1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * This file is part of UBIFS.
4   *
5   * Copyright (C) 2006-2008 Nokia Corporation.
6   * Copyright (C) 2006, 2007 University of Szeged, Hungary
7   *
8   * Authors: Artem Bityutskiy (Битюцкий Артём)
9   *          Adrian Hunter
10   *          Zoltan Sogor
11   */
12  
13  /*
14   * This file implements UBIFS I/O subsystem which provides various I/O-related
15   * helper functions (reading/writing/checking/validating nodes) and implements
16   * write-buffering support. Write buffers help to save space which otherwise
17   * would have been wasted for padding to the nearest minimal I/O unit boundary.
18   * Instead, data first goes to the write-buffer and is flushed when the
19   * buffer is full or when it is not used for some time (by timer). This is
20   * similar to the mechanism is used by JFFS2.
21   *
22   * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23   * write size (@c->max_write_size). The latter is the maximum amount of bytes
24   * the underlying flash is able to program at a time, and writing in
25   * @c->max_write_size units should presumably be faster. Obviously,
26   * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27   * @c->max_write_size bytes in size for maximum performance. However, when a
28   * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29   * boundary) which contains data is written, not the whole write-buffer,
30   * because this is more space-efficient.
31   *
32   * This optimization adds few complications to the code. Indeed, on the one
33   * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34   * also means aligning writes at the @c->max_write_size bytes offsets. On the
35   * other hand, we do not want to waste space when synchronizing the write
36   * buffer, so during synchronization we writes in smaller chunks. And this makes
37   * the next write offset to be not aligned to @c->max_write_size bytes. So the
38   * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39   * to @c->max_write_size bytes again. We do this by temporarily shrinking
40   * write-buffer size (@wbuf->size).
41   *
42   * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43   * mutexes defined inside these objects. Since sometimes upper-level code
44   * has to lock the write-buffer (e.g. journal space reservation code), many
45   * functions related to write-buffers have "nolock" suffix which means that the
46   * caller has to lock the write-buffer before calling this function.
47   *
48   * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49   * aligned, UBIFS starts the next node from the aligned address, and the padded
50   * bytes may contain any rubbish. In other words, UBIFS does not put padding
51   * bytes in those small gaps. Common headers of nodes store real node lengths,
52   * not aligned lengths. Indexing nodes also store real lengths in branches.
53   *
54   * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55   * uses padding nodes or padding bytes, if the padding node does not fit.
56   *
57   * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58   * they are read from the flash media.
59   */
60  
61  #include <linux/crc32.h>
62  #include <linux/slab.h>
63  #include "ubifs.h"
64  
65  /**
66   * ubifs_ro_mode - switch UBIFS to read read-only mode.
67   * @c: UBIFS file-system description object
68   * @err: error code which is the reason of switching to R/O mode
69   */
ubifs_ro_mode(struct ubifs_info * c,int err)70  void ubifs_ro_mode(struct ubifs_info *c, int err)
71  {
72  	if (!c->ro_error) {
73  		c->ro_error = 1;
74  		c->no_chk_data_crc = 0;
75  		c->vfs_sb->s_flags |= SB_RDONLY;
76  		ubifs_warn(c, "switched to read-only mode, error %d", err);
77  		dump_stack();
78  	}
79  }
80  
81  /*
82   * Below are simple wrappers over UBI I/O functions which include some
83   * additional checks and UBIFS debugging stuff. See corresponding UBI function
84   * for more information.
85   */
86  
ubifs_leb_read(const struct ubifs_info * c,int lnum,void * buf,int offs,int len,int even_ebadmsg)87  int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
88  		   int len, int even_ebadmsg)
89  {
90  	int err;
91  
92  	err = ubi_read(c->ubi, lnum, buf, offs, len);
93  	/*
94  	 * In case of %-EBADMSG print the error message only if the
95  	 * @even_ebadmsg is true.
