1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
5
6 /**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_dma_helper.h>
41 #include <drm/drm_framebuffer.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_print.h>
44 #include <drm/drm_probe_helper.h>
45 #include <drm/drm_vblank.h>
46
47 #include "vc4_drv.h"
48 #include "vc4_hdmi.h"
49 #include "vc4_regs.h"
50
51 #define HVS_FIFO_LATENCY_PIX 6
52
53 #define CRTC_WRITE(offset, val) \
54 do { \
55 kunit_fail_current_test("Accessing a register in a unit test!\n"); \
56 writel(val, vc4_crtc->regs + (offset)); \
57 } while (0)
58
59 #define CRTC_READ(offset) \
60 ({ \
61 kunit_fail_current_test("Accessing a register in a unit test!\n"); \
62 readl(vc4_crtc->regs + (offset)); \
63 })
64
65 static const struct debugfs_reg32 crtc_regs[] = {
66 VC4_REG32(PV_CONTROL),
67 VC4_REG32(PV_V_CONTROL),
68 VC4_REG32(PV_VSYNCD_EVEN),
69 VC4_REG32(PV_HORZA),
70 VC4_REG32(PV_HORZB),
71 VC4_REG32(PV_VERTA),
72 VC4_REG32(PV_VERTB),
73 VC4_REG32(PV_VERTA_EVEN),
74 VC4_REG32(PV_VERTB_EVEN),
75 VC4_REG32(PV_INTEN),
76 VC4_REG32(PV_INTSTAT),
77 VC4_REG32(PV_STAT),
78 VC4_REG32(PV_HACT_ACT),
79 };
80
81 static unsigned int
vc4_crtc_get_cob_allocation(struct vc4_dev * vc4,unsigned int channel)82 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
83 {
84 struct vc4_hvs *hvs = vc4->hvs;
85 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
86 /* Top/base are supposed to be 4-pixel aligned, but the
87 * Raspberry Pi firmware fills the low bits (which are
88 * presumably ignored).
89 */
90 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
91 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
92
93 return top - base + 4;
94 }
95
vc4_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)96 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
97 bool in_vblank_irq,
98 int *vpos, int *hpos,
99 ktime_t *stime, ktime_t *etime,
100 const struct drm_display_mode *mode)
101 {
102 struct drm_device *dev = crtc->dev;
103 struct vc4_dev *vc4 = to_vc4_dev(dev);
104 struct vc4_hvs *hvs = vc4->hvs;
105 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
106 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
107 unsigned int cob_size;
108 u32 val;
109 int fifo_lines;
110 int vblank_lines;
111 bool ret = false;
112
113 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
114
115 /* Get optional system timestamp before query. */
116 if (stime)
117 *stime = ktime_get();
118
119 /*
120 * Read vertical scanline which is currently composed for our
121 * pixelvalve by the HVS, and also the scaler status.
122 */
123 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
124
125 /* Get optional system timestamp after query. */
126 if (etime)
127 *etime = ktime_get();
128
129 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
130
131 /* Vertical position of hvs composed scanline. */
132 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
133 *hpos = 0;
134
135 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
136 *vpos /= 2;
137
138 /* Use hpos to correct for field offset in interlaced mode. */
139 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
140 *hpos += mode->crtc_htotal / 2;
141 }
142
143 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
144 /* This is the offset we need for translating hvs -> pv scanout pos. */
145 fifo_lines = cob_size / mode->crtc_hdisplay;
146
147 if (fifo_lines > 0)
148 ret = true;
149
150 /* HVS more than fifo_lines into frame for compositing? */
151 if (*vpos > fifo_lines) {
152 /*
153 * We are in active scanout and can get some meaningful results
154 * from HVS. The actual PV scanout can not trail behind more
155 * than fifo_lines as that is the fifo's capacity. Assume that
156 * in active scanout the HVS and PV work in lockstep wrt. HVS
157 * refilling the fifo and PV consuming from the fifo, ie.
158 * whenever the PV consumes and frees up a scanline in the
159 * fifo, the HVS will immediately refill it, therefore
160 * incrementing vpos. Therefore we choose HVS read position -
161 * fifo size in scanlines as a estimate of the real scanout
162 * position of the PV.
163 */
164 *vpos -= fifo_lines + 1;
165
166 return ret;
167 }
168
169 /*
170 * Less: This happens when we are in vblank and the HVS, after getting
171 * the VSTART restart signal from the PV, just started refilling its
172 * fifo with new lines from the top-most lines of the new framebuffers.
173 * The PV does not scan out in vblank, so does not remove lines from
174 * the fifo, so the fifo will be full quickly and the HVS has to pause.
175 * We can't get meaningful readings wrt. scanline position of the PV
176 * and need to make things up in a approximative but consistent way.
177 */
178 vblank_lines = mode->vtotal - mode->vdisplay;
179
180 if (in_vblank_irq) {
181 /*
182 * Assume the irq handler got called close to first
183 * line of vblank, so PV has about a full vblank
184 * scanlines to go, and as a base timestamp use the
185 * one taken at entry into vblank irq handler, so it
186 * is not affected by random delays due to lock
187 * contention on event_lock or vblank_time lock in
188 * the core.
189 */
190 *vpos = -vblank_lines;
191
192 if (stime)
193 *stime = vc4_crtc->t_vblank;
194 if (etime)
195 *etime = vc4_crtc->t_vblank;
196
197 /*
198 * If the HVS fifo is not yet full then we know for certain
199 * we are at the very beginning of vblank, as the hvs just
200 * started refilling, and the stime and etime timestamps
201 * truly correspond to start of vblank.
202 *
203 * Unfortunately there's no way to report this to upper levels
204 * and make it more useful.
