose data
398   * is in @buf, otherwise %0 is returned. The determination is made by checking
399   * for subsequent empty space starting from the next @c->max_write_size
400   * boundary.
401   */
is_last_write(const struct ubifs_info * c,void * buf,int offs)402  static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
403  {
404  	int empty_offs, check_len;
405  	uint8_t *p;
406  
407  	/*
408  	 * Round up to the next @c->max_write_size boundary i.e. @offs is in
409  	 * the last wbuf written. After that should be empty space.
410  	 */
411  	empty_offs = ALIGN(offs + 1, c->max_write_size);
412  	check_len = c->leb_size - empty_offs;
413  	p = buf + empty_offs - offs;
414  	return is_empty(p, check_len);
415  }
416  
417  /**
418   * clean_buf - clean the data from an LEB sitting in a buffer.
419   * @c: UBIFS file-system description object
420   * @buf: buffer to clean
421   * @lnum: LEB number to clean
422   * @offs: offset from which to clean
423   * @len: length of buffer
424   *
425   * This function pads up to the next min_io_size boundary (if there is one) and
426   * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
427   * @c->min_io_size boundary.
428   */
clean_buf(const struct ubifs_info * c,void ** buf,int lnum,int * offs,int * len)429  static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
430  		      int *offs, int *len)
431  {
432  	int empty_offs, pad_len;
433  
434  	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
435  
436  	ubifs_assert(c, !(*offs & 7));
437  	empty_offs = ALIGN(*offs, c->min_io_size);
438  	pad_len = empty_offs - *offs;
439  	ubifs_pad(c, *buf, pad_len);
440  	*offs += pad_len;
441  	*buf += pad_len;
442  	*len -= pad_len;
443  	memset(*buf, 0xff, c->leb_size - empty_offs);
444  }
445  
446  /**
447   * no_more_nodes - determine if there are no more nodes in a buffer.
448   * @c: UBIFS file-system description object
449   * @buf: buffer to check
450   * @len: length of buffer
451   * @lnum: LEB number of the LEB from which @buf was read
452   * @offs: offset from which @buf was read
453   *
454   * This function ensures that the corrupted node at @offs is the last thing
455   * written to a LEB. This function returns %1 if more data is not found and
456   * %0 if more data is found.
457   */
no_more_nodes(const struct ubifs_info * c,void * buf,int len,int lnum,int offs)458  static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
459  			int lnum, int offs)
460  {
461  	struct ubifs_ch *ch = buf;
462  	int skip, dlen = le32_to_cpu(ch->len);
463  
464  	/* Check for empty space after the corrupt node's common header */
465  	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
466  	if (is_empty(buf + skip, len - skip))
467  		return 1;
468  	/*
469  	 * The area after the common header size is not empty, so the common
470  	 * header must be intact. Check it.
471  	 */
472  	if (ubifs_check_node(c, buf, len, lnum, offs, 1, 0) != -EUCLEAN) {
473  		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
474  		return 0;
475  	}
476  	/* Now we know the corrupt node's length we can skip over it */
477  	skip = ALIGN(offs + dlen, c->max_write_size) - offs;
478  	/* After which there should be empty space */
479  	if (is_empty(buf + skip, len - skip))
480  		return 1;
481  	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
482  	return 0;
483  }
484  
485  /**
486   * fix_unclean_leb - fix an unclean LEB.
487   * @c: UBIFS file-system description object
488   * @sleb: scanned LEB information
489   * @start: offset where scan started
490   */
fix_unclean_leb(struct ubifs_info * c,struct ubifs_scan_leb * sleb,int start)491  static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
492  			   int start)
493  {
494  	int lnum = sleb->lnum, endpt = start;
495  
496  	/* Get the end offset of the last node we are keeping */
497  	if (!list_empty(&sleb->nodes)) {
498  		struct ubifs_scan_node *snod;
499  
500  		snod = list_entry(sleb->nodes.prev,
501  				  struct ubifs_scan_node, list);
502  		endpt = snod->offs + snod->len;
503  	}
504  
505  	if (c->ro_mount && !c->remounting_rw) {
506  		/* Add to recovery list */
507  		struct ubifs_unclean_leb *ucleb;
508  
509  		dbg_rcvry("need to fix LEB %d start %d endpt %d",
510  			  lnum, start, sleb->endpt);
511  		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
512  		if (!ucleb)
513  			return -ENOMEM;
514  		ucleb->lnum = lnum;
515  		ucleb->endpt = endpt;
516  		list_add_tail(&ucleb->list, &c->unclean_leb_list);
517  	} else {
518  		/* Write the fixed LEB back to flash */
519  		int err;
520  
521  		dbg_rcvry("fixing LEB %d start %d endpt %d",
522  			  lnum, start, sleb->endpt);
523  		if (endpt == 0) {
524  			err = ubifs_leb_unmap(c, lnum);
525  			if (err)
526  				return err;
527  		} else {
528  			int len = ALIGN(endpt, c->min_io_size);
529  
530  			if (start) {
531  				err = ubifs_leb_read(c, lnum, sleb->buf, 0,
532  						     start, 1);
533  				if (err)
534  					return err;
535  			}
536  			/* Pad to min_io_size */
537  			if (len > endpt) {
538  				int pad_len = len - ALIGN(endpt, 8);
539  
540  				if (pad_len > 0) {
541  					void *buf = sleb->buf + len - pad_len;
542  
543  					ubifs_pad(c, buf, pad_len);
544  				}
545  			}
546  			err = ubifs_leb_change(c, lnum, sleb->buf, len);
547  			if (err)
548  				return err;
549  		}
550  	}
551  	return 0;
552  }
553  
554  /**
555   * drop_last_group - drop the last group of nodes.
