1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2003-2015, 2018-2022 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_int_pcie_h__
8 #define __iwl_trans_int_pcie_h__
9 
10 #include <linux/spinlock.h>
11 #include <linux/interrupt.h>
12 #include <linux/skbuff.h>
13 #include <linux/wait.h>
14 #include <linux/pci.h>
15 #include <linux/timer.h>
16 #include <linux/cpu.h>
17 
18 #include "iwl-fh.h"
19 #include "iwl-csr.h"
20 #include "iwl-trans.h"
21 #include "iwl-debug.h"
22 #include "iwl-io.h"
23 #include "iwl-op-mode.h"
24 #include "iwl-drv.h"
25 #include "queue/tx.h"
26 
27 /*
28  * RX related structures and functions
29  */
30 #define RX_NUM_QUEUES 1
31 #define RX_POST_REQ_ALLOC 2
32 #define RX_CLAIM_REQ_ALLOC 8
33 #define RX_PENDING_WATERMARK 16
34 #define FIRST_RX_QUEUE 512
35 
36 struct iwl_host_cmd;
37 
38 /*This file includes the declaration that are internal to the
39  * trans_pcie layer */
40 
41 /**
42  * struct iwl_rx_mem_buffer
43  * @page_dma: bus address of rxb page
44  * @page: driver's pointer to the rxb page
45  * @list: list entry for the membuffer
46  * @invalid: rxb is in driver ownership - not owned by HW
47  * @vid: index of this rxb in the global table
48  * @offset: indicates which offset of the page (in bytes)
49  *	this buffer uses (if multiple RBs fit into one page)
50  */
51 struct iwl_rx_mem_buffer {
52 	dma_addr_t page_dma;
53 	struct page *page;
54 	struct list_head list;
55 	u32 offset;
56 	u16 vid;
57 	bool invalid;
58 };
59 
60 /**
61  * struct isr_statistics - interrupt statistics
62  *
63  */
64 struct isr_statistics {
65 	u32 hw;
66 	u32 sw;
67 	u32 err_code;
68 	u32 sch;
69 	u32 alive;
70 	u32 rfkill;
71 	u32 ctkill;
72 	u32 wakeup;
73 	u32 rx;
74 	u32 tx;
75 	u32 unhandled;
76 };
77 
78 /**
79  * struct iwl_rx_transfer_desc - transfer descriptor
80  * @addr: ptr to free buffer start address
81  * @rbid: unique tag of the buffer
82  * @reserved: reserved
83  */
84 struct iwl_rx_transfer_desc {
85 	__le16 rbid;
86 	__le16 reserved[3];
87 	__le64 addr;
88 } __packed;
89 
90 #define IWL_RX_CD_FLAGS_FRAGMENTED	BIT(0)
91 
92 /**
93  * struct iwl_rx_completion_desc - completion descriptor
94  * @reserved1: reserved
95  * @rbid: unique tag of the received buffer
96  * @flags: flags (0: fragmented, all others: reserved)
97  * @reserved2: reserved
98  */
99 struct iwl_rx_completion_desc {
100 	__le32 reserved1;
101 	__le16 rbid;
102 	u8 flags;
103 	u8 reserved2[25];
104 } __packed;
105 
106 /**
107  * struct iwl_rx_completion_desc_bz - Bz completion descriptor
108  * @rbid: unique tag of the received buffer
109  * @flags: flags (0: fragmented, all others: reserved)
110  * @reserved: reserved
111  */
112 struct iwl_rx_completion_desc_bz {
113 	__le16 rbid;
114 	u8 flags;
115 	u8 reserved[1];
116 } __packed;
117 
118 /**
119  * struct iwl_rxq - Rx queue
120  * @id: queue index
121  * @bd: driver's pointer to buffer of receive buffer descriptors (rbd).
122  *	Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices.