205 */
206 } else {
207 /*
208 * No clue where we are inside vblank. Return a vpos of zero,
209 * which will cause calling code to just return the etime
210 * timestamp uncorrected. At least this is no worse than the
211 * standard fallback.
212 */
213 *vpos = 0;
214 }
215
216 return ret;
217 }
218
vc4_get_fifo_full_level(struct vc4_crtc * vc4_crtc,u32 format)219 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
220 {
221 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
222 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
223 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
224 u32 fifo_len_bytes = pv_data->fifo_depth;
225
226 /*
227 * Pixels are pulled from the HVS if the number of bytes is
228 * lower than the FIFO full level.
229 *
230 * The latency of the pixel fetch mechanism is 6 pixels, so we
231 * need to convert those 6 pixels in bytes, depending on the
232 * format, and then subtract that from the length of the FIFO
233 * to make sure we never end up in a situation where the FIFO
234 * is full.
235 */
236 switch (format) {
237 case PV_CONTROL_FORMAT_DSIV_16:
238 case PV_CONTROL_FORMAT_DSIC_16:
239 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
240 case PV_CONTROL_FORMAT_DSIV_18:
241 return fifo_len_bytes - 14;
242 case PV_CONTROL_FORMAT_24:
243 case PV_CONTROL_FORMAT_DSIV_24:
244 default:
245 /*
246 * For some reason, the pixelvalve4 doesn't work with
247 * the usual formula and will only work with 32.
248 */
249 if (crtc_data->hvs_output == 5)
250 return 32;
251
252 /*
253 * It looks like in some situations, we will overflow
254 * the PixelValve FIFO (with the bit 10 of PV stat being
255 * set) and stall the HVS / PV, eventually resulting in
256 * a page flip timeout.
257 *
258 * Displaying the video overlay during a playback with
259 * Kodi on an RPi3 seems to be a great solution with a
260 * failure rate around 50%.
261 *
262 * Removing 1 from the FIFO full level however
263 * seems to completely remove that issue.
264 */
265 if (!vc4->is_vc5)
266 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
267
268 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
269 }
270 }
271
vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc * vc4_crtc,u32 format)272 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
273 u32 format)
274 {
275 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
276 u32 ret = 0;
277
278 ret |= VC4_SET_FIELD((level >> 6),
279 PV5_CONTROL_FIFO_LEVEL_HIGH);
280
281 return ret | VC4_SET_FIELD(level & 0x3f,
282 PV_CONTROL_FIFO_LEVEL);
283 }
284
285 /*
286 * Returns the encoder attached to the CRTC.
287 *
288 * VC4 can only scan out to one encoder at a time, while the DRM core
289 * allows drivers to push pixels to more than one encoder from the
290 * same CRTC.
291 */
vc4_get_crtc_encoder(struct drm_crtc * crtc,struct drm_crtc_state * state)292 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
293 struct drm_crtc_state *state)
294 {
295 struct drm_encoder *encoder;
296
297 WARN_ON(hweight32(state->encoder_mask) > 1);
298
299 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
300 return encoder;
301
302 return NULL;
303 }
304
vc4_crtc_pixelvalve_reset(struct drm_crtc * crtc)305 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
306 {
307 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
308 struct drm_device *dev = crtc->dev;
309 int idx;
310
311 if (!drm_dev_enter(dev, &idx))
312 return;
313
314 /* The PV needs to be disabled before it can be flushed */
315 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
316 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
317
318 drm_dev_exit(idx);
319 }
320
vc4_crtc_config_pv(struct drm_crtc * crtc,struct drm_encoder * encoder,struct drm_atomic_state * state)321 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
322 struct drm_atomic_state *state)
323 {
324 struct drm_device *dev = crtc->dev;
325 struct vc4_dev *vc4 = to_vc4_dev(dev);
326 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
327 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
328 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
329 struct drm_crtc_state *crtc_state = crtc->state;
330 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
331 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
332 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
333 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
334 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
335 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
336 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
337 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
338 bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
339 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
340 u8 ppc = pv_data->pixels_per_clock;
341
342 u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
343 u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
344 u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
345
346 bool debug_dump_regs = false;
347 int idx;
348
349 if (!drm_dev_enter(dev, &idx))
350 return;
351
352 if (debug_dump_regs) {
353 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
354 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
355 drm_crtc_index(crtc));
356 drm_print_regset32(&p, &vc4_crtc->regset);
357 }
358
359 vc4_crtc_pixelvalve_reset(crtc);
360
361 CRTC_WRITE(PV_HORZA,
362 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
363 PV_HORZA_HBP) |
364 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
365 PV_HORZA_HSYNC));
366
367 CRTC_WRITE(PV_HORZB,
368 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
369 PV_HORZB_HFP) |
370 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
371 PV_HORZB_HACTIVE));
372
373 if (interlace) {
374 bool odd_field_first = false;
375 u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
376 u16 vert_bp_even = vert_bp;
377 u16 vert_fp_even = vert_fp;
378
379 if (is_vec) {
380 /* VEC (composite output) */
381 ++field_delay;
382 if (mode->htotal == 858) {
383 /* 525-line mode (NTSC or PAL-M) */
384 odd_field_first = true;
385 }
386 }
387
388 if (odd_field_first)
389 ++vert_fp_even;
390 else
391 ++vert_bp;
392
393 CRTC_WRITE(PV_VERTA_EVEN,
394 VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
395 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
396 CRTC_WRITE(PV_VERTB_EVEN,
397 VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
398 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
399
400 /* We set up first field even mode for HDMI and VEC's PAL.
401 * For NTSC, we need first field odd.
