1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* 3 * VFIO API definition 4 * 5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 6 * Author: Alex Williamson <alex.williamson@redhat.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #ifndef _UAPIVFIO_H 13 #define _UAPIVFIO_H 14 15 #include <linux/types.h> 16 #include <linux/ioctl.h> 17 18 #define VFIO_API_VERSION 0 19 20 21 /* Kernel & User level defines for VFIO IOCTLs. */ 22 23 /* Extensions */ 24 25 #define VFIO_TYPE1_IOMMU 1 26 #define VFIO_SPAPR_TCE_IOMMU 2 27 #define VFIO_TYPE1v2_IOMMU 3 28 /* 29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This 30 * capability is subject to change as groups are added or removed. 31 */ 32 #define VFIO_DMA_CC_IOMMU 4 33 34 /* Check if EEH is supported */ 35 #define VFIO_EEH 5 36 37 /* Two-stage IOMMU */ 38 #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */ 39 40 #define VFIO_SPAPR_TCE_v2_IOMMU 7 41 42 /* 43 * The No-IOMMU IOMMU offers no translation or isolation for devices and 44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU 45 * code will taint the host kernel and should be used with extreme caution. 46 */ 47 #define VFIO_NOIOMMU_IOMMU 8 48 49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */ 50 #define VFIO_UNMAP_ALL 9 51 52 /* 53 * Supports the vaddr flag for DMA map and unmap. Not supported for mediated 54 * devices, so this capability is subject to change as groups are added or 55 * removed. 56 */ 57 #define VFIO_UPDATE_VADDR 10 58 59 /* 60 * The IOCTL interface is designed for extensibility by embedding the 61 * structure length (argsz) and flags into structures passed between 62 * kernel and userspace. We therefore use the _IO() macro for these 63 * defines to avoid implicitly embedding a size into the ioctl request. 64 * As structure fields are added, argsz will increase to match and flag 65 * bits will be defined to indicate additional fields with valid data. 66 * It's *always* the caller's responsibility to indicate the size of 67 * the structure passed by setting argsz appropriately. 68 */ 69 70 #define VFIO_TYPE (';') 71 #define VFIO_BASE 100 72 73 /* 74 * For extension of INFO ioctls, VFIO makes use of a capability chain 75 * designed after PCI/e capabilities. A flag bit indicates whether 76 * this capability chain is supported and a field defined in the fixed 77 * structure defines the offset of the first capability in the chain. 78 * This field is only valid when the corresponding bit in the flags 79 * bitmap is set. This offset field is relative to the start of the 80 * INFO buffer, as is the next field within each capability header. 81 * The id within the header is a shared address space per INFO ioctl, 82 * while the version field is specific to the capability id. The 83 * contents following the header are specific to the capability id. 84 */ 85 struct vfio_info_cap_header { 86 __u16 id; /* Identifies capability */ 87 __u16 version; /* Version specific to the capability ID */ 88 __u32 next; /* Offset of next capability */ 89 }; 90 91 /* 92 * Callers of INFO ioctls passing insufficiently sized buffers will see 93 * the capability chain flag bit set, a zero value for the first capability 94 * offset (if available within the provided argsz), and argsz will be 95 * updated to report the necessary buffer size. For compatibility, the 96 * INFO ioctl will not report error in this case, but the capability chain 97 * will not be available. 98 */ 99 100 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */ 101 102 /** 103 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0) 104 * 105 * Report the version of the VFIO API. This allows us to bump the entire 106 * API version should we later need to add or change features in incompatible 107 * ways. 108 * Return: VFIO_API_VERSION 109 * Availability: Always 110 */ 111 #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0) 112 113 /** 114 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32) 115 * 116 * Check whether an extension is supported. 117 * Return: 0 if not supported, 1 (or some other positive integer) if supported. 118 * Availability: Always 119 */ 120 #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1) 121 122 /** 123 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32) 124 * 125 * Set the iommu to the given type. The type must be supported by an 126 * iommu driver as verified by calling CHECK_EXTENSION using the same 127 * type. A group must be set to this file descriptor before this 128 * ioctl is available. The IOMMU interfaces enabled by this call are 129 * specific to the value set. 130 * Return: 0 on success, -errno on failure 131 * Availability: When VFIO group attached 132 */ 133 #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2) 134 135 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */ 136 137 /** 138 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3, 139 * struct vfio_group_status) 140 * 141 * Retrieve information about the group. Fills in provided 142 * struct vfio_group_info. Caller sets argsz. 143 * Return: 0 on succes, -errno on failure. 144 * Availability: Always 145 */ 146 struct vfio_group_status { 147 __u32 argsz; 148 __u32 flags; 149 #define VFIO_GROUP_FLAGS_VIABLE (1 << 0) 150 #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1) 151 }; 152 #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3) 153 154 /** 155 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32) 156 * 157 * Set the container for the VFIO group to the open VFIO file 158 * descriptor provided. Groups may only belong to a single 159 * container. Containers may, at their discretion, support multiple 160 * groups. Only when a container is set are all of the interfaces 161 * of the VFIO file descriptor and the VFIO group file descriptor 162 * available to the user. 163 * Return: 0 on success, -errno on failure. 