123  *	In AX210 devices it is a pointer to a list of iwl_rx_transfer_desc's
124  * @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
125  * @used_bd: driver's pointer to buffer of used receive buffer descriptors (rbd)
126  * @used_bd_dma: physical address of buffer of used receive buffer descriptors (rbd)
127  * @read: Shared index to newest available Rx buffer
128  * @write: Shared index to oldest written Rx packet
129  * @free_count: Number of pre-allocated buffers in rx_free
130  * @used_count: Number of RBDs handled to allocator to use for allocation
131  * @write_actual:
132  * @rx_free: list of RBDs with allocated RB ready for use
133  * @rx_used: list of RBDs with no RB attached
134  * @need_update: flag to indicate we need to update read/write index
135  * @rb_stts: driver's pointer to receive buffer status
136  * @rb_stts_dma: bus address of receive buffer status
137  * @lock:
138  * @queue: actual rx queue. Not used for multi-rx queue.
139  * @next_rb_is_fragment: indicates that the previous RB that we handled set
140  *	the fragmented flag, so the next one is still another fragment
141  *
142  * NOTE:  rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
143  */
144 struct iwl_rxq {
145 	int id;
146 	void *bd;
147 	dma_addr_t bd_dma;
148 	void *used_bd;
149 	dma_addr_t used_bd_dma;
150 	u32 read;
151 	u32 write;
152 	u32 free_count;
153 	u32 used_count;
154 	u32 write_actual;
155 	u32 queue_size;
156 	struct list_head rx_free;
157 	struct list_head rx_used;
158 	bool need_update, next_rb_is_fragment;
159 	void *rb_stts;
160 	dma_addr_t rb_stts_dma;
161 	spinlock_t lock;
162 	struct napi_struct napi;
163 	struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
164 };
165 
166 /**
167  * struct iwl_rb_allocator - Rx allocator
168  * @req_pending: number of requests the allcator had not processed yet
169  * @req_ready: number of requests honored and ready for claiming
170  * @rbd_allocated: RBDs with pages allocated and ready to be handled to
171  *	the queue. This is a list of &struct iwl_rx_mem_buffer
172  * @rbd_empty: RBDs with no page attached for allocator use. This is a list
173  *	of &struct iwl_rx_mem_buffer
174  * @lock: protects the rbd_allocated and rbd_empty lists
175  * @alloc_wq: work queue for background calls
176  * @rx_alloc: work struct for background calls
177  */
178 struct iwl_rb_allocator {
179 	atomic_t req_pending;
180 	atomic_t req_ready;
181 	struct list_head rbd_allocated;
182 	struct list_head rbd_empty;
183 	spinlock_t lock;
184 	struct workqueue_struct *alloc_wq;
185 	struct work_struct rx_alloc;
186 };
187 
188 /**
189  * iwl_get_closed_rb_stts - get closed rb stts from different structs
190  * @rxq - the rxq to get the rb stts from
191  */
iwl_get_closed_rb_stts(struct iwl_trans * trans,struct iwl_rxq * rxq)192 static inline __le16 iwl_get_closed_rb_stts(struct iwl_trans *trans,
193 					    struct iwl_rxq *rxq)
194 {
195 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
196 		__le16 *rb_stts = rxq->rb_stts;
197 
198 		return READ_ONCE(*rb_stts);
199 	} else {
200 		struct iwl_rb_status *rb_stts = rxq->rb_stts;
201 
202 		return READ_ONCE(rb_stts->closed_rb_num);
203 	}
204 }
205 
206 #ifdef CONFIG_IWLWIFI_DEBUGFS
207 /**
208  * enum iwl_fw_mon_dbgfs_state - the different states of the monitor_data
209  * debugfs file
210  *
211  * @IWL_FW_MON_DBGFS_STATE_CLOSED: the file is closed.
212  * @IWL_FW_MON_DBGFS_STATE_OPEN: the file is open.
213  * @IWL_FW_MON_DBGFS_STATE_DISABLED: the file is disabled, once this state is
214  *	set the file can no longer be used.
215  */
216 enum iwl_fw_mon_dbgfs_state {
217 	IWL_FW_MON_DBGFS_STATE_CLOSED,
218 	IWL_FW_MON_DBGFS_STATE_OPEN,
219 	IWL_FW_MON_DBGFS_STATE_DISABLED,
220 };
221 #endif
222 
223 /**
224  * enum iwl_shared_irq_flags - level of sharing for irq
225  * @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes.
226  * @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue.