402 */
403 CRTC_WRITE(PV_V_CONTROL,
404 PV_VCONTROL_CONTINUOUS |
405 (is_dsi ? PV_VCONTROL_DSI : 0) |
406 PV_VCONTROL_INTERLACE |
407 (odd_field_first
408 ? PV_VCONTROL_ODD_FIRST
409 : VC4_SET_FIELD(field_delay,
410 PV_VCONTROL_ODD_DELAY)));
411 CRTC_WRITE(PV_VSYNCD_EVEN,
412 (odd_field_first ? field_delay : 0));
413 } else {
414 CRTC_WRITE(PV_V_CONTROL,
415 PV_VCONTROL_CONTINUOUS |
416 (is_dsi ? PV_VCONTROL_DSI : 0));
417 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
418 }
419
420 CRTC_WRITE(PV_VERTA,
421 VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
422 VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
423 CRTC_WRITE(PV_VERTB,
424 VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
425 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
426
427 if (is_dsi)
428 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
429
430 if (vc4->is_vc5)
431 CRTC_WRITE(PV_MUX_CFG,
432 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
433 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
434
435 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
436 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
437 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
438 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
439 PV_CONTROL_CLR_AT_START |
440 PV_CONTROL_TRIGGER_UNDERFLOW |
441 PV_CONTROL_WAIT_HSTART |
442 VC4_SET_FIELD(vc4_encoder->clock_select,
443 PV_CONTROL_CLK_SELECT));
444
445 if (debug_dump_regs) {
446 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
447 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
448 drm_crtc_index(crtc));
449 drm_print_regset32(&p, &vc4_crtc->regset);
450 }
451
452 drm_dev_exit(idx);
453 }
454
require_hvs_enabled(struct drm_device * dev)455 static void require_hvs_enabled(struct drm_device *dev)
456 {
457 struct vc4_dev *vc4 = to_vc4_dev(dev);
458 struct vc4_hvs *hvs = vc4->hvs;
459
460 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
461 SCALER_DISPCTRL_ENABLE);
462 }
463
vc4_crtc_disable(struct drm_crtc * crtc,struct drm_encoder * encoder,struct drm_atomic_state * state,unsigned int channel)464 static int vc4_crtc_disable(struct drm_crtc *crtc,
465 struct drm_encoder *encoder,
466 struct drm_atomic_state *state,
467 unsigned int channel)
468 {
469 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
470 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
471 struct drm_device *dev = crtc->dev;
472 struct vc4_dev *vc4 = to_vc4_dev(dev);
473 int idx, ret;
474
475 if (!drm_dev_enter(dev, &idx))
476 return -ENODEV;
477
478 CRTC_WRITE(PV_V_CONTROL,
479 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
480 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
481 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
482
483 /*
484 * This delay is needed to avoid to get a pixel stuck in an
485 * unflushable FIFO between the pixelvalve and the HDMI
486 * controllers on the BCM2711.
487 *
488 * Timing is fairly sensitive here, so mdelay is the safest
489 * approach.
490 *
491 * If it was to be reworked, the stuck pixel happens on a
492 * BCM2711 when changing mode with a good probability, so a
493 * script that changes mode on a regular basis should trigger
494 * the bug after less than 10 attempts. It manifests itself with
495 * every pixels being shifted by one to the right, and thus the
496 * last pixel of a line actually being displayed as the first
497 * pixel on the next line.
498 */
499 mdelay(20);
500
501 if (vc4_encoder && vc4_encoder->post_crtc_disable)
502 vc4_encoder->post_crtc_disable(encoder, state);
503
504 vc4_crtc_pixelvalve_reset(crtc);
505 vc4_hvs_stop_channel(vc4->hvs, channel);
506
507 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
508 vc4_encoder->post_crtc_powerdown(encoder, state);
509
510 drm_dev_exit(idx);
511
512 return 0;
513 }
514
vc4_crtc_disable_at_boot(struct drm_crtc * crtc)515 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
516 {
517 struct drm_device *drm = crtc->dev;
518 struct vc4_dev *vc4 = to_vc4_dev(drm);
519 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
520 enum vc4_encoder_type encoder_type;
521 const struct vc4_pv_data *pv_data;
522 struct drm_encoder *encoder;
523 struct vc4_hdmi *vc4_hdmi;
524 unsigned encoder_sel;
525 int channel;
526 int ret;
527
528 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
529 "brcm,bcm2711-pixelvalve2") ||
530 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
531 "brcm,bcm2711-pixelvalve4")))
532 return 0;
533
534 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
535 return 0;
536
537 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
538 return 0;
539
540 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
541 if (channel < 0)
542 return 0;
543
544 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
545 if (WARN_ON(encoder_sel != 0))
546 return 0;
547
548 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
549 encoder_type = pv_data->encoder_types[encoder_sel];
550 encoder = vc4_find_encoder_by_type(drm, encoder_type);
551 if (WARN_ON(!encoder))
552 return 0;
553
554 vc4_hdmi = encoder_to_vc4_hdmi(encoder);
555 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
556 if (ret)
557 return ret;
558
559 ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
560 if (ret)
561 return ret;
562
563 /*
564 * post_crtc_powerdown will have called pm_runtime_put, so we
565 * don't need it here otherwise we'll get the reference counting
566 * wrong.
567 */
568
569 return 0;
570 }
571
vc4_crtc_send_vblank(struct drm_crtc * crtc)572 void vc4_crtc_send_vblank(struct drm_crtc *crtc)
573 {
574 struct drm_device *dev = crtc->dev;
575 unsigned long flags;
576
577 if (!crtc->state || !crtc->state->event)
578 return;
579
580 spin_lock_irqsave(&dev->event_lock, flags);
581 drm_crtc_send_vblank_event(crtc, crtc->state->event);
582 crtc->state->event = NULL;
583 spin_unlock_irqrestore(&dev->event_lock, flags);
584 }
585
vc4_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)586 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
587 struct drm_atomic_state *state)
588 {
589 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
590 crtc);
591 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
592 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
593 struct drm_device *dev = crtc->dev;
594
595 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
596 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
597
598 require_hvs_enabled(dev);
599
600 /* Disable vblank irq handling before crtc is disabled. */
601 drm_crtc_vblank_off(crtc);
602
603 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
604
605 /*
606 * Make sure we issue a vblank event after disabling the CRTC if
607 * someone was waiting it.
