1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3 * Hibernate support specific for ARM64
4 *
5 * Derived from work on ARM hibernation support by:
6 *
7 * Ubuntu project, hibernation support for mach-dove
8 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
11 */
12 #define pr_fmt(x) "hibernate: " x
13 #include <linux/cpu.h>
14 #include <linux/kvm_host.h>
15 #include <linux/pm.h>
16 #include <linux/sched.h>
17 #include <linux/suspend.h>
18 #include <linux/utsname.h>
19
20 #include <asm/barrier.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cputype.h>
23 #include <asm/daifflags.h>
24 #include <asm/irqflags.h>
25 #include <asm/kexec.h>
26 #include <asm/memory.h>
27 #include <asm/mmu_context.h>
28 #include <asm/mte.h>
29 #include <asm/sections.h>
30 #include <asm/smp.h>
31 #include <asm/smp_plat.h>
32 #include <asm/suspend.h>
33 #include <asm/sysreg.h>
34 #include <asm/trans_pgd.h>
35 #include <asm/virt.h>
36
37 /*
38 * Hibernate core relies on this value being 0 on resume, and marks it
39 * __nosavedata assuming it will keep the resume kernel's '0' value. This
40 * doesn't happen with either KASLR.
41 *
42 * defined as "__visible int in_suspend __nosavedata" in
43 * kernel/power/hibernate.c
44 */
45 extern int in_suspend;
46
47 /* Do we need to reset el2? */
48 #define el2_reset_needed() (is_hyp_nvhe())
49
50 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
51 extern char __hyp_stub_vectors[];
52
53 /*
54 * The logical cpu number we should resume on, initialised to a non-cpu
55 * number.
56 */
57 static int sleep_cpu = -EINVAL;
58
59 /*
60 * Values that may not change over hibernate/resume. We put the build number
61 * and date in here so that we guarantee not to resume with a different
62 * kernel.
63 */
64 struct arch_hibernate_hdr_invariants {
65 char uts_version[__NEW_UTS_LEN + 1];
66 };
67
68 /* These values need to be know across a hibernate/restore. */
69 static struct arch_hibernate_hdr {
70 struct arch_hibernate_hdr_invariants invariants;
71
72 /* These are needed to find the relocated kernel if built with kaslr */
73 phys_addr_t ttbr1_el1;
74 void (*reenter_kernel)(void);
75
76 /*
77 * We need to know where the __hyp_stub_vectors are after restore to
78 * re-configure el2.
79 */
80 phys_addr_t __hyp_stub_vectors;
81
82 u64 sleep_cpu_mpidr;
83 } resume_hdr;
84
arch_hdr_invariants(struct arch_hibernate_hdr_invariants * i)85 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
86 {
87 memset(i, 0, sizeof(*i));
88 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
89 }
90
pfn_is_nosave(unsigned long pfn)91 int pfn_is_nosave(unsigned long pfn)
92 {
93 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
94 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
95
96 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
97 crash_is_nosave(pfn);
98 }
99
save_processor_state(void)100 void notrace save_processor_state(void)
101 {
102 WARN_ON(num_online_cpus() != 1);
103 }
104
restore_processor_state(void)105 void notrace restore_processor_state(void)
106 {
107 }
108
arch_hibernation_header_save(void * addr,unsigned int max_size)109 int arch_hibernation_header_save(void *addr, unsigned int max_size)
110 {
111 struct arch_hibernate_hdr *hdr = addr;
112
113 if (max_size < sizeof(*hdr))
114 return -EOVERFLOW;
115
116 arch_hdr_invariants(&hdr->invariants);
117 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir);
118 hdr->reenter_kernel = _cpu_resume;
119
120 /* We can't use __hyp_get_vectors() because kvm may still be loaded */
121 if (el2_reset_needed())
122 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
123 else
124 hdr->__hyp_stub_vectors = 0;
125
126 /* Save the mpidr of the cpu we called cpu_suspend() on... */
127 if (sleep_cpu < 0) {
128 pr_err("Failing to hibernate on an unknown CPU.\n");
129 return -ENODEV;
130 }
131 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
132 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
133 hdr->sleep_cpu_mpidr);
134
135 return 0;
136 }
137 EXPORT_SYMBOL(arch_hibernation_header_save);
138
arch_hibernation_header_restore(void * addr)139 int arch_hibernation_header_restore(void *addr)
140 {
141 int ret;
142 struct arch_hibernate_hdr_invariants invariants;
143 struct arch_hibernate_hdr *hdr = addr;
144
145 arch_hdr_invariants(&invariants);
146 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
147 pr_crit("Hibernate image not generated by this kernel!\n");
148 return -EINVAL;
149 }
150
151 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
152 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
153 hdr->sleep_cpu_mpidr);
154 if (sleep_cpu < 0) {
155 pr_crit("Hibernated on a CPU not known to this kernel!\n");
156 sleep_cpu = -EINVAL;
157 return -EINVAL;
158 }
159
160 ret = bringup_hibernate_cpu(sleep_cpu);
161 if (ret) {
162 sleep_cpu = -EINVAL;
163 return ret;
164 }
165
166 resume_hdr = *hdr;
167
168 return 0;
169 }
170 EXPORT_SYMBOL(arch_hibernation_header_restore);
171
hibernate_page_alloc(void * arg)172 static void *hibernate_page_alloc(void *arg)
173 {
174 return (void *)get_safe_page((__force gfp_t)(unsigned long)arg);
175 }
176
177 /*
178 * Copies length bytes, starting at src_start into an new page,
179 * perform cache maintenance, then maps it at the specified address low
180 * address as executable.