227  */
228 enum iwl_shared_irq_flags {
229 	IWL_SHARED_IRQ_NON_RX		= BIT(0),
230 	IWL_SHARED_IRQ_FIRST_RSS	= BIT(1),
231 };
232 
233 /**
234  * enum iwl_image_response_code - image response values
235  * @IWL_IMAGE_RESP_DEF: the default value of the register
236  * @IWL_IMAGE_RESP_SUCCESS: iml was read successfully
237  * @IWL_IMAGE_RESP_FAIL: iml reading failed
238  */
239 enum iwl_image_response_code {
240 	IWL_IMAGE_RESP_DEF		= 0,
241 	IWL_IMAGE_RESP_SUCCESS		= 1,
242 	IWL_IMAGE_RESP_FAIL		= 2,
243 };
244 
245 /**
246  * struct cont_rec: continuous recording data structure
247  * @prev_wr_ptr: the last address that was read in monitor_data
248  *	debugfs file
249  * @prev_wrap_cnt: the wrap count that was used during the last read in
250  *	monitor_data debugfs file
251  * @state: the state of monitor_data debugfs file as described
252  *	in &iwl_fw_mon_dbgfs_state enum
253  * @mutex: locked while reading from monitor_data debugfs file
254  */
255 #ifdef CONFIG_IWLWIFI_DEBUGFS
256 struct cont_rec {
257 	u32 prev_wr_ptr;
258 	u32 prev_wrap_cnt;
259 	u8  state;
260 	/* Used to sync monitor_data debugfs file with driver unload flow */
261 	struct mutex mutex;
262 };
263 #endif
264 
265 enum iwl_pcie_fw_reset_state {
266 	FW_RESET_IDLE,
267 	FW_RESET_REQUESTED,
268 	FW_RESET_OK,
269 	FW_RESET_ERROR,
270 };
271 
272 /**
273  * enum wl_pcie_imr_status - imr dma transfer state
274  * @IMR_D2S_IDLE: default value of the dma transfer
275  * @IMR_D2S_REQUESTED: dma transfer requested
276  * @IMR_D2S_COMPLETED: dma transfer completed
277  * @IMR_D2S_ERROR: dma transfer error
278  */
279 enum iwl_pcie_imr_status {
280 	IMR_D2S_IDLE,
281 	IMR_D2S_REQUESTED,
282 	IMR_D2S_COMPLETED,
283 	IMR_D2S_ERROR,
284 };
285 
286 /**
287  * struct iwl_trans_pcie - PCIe transport specific data
288  * @rxq: all the RX queue data
289  * @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues
290  * @global_table: table mapping received VID from hw to rxb
291  * @rba: allocator for RX replenishing
292  * @ctxt_info: context information for FW self init
293  * @ctxt_info_gen3: context information for gen3 devices
294  * @prph_info: prph info for self init
295  * @prph_scratch: prph scratch for self init
296  * @ctxt_info_dma_addr: dma addr of context information
297  * @prph_info_dma_addr: dma addr of prph info
298  * @prph_scratch_dma_addr: dma addr of prph scratch
299  * @ctxt_info_dma_addr: dma addr of context information
300  * @init_dram: DRAM data of firmware image (including paging).
301  *	Context information addresses will be taken from here.
302  *	This is driver's local copy for keeping track of size and
303  *	count for allocating and freeing the memory.
304  * @iml: image loader image virtual address
305  * @iml_dma_addr: image loader image DMA address
306  * @trans: pointer to the generic transport area
307  * @scd_base_addr: scheduler sram base address in SRAM
308  * @kw: keep warm address
309  * @pnvm_dram: DRAM area that contains the PNVM data
310  * @pci_dev: basic pci-network driver stuff
311  * @hw_base: pci hardware address support
312  * @ucode_write_complete: indicates that the ucode has been copied.
313  * @ucode_write_waitq: wait queue for uCode load
314  * @cmd_queue - command queue number
315  * @def_rx_queue - default rx queue number
316  * @rx_buf_size: Rx buffer size
317  * @scd_set_active: should the transport configure the SCD for HCMD queue
318  * @rx_page_order: page order for receive buffer size
319  * @rx_buf_bytes: RX buffer (RB) size in bytes
320  * @reg_lock: protect hw register access
321  * @mutex: to protect stop_device / start_fw / start_hw
322  * @cmd_in_flight: true when we have a host command in flight
323 #ifdef CONFIG_IWLWIFI_DEBUGFS
324  * @fw_mon_data: fw continuous recording data
325 #endif
326  * @msix_entries: array of MSI-X entries
327  * @msix_enabled: true if managed to enable MSI-X
328  * @shared_vec_mask: the type of causes the shared vector handles
329  *	(see iwl_shared_irq_flags).