608 */
609 vc4_crtc_send_vblank(crtc);
610 }
611
vc4_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)612 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
613 struct drm_atomic_state *state)
614 {
615 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
616 crtc);
617 struct drm_device *dev = crtc->dev;
618 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
619 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
620 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
621 int idx;
622
623 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
624 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
625
626 if (!drm_dev_enter(dev, &idx))
627 return;
628
629 require_hvs_enabled(dev);
630
631 /* Enable vblank irq handling before crtc is started otherwise
632 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
633 */
634 drm_crtc_vblank_on(crtc);
635
636 vc4_hvs_atomic_enable(crtc, state);
637
638 if (vc4_encoder->pre_crtc_configure)
639 vc4_encoder->pre_crtc_configure(encoder, state);
640
641 vc4_crtc_config_pv(crtc, encoder, state);
642
643 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
644
645 if (vc4_encoder->pre_crtc_enable)
646 vc4_encoder->pre_crtc_enable(encoder, state);
647
648 /* When feeding the transposer block the pixelvalve is unneeded and
649 * should not be enabled.
650 */
651 CRTC_WRITE(PV_V_CONTROL,
652 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
653
654 if (vc4_encoder->post_crtc_enable)
655 vc4_encoder->post_crtc_enable(encoder, state);
656
657 drm_dev_exit(idx);
658 }
659
vc4_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)660 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
661 const struct drm_display_mode *mode)
662 {
663 /* Do not allow doublescan modes from user space */
664 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
665 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
666 crtc->base.id);
667 return MODE_NO_DBLESCAN;
668 }
669
670 return MODE_OK;
671 }
672
vc4_crtc_get_margins(struct drm_crtc_state * state,unsigned int * left,unsigned int * right,unsigned int * top,unsigned int * bottom)673 void vc4_crtc_get_margins(struct drm_crtc_state *state,
674 unsigned int *left, unsigned int *right,
675 unsigned int *top, unsigned int *bottom)
676 {
677 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
678 struct drm_connector_state *conn_state;
679 struct drm_connector *conn;
680 int i;
681
682 *left = vc4_state->margins.left;
683 *right = vc4_state->margins.right;
684 *top = vc4_state->margins.top;
685 *bottom = vc4_state->margins.bottom;
686
687 /* We have to interate over all new connector states because
688 * vc4_crtc_get_margins() might be called before
689 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
690 * might be outdated.
691 */
692 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
693 if (conn_state->crtc != state->crtc)
694 continue;
695
696 *left = conn_state->tv.margins.left;
697 *right = conn_state->tv.margins.right;
698 *top = conn_state->tv.margins.top;
699 *bottom = conn_state->tv.margins.bottom;
700 break;
701 }
702 }
703
vc4_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)704 int vc4_crtc_atomic_check(struct drm_crtc *crtc,
705 struct drm_atomic_state *state)
706 {
707 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
708 crtc);
709 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
710 struct drm_connector *conn;
711 struct drm_connector_state *conn_state;
712 struct drm_encoder *encoder;
713 int ret, i;
714
715 ret = vc4_hvs_atomic_check(crtc, state);
716 if (ret)
717 return ret;
718
719 encoder = vc4_get_crtc_encoder(crtc, crtc_state);
720 if (encoder) {
721 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
722 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
723
724 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
725 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
726 mode->clock * 9 / 10) * 1000;
727 } else {
728 vc4_state->hvs_load = mode->clock * 1000;
729 }
730 }
731
732 for_each_new_connector_in_state(state, conn, conn_state,
733 i) {
734 if (conn_state->crtc != crtc)
735 continue;
736
737 vc4_state->margins.left = conn_state->tv.margins.left;
738 vc4_state->margins.right = conn_state->tv.margins.right;
739 vc4_state->margins.top = conn_state->tv.margins.top;
740 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
741 break;
742 }
743
744 return 0;
745 }
746
vc4_enable_vblank(struct drm_crtc * crtc)747 static int vc4_enable_vblank(struct drm_crtc *crtc)
748 {
749 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
750 struct drm_device *dev = crtc->dev;
751 int idx;
752
753 if (!drm_dev_enter(dev, &idx))
754 return -ENODEV;
755
756 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
757
758 drm_dev_exit(idx);
759
760 return 0;
761 }
762
vc4_disable_vblank(struct drm_crtc * crtc)763 static void vc4_disable_vblank(struct drm_crtc *crtc)
764 {
765 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
766 struct drm_device *dev = crtc->dev;
767 int idx;
768
769 if (!drm_dev_enter(dev, &idx))
770 return;
771
772 CRTC_WRITE(PV_INTEN, 0);
773
774 drm_dev_exit(idx);
775 }
776
vc4_crtc_handle_page_flip(struct vc4_crtc * vc4_crtc)777 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
778 {
779 struct drm_crtc *crtc = &vc4_crtc->base;
780 struct drm_device *dev = crtc->dev;
781 struct vc4_dev *vc4 = to_vc4_dev(dev);
782 struct vc4_hvs *hvs = vc4->hvs;
783 u32 chan = vc4_crtc->current_hvs_channel;
784 unsigned long flags;
785
786 spin_lock_irqsave(&dev->event_lock, flags);
787 spin_lock(&vc4_crtc->irq_lock);
788 if (vc4_crtc->event &&
789 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
790 vc4_crtc->feeds_txp)) {
791 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
792 vc4_crtc->event = NULL;
793 drm_crtc_vblank_put(crtc);
794
795 /* Wait for the page flip to unmask the underrun to ensure that
796 * the display list was updated by the hardware. Before that
797 * happens, the HVS will be using the previous display list with
798 * the CRTC and encoder already reconfigured, leading to
799 * underruns. This can be seen when reconfiguring the CRTC.