164 * Availability: Always 165 */ 166 #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4) 167 168 /** 169 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5) 170 * 171 * Remove the group from the attached container. This is the 172 * opposite of the SET_CONTAINER call and returns the group to 173 * an initial state. All device file descriptors must be released 174 * prior to calling this interface. When removing the last group 175 * from a container, the IOMMU will be disabled and all state lost, 176 * effectively also returning the VFIO file descriptor to an initial 177 * state. 178 * Return: 0 on success, -errno on failure. 179 * Availability: When attached to container 180 */ 181 #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5) 182 183 /** 184 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char) 185 * 186 * Return a new file descriptor for the device object described by 187 * the provided string. The string should match a device listed in 188 * the devices subdirectory of the IOMMU group sysfs entry. The 189 * group containing the device must already be added to this context. 190 * Return: new file descriptor on success, -errno on failure. 191 * Availability: When attached to container 192 */ 193 #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6) 194 195 /* --------------- IOCTLs for DEVICE file descriptors --------------- */ 196 197 /** 198 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7, 199 * struct vfio_device_info) 200 * 201 * Retrieve information about the device. Fills in provided 202 * struct vfio_device_info. Caller sets argsz. 203 * Return: 0 on success, -errno on failure. 204 */ 205 struct vfio_device_info { 206 __u32 argsz; 207 __u32 flags; 208 #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */ 209 #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */ 210 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */ 211 #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */ 212 #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */ 213 #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */ 214 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */ 215 #define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */ 216 __u32 num_regions; /* Max region index + 1 */ 217 __u32 num_irqs; /* Max IRQ index + 1 */ 218 __u32 cap_offset; /* Offset within info struct of first cap */ 219 }; 220 #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7) 221 222 /* 223 * Vendor driver using Mediated device framework should provide device_api 224 * attribute in supported type attribute groups. Device API string should be one 225 * of the following corresponding to device flags in vfio_device_info structure. 226 */ 227 228 #define VFIO_DEVICE_API_PCI_STRING "vfio-pci" 229 #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform" 230 #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba" 231 #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw" 232 #define VFIO_DEVICE_API_AP_STRING "vfio-ap" 233 234 /* 235 * The following capabilities are unique to s390 zPCI devices. Their contents 236 * are further-defined in vfio_zdev.h 237 */ 238 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1 239 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2 240 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3 241 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4 242 243 /** 244 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8, 245 * struct vfio_region_info) 246 * 247 * Retrieve information about a device region. Caller provides 248 * struct vfio_region_info with index value set. Caller sets argsz. 249 * Implementation of region mapping is bus driver specific. This is 250 * intended to describe MMIO, I/O port, as well as bus specific 251 * regions (ex. PCI config space). Zero sized regions may be used 252 * to describe unimplemented regions (ex. unimplemented PCI BARs). 253 * Return: 0 on success, -errno on failure. 254 */ 255 struct vfio_region_info { 256 __u32 argsz; 257 __u32 flags; 258 #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */ 259 #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */ 260 #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */ 261 #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */ 262 __u32 index; /* Region index */ 263 __u32 cap_offset; /* Offset within info struct of first cap */ 264 __u64 size; /* Region size (bytes) */ 265 __u64 offset; /* Region offset from start of device fd */ 266 }; 267 #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8) 268 269 /* 270 * The sparse mmap capability allows finer granularity of specifying areas 271 * within a region with mmap support. When specified, the user should only 272 * mmap the offset ranges specified by the areas array. mmaps outside of the 273 * areas specified may fail (such as the range covering a PCI MSI-X table) or 274 * may result in improper device behavior. 275 * 276 * The structures below define version 1 of this capability. 