330  * @alloc_vecs: the number of interrupt vectors allocated by the OS
331  * @def_irq: default irq for non rx causes
332  * @fh_init_mask: initial unmasked fh causes
333  * @hw_init_mask: initial unmasked hw causes
334  * @fh_mask: current unmasked fh causes
335  * @hw_mask: current unmasked hw causes
336  * @in_rescan: true if we have triggered a device rescan
337  * @base_rb_stts: base virtual address of receive buffer status for all queues
338  * @base_rb_stts_dma: base physical address of receive buffer status
339  * @supported_dma_mask: DMA mask to validate the actual address against,
340  *	will be DMA_BIT_MASK(11) or DMA_BIT_MASK(12) depending on the device
341  * @alloc_page_lock: spinlock for the page allocator
342  * @alloc_page: allocated page to still use parts of
343  * @alloc_page_used: how much of the allocated page was already used (bytes)
344  * @imr_status: imr dma state machine
345  * @wait_queue_head_t: imr wait queue for dma completion
346  * @rf_name: name/version of the CRF, if any
347  */
348 struct iwl_trans_pcie {
349 	struct iwl_rxq *rxq;
350 	struct iwl_rx_mem_buffer *rx_pool;
351 	struct iwl_rx_mem_buffer **global_table;
352 	struct iwl_rb_allocator rba;
353 	union {
354 		struct iwl_context_info *ctxt_info;
355 		struct iwl_context_info_gen3 *ctxt_info_gen3;
356 	};
357 	struct iwl_prph_info *prph_info;
358 	struct iwl_prph_scratch *prph_scratch;
359 	void *iml;
360 	dma_addr_t ctxt_info_dma_addr;
361 	dma_addr_t prph_info_dma_addr;
362 	dma_addr_t prph_scratch_dma_addr;
363 	dma_addr_t iml_dma_addr;
364 	struct iwl_trans *trans;
365 
366 	struct net_device napi_dev;
367 
368 	/* INT ICT Table */
369 	__le32 *ict_tbl;
370 	dma_addr_t ict_tbl_dma;
371 	int ict_index;
372 	bool use_ict;
373 	bool is_down, opmode_down;
374 	s8 debug_rfkill;
375 	struct isr_statistics isr_stats;
376 
377 	spinlock_t irq_lock;
378 	struct mutex mutex;
379 	u32 inta_mask;
380 	u32 scd_base_addr;
381 	struct iwl_dma_ptr kw;
382 
383 	struct iwl_dram_data pnvm_dram;
384 	struct iwl_dram_data reduce_power_dram;
385 
386 	struct iwl_txq *txq_memory;
387 
388 	/* PCI bus related data */
389 	struct pci_dev *pci_dev;
390 	u8 __iomem *hw_base;
391 
392 	bool ucode_write_complete;
393 	bool sx_complete;
394 	wait_queue_head_t ucode_write_waitq;
395 	wait_queue_head_t sx_waitq;
396 
397 	u8 def_rx_queue;
398 	u8 n_no_reclaim_cmds;
399 	u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS];
400 	u16 num_rx_bufs;
401 
402 	enum iwl_amsdu_size rx_buf_size;
403 	bool scd_set_active;
404 	bool pcie_dbg_dumped_once;
405 	u32 rx_page_order;
406 	u32 rx_buf_bytes;
407 	u32 supported_dma_mask;
408 
409 	/* allocator lock for the two values below */
410 	spinlock_t alloc_page_lock;
411 	struct page *alloc_page;
412 	u32 alloc_page_used;
413 
414 	/*protect hw register */
415 	spinlock_t reg_lock;
416 	bool cmd_hold_nic_awake;
417 
418 #ifdef CONFIG_IWLWIFI_DEBUGFS
419 	struct cont_rec fw_mon_data;
420 #endif
421 
422 	struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES];
423 	bool msix_enabled;
424 	u8 shared_vec_mask;
425 	u32 alloc_vecs;
426 	u32 def_irq;
427 	u32 fh_init_mask;
428 	u32 hw_init_mask;
429 	u32 fh_mask;
430 	u32 hw_mask;
431 	cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES];
432 	u16 tx_cmd_queue_size;
433 	bool in_rescan;
434 
435 	void *base_rb_stts;
436 	dma_addr_t base_rb_stts_dma;
437 
438 	bool fw_reset_handshake;
439 	enum iwl_pcie_fw_reset_state fw_reset_state;
440 	wait_queue_head_t fw_reset_waitq;
441 	enum iwl_pcie_imr_status imr_status;
442 	wait_queue_head_t imr_waitq;