556   * @sleb: scanned LEB information
557   * @offs: offset of dropped nodes is returned here
558   *
559   * This is a helper function for 'ubifs_recover_leb()' which drops the last
560   * group of nodes of the scanned LEB.
561   */
drop_last_group(struct ubifs_scan_leb * sleb,int * offs)562  static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
563  {
564  	while (!list_empty(&sleb->nodes)) {
565  		struct ubifs_scan_node *snod;
566  		struct ubifs_ch *ch;
567  
568  		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
569  				  list);
570  		ch = snod->node;
571  		if (ch->group_type != UBIFS_IN_NODE_GROUP)
572  			break;
573  
574  		dbg_rcvry("dropping grouped node at %d:%d",
575  			  sleb->lnum, snod->offs);
576  		*offs = snod->offs;
577  		list_del(&snod->list);
578  		kfree(snod);
579  		sleb->nodes_cnt -= 1;
580  	}
581  }
582  
583  /**
584   * drop_last_node - drop the last node.
585   * @sleb: scanned LEB information
586   * @offs: offset of dropped nodes is returned here
587   *
588   * This is a helper function for 'ubifs_recover_leb()' which drops the last
589   * node of the scanned LEB.
590   */
drop_last_node(struct ubifs_scan_leb * sleb,int * offs)591  static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
592  {
593  	struct ubifs_scan_node *snod;
594  
595  	if (!list_empty(&sleb->nodes)) {
596  		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
597  				  list);
598  
599  		dbg_rcvry("dropping last node at %d:%d",
600  			  sleb->lnum, snod->offs);
601  		*offs = snod->offs;
602  		list_del(&snod->list);
603  		kfree(snod);
604  		sleb->nodes_cnt -= 1;
605  	}
606  }
607  
608  /**
609   * ubifs_recover_leb - scan and recover a LEB.
610   * @c: UBIFS file-system description object
611   * @lnum: LEB number
612   * @offs: offset
613   * @sbuf: LEB-sized buffer to use
614   * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
615   *         belong to any journal head)
616   *
617   * This function does a scan of a LEB, but caters for errors that might have
618   * been caused by the unclean unmount from which we are attempting to recover.
619   * Returns the scanned information on success and a negative error code on
620   * failure.
621   */
ubifs_recover_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf,int jhead)622  struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
623  					 int offs, void *sbuf, int jhead)
624  {
625  	int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
626  	int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
627  	struct ubifs_scan_leb *sleb;
628  	void *buf = sbuf + offs;
629  
630  	dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
631  
632  	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
633  	if (IS_ERR(sleb))
634  		return sleb;
635  
636  	ubifs_assert(c, len >= 8);
637  	while (len >= 8) {
638  		dbg_scan("look at LEB %d:%d (%d bytes left)",
639  			 lnum, offs, len);
640  
641  		cond_resched();
642  
643  		/*
644  		 * Scan quietly until there is an error from which we cannot
645  		 * recover
646  		 */
647  		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
648  		if (ret == SCANNED_A_NODE) {
649  			/* A valid node, and not a padding node */
650  			struct ubifs_ch *ch = buf;
651  			int node_len;
652  
653  			err = ubifs_add_snod(c, sleb, buf, offs);
654  			if (err)
655  				goto error;
656  			node_len = ALIGN(le32_to_cpu(ch->len), 8);
657  			offs += node_len;
658  			buf += node_len;
659  			len -= node_len;
660  		} else if (ret > 0) {
661  			/* Padding bytes or a valid padding node */
662  			offs += ret;
663  			buf += ret;
664  			len -= ret;
665  		} else if (ret == SCANNED_EMPTY_SPACE ||
666  			   ret == SCANNED_GARBAGE     ||
667  			   ret == SCANNED_A_BAD_PAD_NODE ||
668  			   ret == SCANNED_A_CORRUPT_NODE) {
669  			dbg_rcvry("found corruption (%d) at %d:%d",
670  				  ret, lnum, offs);
671  			break;
672  		} else {
673  			ubifs_err(c, "unexpected return value %d", ret);
674  			err = -EINVAL;
675  			goto error;
676  		}
677  	}
678  
679  	if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
680  		if (!is_last_write(c, buf, offs))
681  			goto corrupted_rescan;
682  	} else if (ret == SCANNED_A_CORRUPT_NODE) {
683  		if (!no_more_nodes(c, buf, len, lnum, offs))
684  			goto corrupted_rescan;
685  	} else if (!is_empty(buf, len)) {
686  		if (!is_last_write(c, buf, offs)) {
687  			int corruption = first_non_ff(buf, len);
688  
689  			/*
690  			 * See header comment for this file for more
691  			 * explanations about the reasons we have this check.