277 */ 278 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1 279 280 struct vfio_region_sparse_mmap_area { 281 __u64 offset; /* Offset of mmap'able area within region */ 282 __u64 size; /* Size of mmap'able area */ 283 }; 284 285 struct vfio_region_info_cap_sparse_mmap { 286 struct vfio_info_cap_header header; 287 __u32 nr_areas; 288 __u32 reserved; 289 struct vfio_region_sparse_mmap_area areas[]; 290 }; 291 292 /* 293 * The device specific type capability allows regions unique to a specific 294 * device or class of devices to be exposed. This helps solve the problem for 295 * vfio bus drivers of defining which region indexes correspond to which region 296 * on the device, without needing to resort to static indexes, as done by 297 * vfio-pci. For instance, if we were to go back in time, we might remove 298 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes 299 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd 300 * make a "VGA" device specific type to describe the VGA access space. This 301 * means that non-VGA devices wouldn't need to waste this index, and thus the 302 * address space associated with it due to implementation of device file 303 * descriptor offsets in vfio-pci. 304 * 305 * The current implementation is now part of the user ABI, so we can't use this 306 * for VGA, but there are other upcoming use cases, such as opregions for Intel 307 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll 308 * use this for future additions. 309 * 310 * The structure below defines version 1 of this capability. 311 */ 312 #define VFIO_REGION_INFO_CAP_TYPE 2 313 314 struct vfio_region_info_cap_type { 315 struct vfio_info_cap_header header; 316 __u32 type; /* global per bus driver */ 317 __u32 subtype; /* type specific */ 318 }; 319 320 /* 321 * List of region types, global per bus driver. 322 * If you introduce a new type, please add it here. 323 */ 324 325 /* PCI region type containing a PCI vendor part */ 326 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31) 327 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff) 328 #define VFIO_REGION_TYPE_GFX (1) 329 #define VFIO_REGION_TYPE_CCW (2) 330 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED (3) 331 332 /* sub-types for VFIO_REGION_TYPE_PCI_* */ 333 334 /* 8086 vendor PCI sub-types */ 335 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1) 336 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2) 337 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3) 338 339 /* 10de vendor PCI sub-types */ 340 /* 341 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space. 342 * 343 * Deprecated, region no longer provided 344 */ 345 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1) 346 347 /* 1014 vendor PCI sub-types */ 348 /* 349 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU 350 * to do TLB invalidation on a GPU. 351 * 352 * Deprecated, region no longer provided 353 */ 354 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1) 355 356 /* sub-types for VFIO_REGION_TYPE_GFX */ 357 #define VFIO_REGION_SUBTYPE_GFX_EDID (1) 358 359 /** 360 * struct vfio_region_gfx_edid - EDID region layout. 361 * 362 * Set display link state and EDID blob. 363 * 364 * The EDID blob has monitor information such as brand, name, serial 365 * number, physical size, supported video modes and more. 366 * 367 * This special region allows userspace (typically qemu) set a virtual 368 * EDID for the virtual monitor, which allows a flexible display 369 * configuration. 370 * 371 * For the edid blob spec look here: 372 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data 373 * 374 * On linux systems you can find the EDID blob in sysfs: 375 * /sys/class/drm/${card}/${connector}/edid 376 * 377 * You can use the edid-decode ulility (comes with xorg-x11-utils) to 378 * decode the EDID blob. 379 * 380 * @edid_offset: location of the edid blob, relative to the 381 * start of the region (readonly). 382 * @edid_max_size: max size of the edid blob (readonly). 383 * @edid_size: actual edid size (read/write). 384 * @link_state: display link state (read/write). 385 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on. 386 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off. 387 * @max_xres: max display width (0 == no limitation, readonly). 388 * @max_yres: max display height (0 == no limitation, readonly). 389 * 390 * EDID update protocol: 391 * (1) set link-state to down. 392 * (2) update edid blob and size. 393 * (3) set link-state to up. 394 */ 395 struct vfio_region_gfx_edid { 396 __u32 edid_offset; 397 __u32 edid_max_size; 398 __u32 edid_size; 399 __u32 max_xres; 400 __u32 max_yres; 401 __u32 link_state; 402 #define VFIO_DEVICE_GFX_LINK_STATE_UP 1 403 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2 404 }; 405 406 /* sub-types for VFIO_REGION_TYPE_CCW */ 407 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1) 408 #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2) 409 #define VFIO_REGION_SUBTYPE_CCW_CRW (3) 410 411 /* sub-types for VFIO_REGION_TYPE_MIGRATION */ 412 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1) 413 414 struct vfio_device_migration_info { 415 __u32 device_state; /* VFIO device state */ 416 #define VFIO_DEVICE_STATE_V1_STOP (0) 417 #define VFIO_DEVICE_STATE_V1_RUNNING (1 << 0) 418 #define VFIO_DEVICE_STATE_V1_SAVING (1 << 1) 419 #define VFIO_DEVICE_STATE_V1_RESUMING (1 << 2) 420 #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_V1_RUNNING | \ 421 VFIO_DEVICE_STATE_V1_SAVING | \ 422 VFIO_DEVICE_STATE_V1_RESUMING) 423 424 #define VFIO_DEVICE_STATE_VALID(state) \ 425 (state & VFIO_DEVICE_STATE_V1_RESUMING ? \ 426 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1) 427 428 #define VFIO_DEVICE_STATE_IS_ERROR(state) \ 429 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \ 430 VFIO_DEVICE_STATE_V1_RESUMING)) 431 432 #define VFIO_DEVICE_STATE_SET_ERROR(state) \ 433 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \ 434 VFIO_DEVICE_STATE_V1_RESUMING) 435 436 __u32 reserved; 437 __u64 pending_bytes; 438 __u64 data_offset; 439 __u64 data_size; 440 }; 441 442 /* 443 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped 444 * which allows direct access to non-MSIX registers which happened to be within 445 * the same system page. 446 * 447 * Even though the userspace gets direct access to the MSIX data, the existing 448 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration. 