800 */
801 vc4_hvs_unmask_underrun(hvs, chan);
802 }
803 spin_unlock(&vc4_crtc->irq_lock);
804 spin_unlock_irqrestore(&dev->event_lock, flags);
805 }
806
vc4_crtc_handle_vblank(struct vc4_crtc * crtc)807 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
808 {
809 crtc->t_vblank = ktime_get();
810 drm_crtc_handle_vblank(&crtc->base);
811 vc4_crtc_handle_page_flip(crtc);
812 }
813
vc4_crtc_irq_handler(int irq,void * data)814 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
815 {
816 struct vc4_crtc *vc4_crtc = data;
817 u32 stat = CRTC_READ(PV_INTSTAT);
818 irqreturn_t ret = IRQ_NONE;
819
820 if (stat & PV_INT_VFP_START) {
821 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
822 vc4_crtc_handle_vblank(vc4_crtc);
823 ret = IRQ_HANDLED;
824 }
825
826 return ret;
827 }
828
829 struct vc4_async_flip_state {
830 struct drm_crtc *crtc;
831 struct drm_framebuffer *fb;
832 struct drm_framebuffer *old_fb;
833 struct drm_pending_vblank_event *event;
834
835 union {
836 struct dma_fence_cb fence;
837 struct vc4_seqno_cb seqno;
838 } cb;
839 };
840
841 /* Called when the V3D execution for the BO being flipped to is done, so that
842 * we can actually update the plane's address to point to it.
843 */
844 static void
vc4_async_page_flip_complete(struct vc4_async_flip_state * flip_state)845 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
846 {
847 struct drm_crtc *crtc = flip_state->crtc;
848 struct drm_device *dev = crtc->dev;
849 struct drm_plane *plane = crtc->primary;
850
851 vc4_plane_async_set_fb(plane, flip_state->fb);
852 if (flip_state->event) {
853 unsigned long flags;
854
855 spin_lock_irqsave(&dev->event_lock, flags);
856 drm_crtc_send_vblank_event(crtc, flip_state->event);
857 spin_unlock_irqrestore(&dev->event_lock, flags);
858 }
859
860 drm_crtc_vblank_put(crtc);
861 drm_framebuffer_put(flip_state->fb);
862
863 if (flip_state->old_fb)
864 drm_framebuffer_put(flip_state->old_fb);
865
866 kfree(flip_state);
867 }
868
vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb * cb)869 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
870 {
871 struct vc4_async_flip_state *flip_state =
872 container_of(cb, struct vc4_async_flip_state, cb.seqno);
873 struct vc4_bo *bo = NULL;
874
875 if (flip_state->old_fb) {
876 struct drm_gem_dma_object *dma_bo =
877 drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
878 bo = to_vc4_bo(&dma_bo->base);
879 }
880
881 vc4_async_page_flip_complete(flip_state);
882
883 /*
884 * Decrement the BO usecnt in order to keep the inc/dec
885 * calls balanced when the planes are updated through
886 * the async update path.
887 *
888 * FIXME: we should move to generic async-page-flip when
889 * it's available, so that we can get rid of this
890 * hand-made cleanup_fb() logic.
891 */
892 if (bo)
893 vc4_bo_dec_usecnt(bo);
894 }
895
vc4_async_page_flip_fence_complete(struct dma_fence * fence,struct dma_fence_cb * cb)896 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
897 struct dma_fence_cb *cb)
898 {
899 struct vc4_async_flip_state *flip_state =
900 container_of(cb, struct vc4_async_flip_state, cb.fence);
901
902 vc4_async_page_flip_complete(flip_state);
903 dma_fence_put(fence);
904 }
905
vc4_async_set_fence_cb(struct drm_device * dev,struct vc4_async_flip_state * flip_state)906 static int vc4_async_set_fence_cb(struct drm_device *dev,
907 struct vc4_async_flip_state *flip_state)
908 {
909 struct drm_framebuffer *fb = flip_state->fb;
910 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
911 struct vc4_dev *vc4 = to_vc4_dev(dev);
912 struct dma_fence *fence;
913 int ret;
914
915 if (!vc4->is_vc5) {
916 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
917
918 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
919 vc4_async_page_flip_seqno_complete);
920 }
921
922 ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
923 if (ret)
924 return ret;
925
926 /* If there's no fence, complete the page flip immediately */
927 if (!fence) {
928 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
929 return 0;
930 }
931
932 /* If the fence has already been completed, complete the page flip */
933 if (dma_fence_add_callback(fence, &flip_state->cb.fence,
934 vc4_async_page_flip_fence_complete))
935 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
936
937 return 0;
938 }
939
940 static int
vc4_async_page_flip_common(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)941 vc4_async_page_flip_common(struct drm_crtc *crtc,
942 struct drm_framebuffer *fb,
943 struct drm_pending_vblank_event *event,
944 uint32_t flags)
945 {
946 struct drm_device *dev = crtc->dev;
947 struct drm_plane *plane = crtc->primary;
948 struct vc4_async_flip_state *flip_state;
949
950 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
951 if (!flip_state)
952 return -ENOMEM;
953
954 drm_framebuffer_get(fb);
955 flip_state->fb = fb;
956 flip_state->crtc = crtc;
957 flip_state->event = event;
958
959 /* Save the current FB before it's replaced by the new one in
960 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
961 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
962 * it consistent.