96  	 */
97  	if (err && (err != -EBADMSG || even_ebadmsg)) {
98  		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
99  			  len, lnum, offs, err);
100  		dump_stack();
101  	}
102  	return err;
103  }
104  
ubifs_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)105  int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
106  		    int len)
107  {
108  	int err;
109  
110  	ubifs_assert(c, !c->ro_media && !c->ro_mount);
111  	if (c->ro_error)
112  		return -EROFS;
113  	if (!dbg_is_tst_rcvry(c))
114  		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
115  	else
116  		err = dbg_leb_write(c, lnum, buf, offs, len);
117  	if (err) {
118  		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
119  			  len, lnum, offs, err);
120  		ubifs_ro_mode(c, err);
121  		dump_stack();
122  	}
123  	return err;
124  }
125  
ubifs_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)126  int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
127  {
128  	int err;
129  
130  	ubifs_assert(c, !c->ro_media && !c->ro_mount);
131  	if (c->ro_error)
132  		return -EROFS;
133  	if (!dbg_is_tst_rcvry(c))
134  		err = ubi_leb_change(c->ubi, lnum, buf, len);
135  	else
136  		err = dbg_leb_change(c, lnum, buf, len);
137  	if (err) {
138  		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
139  			  len, lnum, err);
140  		ubifs_ro_mode(c, err);
141  		dump_stack();
142  	}
143  	return err;
144  }
145  
ubifs_leb_unmap(struct ubifs_info * c,int lnum)146  int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
147  {
148  	int err;
149  
150  	ubifs_assert(c, !c->ro_media && !c->ro_mount);
151  	if (c->ro_error)
152  		return -EROFS;
153  	if (!dbg_is_tst_rcvry(c))
154  		err = ubi_leb_unmap(c->ubi, lnum);
155  	else
156  		err = dbg_leb_unmap(c, lnum);
157  	if (err) {
158  		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
159  		ubifs_ro_mode(c, err);
160  		dump_stack();
161  	}
162  	return err;
163  }
164  
ubifs_leb_map(struct ubifs_info * c,int lnum)165  int ubifs_leb_map(struct ubifs_info *c, int lnum)
166  {
167  	int err;
168  
169  	ubifs_assert(c, !c->ro_media && !c->ro_mount);
170  	if (c->ro_error)
171  		return -EROFS;
172  	if (!dbg_is_tst_rcvry(c))
173  		err = ubi_leb_map(c->ubi, lnum);
174  	else
175  		err = dbg_leb_map(c, lnum);
176  	if (err) {
177  		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
178  		ubifs_ro_mode(c, err);
179  		dump_stack();
180  	}
181  	return err;
182  }
183  
ubifs_is_mapped(const struct ubifs_info * c,int lnum)184  int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
185  {
186  	int err;
187  
188  	err = ubi_is_mapped(c->ubi, lnum);
189  	if (err < 0) {
190  		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
191  			  lnum, err);
192  		dump_stack();
193  	}
194  	return err;
195  }
196  
record_magic_error(struct ubifs_stats_info * stats)197  static void record_magic_error(struct ubifs_stats_info *stats)
198  {
199  	if (stats)
200  		stats->magic_errors++;
201  }
202  
record_node_error(struct ubifs_stats_info * stats)203  static void record_node_error(struct ubifs_stats_info *stats)
204  {
205  	if (stats)
206  		stats->node_errors++;
207  }
208  
record_crc_error(struct ubifs_stats_info * stats)209  static void record_crc_error(struct ubifs_stats_info *stats)
210  {
211  	if (stats)
212  		stats->crc_errors++;
213  }
214  
215  /**
216   * ubifs_check_node - check node.
217   * @c: UBIFS file-system description object
218   * @buf: node to check
219   * @len: node length
220   * @lnum: logical eraseblock number
221   * @offs: offset within the logical eraseblock
222   * @quiet: print no messages
223   * @must_chk_crc: indicates whether to always check the CRC
224   *
225   * This function checks node magic number and CRC checksum. This function also
226   * validates node length to prevent UBIFS from becoming crazy when an attacker
227   * feeds it a file-system image with incorrect nodes. For example, too large
228   * node length in the common header could cause UBIFS to read memory outside of
229   * allocated buffer when checking the CRC checksum.
230   *
231   * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
232   * true, which is controlled by corresponding UBIFS mount option. However, if
233   * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
234   * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
235   * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
236   * is checked. This is because during mounting or re-mounting from R/O mode to
237   * R/W mode we may read journal nodes (when replying the journal or doing the
238   * recovery) and the journal nodes may potentially be corrupted, so checking is
239   * required.
240   *
241   * This function returns zero in case of success and %-EUCLEAN in case of bad
242   * CRC or magic.
243   */
ubifs_check_node(const struct ubifs_info * c,const void * buf,int len,int lnum,int offs,int quiet,int must_chk_crc)244  int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len,
245  		     int lnum, int offs, int quiet, int must_chk_crc)
246  {
247  	int err = -EINVAL, type, node_len;
248  	uint32_t crc, node_crc, magic;
249  	const struct ubifs_ch *ch = buf;
250  
251  	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
252  	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
253  
254  	magic = le32_to_cpu(ch->magic);
255  	if (magic != UBIFS_NODE_MAGIC) {
256  		if (!quiet)
257  			ubifs_err(c, "bad magic %#08x, expected %#08x",
258  				  magic, UBIFS_NODE_MAGIC);
259  		record_magic_error(c->stats);
260  		err = -EUCLEAN;
261  		goto out;
262  	}
263  
264  	type = ch->node_type;
265  	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
266  		if (!quiet)
267  			ubifs_err(c, "bad node type %d", type);
268  		record_node_error(c->stats);
269  		goto out;
270  	}
271  
272  	node_len = le32_to_cpu(ch->len);
273  	if (node_len + offs > c->leb_size)
274  		goto out_len;
275  
276  	if (c->ranges[type].max_len == 0) {
277  		if (node_len != c->ranges[type].len)
278  			goto out_len;
279  	} else if (node_len < c->ranges[type].min_len ||
280  		   node_len > c->ranges[type].max_len)
281  		goto out_len;
282  
283  	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
284  	    !c->remounting_rw && c->no_chk_data_crc)
285  		return 0;
286  
287  	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
288  	node_crc = le32_to_cpu(ch->crc);
289  	if (crc != node_crc) {
290  		if (!quiet)
291  			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
292  				  crc, node_crc);
293  		record_crc_error(c->stats);
294  		err = -EUCLEAN;
295  		goto out;
296  	}
297  
298  	return 0;
299  
300  out_len:
301  	if (!quiet)
302  		ubifs_err(c, "bad node length %d", node_len);
303  out:
304  	if (!quiet) {
305  		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
306  		ubifs_dump_node(c, buf, len);
307  		dump_stack();
308  	}
309  	return err;
310  }
311  
312  /**
313   * ubifs_pad - pad flash space.