449 */ 450 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3 451 452 /* 453 * Capability with compressed real address (aka SSA - small system address) 454 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing 455 * and by the userspace to associate a NVLink bridge with a GPU. 456 * 457 * Deprecated, capability no longer provided 458 */ 459 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4 460 461 struct vfio_region_info_cap_nvlink2_ssatgt { 462 struct vfio_info_cap_header header; 463 __u64 tgt; 464 }; 465 466 /* 467 * Capability with an NVLink link speed. The value is read by 468 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed" 469 * property in the device tree. The value is fixed in the hardware 470 * and failing to provide the correct value results in the link 471 * not working with no indication from the driver why. 472 * 473 * Deprecated, capability no longer provided 474 */ 475 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5 476 477 struct vfio_region_info_cap_nvlink2_lnkspd { 478 struct vfio_info_cap_header header; 479 __u32 link_speed; 480 __u32 __pad; 481 }; 482 483 /** 484 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9, 485 * struct vfio_irq_info) 486 * 487 * Retrieve information about a device IRQ. Caller provides 488 * struct vfio_irq_info with index value set. Caller sets argsz. 489 * Implementation of IRQ mapping is bus driver specific. Indexes 490 * using multiple IRQs are primarily intended to support MSI-like 491 * interrupt blocks. Zero count irq blocks may be used to describe 492 * unimplemented interrupt types. 493 * 494 * The EVENTFD flag indicates the interrupt index supports eventfd based 495 * signaling. 496 * 497 * The MASKABLE flags indicates the index supports MASK and UNMASK 498 * actions described below. 499 * 500 * AUTOMASKED indicates that after signaling, the interrupt line is 501 * automatically masked by VFIO and the user needs to unmask the line 502 * to receive new interrupts. This is primarily intended to distinguish 503 * level triggered interrupts. 504 * 505 * The NORESIZE flag indicates that the interrupt lines within the index 506 * are setup as a set and new subindexes cannot be enabled without first 507 * disabling the entire index. This is used for interrupts like PCI MSI 508 * and MSI-X where the driver may only use a subset of the available 509 * indexes, but VFIO needs to enable a specific number of vectors 510 * upfront. In the case of MSI-X, where the user can enable MSI-X and 511 * then add and unmask vectors, it's up to userspace to make the decision 512 * whether to allocate the maximum supported number of vectors or tear 513 * down setup and incrementally increase the vectors as each is enabled. 514 */ 515 struct vfio_irq_info { 516 __u32 argsz; 517 __u32 flags; 518 #define VFIO_IRQ_INFO_EVENTFD (1 << 0) 519 #define VFIO_IRQ_INFO_MASKABLE (1 << 1) 520 #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2) 521 #define VFIO_IRQ_INFO_NORESIZE (1 << 3) 522 __u32 index; /* IRQ index */ 523 __u32 count; /* Number of IRQs within this index */ 524 }; 525 #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9) 526 527 /** 528 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set) 529 * 530 * Set signaling, masking, and unmasking of interrupts. Caller provides 531 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate 532 * the range of subindexes being specified. 533 * 534 * The DATA flags specify the type of data provided. If DATA_NONE, the 535 * operation performs the specified action immediately on the specified 536 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]: 537 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1. 538 * 539 * DATA_BOOL allows sparse support for the same on arrays of interrupts. 540 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]): 541 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3, 542 * data = {1,0,1} 543 * 544 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd. 545 * A value of -1 can be used to either de-assign interrupts if already 546 * assigned or skip un-assigned interrupts. For example, to set an eventfd 547 * to be trigger for interrupts [0,0] and [0,2]: 548 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3, 549 * data = {fd1, -1, fd2} 550 * If index [0,1] is previously set, two count = 1 ioctls calls would be 551 * required to set [0,0] and [0,2] without changing [0,1]. 552 * 553 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used 554 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing 555 * from userspace (ie. simulate hardware triggering). 556 * 557 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER 558 * enables the interrupt index for the device. Individual subindex interrupts 559 * can be disabled using the -1 value for DATA_EVENTFD or the index can be 560 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0. 561 * 562 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while 563 * ACTION_TRIGGER specifies kernel->user signaling. 564 */ 565 struct vfio_irq_set { 566 __u32 argsz; 567 __u32 flags; 568 #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */ 569 #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */ 570 #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */ 571 #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */ 572 #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */ 573 #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */ 574 __u32 index; 575 __u32 start; 576 __u32 count; 577 __u8 data[]; 578 }; 579 #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10) 580 581 #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \ 582 VFIO_IRQ_SET_DATA_BOOL | \ 583 VFIO_IRQ_SET_DATA_EVENTFD) 584 #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \ 585 VFIO_IRQ_SET_ACTION_UNMASK | \ 586 VFIO_IRQ_SET_ACTION_TRIGGER) 587 /** 588 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11) 589 * 590 * Reset a device. 