443 	char rf_name[32];
444 };
445 
446 static inline struct iwl_trans_pcie *
IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans * trans)447 IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans)
448 {
449 	return (void *)trans->trans_specific;
450 }
451 
iwl_pcie_clear_irq(struct iwl_trans * trans,int queue)452 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, int queue)
453 {
454 	/*
455 	 * Before sending the interrupt the HW disables it to prevent
456 	 * a nested interrupt. This is done by writing 1 to the corresponding
457 	 * bit in the mask register. After handling the interrupt, it should be
458 	 * re-enabled by clearing this bit. This register is defined as
459 	 * write 1 clear (W1C) register, meaning that it's being clear
460 	 * by writing 1 to the bit.
461 	 */
462 	iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(queue));
463 }
464 
465 static inline struct iwl_trans *
iwl_trans_pcie_get_trans(struct iwl_trans_pcie * trans_pcie)466 iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie)
467 {
468 	return container_of((void *)trans_pcie, struct iwl_trans,
469 			    trans_specific);
470 }
471 
472 /*
473  * Convention: trans API functions: iwl_trans_pcie_XXX
474  *	Other functions: iwl_pcie_XXX
475  */
476 struct iwl_trans
477 *iwl_trans_pcie_alloc(struct pci_dev *pdev,
478 		      const struct pci_device_id *ent,
479 		      const struct iwl_cfg_trans_params *cfg_trans);
480 void iwl_trans_pcie_free(struct iwl_trans *trans);
481 
482 bool __iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans);
483 #define _iwl_trans_pcie_grab_nic_access(trans)			\
484 	__cond_lock(nic_access_nobh,				\
485 		    likely(__iwl_trans_pcie_grab_nic_access(trans)))
486 
487 /*****************************************************
488 * RX
489 ******************************************************/
490 int iwl_pcie_rx_init(struct iwl_trans *trans);
491 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans);
492 irqreturn_t iwl_pcie_msix_isr(int irq, void *data);
493 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id);
494 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id);
495 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id);
496 int iwl_pcie_rx_stop(struct iwl_trans *trans);
497 void iwl_pcie_rx_free(struct iwl_trans *trans);
498 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans);
499 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq);
500 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
501 			    struct iwl_rxq *rxq);
502 
503 /*****************************************************
504 * ICT - interrupt handling
505 ******************************************************/
506 irqreturn_t iwl_pcie_isr(int irq, void *data);
507 int iwl_pcie_alloc_ict(struct iwl_trans *trans);
508 void iwl_pcie_free_ict(struct iwl_trans *trans);
509 void iwl_pcie_reset_ict(struct iwl_trans *trans);
510 void iwl_pcie_disable_ict(struct iwl_trans *trans);
511 
512 /*****************************************************
513 * TX / HCMD
514 ******************************************************/
515 int iwl_pcie_tx_init(struct iwl_trans *trans);
516 void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr);
517 int iwl_pcie_tx_stop(struct iwl_trans *trans);
518 void iwl_pcie_tx_free(struct iwl_trans *trans);
519 bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn,
520 			       const struct iwl_trans_txq_scd_cfg *cfg,
521 			       unsigned int wdg_timeout);
522 void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue,
523 				bool configure_scd);
524 void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id,