181 *
182 * This is used by hibernate to copy the code it needs to execute when
183 * overwriting the kernel text. This function generates a new set of page
184 * tables, which it loads into ttbr0.
185 *
186 * Length is provided as we probably only want 4K of data, even on a 64K
187 * page system.
188 */
create_safe_exec_page(void * src_start,size_t length,phys_addr_t * phys_dst_addr)189 static int create_safe_exec_page(void *src_start, size_t length,
190 phys_addr_t *phys_dst_addr)
191 {
192 struct trans_pgd_info trans_info = {
193 .trans_alloc_page = hibernate_page_alloc,
194 .trans_alloc_arg = (__force void *)GFP_ATOMIC,
195 };
196
197 void *page = (void *)get_safe_page(GFP_ATOMIC);
198 phys_addr_t trans_ttbr0;
199 unsigned long t0sz;
200 int rc;
201
202 if (!page)
203 return -ENOMEM;
204
205 memcpy(page, src_start, length);
206 caches_clean_inval_pou((unsigned long)page, (unsigned long)page + length);
207 rc = trans_pgd_idmap_page(&trans_info, &trans_ttbr0, &t0sz, page);
208 if (rc)
209 return rc;
210
211 cpu_install_ttbr0(trans_ttbr0, t0sz);
212 *phys_dst_addr = virt_to_phys(page);
213
214 return 0;
215 }
216
217 #ifdef CONFIG_ARM64_MTE
218
219 static DEFINE_XARRAY(mte_pages);
220
save_tags(struct page * page,unsigned long pfn)221 static int save_tags(struct page *page, unsigned long pfn)
222 {
223 void *tag_storage, *ret;
224
225 tag_storage = mte_allocate_tag_storage();
226 if (!tag_storage)
227 return -ENOMEM;
228
229 mte_save_page_tags(page_address(page), tag_storage);
230
231 ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL);
232 if (WARN(xa_is_err(ret), "Failed to store MTE tags")) {
233 mte_free_tag_storage(tag_storage);
234 return xa_err(ret);
235 } else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) {
236 mte_free_tag_storage(ret);
237 }
238
239 return 0;
240 }
241
swsusp_mte_free_storage(void)242 static void swsusp_mte_free_storage(void)
243 {
244 XA_STATE(xa_state, &mte_pages, 0);
245 void *tags;
246
247 xa_lock(&mte_pages);
248 xas_for_each(&xa_state, tags, ULONG_MAX) {
249 mte_free_tag_storage(tags);
250 }
251 xa_unlock(&mte_pages);
252
253 xa_destroy(&mte_pages);
254 }
255
swsusp_mte_save_tags(void)256 static int swsusp_mte_save_tags(void)
257 {
258 struct zone *zone;
259 unsigned long pfn, max_zone_pfn;
260 int ret = 0;
261 int n = 0;
262
263 if (!system_supports_mte())
264 return 0;
265
266 for_each_populated_zone(zone) {
267 max_zone_pfn = zone_end_pfn(zone);
268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
269 struct page *page = pfn_to_online_page(pfn);
270
271 if (!page)
272 continue;
273
274 if (!page_mte_tagged(page))
275 continue;
276
277 ret = save_tags(page, pfn);
278 if (ret) {
279 swsusp_mte_free_storage();
280 goto out;
281 }
282
283 n++;
284 }
285 }
286 pr_info("Saved %d MTE pages\n", n);
287
288 out:
289 return ret;
290 }
291
swsusp_mte_restore_tags(void)292 static void swsusp_mte_restore_tags(void)
293 {
294 XA_STATE(xa_state, &mte_pages, 0);
295 int n = 0;
296 void *tags;
297
298 xa_lock(&mte_pages);
299 xas_for_each(&xa_state, tags, ULONG_MAX) {
300 unsigned long pfn = xa_state.xa_index;
301 struct page *page = pfn_to_online_page(pfn);
302
303 mte_restore_page_tags(page_address(page), tags);
304
305 mte_free_tag_storage(tags);
306 n++;
307 }
308 xa_unlock(&mte_pages);
309
310 pr_info("Restored %d MTE pages\n", n);
311
312 xa_destroy(&mte_pages);
313 }
314
315 #else /* CONFIG_ARM64_MTE */
316
swsusp_mte_save_tags(void)317 static int swsusp_mte_save_tags(void)
318 {
319 return 0;
320 }
321
swsusp_mte_restore_tags(void)322 static void swsusp_mte_restore_tags(void)
323 {
324 }
325
326 #endif /* CONFIG_ARM64_MTE */
327
swsusp_arch_suspend(void)328 int swsusp_arch_suspend(void)
329 {
330 int ret = 0;
331 unsigned long flags;
332 struct sleep_stack_data state;
333
334 if (cpus_are_stuck_in_kernel()) {
335 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
336 return -EBUSY;
337 }
338