591 */ 592 #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11) 593 594 /* 595 * The VFIO-PCI bus driver makes use of the following fixed region and 596 * IRQ index mapping. Unimplemented regions return a size of zero. 597 * Unimplemented IRQ types return a count of zero. 598 */ 599 600 enum { 601 VFIO_PCI_BAR0_REGION_INDEX, 602 VFIO_PCI_BAR1_REGION_INDEX, 603 VFIO_PCI_BAR2_REGION_INDEX, 604 VFIO_PCI_BAR3_REGION_INDEX, 605 VFIO_PCI_BAR4_REGION_INDEX, 606 VFIO_PCI_BAR5_REGION_INDEX, 607 VFIO_PCI_ROM_REGION_INDEX, 608 VFIO_PCI_CONFIG_REGION_INDEX, 609 /* 610 * Expose VGA regions defined for PCI base class 03, subclass 00. 611 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df 612 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented 613 * range is found at it's identity mapped offset from the region 614 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas 615 * between described ranges are unimplemented. 616 */ 617 VFIO_PCI_VGA_REGION_INDEX, 618 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */ 619 /* device specific cap to define content. */ 620 }; 621 622 enum { 623 VFIO_PCI_INTX_IRQ_INDEX, 624 VFIO_PCI_MSI_IRQ_INDEX, 625 VFIO_PCI_MSIX_IRQ_INDEX, 626 VFIO_PCI_ERR_IRQ_INDEX, 627 VFIO_PCI_REQ_IRQ_INDEX, 628 VFIO_PCI_NUM_IRQS 629 }; 630 631 /* 632 * The vfio-ccw bus driver makes use of the following fixed region and 633 * IRQ index mapping. Unimplemented regions return a size of zero. 634 * Unimplemented IRQ types return a count of zero. 635 */ 636 637 enum { 638 VFIO_CCW_CONFIG_REGION_INDEX, 639 VFIO_CCW_NUM_REGIONS 640 }; 641 642 enum { 643 VFIO_CCW_IO_IRQ_INDEX, 644 VFIO_CCW_CRW_IRQ_INDEX, 645 VFIO_CCW_REQ_IRQ_INDEX, 646 VFIO_CCW_NUM_IRQS 647 }; 648 649 /** 650 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12, 651 * struct vfio_pci_hot_reset_info) 652 * 653 * Return: 0 on success, -errno on failure: 654 * -enospc = insufficient buffer, -enodev = unsupported for device. 655 */ 656 struct vfio_pci_dependent_device { 657 __u32 group_id; 658 __u16 segment; 659 __u8 bus; 660 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */ 661 }; 662 663 struct vfio_pci_hot_reset_info { 664 __u32 argsz; 665 __u32 flags; 666 __u32 count; 667 struct vfio_pci_dependent_device devices[]; 668 }; 669 670 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 671 672 /** 673 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13, 674 * struct vfio_pci_hot_reset) 675 * 676 * Return: 0 on success, -errno on failure. 677 */ 678 struct vfio_pci_hot_reset { 679 __u32 argsz; 680 __u32 flags; 681 __u32 count; 682 __s32 group_fds[]; 683 }; 684 685 #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13) 686 687 /** 688 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14, 689 * struct vfio_device_query_gfx_plane) 690 * 691 * Set the drm_plane_type and flags, then retrieve the gfx plane info. 692 * 693 * flags supported: 694 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set 695 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no 696 * support for dma-buf. 697 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set 698 * to ask if the mdev supports region. 0 on support, -EINVAL on no 699 * support for region. 700 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set 701 * with each call to query the plane info. 702 * - Others are invalid and return -EINVAL. 703 * 704 * Note: 705 * 1. Plane could be disabled by guest. In that case, success will be 706 * returned with zero-initialized drm_format, size, width and height 707 * fields. 708 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available 709 * 710 * Return: 0 on success, -errno on other failure. 711 */ 712 struct vfio_device_gfx_plane_info { 713 __u32 argsz; 714 __u32 flags; 715 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0) 716 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1) 717 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2) 718 /* in */ 719 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */ 720 /* out */ 721 __u32 drm_format; /* drm format of plane */ 722 __u64 drm_format_mod; /* tiled mode */ 723 __u32 width; /* width of plane */ 724 __u32 height; /* height of plane */ 725 __u32 stride; /* stride of plane */ 726 __u32 size; /* size of plane in bytes, align on page*/ 727 __u32 x_pos; /* horizontal position of cursor plane */ 728 __u32 y_pos; /* vertical position of cursor plane*/ 729 __u32 x_hot; /* horizontal position of cursor hotspot */ 730 __u32 y_hot; /* vertical position of cursor hotspot */ 731 union { 732 __u32 region_index; /* region index */ 733 __u32 dmabuf_id; /* dma-buf id */ 734 }; 735 }; 736 737 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14) 738 739 /** 740 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32) 741 * 742 * Return a new dma-buf file descriptor for an exposed guest framebuffer 743 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_ 744 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer. 745 */ 746 747 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15) 748 749 /** 750 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16, 751 * struct vfio_device_ioeventfd) 752 * 753 * Perform a write to the device at the specified device fd offset, with 754 * the specified data and width when the provided eventfd is triggered. 