525 					bool shared_mode);
526 int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
527 		      struct iwl_device_tx_cmd *dev_cmd, int txq_id);
528 void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans);
529 int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
530 void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
531 			    struct iwl_rx_cmd_buffer *rxb);
532 void iwl_trans_pcie_tx_reset(struct iwl_trans *trans);
533 
534 /*****************************************************
535 * Error handling
536 ******************************************************/
537 void iwl_pcie_dump_csr(struct iwl_trans *trans);
538 
539 /*****************************************************
540 * Helpers
541 ******************************************************/
_iwl_disable_interrupts(struct iwl_trans * trans)542 static inline void _iwl_disable_interrupts(struct iwl_trans *trans)
543 {
544 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
545 
546 	clear_bit(STATUS_INT_ENABLED, &trans->status);
547 	if (!trans_pcie->msix_enabled) {
548 		/* disable interrupts from uCode/NIC to host */
549 		iwl_write32(trans, CSR_INT_MASK, 0x00000000);
550 
551 		/* acknowledge/clear/reset any interrupts still pending
552 		 * from uCode or flow handler (Rx/Tx DMA) */
553 		iwl_write32(trans, CSR_INT, 0xffffffff);
554 		iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff);
555 	} else {
556 		/* disable all the interrupt we might use */
557 		iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
558 			    trans_pcie->fh_init_mask);
559 		iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
560 			    trans_pcie->hw_init_mask);
561 	}
562 	IWL_DEBUG_ISR(trans, "Disabled interrupts\n");
563 }
564 
iwl_pcie_get_num_sections(const struct fw_img * fw,int start)565 static inline int iwl_pcie_get_num_sections(const struct fw_img *fw,
566 					    int start)
567 {
568 	int i = 0;
569 
570 	while (start < fw->num_sec &&
571 	       fw->sec[start].offset != CPU1_CPU2_SEPARATOR_SECTION &&
572 	       fw->sec[start].offset != PAGING_SEPARATOR_SECTION) {
573 		start++;
574 		i++;
575 	}
576 
577 	return i;
578 }
579 
iwl_pcie_ctxt_info_free_fw_img(struct iwl_trans * trans)580 static inline void iwl_pcie_ctxt_info_free_fw_img(struct iwl_trans *trans)
581 {
582 	struct iwl_self_init_dram *dram = &trans->init_dram;
583 	int i;
584 
585 	if (!dram->fw) {
586 		WARN_ON(dram->fw_cnt);
587 		return;
588 	}
589 
590 	for (i = 0; i < dram->fw_cnt; i++)
591 		dma_free_coherent(trans->dev, dram->fw[i].size,
592 				  dram->fw[i].block, dram->fw[i].physical);
593 
594 	kfree(dram->fw);
595 	dram->fw_cnt = 0;
596 	dram->fw = NULL;
597 }
598 
iwl_disable_interrupts(struct iwl_trans * trans)599 static inline void iwl_disable_interrupts(struct iwl_trans *trans)
600 {
601 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
602 
603 	spin_lock_bh(&trans_pcie->irq_lock);
604 	_iwl_disable_interrupts(trans);
605 	spin_unlock_bh(&trans_pcie->irq_lock);
606 }
607 
_iwl_enable_interrupts(struct iwl_trans * trans)608 static inline void _iwl_enable_interrupts(struct iwl_trans *trans)
609 {
610 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
611 
612 	IWL_DEBUG_ISR(trans, "Enabling interrupts\n");
613 	set_bit(STATUS_INT_ENABLED, &trans->status);
614 	if (!trans_pcie->msix_enabled) {
615 		trans_pcie->inta_mask = CSR_INI_SET_MASK;
616 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
617 	} else {
618 		/*
619 		 * fh/hw_mask keeps all the unmasked causes.
620 		 * Unlike msi, in msix cause is enabled when it is unset.