963 * FIXME: we should move to generic async-page-flip when it's
964 * available, so that we can get rid of this hand-made cleanup_fb()
965 * logic.
966 */
967 flip_state->old_fb = plane->state->fb;
968 if (flip_state->old_fb)
969 drm_framebuffer_get(flip_state->old_fb);
970
971 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
972
973 /* Immediately update the plane's legacy fb pointer, so that later
974 * modeset prep sees the state that will be present when the semaphore
975 * is released.
976 */
977 drm_atomic_set_fb_for_plane(plane->state, fb);
978
979 vc4_async_set_fence_cb(dev, flip_state);
980
981 /* Driver takes ownership of state on successful async commit. */
982 return 0;
983 }
984
985 /* Implements async (non-vblank-synced) page flips.
986 *
987 * The page flip ioctl needs to return immediately, so we grab the
988 * modeset semaphore on the pipe, and queue the address update for
989 * when V3D is done with the BO being flipped to.
990 */
vc4_async_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)991 static int vc4_async_page_flip(struct drm_crtc *crtc,
992 struct drm_framebuffer *fb,
993 struct drm_pending_vblank_event *event,
994 uint32_t flags)
995 {
996 struct drm_device *dev = crtc->dev;
997 struct vc4_dev *vc4 = to_vc4_dev(dev);
998 struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
999 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1000 int ret;
1001
1002 if (WARN_ON_ONCE(vc4->is_vc5))
1003 return -ENODEV;
1004
1005 /*
1006 * Increment the BO usecnt here, so that we never end up with an
1007 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1008 * plane is later updated through the non-async path.
1009 *
1010 * FIXME: we should move to generic async-page-flip when
1011 * it's available, so that we can get rid of this
1012 * hand-made prepare_fb() logic.
1013 */
1014 ret = vc4_bo_inc_usecnt(bo);
1015 if (ret)
1016 return ret;
1017
1018 ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1019 if (ret) {
1020 vc4_bo_dec_usecnt(bo);
1021 return ret;
1022 }
1023
1024 return 0;
1025 }
1026
vc5_async_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)1027 static int vc5_async_page_flip(struct drm_crtc *crtc,
1028 struct drm_framebuffer *fb,
1029 struct drm_pending_vblank_event *event,
1030 uint32_t flags)
1031 {
1032 return vc4_async_page_flip_common(crtc, fb, event, flags);
1033 }
1034
vc4_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags,struct drm_modeset_acquire_ctx * ctx)1035 int vc4_page_flip(struct drm_crtc *crtc,
1036 struct drm_framebuffer *fb,
1037 struct drm_pending_vblank_event *event,
1038 uint32_t flags,
1039 struct drm_modeset_acquire_ctx *ctx)
1040 {
1041 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1042 struct drm_device *dev = crtc->dev;
1043 struct vc4_dev *vc4 = to_vc4_dev(dev);
1044
1045 if (vc4->is_vc5)
1046 return vc5_async_page_flip(crtc, fb, event, flags);
1047 else
1048 return vc4_async_page_flip(crtc, fb, event, flags);
1049 } else {
1050 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1051 }
1052 }
1053
vc4_crtc_duplicate_state(struct drm_crtc * crtc)1054 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1055 {
1056 struct vc4_crtc_state *vc4_state, *old_vc4_state;
1057
1058 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1059 if (!vc4_state)
1060 return NULL;
1061
1062 old_vc4_state = to_vc4_crtc_state(crtc->state);
1063 vc4_state->margins = old_vc4_state->margins;
1064 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1065
1066 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1067 return &vc4_state->base;
1068 }
1069
vc4_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)1070 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1071 struct drm_crtc_state *state)
1072 {
1073 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1074 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1075
1076 if (drm_mm_node_allocated(&vc4_state->mm)) {
1077 unsigned long flags;
1078
1079 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1080 drm_mm_remove_node(&vc4_state->mm);
1081 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1082
1083 }
1084
1085 drm_atomic_helper_crtc_destroy_state(crtc, state);
1086 }
1087
vc4_crtc_reset(struct drm_crtc * crtc)1088 void vc4_crtc_reset(struct drm_crtc *crtc)
1089 {
1090 struct vc4_crtc_state *vc4_crtc_state;
1091
1092 if (crtc->state)
1093 vc4_crtc_destroy_state(crtc, crtc->state);
1094
1095 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1096 if (!vc4_crtc_state) {
1097 crtc->state = NULL;
1098 return;
1099 }
1100
1101 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1102 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1103 }
1104
vc4_crtc_late_register(struct drm_crtc * crtc)1105 int vc4_crtc_late_register(struct drm_crtc *crtc)
1106 {
1107 struct drm_device *drm = crtc->dev;
1108 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1109 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1110
1111 vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name,
1112 &vc4_crtc->regset);
1113
1114 return 0;
1115 }
1116
1117 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1118 .set_config = drm_atomic_helper_set_config,
1119 .page_flip = vc4_page_flip,
1120 .set_property = NULL,
1121 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1122 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1123 .reset = vc4_crtc_reset,
1124 .atomic_duplicate_state = vc4_crtc_duplicate_state,
1125 .atomic_destroy_state = vc4_crtc_destroy_state,
1126 .enable_vblank = vc4_enable_vblank,
1127 .disable_vblank = vc4_disable_vblank,