755 * vfio bus drivers may not support this for all regions, for all widths, 756 * or at all. vfio-pci currently only enables support for BAR regions, 757 * excluding the MSI-X vector table. 758 * 759 * Return: 0 on success, -errno on failure. 760 */ 761 struct vfio_device_ioeventfd { 762 __u32 argsz; 763 __u32 flags; 764 #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */ 765 #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */ 766 #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */ 767 #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */ 768 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf) 769 __u64 offset; /* device fd offset of write */ 770 __u64 data; /* data to be written */ 771 __s32 fd; /* -1 for de-assignment */ 772 }; 773 774 #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16) 775 776 /** 777 * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 778 * struct vfio_device_feature) 779 * 780 * Get, set, or probe feature data of the device. The feature is selected 781 * using the FEATURE_MASK portion of the flags field. Support for a feature 782 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe 783 * may optionally include the GET and/or SET bits to determine read vs write 784 * access of the feature respectively. Probing a feature will return success 785 * if the feature is supported and all of the optionally indicated GET/SET 786 * methods are supported. The format of the data portion of the structure is 787 * specific to the given feature. The data portion is not required for 788 * probing. GET and SET are mutually exclusive, except for use with PROBE. 789 * 790 * Return 0 on success, -errno on failure. 791 */ 792 struct vfio_device_feature { 793 __u32 argsz; 794 __u32 flags; 795 #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */ 796 #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */ 797 #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */ 798 #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */ 799 __u8 data[]; 800 }; 801 802 #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17) 803 804 /* 805 * Provide support for setting a PCI VF Token, which is used as a shared 806 * secret between PF and VF drivers. This feature may only be set on a 807 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing 808 * open VFs. Data provided when setting this feature is a 16-byte array 809 * (__u8 b[16]), representing a UUID. 810 */ 811 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0) 812 813 /* 814 * Indicates the device can support the migration API through 815 * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and 816 * ERROR states are always supported. Support for additional states is 817 * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be 818 * set. 819 * 820 * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and 821 * RESUMING are supported. 822 * 823 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P 824 * is supported in addition to the STOP_COPY states. 825 * 826 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that 827 * PRE_COPY is supported in addition to the STOP_COPY states. 828 * 829 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY 830 * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported 831 * in addition to the STOP_COPY states. 832 * 833 * Other combinations of flags have behavior to be defined in the future. 834 */ 835 struct vfio_device_feature_migration { 836 __aligned_u64 flags; 837 #define VFIO_MIGRATION_STOP_COPY (1 << 0) 838 #define VFIO_MIGRATION_P2P (1 << 1) 839 #define VFIO_MIGRATION_PRE_COPY (1 << 2) 840 }; 841 #define VFIO_DEVICE_FEATURE_MIGRATION 1 842 843 /* 844 * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO 845 * device. The new state is supplied in device_state, see enum 846 * vfio_device_mig_state for details 847 * 848 * The kernel migration driver must fully transition the device to the new state 849 * value before the operation returns to the user. 850 * 851 * The kernel migration driver must not generate asynchronous device state 852 * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET 853 * ioctl as described above. 854 * 855 * If this function fails then current device_state may be the original 856 * operating state or some other state along the combination transition path. 857 * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt 858 * to return to the original state, or attempt to return to some other state 859 * such as RUNNING or STOP. 860 * 861 * If the new_state starts a new data transfer session then the FD associated 862 * with that session is returned in data_fd. The user is responsible to close 863 * this FD when it is finished. The user must consider the migration data stream 864 * carried over the FD to be opaque and must preserve the byte order of the 865 * stream. The user is not required to preserve buffer segmentation when writing 866 * the data stream during the RESUMING operation. 867 * 868 * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO 869 * device, data_fd will be -1. 870 */ 871 struct vfio_device_feature_mig_state { 872 __u32 device_state; /* From enum vfio_device_mig_state */ 873 __s32 data_fd; 874 }; 875 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2 876 877 /* 878 * The device migration Finite State Machine is described by the enum 879 * vfio_device_mig_state. Some of the FSM arcs will create a migration data 880 * transfer session by returning a FD, in this case the migration data will 881 * flow over the FD using read() and write() as discussed below. 