314   * @c: UBIFS file-system description object
315   * @buf: buffer to put padding to
316   * @pad: how many bytes to pad
317   *
318   * The flash media obliges us to write only in chunks of %c->min_io_size and
319   * when we have to write less data we add padding node to the write-buffer and
320   * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
321   * media is being scanned. If the amount of wasted space is not enough to fit a
322   * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
323   * pattern (%UBIFS_PADDING_BYTE).
324   *
325   * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
326   * used.
327   */
ubifs_pad(const struct ubifs_info * c,void * buf,int pad)328  void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
329  {
330  	uint32_t crc;
331  
332  	ubifs_assert(c, pad >= 0);
333  
334  	if (pad >= UBIFS_PAD_NODE_SZ) {
335  		struct ubifs_ch *ch = buf;
336  		struct ubifs_pad_node *pad_node = buf;
337  
338  		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
339  		ch->node_type = UBIFS_PAD_NODE;
340  		ch->group_type = UBIFS_NO_NODE_GROUP;
341  		ch->padding[0] = ch->padding[1] = 0;
342  		ch->sqnum = 0;
343  		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
344  		pad -= UBIFS_PAD_NODE_SZ;
345  		pad_node->pad_len = cpu_to_le32(pad);
346  		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
347  		ch->crc = cpu_to_le32(crc);
348  		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
349  	} else if (pad > 0)
350  		/* Too little space, padding node won't fit */
351  		memset(buf, UBIFS_PADDING_BYTE, pad);
352  }
353  
354  /**
355   * next_sqnum - get next sequence number.
356   * @c: UBIFS file-system description object
357   */
next_sqnum(struct ubifs_info * c)358  static unsigned long long next_sqnum(struct ubifs_info *c)
359  {
360  	unsigned long long sqnum;
361  
362  	spin_lock(&c->cnt_lock);
363  	sqnum = ++c->max_sqnum;
364  	spin_unlock(&c->cnt_lock);
365  
366  	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
367  		if (sqnum >= SQNUM_WATERMARK) {
368  			ubifs_err(c, "sequence number overflow %llu, end of life",
369  				  sqnum);
370  			ubifs_ro_mode(c, -EINVAL);
371  		}
372  		ubifs_warn(c, "running out of sequence numbers, end of life soon");
373  	}
374  
375  	return sqnum;
376  }
377  
ubifs_init_node(struct ubifs_info * c,void * node,int len,int pad)378  void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad)
379  {
380  	struct ubifs_ch *ch = node;
381  	unsigned long long sqnum = next_sqnum(c);
382  
383  	ubifs_assert(c, len >= UBIFS_CH_SZ);
384  
385  	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
386  	ch->len = cpu_to_le32(len);
387  	ch->group_type = UBIFS_NO_NODE_GROUP;
388  	ch->sqnum = cpu_to_le64(sqnum);
389  	ch->padding[0] = ch->padding[1] = 0;
390  
391  	if (pad) {
392  		len = ALIGN(len, 8);
393  		pad = ALIGN(len, c->min_io_size) - len;
394  		ubifs_pad(c, node + len, pad);
395  	}
396  }
397  
ubifs_crc_node(struct ubifs_info * c,void * node,int len)398  void ubifs_crc_node(struct ubifs_info *c, void *node, int len)
399  {
400  	struct ubifs_ch *ch = node;
401  	uint32_t crc;
402  
403  	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
404  	ch->crc = cpu_to_le32(crc);
405  }
406  
407  /**
408   * ubifs_prepare_node_hmac - prepare node to be written to flash.
409   * @c: UBIFS file-system description object
410   * @node: the node to pad
411   * @len: node length
412   * @hmac_offs: offset of the HMAC in the node
413   * @pad: if the buffer has to be padded
414   *
415   * This function prepares node at @node to be written to the media - it
416   * calculates node CRC, fills the common header, and adds proper padding up to
417   * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
418   * a HMAC is inserted into the node at the given offset.
419   *
420   * This function returns 0 for success or a negative error code otherwise.
421   */
ubifs_prepare_node_hmac(struct ubifs_info * c,void * node,int len,int hmac_offs,int pad)422  int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
423  			    int hmac_offs, int pad)
424  {
425  	int err;
426  
427  	ubifs_init_node(c, node, len, pad);
428  
429  	if (hmac_offs > 0) {
430  		err = ubifs_node_insert_hmac(c, node, len, hmac_offs);
431  		if (err)
432  			return err;
433  	}
434  
435  	ubifs_crc_node(c, node, len);
436  
437  	return 0;
438  }
439  
440  /**
441   * ubifs_prepare_node - prepare node to be written to flash.
442   * @c: UBIFS file-system description object
443   * @node: the node to pad
444   * @len: node length
445   * @pad: if the buffer has to be padded
446   *
447   * This function prepares node at @node to be written to the media - it
448   * calculates node CRC, fills the common header, and adds proper padding up to
449   * the next minimum I/O unit if @pad is not zero.
450   */
ubifs_prepare_node(struct ubifs_info * c,void * node,int len,int pad)451  void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
452  {
453  	/*
454  	 * Deliberately ignore return value since this function can only fail
455  	 * when a hmac offset is given.
456  	 */
457  	ubifs_prepare_node_hmac(c, node, len, 0, pad);
458  }
459  
460  /**
461   * ubifs_prep_grp_node - prepare node of a group to be written to flash.