621 		 */
622 		trans_pcie->hw_mask = trans_pcie->hw_init_mask;
623 		trans_pcie->fh_mask = trans_pcie->fh_init_mask;
624 		iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
625 			    ~trans_pcie->fh_mask);
626 		iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
627 			    ~trans_pcie->hw_mask);
628 	}
629 }
630 
iwl_enable_interrupts(struct iwl_trans * trans)631 static inline void iwl_enable_interrupts(struct iwl_trans *trans)
632 {
633 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
634 
635 	spin_lock_bh(&trans_pcie->irq_lock);
636 	_iwl_enable_interrupts(trans);
637 	spin_unlock_bh(&trans_pcie->irq_lock);
638 }
iwl_enable_hw_int_msk_msix(struct iwl_trans * trans,u32 msk)639 static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk)
640 {
641 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
642 
643 	iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk);
644 	trans_pcie->hw_mask = msk;
645 }
646 
iwl_enable_fh_int_msk_msix(struct iwl_trans * trans,u32 msk)647 static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk)
648 {
649 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
650 
651 	iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk);
652 	trans_pcie->fh_mask = msk;
653 }
654 
iwl_enable_fw_load_int(struct iwl_trans * trans)655 static inline void iwl_enable_fw_load_int(struct iwl_trans *trans)
656 {
657 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
658 
659 	IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n");
660 	if (!trans_pcie->msix_enabled) {
661 		trans_pcie->inta_mask = CSR_INT_BIT_FH_TX;
662 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
663 	} else {
664 		iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
665 			    trans_pcie->hw_init_mask);
666 		iwl_enable_fh_int_msk_msix(trans,
667 					   MSIX_FH_INT_CAUSES_D2S_CH0_NUM);
668 	}
669 }
670 
iwl_enable_fw_load_int_ctx_info(struct iwl_trans * trans)671 static inline void iwl_enable_fw_load_int_ctx_info(struct iwl_trans *trans)
672 {
673 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
674 
675 	IWL_DEBUG_ISR(trans, "Enabling ALIVE interrupt only\n");
676 
677 	if (!trans_pcie->msix_enabled) {
678 		/*
679 		 * When we'll receive the ALIVE interrupt, the ISR will call
680 		 * iwl_enable_fw_load_int_ctx_info again to set the ALIVE
681 		 * interrupt (which is not really needed anymore) but also the
682 		 * RX interrupt which will allow us to receive the ALIVE
683 		 * notification (which is Rx) and continue the flow.
684 		 */
685 		trans_pcie->inta_mask =  CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX;
686 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
687 	} else {
688 		iwl_enable_hw_int_msk_msix(trans,
689 					   MSIX_HW_INT_CAUSES_REG_ALIVE);
690 		/*
691 		 * Leave all the FH causes enabled to get the ALIVE
692 		 * notification.
693 		 */
694 		iwl_enable_fh_int_msk_msix(trans, trans_pcie->fh_init_mask);
695 	}
696 }
697 
queue_name(struct device * dev,struct iwl_trans_pcie * trans_p,int i)698 static inline const char *queue_name(struct device *dev,
699 				     struct iwl_trans_pcie *trans_p, int i)
700 {
701 	if (trans_p->shared_vec_mask) {
702 		int vec = trans_p->shared_vec_mask &
703 			  IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
704 
705 		if (i == 0)
706 			return DRV_NAME ":shared_IRQ";
707 
708 		return devm_kasprintf(dev, GFP_KERNEL,
709 				      DRV_NAME ":queue_%d", i + vec);
710 	}
711 	if (i == 0)
712 		return DRV_NAME ":default_queue";
713 
714 	if (i == trans_p->alloc_vecs - 1)
715 		return DRV_NAME ":exception";
716 
717 	return devm_kasprintf(dev, GFP_KERNEL,
718 			      DRV_NAME  ":queue_%d", i);
719 }
720 
iwl_enable_rfkill_int(struct iwl_trans * trans)721 static inline void iwl_enable_rfkill_int(struct iwl_trans *trans)
722 {
723 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
724 
725 	IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
726 	if (!trans_pcie->msix_enabled) {
727 		trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL;
728 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
729 	} else {
730 		iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
731 			    trans_pcie->fh_init_mask);
732 		iwl_enable_hw_int_msk_msix(trans,
733 					   MSIX_HW_INT_CAUSES_REG_RF_KILL);
734 	}
735 
736 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_9000) {
737 		/*
738 		 * On 9000-series devices this bit isn't enabled by default, so
739 		 * when we power down the device we need set the bit to allow it
740 		 * to wake up the PCI-E bus for RF-kill interrupts.