882 * 883 * There are 5 states to support VFIO_MIGRATION_STOP_COPY: 884 * RUNNING - The device is running normally 885 * STOP - The device does not change the internal or external state 886 * STOP_COPY - The device internal state can be read out 887 * RESUMING - The device is stopped and is loading a new internal state 888 * ERROR - The device has failed and must be reset 889 * 890 * And optional states to support VFIO_MIGRATION_P2P: 891 * RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA 892 * And VFIO_MIGRATION_PRE_COPY: 893 * PRE_COPY - The device is running normally but tracking internal state 894 * changes 895 * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY: 896 * PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA 897 * 898 * The FSM takes actions on the arcs between FSM states. The driver implements 899 * the following behavior for the FSM arcs: 900 * 901 * RUNNING_P2P -> STOP 902 * STOP_COPY -> STOP 903 * While in STOP the device must stop the operation of the device. The device 904 * must not generate interrupts, DMA, or any other change to external state. 905 * It must not change its internal state. When stopped the device and kernel 906 * migration driver must accept and respond to interaction to support external 907 * subsystems in the STOP state, for example PCI MSI-X and PCI config space. 908 * Failure by the user to restrict device access while in STOP must not result 909 * in error conditions outside the user context (ex. host system faults). 910 * 911 * The STOP_COPY arc will terminate a data transfer session. 912 * 913 * RESUMING -> STOP 914 * Leaving RESUMING terminates a data transfer session and indicates the 915 * device should complete processing of the data delivered by write(). The 916 * kernel migration driver should complete the incorporation of data written 917 * to the data transfer FD into the device internal state and perform 918 * final validity and consistency checking of the new device state. If the 919 * user provided data is found to be incomplete, inconsistent, or otherwise 920 * invalid, the migration driver must fail the SET_STATE ioctl and 921 * optionally go to the ERROR state as described below. 922 * 923 * While in STOP the device has the same behavior as other STOP states 924 * described above. 925 * 926 * To abort a RESUMING session the device must be reset. 927 * 928 * PRE_COPY -> RUNNING 929 * RUNNING_P2P -> RUNNING 930 * While in RUNNING the device is fully operational, the device may generate 931 * interrupts, DMA, respond to MMIO, all vfio device regions are functional, 932 * and the device may advance its internal state. 933 * 934 * The PRE_COPY arc will terminate a data transfer session. 935 * 936 * PRE_COPY_P2P -> RUNNING_P2P 937 * RUNNING -> RUNNING_P2P 938 * STOP -> RUNNING_P2P 939 * While in RUNNING_P2P the device is partially running in the P2P quiescent 940 * state defined below. 941 * 942 * The PRE_COPY_P2P arc will terminate a data transfer session. 943 * 944 * RUNNING -> PRE_COPY 945 * RUNNING_P2P -> PRE_COPY_P2P 946 * STOP -> STOP_COPY 947 * PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states 948 * which share a data transfer session. Moving between these states alters 949 * what is streamed in session, but does not terminate or otherwise affect 950 * the associated fd. 951 * 952 * These arcs begin the process of saving the device state and will return a 953 * new data_fd. The migration driver may perform actions such as enabling 954 * dirty logging of device state when entering PRE_COPY or PER_COPY_P2P. 955 * 956 * Each arc does not change the device operation, the device remains 957 * RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below 958 * in PRE_COPY_P2P -> STOP_COPY. 959 * 960 * PRE_COPY -> PRE_COPY_P2P 961 * Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above. 962 * However, while in the PRE_COPY_P2P state, the device is partially running 963 * in the P2P quiescent state defined below, like RUNNING_P2P. 964 * 965 * PRE_COPY_P2P -> PRE_COPY 966 * This arc allows returning the device to a full RUNNING behavior while 967 * continuing all the behaviors of PRE_COPY. 968 * 969 * PRE_COPY_P2P -> STOP_COPY 970 * While in the STOP_COPY state the device has the same behavior as STOP 971 * with the addition that the data transfers session continues to stream the 972 * migration state. End of stream on the FD indicates the entire device 973 * state has been transferred. 974 * 975 * The user should take steps to restrict access to vfio device regions while 976 * the device is in STOP_COPY or risk corruption of the device migration data 977 * stream. 978 * 979 * STOP -> RESUMING 980 * Entering the RESUMING state starts a process of restoring the device state 981 * and will return a new data_fd. The data stream fed into the data_fd should 982 * be taken from the data transfer output of a single FD during saving from 983 * a compatible device. The migration driver may alter/reset the internal 984 * device state for this arc if required to prepare the device to receive the 985 * migration data. 986 * 987 * STOP_COPY -> PRE_COPY 988 * STOP_COPY -> PRE_COPY_P2P 989 * These arcs are not permitted and return error if requested. Future 990 * revisions of this API may define behaviors for these arcs, in this case 991 * support will be discoverable by a new flag in 992 * VFIO_DEVICE_FEATURE_MIGRATION. 993 * 994 * any -> ERROR 995 * ERROR cannot be specified as a device state, however any transition request 996 * can be failed with an errno return and may then move the device_state into 997 * ERROR. In this case the device was unable to execute the requested arc and 998 * was also unable to restore the device to any valid device_state. 999 * To recover from ERROR VFIO_DEVICE_RESET must be used to return the 1000 * device_state back to RUNNING. 