692  			 */
693  			ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
694  				  lnum, offs, corruption);
695  			/* Make sure we dump interesting non-0xFF data */
696  			offs += corruption;
697  			buf += corruption;
698  			goto corrupted;
699  		}
700  	}
701  
702  	min_io_unit = round_down(offs, c->min_io_size);
703  	if (grouped)
704  		/*
705  		 * If nodes are grouped, always drop the incomplete group at
706  		 * the end.
707  		 */
708  		drop_last_group(sleb, &offs);
709  
710  	if (jhead == GCHD) {
711  		/*
712  		 * If this LEB belongs to the GC head then while we are in the
713  		 * middle of the same min. I/O unit keep dropping nodes. So
714  		 * basically, what we want is to make sure that the last min.
715  		 * I/O unit where we saw the corruption is dropped completely
716  		 * with all the uncorrupted nodes which may possibly sit there.
717  		 *
718  		 * In other words, let's name the min. I/O unit where the
719  		 * corruption starts B, and the previous min. I/O unit A. The
720  		 * below code tries to deal with a situation when half of B
721  		 * contains valid nodes or the end of a valid node, and the
722  		 * second half of B contains corrupted data or garbage. This
723  		 * means that UBIFS had been writing to B just before the power
724  		 * cut happened. I do not know how realistic is this scenario
725  		 * that half of the min. I/O unit had been written successfully
726  		 * and the other half not, but this is possible in our 'failure
727  		 * mode emulation' infrastructure at least.
728  		 *
729  		 * So what is the problem, why we need to drop those nodes? Why
730  		 * can't we just clean-up the second half of B by putting a
731  		 * padding node there? We can, and this works fine with one
732  		 * exception which was reproduced with power cut emulation
733  		 * testing and happens extremely rarely.
734  		 *
735  		 * Imagine the file-system is full, we run GC which starts
736  		 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
737  		 * the current GC head LEB). The @c->gc_lnum is -1, which means
738  		 * that GC will retain LEB X and will try to continue. Imagine
739  		 * that LEB X is currently the dirtiest LEB, and the amount of
740  		 * used space in LEB Y is exactly the same as amount of free
741  		 * space in LEB X.
742  		 *
743  		 * And a power cut happens when nodes are moved from LEB X to
744  		 * LEB Y. We are here trying to recover LEB Y which is the GC
745  		 * head LEB. We find the min. I/O unit B as described above.
746  		 * Then we clean-up LEB Y by padding min. I/O unit. And later
747  		 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
748  		 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
749  		 * does not match because the amount of valid nodes there does
750  		 * not fit the free space in LEB Y any more! And this is
751  		 * because of the padding node which we added to LEB Y. The
752  		 * user-visible effect of this which I once observed and
753  		 * analysed is that we cannot mount the file-system with
754  		 * -ENOSPC error.
755  		 *
756  		 * So obviously, to make sure that situation does not happen we
757  		 * should free min. I/O unit B in LEB Y completely and the last
758  		 * used min. I/O unit in LEB Y should be A. This is basically
759  		 * what the below code tries to do.
760  		 */
761  		while (offs > min_io_unit)
762  			drop_last_node(sleb, &offs);
763  	}
764  
765  	buf = sbuf + offs;
766  	len = c->leb_size - offs;
767  
768  	clean_buf(c, &buf, lnum, &offs, &len);
769  	ubifs_end_scan(c, sleb, lnum, offs);
770  
771  	err = fix_unclean_leb(c, sleb, start);
772  	if (err)
773  		goto error;
774  
775  	return sleb;
776  
777  corrupted_rescan:
778  	/* Re-scan the corrupted data with verbose messages */
779  	ubifs_err(c, "corruption %d", ret);
780  	ubifs_scan_a_node(c, buf, len, lnum, offs, 0);
781  corrupted:
782  	ubifs_scanned_corruption(c, lnum, offs, buf);
783  	err = -EUCLEAN;
784  error:
785  	ubifs_err(c, "LEB %d scanning failed", lnum);
786  	ubifs_scan_destroy(sleb);
787  	return ERR_PTR(err);
788  }
789  
790  /**
791   * get_cs_sqnum - get commit start sequence number.
792   * @c: UBIFS file-system description object
793   * @lnum: LEB number of commit start node
794   * @offs: offset of commit start node
795   * @cs_sqnum: commit start sequence number is returned here
796   *
797   * This function returns %0 on success and a negative error code on failure.
798   */
get_cs_sqnum(struct ubifs_info * c,int lnum,int offs,unsigned long long * cs_sqnum)799  static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
800  			unsigned long long *cs_sqnum)
801  {
802  	struct ubifs_cs_node *cs_node = NULL;
803  	int err, ret;
804  
805  	dbg_rcvry("at %d:%d", lnum, offs);
806  	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
807  	if (!cs_node)
808  		return -ENOMEM;
809  	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
810  		goto out_err;
811  	err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
812  			     UBIFS_CS_NODE_SZ, 0);
813  	if (err && err != -EBADMSG)
814  		goto out_free;
815  	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
816  	if (ret != SCANNED_A_NODE) {
817  		ubifs_err(c, "Not a valid node");
818  		goto out_err;
819  	}
820  	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
821  		ubifs_err(c, "Not a CS node, type is %d", cs_node->ch.node_type);
822  		goto out_err;
823  	}
824  	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
825  		ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
826  			  (unsigned long long)le64_to_cpu(cs_node->cmt_no),
827  			  c->cmt_no);
828  		goto out_err;
829  	}
830  	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
831  	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
832  	kfree(cs_node);
833  	return 0;
834  
835  out_err:
836  	err = -EINVAL;
837  out_free:
838  	ubifs_err(c, "failed to get CS sqnum");
839  	kfree(cs_node);
840  	return err;
841  }
842  
843  /**
844   * ubifs_recover_log_leb - scan and recover a log LEB.