1128 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1129 .late_register = vc4_crtc_late_register,
1130 };
1131
1132 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1133 .mode_valid = vc4_crtc_mode_valid,
1134 .atomic_check = vc4_crtc_atomic_check,
1135 .atomic_begin = vc4_hvs_atomic_begin,
1136 .atomic_flush = vc4_hvs_atomic_flush,
1137 .atomic_enable = vc4_crtc_atomic_enable,
1138 .atomic_disable = vc4_crtc_atomic_disable,
1139 .get_scanout_position = vc4_crtc_get_scanout_position,
1140 };
1141
1142 const struct vc4_pv_data bcm2835_pv0_data = {
1143 .base = {
1144 .name = "pixelvalve-0",
1145 .debugfs_name = "crtc0_regs",
1146 .hvs_available_channels = BIT(0),
1147 .hvs_output = 0,
1148 },
1149 .fifo_depth = 64,
1150 .pixels_per_clock = 1,
1151 .encoder_types = {
1152 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1153 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1154 },
1155 };
1156
1157 const struct vc4_pv_data bcm2835_pv1_data = {
1158 .base = {
1159 .name = "pixelvalve-1",
1160 .debugfs_name = "crtc1_regs",
1161 .hvs_available_channels = BIT(2),
1162 .hvs_output = 2,
1163 },
1164 .fifo_depth = 64,
1165 .pixels_per_clock = 1,
1166 .encoder_types = {
1167 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1168 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1169 },
1170 };
1171
1172 const struct vc4_pv_data bcm2835_pv2_data = {
1173 .base = {
1174 .name = "pixelvalve-2",
1175 .debugfs_name = "crtc2_regs",
1176 .hvs_available_channels = BIT(1),
1177 .hvs_output = 1,
1178 },
1179 .fifo_depth = 64,
1180 .pixels_per_clock = 1,
1181 .encoder_types = {
1182 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1183 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1184 },
1185 };
1186
1187 const struct vc4_pv_data bcm2711_pv0_data = {
1188 .base = {
1189 .name = "pixelvalve-0",
1190 .debugfs_name = "crtc0_regs",
1191 .hvs_available_channels = BIT(0),
1192 .hvs_output = 0,
1193 },
1194 .fifo_depth = 64,
1195 .pixels_per_clock = 1,
1196 .encoder_types = {
1197 [0] = VC4_ENCODER_TYPE_DSI0,
1198 [1] = VC4_ENCODER_TYPE_DPI,
1199 },
1200 };
1201
1202 const struct vc4_pv_data bcm2711_pv1_data = {
1203 .base = {
1204 .name = "pixelvalve-1",
1205 .debugfs_name = "crtc1_regs",
1206 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1207 .hvs_output = 3,
1208 },
1209 .fifo_depth = 64,
1210 .pixels_per_clock = 1,
1211 .encoder_types = {
1212 [0] = VC4_ENCODER_TYPE_DSI1,
1213 [1] = VC4_ENCODER_TYPE_SMI,
1214 },
1215 };
1216
1217 const struct vc4_pv_data bcm2711_pv2_data = {
1218 .base = {
1219 .name = "pixelvalve-2",
1220 .debugfs_name = "crtc2_regs",
1221 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1222 .hvs_output = 4,
1223 },
1224 .fifo_depth = 256,
1225 .pixels_per_clock = 2,
1226 .encoder_types = {
1227 [0] = VC4_ENCODER_TYPE_HDMI0,
1228 },
1229 };
1230
1231 const struct vc4_pv_data bcm2711_pv3_data = {
1232 .base = {
1233 .name = "pixelvalve-3",
1234 .debugfs_name = "crtc3_regs",
1235 .hvs_available_channels = BIT(1),
1236 .hvs_output = 1,
1237 },
1238 .fifo_depth = 64,
1239 .pixels_per_clock = 1,
1240 .encoder_types = {
1241 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1242 },
1243 };
1244
1245 const struct vc4_pv_data bcm2711_pv4_data = {
1246 .base = {
1247 .name = "pixelvalve-4",
1248 .debugfs_name = "crtc4_regs",
1249 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1250 .hvs_output = 5,
1251 },
1252 .fifo_depth = 64,
1253 .pixels_per_clock = 2,
1254 .encoder_types = {
1255 [0] = VC4_ENCODER_TYPE_HDMI1,
1256 },
1257 };
1258
1259 static const struct of_device_id vc4_crtc_dt_match[] = {
1260 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1261 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1262 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1263 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1264 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1265 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1266 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1267 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1268 {}
1269 };
1270
vc4_set_crtc_possible_masks(struct drm_device * drm,struct drm_crtc * crtc)1271 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1272 struct drm_crtc *crtc)
1273 {
1274 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1275 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1276 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1277 struct drm_encoder *encoder;
1278
1279 drm_for_each_encoder(encoder, drm) {
1280 struct vc4_encoder *vc4_encoder;
1281 int i;
1282
1283 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1284 continue;
1285
1286 vc4_encoder = to_vc4_encoder(encoder);
1287 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1288 if (vc4_encoder->type == encoder_types[i]) {
1289 vc4_encoder->clock_select = i;
1290 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1291 break;
1292 }
1293 }
1294 }
1295 }
1296
1297 /**
1298 * __vc4_crtc_init - Initializes a CRTC
1299 * @drm: DRM Device
1300 * @pdev: CRTC Platform Device
1301 * @vc4_crtc: CRTC Object to Initialize
1302 * @data: Configuration data associated with this CRTC
1303 * @primary_plane: Primary plane for CRTC
1304 * @crtc_funcs: Callbacks for the new CRTC
1305 * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1306 * @feeds_txp: Is this CRTC connected to the TXP?
1307 *
1308 * Initializes our private CRTC structure. This function is mostly
1309 * relevant for KUnit testing, all other users should use
1310 * vc4_crtc_init() instead.
1311 *
1312 * Returns:
1313 * 0 on success, a negative error code on failure.