462   * @c: UBIFS file-system description object
463   * @node: the node to pad
464   * @len: node length
465   * @last: indicates the last node of the group
466   *
467   * This function prepares node at @node to be written to the media - it
468   * calculates node CRC and fills the common header.
469   */
ubifs_prep_grp_node(struct ubifs_info * c,void * node,int len,int last)470  void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
471  {
472  	uint32_t crc;
473  	struct ubifs_ch *ch = node;
474  	unsigned long long sqnum = next_sqnum(c);
475  
476  	ubifs_assert(c, len >= UBIFS_CH_SZ);
477  
478  	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
479  	ch->len = cpu_to_le32(len);
480  	if (last)
481  		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
482  	else
483  		ch->group_type = UBIFS_IN_NODE_GROUP;
484  	ch->sqnum = cpu_to_le64(sqnum);
485  	ch->padding[0] = ch->padding[1] = 0;
486  	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
487  	ch->crc = cpu_to_le32(crc);
488  }
489  
490  /**
491   * wbuf_timer_callback_nolock - write-buffer timer callback function.
492   * @timer: timer data (write-buffer descriptor)
493   *
494   * This function is called when the write-buffer timer expires.
495   */
wbuf_timer_callback_nolock(struct hrtimer * timer)496  static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
497  {
498  	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
499  
500  	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
501  	wbuf->need_sync = 1;
502  	wbuf->c->need_wbuf_sync = 1;
503  	ubifs_wake_up_bgt(wbuf->c);
504  	return HRTIMER_NORESTART;
505  }
506  
507  /**
508   * new_wbuf_timer_nolock - start new write-buffer timer.
509   * @c: UBIFS file-system description object
510   * @wbuf: write-buffer descriptor
511   */
new_wbuf_timer_nolock(struct ubifs_info * c,struct ubifs_wbuf * wbuf)512  static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
513  {
514  	ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
515  	unsigned long long delta = dirty_writeback_interval;
516  
517  	/* centi to milli, milli to nano, then 10% */
518  	delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
519  
520  	ubifs_assert(c, !hrtimer_active(&wbuf->timer));
521  	ubifs_assert(c, delta <= ULONG_MAX);
522  
523  	if (wbuf->no_timer)
524  		return;
525  	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
526  	       dbg_jhead(wbuf->jhead),
527  	       div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
528  	       div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
529  	hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
530  			       HRTIMER_MODE_REL);
531  }
532  
533  /**
534   * cancel_wbuf_timer_nolock - cancel write-buffer timer.
535   * @wbuf: write-buffer descriptor
536   */
cancel_wbuf_timer_nolock(struct ubifs_wbuf * wbuf)537  static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
538  {
539  	if (wbuf->no_timer)
540  		return;
541  	wbuf->need_sync = 0;
542  	hrtimer_cancel(&wbuf->timer);
543  }
544  
545  /**
546   * ubifs_wbuf_sync_nolock - synchronize write-buffer.
547   * @wbuf: write-buffer to synchronize
548   *
549   * This function synchronizes write-buffer @buf and returns zero in case of
550   * success or a negative error code in case of failure.
551   *
552   * Note, although write-buffers are of @c->max_write_size, this function does
553   * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
554   * if the write-buffer is only partially filled with data, only the used part
555   * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
556   * This way we waste less space.
557   */
ubifs_wbuf_sync_nolock(struct ubifs_wbuf * wbuf)558  int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
559  {
560  	struct ubifs_info *c = wbuf->c;
561  	int err, dirt, sync_len;
562  
563  	cancel_wbuf_timer_nolock(wbuf);
564  	if (!wbuf->used || wbuf->lnum == -1)
565  		/* Write-buffer is empty or not seeked */
566  		return 0;
567  
568  	dbg_io("LEB %d:%d, %d bytes, jhead %s",
569  	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
570  	ubifs_assert(c, !(wbuf->avail & 7));
571  	ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
572  	ubifs_assert(c, wbuf->size >= c->min_io_size);
573  	ubifs_assert(c, wbuf->size <= c->max_write_size);
574  	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
575  	ubifs_assert(c, !c->ro_media && !c->ro_mount);
576  	if (c->leb_size - wbuf->offs >= c->max_write_size)
577  		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
578  
579  	if (c->ro_error)
580  		return -EROFS;
581  
582  	/*
583  	 * Do not write whole write buffer but write only the minimum necessary
584  	 * amount of min. I/O units.
585  	 */
586  	sync_len = ALIGN(wbuf->used, c->min_io_size);
587  	dirt = sync_len - wbuf->used;
588  	if (dirt)
589  		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
590  	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
591  	if (err)
592  		return err;
593  
594  	spin_lock(&wbuf->lock);
595  	wbuf->offs += sync_len;
596  	/*
597  	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
598  	 * But our goal is to optimize writes and make sure we write in
599  	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
600  	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
601  	 * sure that @wbuf->offs + @wbuf->size is aligned to
602  	 * @c->max_write_size. This way we make sure that after next
603  	 * write-buffer flush we are again at the optimal offset (aligned to
604  	 * @c->max_write_size).
605  	 */
606  	if (c->leb_size - wbuf->offs < c->max_write_size)
607  		wbuf->size = c->leb_size - wbuf->offs;
608  	else if (wbuf->offs & (c->max_write_size - 1))
609  		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
610  	else
611  		wbuf->size = c->max_write_size;
612  	wbuf->avail = wbuf->size;
613  	wbuf->used = 0;
614  	wbuf->next_ino = 0;
615  	spin_unlock(&wbuf->lock);
616  
617  	if (wbuf->sync_callback)
618  		err = wbuf->sync_callback(c, wbuf->lnum,
619  					  c->leb_size - wbuf->offs, dirt);
620  	return err;
621  }
622  
623  /**
624   * ubifs_wbuf_seek_nolock - seek write-buffer.