845   * @c: UBIFS file-system description object
846   * @lnum: LEB number
847   * @offs: offset
848   * @sbuf: LEB-sized buffer to use
849   *
850   * This function does a scan of a LEB, but caters for errors that might have
851   * been caused by unclean reboots from which we are attempting to recover
852   * (assume that only the last log LEB can be corrupted by an unclean reboot).
853   *
854   * This function returns %0 on success and a negative error code on failure.
855   */
ubifs_recover_log_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf)856  struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
857  					     int offs, void *sbuf)
858  {
859  	struct ubifs_scan_leb *sleb;
860  	int next_lnum;
861  
862  	dbg_rcvry("LEB %d", lnum);
863  	next_lnum = lnum + 1;
864  	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
865  		next_lnum = UBIFS_LOG_LNUM;
866  	if (next_lnum != c->ltail_lnum) {
867  		/*
868  		 * We can only recover at the end of the log, so check that the
869  		 * next log LEB is empty or out of date.
870  		 */
871  		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
872  		if (IS_ERR(sleb))
873  			return sleb;
874  		if (sleb->nodes_cnt) {
875  			struct ubifs_scan_node *snod;
876  			unsigned long long cs_sqnum = c->cs_sqnum;
877  
878  			snod = list_entry(sleb->nodes.next,
879  					  struct ubifs_scan_node, list);
880  			if (cs_sqnum == 0) {
881  				int err;
882  
883  				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
884  				if (err) {
885  					ubifs_scan_destroy(sleb);
886  					return ERR_PTR(err);
887  				}
888  			}
889  			if (snod->sqnum > cs_sqnum) {
890  				ubifs_err(c, "unrecoverable log corruption in LEB %d",
891  					  lnum);
892  				ubifs_scan_destroy(sleb);
893  				return ERR_PTR(-EUCLEAN);
894  			}
895  		}
896  		ubifs_scan_destroy(sleb);
897  	}
898  	return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
899  }
900  
901  /**
902   * recover_head - recover a head.
903   * @c: UBIFS file-system description object
904   * @lnum: LEB number of head to recover
905   * @offs: offset of head to recover
906   * @sbuf: LEB-sized buffer to use
907   *
908   * This function ensures that there is no data on the flash at a head location.
909   *
910   * This function returns %0 on success and a negative error code on failure.
911   */
recover_head(struct ubifs_info * c,int lnum,int offs,void * sbuf)912  static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
913  {
914  	int len = c->max_write_size, err;
915  
916  	if (offs + len > c->leb_size)
917  		len = c->leb_size - offs;
918  
919  	if (!len)
920  		return 0;
921  
922  	/* Read at the head location and check it is empty flash */
923  	err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
924  	if (err || !is_empty(sbuf, len)) {
925  		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
926  		if (offs == 0)
927  			return ubifs_leb_unmap(c, lnum);
928  		err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
929  		if (err)
930  			return err;
931  		return ubifs_leb_change(c, lnum, sbuf, offs);
932  	}
933  
934  	return 0;
935  }
936  
937  /**
938   * ubifs_recover_inl_heads - recover index and LPT heads.
939   * @c: UBIFS file-system description object
940   * @sbuf: LEB-sized buffer to use
941   *
942   * This function ensures that there is no data on the flash at the index and
943   * LPT head locations.
944   *
945   * This deals with the recovery of a half-completed journal commit. UBIFS is
946   * careful never to overwrite the last version of the index or the LPT. Because
947   * the index and LPT are wandering trees, data from a half-completed commit will
948   * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
949   * assumed to be empty and will be unmapped anyway before use, or in the index
950   * and LPT heads.
951   *
952   * This function returns %0 on success and a negative error code on failure.
953   */
ubifs_recover_inl_heads(struct ubifs_info * c,void * sbuf)954  int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
955  {
956  	int err;
957  
958  	ubifs_assert(c, !c->ro_mount || c->remounting_rw);
959  
960  	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
961  	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
962  	if (err)
963  		return err;
964  
965  	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
966  
967  	return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
968  }
969  
970  /**
971   * clean_an_unclean_leb - read and write a LEB to remove corruption.
972   * @c: UBIFS file-system description object
973   * @ucleb: unclean LEB information
974   * @sbuf: LEB-sized buffer to use
975   *
976   * This function reads a LEB up to a point pre-determined by the mount recovery,
977   * checks the nodes, and writes the result back to the flash, thereby cleaning
978   * off any following corruption, or non-fatal ECC errors.
979   *
980   * This function returns %0 on success and a negative error code on failure.