1314 */
__vc4_crtc_init(struct drm_device * drm,struct platform_device * pdev,struct vc4_crtc * vc4_crtc,const struct vc4_crtc_data * data,struct drm_plane * primary_plane,const struct drm_crtc_funcs * crtc_funcs,const struct drm_crtc_helper_funcs * crtc_helper_funcs,bool feeds_txp)1315 int __vc4_crtc_init(struct drm_device *drm,
1316 struct platform_device *pdev,
1317 struct vc4_crtc *vc4_crtc,
1318 const struct vc4_crtc_data *data,
1319 struct drm_plane *primary_plane,
1320 const struct drm_crtc_funcs *crtc_funcs,
1321 const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1322 bool feeds_txp)
1323 {
1324 struct vc4_dev *vc4 = to_vc4_dev(drm);
1325 struct drm_crtc *crtc = &vc4_crtc->base;
1326 unsigned int i;
1327 int ret;
1328
1329 vc4_crtc->data = data;
1330 vc4_crtc->pdev = pdev;
1331 vc4_crtc->feeds_txp = feeds_txp;
1332 spin_lock_init(&vc4_crtc->irq_lock);
1333 ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1334 crtc_funcs, data->name);
1335 if (ret)
1336 return ret;
1337
1338 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1339
1340 if (!vc4->is_vc5) {
1341 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1342
1343 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1344
1345 /* We support CTM, but only for one CRTC at a time. It's therefore
1346 * implemented as private driver state in vc4_kms, not here.
1347 */
1348 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1349 }
1350
1351 for (i = 0; i < crtc->gamma_size; i++) {
1352 vc4_crtc->lut_r[i] = i;
1353 vc4_crtc->lut_g[i] = i;
1354 vc4_crtc->lut_b[i] = i;
1355 }
1356
1357 return 0;
1358 }
1359
vc4_crtc_init(struct drm_device * drm,struct platform_device * pdev,struct vc4_crtc * vc4_crtc,const struct vc4_crtc_data * data,const struct drm_crtc_funcs * crtc_funcs,const struct drm_crtc_helper_funcs * crtc_helper_funcs,bool feeds_txp)1360 int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1361 struct vc4_crtc *vc4_crtc,
1362 const struct vc4_crtc_data *data,
1363 const struct drm_crtc_funcs *crtc_funcs,
1364 const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1365 bool feeds_txp)
1366 {
1367 struct drm_plane *primary_plane;
1368
1369 /* For now, we create just the primary and the legacy cursor
1370 * planes. We should be able to stack more planes on easily,
1371 * but to do that we would need to compute the bandwidth
1372 * requirement of the plane configuration, and reject ones
1373 * that will take too much.
1374 */
1375 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1376 if (IS_ERR(primary_plane)) {
1377 dev_err(drm->dev, "failed to construct primary plane\n");
1378 return PTR_ERR(primary_plane);
1379 }
1380
1381 return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1382 crtc_funcs, crtc_helper_funcs, feeds_txp);
1383 }
1384
vc4_crtc_bind(struct device * dev,struct device * master,void * data)1385 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1386 {
1387 struct platform_device *pdev = to_platform_device(dev);
1388 struct drm_device *drm = dev_get_drvdata(master);
1389 const struct vc4_pv_data *pv_data;
1390 struct vc4_crtc *vc4_crtc;
1391 struct drm_crtc *crtc;
1392 int ret;
1393
1394 vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1395 if (!vc4_crtc)
1396 return -ENOMEM;
1397 crtc = &vc4_crtc->base;
1398
1399 pv_data = of_device_get_match_data(dev);
1400 if (!pv_data)
1401 return -ENODEV;
1402
1403 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1404 if (IS_ERR(vc4_crtc->regs))
1405 return PTR_ERR(vc4_crtc->regs);
1406
1407 vc4_crtc->regset.base = vc4_crtc->regs;
1408 vc4_crtc->regset.regs = crtc_regs;
1409 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1410
1411 ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base,
1412 &vc4_crtc_funcs, &vc4_crtc_helper_funcs,
1413 false);
1414 if (ret)
1415 return ret;
1416 vc4_set_crtc_possible_masks(drm, crtc);
1417
1418 CRTC_WRITE(PV_INTEN, 0);
1419 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1420 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1421 vc4_crtc_irq_handler,
1422 IRQF_SHARED,
1423 "vc4 crtc", vc4_crtc);
1424 if (ret)
1425 return ret;
1426
1427 platform_set_drvdata(pdev, vc4_crtc);
1428
1429 return 0;
1430 }
1431
vc4_crtc_unbind(struct device * dev,struct device * master,void * data)1432 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1433 void *data)
1434 {
1435 struct platform_device *pdev = to_platform_device(dev);
1436 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1437
1438 CRTC_WRITE(PV_INTEN, 0);
1439
1440 platform_set_drvdata(pdev, NULL);
1441 }
1442
1443 static const struct component_ops vc4_crtc_ops = {
1444 .bind = vc4_crtc_bind,
1445 .unbind = vc4_crtc_unbind,
1446 };
1447
vc4_crtc_dev_probe(struct platform_device * pdev)1448 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1449 {
1450 return component_add(&pdev->dev, &vc4_crtc_ops);
1451 }
1452
vc4_crtc_dev_remove(struct platform_device * pdev)1453 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1454 {
1455 component_del(&pdev->dev, &vc4_crtc_ops);
1456 return 0;
1457 }
1458
1459 struct platform_driver vc4_crtc_driver = {
1460 .probe = vc4_crtc_dev_probe,
1461 .remove = vc4_crtc_dev_remove,
1462 .driver = {
1463 .name = "vc4_crtc",
1464 .of_match_table = vc4_crtc_dt_match,
1465 },
1466 };
1467