625   * @wbuf: write-buffer
626   * @lnum: logical eraseblock number to seek to
627   * @offs: logical eraseblock offset to seek to
628   *
629   * This function targets the write-buffer to logical eraseblock @lnum:@offs.
630   * The write-buffer has to be empty. Returns zero in case of success and a
631   * negative error code in case of failure.
632   */
ubifs_wbuf_seek_nolock(struct ubifs_wbuf * wbuf,int lnum,int offs)633  int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
634  {
635  	const struct ubifs_info *c = wbuf->c;
636  
637  	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
638  	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
639  	ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
640  	ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
641  	ubifs_assert(c, lnum != wbuf->lnum);
642  	ubifs_assert(c, wbuf->used == 0);
643  
644  	spin_lock(&wbuf->lock);
645  	wbuf->lnum = lnum;
646  	wbuf->offs = offs;
647  	if (c->leb_size - wbuf->offs < c->max_write_size)
648  		wbuf->size = c->leb_size - wbuf->offs;
649  	else if (wbuf->offs & (c->max_write_size - 1))
650  		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
651  	else
652  		wbuf->size = c->max_write_size;
653  	wbuf->avail = wbuf->size;
654  	wbuf->used = 0;
655  	spin_unlock(&wbuf->lock);
656  
657  	return 0;
658  }
659  
660  /**
661   * ubifs_bg_wbufs_sync - synchronize write-buffers.
662   * @c: UBIFS file-system description object
663   *
664   * This function is called by background thread to synchronize write-buffers.
665   * Returns zero in case of success and a negative error code in case of
666   * failure.
667   */
ubifs_bg_wbufs_sync(struct ubifs_info * c)668  int ubifs_bg_wbufs_sync(struct ubifs_info *c)
669  {
670  	int err, i;
671  
672  	ubifs_assert(c, !c->ro_media && !c->ro_mount);
673  	if (!c->need_wbuf_sync)
674  		return 0;
675  	c->need_wbuf_sync = 0;
676  
677  	if (c->ro_error) {
678  		err = -EROFS;
679  		goto out_timers;
680  	}
681  
682  	dbg_io("synchronize");
683  	for (i = 0; i < c->jhead_cnt; i++) {
684  		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
685  
686  		cond_resched();
687  
688  		/*
689  		 * If the mutex is locked then wbuf is being changed, so
690  		 * synchronization is not necessary.
691  		 */
692  		if (mutex_is_locked(&wbuf->io_mutex))
693  			continue;
694  
695  		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
696  		if (!wbuf->need_sync) {
697  			mutex_unlock(&wbuf->io_mutex);
698  			continue;
699  		}
700  
701  		err = ubifs_wbuf_sync_nolock(wbuf);
702  		mutex_unlock(&wbuf->io_mutex);
703  		if (err) {
704  			ubifs_err(c, "cannot sync write-buffer, error %d", err);
705  			ubifs_ro_mode(c, err);
706  			goto out_timers;
707  		}
708  	}
709  
710  	return 0;
711  
712  out_timers:
713  	/* Cancel all timers to prevent repeated errors */
714  	for (i = 0; i < c->jhead_cnt; i++) {
715  		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
716  
717  		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
718  		cancel_wbuf_timer_nolock(wbuf);
719  		mutex_unlock(&wbuf->io_mutex);
720  	}
721  	return err;
722  }
723  
724  /**
725   * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
726   * @wbuf: write-buffer
727   * @buf: node to write
728   * @len: node length
729   *
730   * This function writes data to flash via write-buffer @wbuf. This means that
731   * the last piece of the node won't reach the flash media immediately if it
732   * does not take whole max. write unit (@c->max_write_size). Instead, the node
733   * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
734   * because more data are appended to the write-buffer).
735   *
736   * This function returns zero in case of success and a negative error code in
737   * case of failure. If the node cannot be written because there is no more
738   * space in this logical eraseblock, %-ENOSPC is returned.
739   */
ubifs_wbuf_write_nolock(struct ubifs_wbuf * wbuf,void * buf,int len)740  int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
741  {
742  	struct ubifs_info *c = wbuf->c;
743  	int err, n, written = 0, aligned_len = ALIGN(len, 8);
744  
745  	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
746  	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
747  	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
748  	ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
749  	ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
750  	ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
751  	ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
752  	ubifs_assert(c, wbuf->size >= c->min_io_size);
753  	ubifs_assert(c, wbuf->size <= c->max_write_size);
754  	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
755  	ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
756  	ubifs_assert(c, !c->ro_media && !c->ro_mount);
757  	ubifs_assert(c, !c->space_fixup);
758  	if (c->leb_size - wbuf->offs >= c->max_write_size)
759  		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
760  
761  	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
762  		err = -ENOSPC;
763  		goto out;
764  	}
765  
766  	cancel_wbuf_timer_nolock(wbuf);
767  
768  	if (c->ro_error)
769  		return -EROFS;
770  
771  	if (aligned_len <= wbuf->avail) {
772  		/*
773  		 * The node is not very large and fits entirely within
774  		 * write-buffer.