981   */
clean_an_unclean_leb(struct ubifs_info * c,struct ubifs_unclean_leb * ucleb,void * sbuf)982  static int clean_an_unclean_leb(struct ubifs_info *c,
983  				struct ubifs_unclean_leb *ucleb, void *sbuf)
984  {
985  	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
986  	void *buf = sbuf;
987  
988  	dbg_rcvry("LEB %d len %d", lnum, len);
989  
990  	if (len == 0) {
991  		/* Nothing to read, just unmap it */
992  		return ubifs_leb_unmap(c, lnum);
993  	}
994  
995  	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
996  	if (err && err != -EBADMSG)
997  		return err;
998  
999  	while (len >= 8) {
1000  		int ret;
1001  
1002  		cond_resched();
1003  
1004  		/* Scan quietly until there is an error */
1005  		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1006  
1007  		if (ret == SCANNED_A_NODE) {
1008  			/* A valid node, and not a padding node */
1009  			struct ubifs_ch *ch = buf;
1010  			int node_len;
1011  
1012  			node_len = ALIGN(le32_to_cpu(ch->len), 8);
1013  			offs += node_len;
1014  			buf += node_len;
1015  			len -= node_len;
1016  			continue;
1017  		}
1018  
1019  		if (ret > 0) {
1020  			/* Padding bytes or a valid padding node */
1021  			offs += ret;
1022  			buf += ret;
1023  			len -= ret;
1024  			continue;
1025  		}
1026  
1027  		if (ret == SCANNED_EMPTY_SPACE) {
1028  			ubifs_err(c, "unexpected empty space at %d:%d",
1029  				  lnum, offs);
1030  			return -EUCLEAN;
1031  		}
1032  
1033  		if (quiet) {
1034  			/* Redo the last scan but noisily */
1035  			quiet = 0;
1036  			continue;
1037  		}
1038  
1039  		ubifs_scanned_corruption(c, lnum, offs, buf);
1040  		return -EUCLEAN;
1041  	}
1042  
1043  	/* Pad to min_io_size */
1044  	len = ALIGN(ucleb->endpt, c->min_io_size);
1045  	if (len > ucleb->endpt) {
1046  		int pad_len = len - ALIGN(ucleb->endpt, 8);
1047  
1048  		if (pad_len > 0) {
1049  			buf = c->sbuf + len - pad_len;
1050  			ubifs_pad(c, buf, pad_len);
1051  		}
1052  	}
1053  
1054  	/* Write back the LEB atomically */
1055  	err = ubifs_leb_change(c, lnum, sbuf, len);
1056  	if (err)
1057  		return err;
1058  
1059  	dbg_rcvry("cleaned LEB %d", lnum);
1060  
1061  	return 0;
1062  }
1063  
1064  /**
1065   * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1066   * @c: UBIFS file-system description object
1067   * @sbuf: LEB-sized buffer to use
1068   *
1069   * This function cleans a LEB identified during recovery that needs to be
1070   * written but was not because UBIFS was mounted read-only. This happens when
1071   * remounting to read-write mode.
1072   *
1073   * This function returns %0 on success and a negative error code on failure.
1074   */
ubifs_clean_lebs(struct ubifs_info * c,void * sbuf)1075  int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1076  {
1077  	dbg_rcvry("recovery");
1078  	while (!list_empty(&c->unclean_leb_list)) {
1079  		struct ubifs_unclean_leb *ucleb;
1080  		int err;
1081  
1082  		ucleb = list_entry(c->unclean_leb_list.next,
1083  				   struct ubifs_unclean_leb, list);
1084  		err = clean_an_unclean_leb(c, ucleb, sbuf);
1085  		if (err)
1086  			return err;
1087  		list_del(&ucleb->list);
1088  		kfree(ucleb);
1089  	}
1090  	return 0;
1091  }
1092  
1093  /**
1094   * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1095   * @c: UBIFS file-system description object
1096   *
1097   * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1098   * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1099   * zero in case of success and a negative error code in case of failure.
1100   */
grab_empty_leb(struct ubifs_info * c)1101  static int grab_empty_leb(struct ubifs_info *c)
1102  {
1103  	int lnum, err;
1104  
1105  	/*
1106  	 * Note, it is very important to first search for an empty LEB and then
1107  	 * run the commit, not vice-versa. The reason is that there might be
1108  	 * only one empty LEB at the moment, the one which has been the
1109  	 * @c->gc_lnum just before the power cut happened. During the regular
1110  	 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1111  	 * one but GC can grab it. But at this moment this single empty LEB is
1112  	 * not marked as taken, so if we run commit - what happens? Right, the
1113  	 * commit will grab it and write the index there. Remember that the
1114  	 * index always expands as long as there is free space, and it only
1115  	 * starts consolidating when we run out of space.
1116  	 *
1117  	 * IOW, if we run commit now, we might not be able to find a free LEB
1118  	 * after this.