339 flags = local_daif_save();
340
341 if (__cpu_suspend_enter(&state)) {
342 /* make the crash dump kernel image visible/saveable */
343 crash_prepare_suspend();
344
345 ret = swsusp_mte_save_tags();
346 if (ret)
347 return ret;
348
349 sleep_cpu = smp_processor_id();
350 ret = swsusp_save();
351 } else {
352 /* Clean kernel core startup/idle code to PoC*/
353 dcache_clean_inval_poc((unsigned long)__mmuoff_data_start,
354 (unsigned long)__mmuoff_data_end);
355 dcache_clean_inval_poc((unsigned long)__idmap_text_start,
356 (unsigned long)__idmap_text_end);
357
358 /* Clean kvm setup code to PoC? */
359 if (el2_reset_needed()) {
360 dcache_clean_inval_poc(
361 (unsigned long)__hyp_idmap_text_start,
362 (unsigned long)__hyp_idmap_text_end);
363 dcache_clean_inval_poc((unsigned long)__hyp_text_start,
364 (unsigned long)__hyp_text_end);
365 }
366
367 swsusp_mte_restore_tags();
368
369 /* make the crash dump kernel image protected again */
370 crash_post_resume();
371
372 /*
373 * Tell the hibernation core that we've just restored
374 * the memory
375 */
376 in_suspend = 0;
377
378 sleep_cpu = -EINVAL;
379 __cpu_suspend_exit();
380
381 /*
382 * Just in case the boot kernel did turn the SSBD
383 * mitigation off behind our back, let's set the state
384 * to what we expect it to be.
385 */
386 spectre_v4_enable_mitigation(NULL);
387 }
388
389 local_daif_restore(flags);
390
391 return ret;
392 }
393
394 /*
395 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
396 *
397 * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
398 * we don't need to free it here.
399 */
swsusp_arch_resume(void)400 int swsusp_arch_resume(void)
401 {
402 int rc;
403 void *zero_page;
404 size_t exit_size;
405 pgd_t *tmp_pg_dir;
406 phys_addr_t el2_vectors;
407 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
408 void *, phys_addr_t, phys_addr_t);
409 struct trans_pgd_info trans_info = {
410 .trans_alloc_page = hibernate_page_alloc,
411 .trans_alloc_arg = (void *)GFP_ATOMIC,
412 };
413
414 /*
415 * Restoring the memory image will overwrite the ttbr1 page tables.
416 * Create a second copy of just the linear map, and use this when
417 * restoring.
418 */
419 rc = trans_pgd_create_copy(&trans_info, &tmp_pg_dir, PAGE_OFFSET,
420 PAGE_END);
421 if (rc)
422 return rc;
423
424 /*
425 * We need a zero page that is zero before & after resume in order
426 * to break before make on the ttbr1 page tables.
427 */
428 zero_page = (void *)get_safe_page(GFP_ATOMIC);
429 if (!zero_page) {
430 pr_err("Failed to allocate zero page.\n");
431 return -ENOMEM;
432 }
433
434 if (el2_reset_needed()) {
435 rc = trans_pgd_copy_el2_vectors(&trans_info, &el2_vectors);
436 if (rc) {
437 pr_err("Failed to setup el2 vectors\n");
438 return rc;
439 }
440 }
441
442 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
443 /*
444 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
445 * a new set of ttbr0 page tables and load them.
446 */
447 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
448 (phys_addr_t *)&hibernate_exit);
449 if (rc) {
450 pr_err("Failed to create safe executable page for hibernate_exit code.\n");
451 return rc;
452 }
453
454 /*
455 * KASLR will cause the el2 vectors to be in a different location in
456 * the resumed kernel. Load hibernate's temporary copy into el2.
457 *
458 * We can skip this step if we booted at EL1, or are running with VHE.
459 */
460 if (el2_reset_needed())
461 __hyp_set_vectors(el2_vectors);
462
463 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
464 resume_hdr.reenter_kernel, restore_pblist,
465 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
466
467 return 0;
468 }
469
hibernate_resume_nonboot_cpu_disable(void)470 int hibernate_resume_nonboot_cpu_disable(void)
471 {
472 if (sleep_cpu < 0) {
473 pr_err("Failing to resume from hibernate on an unknown CPU.\n");
474 return -ENODEV;
475 }
476
477 return freeze_secondary_cpus(sleep_cpu);
478 }
479