775  		 */
776  		memcpy(wbuf->buf + wbuf->used, buf, len);
777  		if (aligned_len > len) {
778  			ubifs_assert(c, aligned_len - len < 8);
779  			ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len);
780  		}
781  
782  		if (aligned_len == wbuf->avail) {
783  			dbg_io("flush jhead %s wbuf to LEB %d:%d",
784  			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
785  			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
786  					      wbuf->offs, wbuf->size);
787  			if (err)
788  				goto out;
789  
790  			spin_lock(&wbuf->lock);
791  			wbuf->offs += wbuf->size;
792  			if (c->leb_size - wbuf->offs >= c->max_write_size)
793  				wbuf->size = c->max_write_size;
794  			else
795  				wbuf->size = c->leb_size - wbuf->offs;
796  			wbuf->avail = wbuf->size;
797  			wbuf->used = 0;
798  			wbuf->next_ino = 0;
799  			spin_unlock(&wbuf->lock);
800  		} else {
801  			spin_lock(&wbuf->lock);
802  			wbuf->avail -= aligned_len;
803  			wbuf->used += aligned_len;
804  			spin_unlock(&wbuf->lock);
805  		}
806  
807  		goto exit;
808  	}
809  
810  	if (wbuf->used) {
811  		/*
812  		 * The node is large enough and does not fit entirely within
813  		 * current available space. We have to fill and flush
814  		 * write-buffer and switch to the next max. write unit.
815  		 */
816  		dbg_io("flush jhead %s wbuf to LEB %d:%d",
817  		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
818  		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
819  		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
820  				      wbuf->size);
821  		if (err)
822  			goto out;
823  
824  		wbuf->offs += wbuf->size;
825  		len -= wbuf->avail;
826  		aligned_len -= wbuf->avail;
827  		written += wbuf->avail;
828  	} else if (wbuf->offs & (c->max_write_size - 1)) {
829  		/*
830  		 * The write-buffer offset is not aligned to
831  		 * @c->max_write_size and @wbuf->size is less than
832  		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
833  		 * following writes are done in optimal @c->max_write_size
834  		 * chunks.
835  		 */
836  		dbg_io("write %d bytes to LEB %d:%d",
837  		       wbuf->size, wbuf->lnum, wbuf->offs);
838  		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
839  				      wbuf->size);
840  		if (err)
841  			goto out;
842  
843  		wbuf->offs += wbuf->size;
844  		len -= wbuf->size;
845  		aligned_len -= wbuf->size;
846  		written += wbuf->size;
847  	}
848  
849  	/*
850  	 * The remaining data may take more whole max. write units, so write the
851  	 * remains multiple to max. write unit size directly to the flash media.
852  	 * We align node length to 8-byte boundary because we anyway flash wbuf
853  	 * if the remaining space is less than 8 bytes.
854  	 */
855  	n = aligned_len >> c->max_write_shift;
856  	if (n) {
857  		int m = n - 1;
858  
859  		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
860  		       wbuf->offs);
861  
862  		if (m) {
863  			/* '(n-1)<<c->max_write_shift < len' is always true. */
864  			m <<= c->max_write_shift;
865  			err = ubifs_leb_write(c, wbuf->lnum, buf + written,
866  					      wbuf->offs, m);
867  			if (err)
868  				goto out;
869  			wbuf->offs += m;
870  			aligned_len -= m;
871  			len -= m;
872  			written += m;
873  		}
874  
875  		/*
876  		 * The non-written len of buf may be less than 'n' because
877  		 * parameter 'len' is not 8 bytes aligned, so here we read
878  		 * min(len, n) bytes from buf.
879  		 */
880  		n = 1 << c->max_write_shift;
881  		memcpy(wbuf->buf, buf + written, min(len, n));
882  		if (n > len) {
883  			ubifs_assert(c, n - len < 8);
884  			ubifs_pad(c, wbuf->buf + len, n - len);
885  		}
886  
887  		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n);
888  		if (err)
889  			goto out;
890  		wbuf->offs += n;
891  		aligned_len -= n;
892  		len -= min(len, n);
893  		written += n;
894  	}
895  
896  	spin_lock(&wbuf->lock);
897  	if (aligned_len) {
898  		/*
899  		 * And now we have what's left and what does not take whole
900  		 * max. write unit, so write it to the write-buffer and we are
901  		 * done.
902  		 */
903  		memcpy(wbuf->buf, buf + written, len);
904  		if (aligned_len > len) {
905  			ubifs_assert(c, aligned_len - len < 8);
906  			ubifs_pad(c, wbuf->buf + len, aligned_len - len);
907  		}
908  	}
909  
910  	if (c->leb_size - wbuf->offs >= c->max_write_size)
911  		wbuf->size = c->max_write_size;
912  	else
913  		wbuf->size = c->leb_size - wbuf->offs;
914  	wbuf->avail = wbuf->size - aligned_len;
915  	wbuf->used = aligned_len;
916  	wbuf->next_ino = 0;
917  	spin_unlock(&wbuf->lock);
918  
919  exit:
920  	if (wbuf->sync_callback) {
921  		int free = c->leb_size - wbuf->offs - wbuf->used;
922  
923  		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
924  		if (err)
925  			goto out;
926  	}
927  
928  	if (wbuf->used)
929  		new_wbuf_timer_nolock(c, wbuf);
930  
931  	return 0;
932  
933  out:
934  	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
935  		  len, wbuf->lnum, wbuf->offs, err);
936  	ubifs_dump_node(c, buf, written + len);
937  	dump_stack();
938  	ubifs_dump_leb(c, wbuf->lnum);
939  	return err;
940  }
941  
942  /**
943   * ubifs_write_node_hmac - write node to the media.