1119  	 */
1120  	lnum = ubifs_find_free_leb_for_idx(c);
1121  	if (lnum < 0) {
1122  		ubifs_err(c, "could not find an empty LEB");
1123  		ubifs_dump_lprops(c);
1124  		ubifs_dump_budg(c, &c->bi);
1125  		return lnum;
1126  	}
1127  
1128  	/* Reset the index flag */
1129  	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1130  				  LPROPS_INDEX, 0);
1131  	if (err)
1132  		return err;
1133  
1134  	c->gc_lnum = lnum;
1135  	dbg_rcvry("found empty LEB %d, run commit", lnum);
1136  
1137  	return ubifs_run_commit(c);
1138  }
1139  
1140  /**
1141   * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1142   * @c: UBIFS file-system description object
1143   *
1144   * Out-of-place garbage collection requires always one empty LEB with which to
1145   * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1146   * written to the master node on unmounting. In the case of an unclean unmount
1147   * the value of gc_lnum recorded in the master node is out of date and cannot
1148   * be used. Instead, recovery must allocate an empty LEB for this purpose.
1149   * However, there may not be enough empty space, in which case it must be
1150   * possible to GC the dirtiest LEB into the GC head LEB.
1151   *
1152   * This function also runs the commit which causes the TNC updates from
1153   * size-recovery and orphans to be written to the flash. That is important to
1154   * ensure correct replay order for subsequent mounts.
1155   *
1156   * This function returns %0 on success and a negative error code on failure.
1157   */
ubifs_rcvry_gc_commit(struct ubifs_info * c)1158  int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1159  {
1160  	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1161  	struct ubifs_lprops lp;
1162  	int err;
1163  
1164  	dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1165  
1166  	c->gc_lnum = -1;
1167  	if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1168  		return grab_empty_leb(c);
1169  
1170  	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1171  	if (err) {
1172  		if (err != -ENOSPC)
1173  			return err;
1174  
1175  		dbg_rcvry("could not find a dirty LEB");
1176  		return grab_empty_leb(c);
1177  	}
1178  
1179  	ubifs_assert(c, !(lp.flags & LPROPS_INDEX));
1180  	ubifs_assert(c, lp.free + lp.dirty >= wbuf->offs);
1181  
1182  	/*
1183  	 * We run the commit before garbage collection otherwise subsequent
1184  	 * mounts will see the GC and orphan deletion in a different order.
1185  	 */
1186  	dbg_rcvry("committing");
1187  	err = ubifs_run_commit(c);
1188  	if (err)
1189  		return err;
1190  
1191  	dbg_rcvry("GC'ing LEB %d", lp.lnum);
1192  	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1193  	err = ubifs_garbage_collect_leb(c, &lp);
1194  	if (err >= 0) {
1195  		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1196  
1197  		if (err2)
1198  			err = err2;
1199  	}
1200  	mutex_unlock(&wbuf->io_mutex);
1201  	if (err < 0) {
1202  		ubifs_err(c, "GC failed, error %d", err);
1203  		if (err == -EAGAIN)
1204  			err = -EINVAL;
1205  		return err;
1206  	}
1207  
1208  	ubifs_assert(c, err == LEB_RETAINED);
1209  	if (err != LEB_RETAINED)
1210  		return -EINVAL;
1211  
1212  	err = ubifs_leb_unmap(c, c->gc_lnum);
1213  	if (err)
1214  		return err;
1215  
1216  	dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1217  	return 0;
1218  }
1219  
1220  /**
1221   * struct size_entry - inode size information for recovery.
1222   * @rb: link in the RB-tree of sizes
1223   * @inum: inode number
1224   * @i_size: size on inode
1225   * @d_size: maximum size based on data nodes
1226   * @exists: indicates whether the inode exists
1227   * @inode: inode if pinned in memory awaiting rw mode to fix it
1228   */
1229  struct size_entry {
1230  	struct rb_node rb;
1231  	ino_t inum;
1232  	loff_t i_size;
1233  	loff_t d_size;
1234  	int exists;
1235  	struct inode *inode;
1236  };
1237  
1238  /**
1239   * add_ino - add an entry to the size tree.
1240   * @c: UBIFS file-system description object
1241   * @inum: inode number
1242   * @i_size: size on inode
1243   * @d_size: maximum size based on data nodes
1244   * @exists: indicates whether the inode exists
1245   */
add_ino(struct ubifs_info * c,ino_t inum,loff_t i_size,loff_t d_size,int exists)1246  static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1247  		   loff_t d_size, int exists)
1248  {
1249  	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1250  	struct size_entry *e;
1251  
1252  	while (*p) {
1253  		parent = *p;
1254  		e = rb_entry(parent, struct size_entry, rb);
1255  		if (inum < e->inum)
1256  			p = &(*p)->rb_left;
1257  		else
1258  			p = &(*p)->rb_right;
1259  	}
1260  
1261  	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1262  	if (!e)
1263  		return -ENOMEM;
1264  
1265  	e->inum = inum;
1266  	e->i_size = i_size;
1267  	e->d_size = d_size;
1268  	e->exists = exists;
1269  
1270  	rb_link_node(&e->rb, parent, p);
1271  	rb_insert_color(&e->rb, &c->size_tree);
1272  
1273  	return 0;
1274  }
1275  
1276  /**
1277   * find_ino - find an entry on the size tree.