741 		 */
742 		iwl_set_bit(trans, CSR_GP_CNTRL,
743 			    CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN);
744 	}
745 }
746 
747 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans);
748 
iwl_is_rfkill_set(struct iwl_trans * trans)749 static inline bool iwl_is_rfkill_set(struct iwl_trans *trans)
750 {
751 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
752 
753 	lockdep_assert_held(&trans_pcie->mutex);
754 
755 	if (trans_pcie->debug_rfkill == 1)
756 		return true;
757 
758 	return !(iwl_read32(trans, CSR_GP_CNTRL) &
759 		CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW);
760 }
761 
__iwl_trans_pcie_set_bits_mask(struct iwl_trans * trans,u32 reg,u32 mask,u32 value)762 static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans,
763 						  u32 reg, u32 mask, u32 value)
764 {
765 	u32 v;
766 
767 #ifdef CONFIG_IWLWIFI_DEBUG
768 	WARN_ON_ONCE(value & ~mask);
769 #endif
770 
771 	v = iwl_read32(trans, reg);
772 	v &= ~mask;
773 	v |= value;
774 	iwl_write32(trans, reg, v);
775 }
776 
__iwl_trans_pcie_clear_bit(struct iwl_trans * trans,u32 reg,u32 mask)777 static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans,
778 					      u32 reg, u32 mask)
779 {
780 	__iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0);
781 }
782 
__iwl_trans_pcie_set_bit(struct iwl_trans * trans,u32 reg,u32 mask)783 static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans,
784 					    u32 reg, u32 mask)
785 {
786 	__iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask);
787 }
788 
iwl_pcie_dbg_on(struct iwl_trans * trans)789 static inline bool iwl_pcie_dbg_on(struct iwl_trans *trans)
790 {
791 	return (trans->dbg.dest_tlv || iwl_trans_dbg_ini_valid(trans));
792 }
793 
794 void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state);
795 void iwl_trans_pcie_dump_regs(struct iwl_trans *trans);
796 
797 #ifdef CONFIG_IWLWIFI_DEBUGFS
798 void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans);
799 #else
iwl_trans_pcie_dbgfs_register(struct iwl_trans * trans)800 static inline void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { }
801 #endif
802 
803 void iwl_pcie_rx_allocator_work(struct work_struct *data);
804 
805 /* common functions that are used by gen2 transport */
806 int iwl_pcie_gen2_apm_init(struct iwl_trans *trans);
807 void iwl_pcie_apm_config(struct iwl_trans *trans);
808 int iwl_pcie_prepare_card_hw(struct iwl_trans *trans);
809 void iwl_pcie_synchronize_irqs(struct iwl_trans *trans);
810 bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans);
811 void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans,
812 				       bool was_in_rfkill);
813 void iwl_pcie_apm_stop_master(struct iwl_trans *trans);
814 void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie);
815 int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans,
816 			   struct iwl_dma_ptr *ptr, size_t size);
817 void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr);
818 void iwl_pcie_apply_destination(struct iwl_trans *trans);
819 
820 /* common functions that are used by gen3 transport */
821 void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power);
822 
823 /* transport gen 2 exported functions */
824 int iwl_trans_pcie_gen2_start_fw(struct iwl_trans *trans,
825 				 const struct fw_img *fw, bool run_in_rfkill);
826 void iwl_trans_pcie_gen2_fw_alive(struct iwl_trans *trans, u32 scd_addr);
827 int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans,
828 				  struct iwl_host_cmd *cmd);
829 void iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
830 void _iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
831 void iwl_pcie_d3_complete_suspend(struct iwl_trans *trans,
832 				  bool test, bool reset);
833 int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans,
834 			       struct iwl_host_cmd *cmd);
835 int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans,
836 			  struct iwl_host_cmd *cmd);
837 void iwl_trans_pcie_copy_imr_fh(struct iwl_trans *trans,
838 				u32 dst_addr, u64 src_addr, u32 byte_cnt);
839 int iwl_trans_pcie_copy_imr(struct iwl_trans *trans,
840 			    u32 dst_addr, u64 src_addr, u32 byte_cnt);
841 
842 #endif /* __iwl_trans_int_pcie_h__ */
843