944   * @c: UBIFS file-system description object
945   * @buf: the node to write
946   * @len: node length
947   * @lnum: logical eraseblock number
948   * @offs: offset within the logical eraseblock
949   * @hmac_offs: offset of the HMAC within the node
950   *
951   * This function automatically fills node magic number, assigns sequence
952   * number, and calculates node CRC checksum. The length of the @buf buffer has
953   * to be aligned to the minimal I/O unit size. This function automatically
954   * appends padding node and padding bytes if needed. Returns zero in case of
955   * success and a negative error code in case of failure.
956   */
ubifs_write_node_hmac(struct ubifs_info * c,void * buf,int len,int lnum,int offs,int hmac_offs)957  int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
958  			  int offs, int hmac_offs)
959  {
960  	int err, buf_len = ALIGN(len, c->min_io_size);
961  
962  	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
963  	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
964  	       buf_len);
965  	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
966  	ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
967  	ubifs_assert(c, !c->ro_media && !c->ro_mount);
968  	ubifs_assert(c, !c->space_fixup);
969  
970  	if (c->ro_error)
971  		return -EROFS;
972  
973  	err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1);
974  	if (err)
975  		return err;
976  
977  	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
978  	if (err)
979  		ubifs_dump_node(c, buf, len);
980  
981  	return err;
982  }
983  
984  /**
985   * ubifs_write_node - write node to the media.
986   * @c: UBIFS file-system description object
987   * @buf: the node to write
988   * @len: node length
989   * @lnum: logical eraseblock number
990   * @offs: offset within the logical eraseblock
991   *
992   * This function automatically fills node magic number, assigns sequence
993   * number, and calculates node CRC checksum. The length of the @buf buffer has
994   * to be aligned to the minimal I/O unit size. This function automatically
995   * appends padding node and padding bytes if needed. Returns zero in case of
996   * success and a negative error code in case of failure.
997   */
ubifs_write_node(struct ubifs_info * c,void * buf,int len,int lnum,int offs)998  int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
999  		     int offs)
1000  {
1001  	return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1);
1002  }
1003  
1004  /**
1005   * ubifs_read_node_wbuf - read node from the media or write-buffer.
1006   * @wbuf: wbuf to check for un-written data
1007   * @buf: buffer to read to
1008   * @type: node type
1009   * @len: node length
1010   * @lnum: logical eraseblock number
1011   * @offs: offset within the logical eraseblock
1012   *
1013   * This function reads a node of known type and length, checks it and stores
1014   * in @buf. If the node partially or fully sits in the write-buffer, this
1015   * function takes data from the buffer, otherwise it reads the flash media.
1016   * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
1017   * error code in case of failure.
1018   */
ubifs_read_node_wbuf(struct ubifs_wbuf * wbuf,void * buf,int type,int len,int lnum,int offs)1019  int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
1020  			 int lnum, int offs)
1021  {
1022  	const struct ubifs_info *c = wbuf->c;
1023  	int err, rlen, overlap;
1024  	struct ubifs_ch *ch = buf;
1025  
1026  	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
1027  	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
1028  	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1029  	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1030  	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1031  
1032  	spin_lock(&wbuf->lock);
1033  	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1034  	if (!overlap) {
1035  		/* We may safely unlock the write-buffer and read the data */
1036  		spin_unlock(&wbuf->lock);
1037  		return ubifs_read_node(c, buf, type, len, lnum, offs);
1038  	}
1039  
1040  	/* Don't read under wbuf */
1041  	rlen = wbuf->offs - offs;
1042  	if (rlen < 0)
1043  		rlen = 0;
1044  
1045  	/* Copy the rest from the write-buffer */
1046  	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1047  	spin_unlock(&wbuf->lock);
1048  
1049  	if (rlen > 0) {
1050  		/* Read everything that goes before write-buffer */
1051  		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1052  		if (err && err != -EBADMSG)
1053  			return err;
1054  	}
1055  
1056  	if (type != ch->node_type) {
1057  		ubifs_err(c, "bad node type (%d but expected %d)",
1058  			  ch->node_type, type);
1059  		goto out;
1060  	}
1061  
1062  	err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1063  	if (err) {
1064  		ubifs_err(c, "expected node type %d", type);
1065  		return err;
1066  	}
1067  
1068  	rlen = le32_to_cpu(ch->len);
1069  	if (rlen != len) {
1070  		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1071  		goto out;
1072  	}
1073  
1074  	return 0;
1075  
1076  out:
1077  	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1078  	ubifs_dump_node(c, buf, len);
1079  	dump_stack();
1080  	return -EINVAL;
1081  }
1082  
1083  /**
1084   * ubifs_read_node - read node.
1085   * @c: UBIFS file-system description object
1086   * @buf: buffer to read to
1087   * @type: node type
1088   * @len: node length (not aligned)
1089   * @lnum: logical eraseblock number
1090   * @offs: offset within the logical eraseblock
1091   *
1092   * This function reads a node of known type and length, checks it and
1093   * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1094   * and a negative error code in case of failure.