1278   * @c: UBIFS file-system description object
1279   * @inum: inode number
1280   */
find_ino(struct ubifs_info * c,ino_t inum)1281  static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1282  {
1283  	struct rb_node *p = c->size_tree.rb_node;
1284  	struct size_entry *e;
1285  
1286  	while (p) {
1287  		e = rb_entry(p, struct size_entry, rb);
1288  		if (inum < e->inum)
1289  			p = p->rb_left;
1290  		else if (inum > e->inum)
1291  			p = p->rb_right;
1292  		else
1293  			return e;
1294  	}
1295  	return NULL;
1296  }
1297  
1298  /**
1299   * remove_ino - remove an entry from the size tree.
1300   * @c: UBIFS file-system description object
1301   * @inum: inode number
1302   */
remove_ino(struct ubifs_info * c,ino_t inum)1303  static void remove_ino(struct ubifs_info *c, ino_t inum)
1304  {
1305  	struct size_entry *e = find_ino(c, inum);
1306  
1307  	if (!e)
1308  		return;
1309  	rb_erase(&e->rb, &c->size_tree);
1310  	kfree(e);
1311  }
1312  
1313  /**
1314   * ubifs_destroy_size_tree - free resources related to the size tree.
1315   * @c: UBIFS file-system description object
1316   */
ubifs_destroy_size_tree(struct ubifs_info * c)1317  void ubifs_destroy_size_tree(struct ubifs_info *c)
1318  {
1319  	struct size_entry *e, *n;
1320  
1321  	rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1322  		iput(e->inode);
1323  		kfree(e);
1324  	}
1325  
1326  	c->size_tree = RB_ROOT;
1327  }
1328  
1329  /**
1330   * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1331   * @c: UBIFS file-system description object
1332   * @key: node key
1333   * @deletion: node is for a deletion
1334   * @new_size: inode size
1335   *
1336   * This function has two purposes:
1337   *     1) to ensure there are no data nodes that fall outside the inode size
1338   *     2) to ensure there are no data nodes for inodes that do not exist
1339   * To accomplish those purposes, a rb-tree is constructed containing an entry
1340   * for each inode number in the journal that has not been deleted, and recording
1341   * the size from the inode node, the maximum size of any data node (also altered
1342   * by truncations) and a flag indicating a inode number for which no inode node
1343   * was present in the journal.
1344   *
1345   * Note that there is still the possibility that there are data nodes that have
1346   * been committed that are beyond the inode size, however the only way to find
1347   * them would be to scan the entire index. Alternatively, some provision could
1348   * be made to record the size of inodes at the start of commit, which would seem
1349   * very cumbersome for a scenario that is quite unlikely and the only negative
1350   * consequence of which is wasted space.
1351   *
1352   * This functions returns %0 on success and a negative error code on failure.
1353   */
ubifs_recover_size_accum(struct ubifs_info * c,union ubifs_key * key,int deletion,loff_t new_size)1354  int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1355  			     int deletion, loff_t new_size)
1356  {
1357  	ino_t inum = key_inum(c, key);
1358  	struct size_entry *e;
1359  	int err;
1360  
1361  	switch (key_type(c, key)) {
1362  	case UBIFS_INO_KEY:
1363  		if (deletion)
1364  			remove_ino(c, inum);
1365  		else {
1366  			e = find_ino(c, inum);
1367  			if (e) {
1368  				e->i_size = new_size;
1369  				e->exists = 1;
1370  			} else {
1371  				err = add_ino(c, inum, new_size, 0, 1);
1372  				if (err)
1373  					return err;
1374  			}
1375  		}
1376  		break;
1377  	case UBIFS_DATA_KEY:
1378  		e = find_ino(c, inum);
1379  		if (e) {
1380  			if (new_size > e->d_size)
1381  				e->d_size = new_size;
1382  		} else {
1383  			err = add_ino(c, inum, 0, new_size, 0);
1384  			if (err)
1385  				return err;
1386  		}
1387  		break;
1388  	case UBIFS_TRUN_KEY:
1389  		e = find_ino(c, inum);
1390  		if (e)
1391  			e->d_size = new_size;
1392  		break;
1393  	}
1394  	return 0;
1395  }
1396  
1397  /**
1398   * fix_size_in_place - fix inode size in place on flash.
1399   * @c: UBIFS file-system description object
1400   * @e: inode size information for recovery
1401   */
fix_size_in_place(struct ubifs_info * c,struct size_entry * e)1402  static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1403  {
1404  	struct ubifs_ino_node *ino = c->sbuf;
1405  	unsigned char *p;
1406  	union ubifs_key key;
1407  	int err, lnum, offs, len;
1408  	loff_t i_size;
1409  	uint32_t crc;
1410  
1411  	/* Locate the inode node LEB number and offset */
1412  	ino_key_init(c, &key, e->inum);
1413  	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1414  	if (err)
1415  		goto out;
1416  	/*
1417  	 * If the size recorded on the inode node is greater than the size that
1418  	 * was calculated from nodes in the journal then don't change the inode.
1419  	 */
1420  	i_size = le64_to_cpu(ino->size);
1421  	if (i_size >= e->d_size)
1422  		return 0;
1423  	/* Read the LEB */
1424  	err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1425  	if (err)
1426  		goto out;
1427  	/* Change the size field and recalculate the CRC */
1428  	ino = c->sbuf + offs;
1429  	ino->size = cpu_to_le64(e->d_size);
1430  	len = le32_to_cpu(ino->ch.len);
1431  	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1432  	ino->ch.crc = cpu_to_le32(crc);
1433  	/* Work out where data in the LEB ends and free space begins */
1434  	p = c->sbuf;
1435  	len = c->leb_size - 1;
1436  	while (p[len] == 0xff)
1437  		len -= 1;
1438  	len = ALIGN(len + 1, c->min_io_size);
1439  	/* Atomically write the fixed LEB back again */
1440  	err = ubifs_leb_change(c, lnum, c->sbuf, len);
1441  	if (err)
1442  		goto out;
1443  	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1444  		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1445  	return 0;
1446  
1447  out:
1448  	ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
1449  		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1450  	return err;
1451  }
1452  
1453  /**
1454   * inode_fix_size - fix inode size
1455   * @c: UBIFS file-system description object
1456   * @e: inode size information for recovery
1457   */
inode_fix_size(struct ubifs_info * c,struct size_entry * e)1458  static int inode_fix_size(struct ubifs_info *c, struct size_entry *e)
1459  {
1460  	struct inode *inode;
1461  	struct ubifs_inode *ui;
1462  	int err;
1463  
1464  	if (c->ro_mount)
1465  		ubifs_assert(c, !e->inode);
1466  
1467  	if (e->inode) {
1468  		/* Remounting rw, pick up inode we stored earlier */
1469  		inode = e->inode;
1470  	} else {
1471  		inode = ubifs_iget(c->vfs_sb, e->inum);
1472  		if (IS_ERR(inode))
1473  			return PTR_ERR(inode);
1474  
1475  		if (inode->i_size >= e->d_size) {
1476  			/*
1477  			 * The original inode in the index already has a size
1478  			 * big enough, nothing to do
1479  			 */
1480  			iput(inode);
1481  			return 0;
1482  		}
1483  
1484  		dbg_rcvry("ino %lu size %lld -> %lld",
1485  			  (unsigned long)e->inum,
1486  			  inode->i_size, e->d_size);
1487  
1488  		ui = ubifs_inode(inode);
1489  
1490  		inode->i_size = e->d_size;
1491  		ui->ui_size = e->d_size;
1492  		ui->synced_i_size = e->d_size;
1493  
1494  		e->inode = inode;
1495  	}
1496  
1497  	/*
1498  	 * In readonly mode just keep the inode pinned in memory until we go
1499  	 * readwrite. In readwrite mode write the inode to the journal with the
1500  	 * fixed size.
1501  	 */
1502  	if (c->ro_mount)
1503  		return 0;
1504  
1505  	err = ubifs_jnl_write_inode(c, inode);
1506  
1507  	iput(inode);
1508  
1509  	if (err)
1510  		return err;
1511  
1512  	rb_erase(&e->rb, &c->size_tree);
1513  	kfree(e);
1514  
1515  	return 0;
1516  }
1517  
1518  /**
1519   * ubifs_recover_size - recover inode size.
1520   * @c: UBIFS file-system description object
1521   * @in_place: If true, do a in-place size fixup
1522   *
1523   * This function attempts to fix inode size discrepancies identified by the
1524   * 'ubifs_recover_size_accum()' function.
1525   *
1526   * This functions returns %0 on success and a negative error code on failure.
1527   */
ubifs_recover_size(struct ubifs_info * c,bool in_place)1528  int ubifs_recover_size(struct ubifs_info *c, bool in_place)
1529  {
1530  	struct rb_node *this = rb_first(&c->size_tree);
1531  
1532  	while (this) {
1533  		struct size_entry *e;
1534  		int err;
1535  
1536  		e = rb_entry(this, struct size_entry, rb);
1537  
1538  		this = rb_next(this);
1539  
1540  		if (!e->exists) {
1541  			union ubifs_key key;
1542  
1543  			ino_key_init(c, &key, e->inum);
1544  			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1545  			if (err && err != -ENOENT)
1546  				return err;
1547  			if (err == -ENOENT) {
1548  				/* Remove data nodes that have no inode */
1549  				dbg_rcvry("removing ino %lu",
1550  					  (unsigned long)e->inum);
1551  				err = ubifs_tnc_remove_ino(c, e->inum);
1552  				if (err)
1553  					return err;
1554  			} else {
1555  				struct ubifs_ino_node *ino = c->sbuf;
1556  
1557  				e->exists = 1;
1558  				e->i_size = le64_to_cpu(ino->size);
1559  			}
1560  		}
1561  
1562  		if (e->exists && e->i_size < e->d_size) {
1563  			ubifs_assert(c, !(c->ro_mount && in_place));
1564  
1565  			/*
1566  			 * We found data that is outside the found inode size,
1567  			 * fixup the inode size
1568  			 */
1569  
1570  			if (in_place) {
1571  				err = fix_size_in_place(c, e);
1572  				if (err)
1573  					return err;
1574  				iput(e->inode);
1575  			} else {
1576  				err = inode_fix_size(c, e);
1577  				if (err)
1578  					return err;
1579  				continue;
1580  			}
1581  		}
1582  
1583  		rb_erase(&e->rb, &c->size_tree);
1584  		kfree(e);
1585  	}
1586  
1587  	return 0;
1588  }
1589