1095   */
ubifs_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)1096  int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1097  		    int lnum, int offs)
1098  {
1099  	int err, l;
1100  	struct ubifs_ch *ch = buf;
1101  
1102  	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1103  	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1104  	ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1105  	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1106  	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1107  
1108  	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1109  	if (err && err != -EBADMSG)
1110  		return err;
1111  
1112  	if (type != ch->node_type) {
1113  		ubifs_errc(c, "bad node type (%d but expected %d)",
1114  			   ch->node_type, type);
1115  		goto out;
1116  	}
1117  
1118  	err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1119  	if (err) {
1120  		ubifs_errc(c, "expected node type %d", type);
1121  		return err;
1122  	}
1123  
1124  	l = le32_to_cpu(ch->len);
1125  	if (l != len) {
1126  		ubifs_errc(c, "bad node length %d, expected %d", l, len);
1127  		goto out;
1128  	}
1129  
1130  	return 0;
1131  
1132  out:
1133  	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1134  		   offs, ubi_is_mapped(c->ubi, lnum));
1135  	if (!c->probing) {
1136  		ubifs_dump_node(c, buf, len);
1137  		dump_stack();
1138  	}
1139  	return -EINVAL;
1140  }
1141  
1142  /**
1143   * ubifs_wbuf_init - initialize write-buffer.
1144   * @c: UBIFS file-system description object
1145   * @wbuf: write-buffer to initialize
1146   *
1147   * This function initializes write-buffer. Returns zero in case of success
1148   * %-ENOMEM in case of failure.
1149   */
ubifs_wbuf_init(struct ubifs_info * c,struct ubifs_wbuf * wbuf)1150  int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1151  {
1152  	size_t size;
1153  
1154  	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1155  	if (!wbuf->buf)
1156  		return -ENOMEM;
1157  
1158  	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1159  	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1160  	if (!wbuf->inodes) {
1161  		kfree(wbuf->buf);
1162  		wbuf->buf = NULL;
1163  		return -ENOMEM;
1164  	}
1165  
1166  	wbuf->used = 0;
1167  	wbuf->lnum = wbuf->offs = -1;
1168  	/*
1169  	 * If the LEB starts at the max. write size aligned address, then
1170  	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1171  	 * set it to something smaller so that it ends at the closest max.
1172  	 * write size boundary.
1173  	 */
1174  	size = c->max_write_size - (c->leb_start % c->max_write_size);
1175  	wbuf->avail = wbuf->size = size;
1176  	wbuf->sync_callback = NULL;
1177  	mutex_init(&wbuf->io_mutex);
1178  	spin_lock_init(&wbuf->lock);
1179  	wbuf->c = c;
1180  	wbuf->next_ino = 0;
1181  
1182  	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1183  	wbuf->timer.function = wbuf_timer_callback_nolock;
1184  	return 0;
1185  }
1186  
1187  /**
1188   * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1189   * @wbuf: the write-buffer where to add
1190   * @inum: the inode number
1191   *
1192   * This function adds an inode number to the inode array of the write-buffer.
1193   */
ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf * wbuf,ino_t inum)1194  void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1195  {
1196  	if (!wbuf->buf)
1197  		/* NOR flash or something similar */
1198  		return;
1199  
1200  	spin_lock(&wbuf->lock);
1201  	if (wbuf->used)
1202  		wbuf->inodes[wbuf->next_ino++] = inum;
1203  	spin_unlock(&wbuf->lock);
1204  }
1205  
1206  /**
1207   * wbuf_has_ino - returns if the wbuf contains data from the inode.
1208   * @wbuf: the write-buffer
1209   * @inum: the inode number
1210   *
1211   * This function returns with %1 if the write-buffer contains some data from the
1212   * given inode otherwise it returns with %0.
1213   */
wbuf_has_ino(struct ubifs_wbuf * wbuf,ino_t inum)1214  static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1215  {
1216  	int i, ret = 0;
1217  
1218  	spin_lock(&wbuf->lock);
1219  	for (i = 0; i < wbuf->next_ino; i++)
1220  		if (inum == wbuf->inodes[i]) {
1221  			ret = 1;
1222  			break;
1223  		}
1224  	spin_unlock(&wbuf->lock);
1225  
1226  	return ret;
1227  }
1228  
1229  /**
1230   * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1231   * @c: UBIFS file-system description object
1232   * @inode: inode to synchronize
1233   *
1234   * This function synchronizes write-buffers which contain nodes belonging to
1235   * @inode. Returns zero in case of success and a negative error code in case of
1236   * failure.
1237   */
ubifs_sync_wbufs_by_inode(struct ubifs_info * c,struct inode * inode)1238  int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1239  {
1240  	int i, err = 0;
1241  
1242  	for (i = 0; i < c->jhead_cnt; i++) {
1243  		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1244  
1245  		if (i == GCHD)
1246  			/*
1247  			 * GC head is special, do not look at it. Even if the
1248  			 * head contains something related to this inode, it is
1249  			 * a _copy_ of corresponding on-flash node which sits
1250  			 * somewhere else.
1251  			 */
1252  			continue;
1253  
1254  		if (!wbuf_has_ino(wbuf, inode->i_ino))
1255  			continue;
1256  
1257  		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1258  		if (wbuf_has_ino(wbuf, inode->i_ino))
1259  			err = ubifs_wbuf_sync_nolock(wbuf);
1260  		mutex_unlock(&wbuf->io_mutex);
1261  
1262  		if (err) {
1263  			ubifs_ro_mode(c, err);
1264  			return err;
1265  		}
1266  	}
1267  	return 0;
1268  }
1269