1001 * 1002 * The optional peer to peer (P2P) quiescent state is intended to be a quiescent 1003 * state for the device for the purposes of managing multiple devices within a 1004 * user context where peer-to-peer DMA between devices may be active. The 1005 * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating 1006 * any new P2P DMA transactions. If the device can identify P2P transactions 1007 * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration 1008 * driver must complete any such outstanding operations prior to completing the 1009 * FSM arc into a P2P state. For the purpose of specification the states 1010 * behave as though the device was fully running if not supported. Like while in 1011 * STOP or STOP_COPY the user must not touch the device, otherwise the state 1012 * can be exited. 1013 * 1014 * The remaining possible transitions are interpreted as combinations of the 1015 * above FSM arcs. As there are multiple paths through the FSM arcs the path 1016 * should be selected based on the following rules: 1017 * - Select the shortest path. 1018 * - The path cannot have saving group states as interior arcs, only 1019 * starting/end states. 1020 * Refer to vfio_mig_get_next_state() for the result of the algorithm. 1021 * 1022 * The automatic transit through the FSM arcs that make up the combination 1023 * transition is invisible to the user. When working with combination arcs the 1024 * user may see any step along the path in the device_state if SET_STATE 1025 * fails. When handling these types of errors users should anticipate future 1026 * revisions of this protocol using new states and those states becoming 1027 * visible in this case. 1028 * 1029 * The optional states cannot be used with SET_STATE if the device does not 1030 * support them. The user can discover if these states are supported by using 1031 * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can 1032 * avoid knowing about these optional states if the kernel driver supports them. 1033 * 1034 * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY 1035 * is not present. 1036 */ 1037 enum vfio_device_mig_state { 1038 VFIO_DEVICE_STATE_ERROR = 0, 1039 VFIO_DEVICE_STATE_STOP = 1, 1040 VFIO_DEVICE_STATE_RUNNING = 2, 1041 VFIO_DEVICE_STATE_STOP_COPY = 3, 1042 VFIO_DEVICE_STATE_RESUMING = 4, 1043 VFIO_DEVICE_STATE_RUNNING_P2P = 5, 1044 VFIO_DEVICE_STATE_PRE_COPY = 6, 1045 VFIO_DEVICE_STATE_PRE_COPY_P2P = 7, 1046 }; 1047 1048 /** 1049 * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21) 1050 * 1051 * This ioctl is used on the migration data FD in the precopy phase of the 1052 * migration data transfer. It returns an estimate of the current data sizes 1053 * remaining to be transferred. It allows the user to judge when it is 1054 * appropriate to leave PRE_COPY for STOP_COPY. 1055 * 1056 * This ioctl is valid only in PRE_COPY states and kernel driver should 1057 * return -EINVAL from any other migration state. 1058 * 1059 * The vfio_precopy_info data structure returned by this ioctl provides 1060 * estimates of data available from the device during the PRE_COPY states. 1061 * This estimate is split into two categories, initial_bytes and 1062 * dirty_bytes. 1063 * 1064 * The initial_bytes field indicates the amount of initial precopy 1065 * data available from the device. This field should have a non-zero initial 1066 * value and decrease as migration data is read from the device. 1067 * It is recommended to leave PRE_COPY for STOP_COPY only after this field 1068 * reaches zero. Leaving PRE_COPY earlier might make things slower. 1069 * 1070 * The dirty_bytes field tracks device state changes relative to data 1071 * previously retrieved. This field starts at zero and may increase as 1072 * the internal device state is modified or decrease as that modified 1073 * state is read from the device. 1074 * 1075 * Userspace may use the combination of these fields to estimate the 1076 * potential data size available during the PRE_COPY phases, as well as 1077 * trends relative to the rate the device is dirtying its internal 1078 * state, but these fields are not required to have any bearing relative 1079 * to the data size available during the STOP_COPY phase. 1080 * 1081 * Drivers have a lot of flexibility in when and what they transfer during the 1082 * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO. 1083 * 1084 * During pre-copy the migration data FD has a temporary "end of stream" that is 1085 * reached when both initial_bytes and dirty_byte are zero. For instance, this 1086 * may indicate that the device is idle and not currently dirtying any internal 1087 * state. When read() is done on this temporary end of stream the kernel driver 1088 * should return ENOMSG from read(). Userspace can wait for more data (which may 1089 * never come) by using poll. 1090 * 1091 * Once in STOP_COPY the migration data FD has a permanent end of stream 1092 * signaled in the usual way by read() always returning 0 and poll always 1093 * returning readable. ENOMSG may not be returned in STOP_COPY. 1094 * Support for this ioctl is mandatory if a driver claims to support 1095 * VFIO_MIGRATION_PRE_COPY. 1096 * 1097 * Return: 0 on success, -1 and errno set on failure. 1098 */ 1099 struct vfio_precopy_info { 1100 __u32 argsz; 1101 __u32 flags; 1102 __aligned_u64 initial_bytes; 1103 __aligned_u64 dirty_bytes; 1104 }; 1105 1106 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21) 1107 1108 /* 1109 * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power 1110 * state with the platform-based power management. Device use of lower power 1111 * states depends on factors managed by the runtime power management core, 1112 * including system level support and coordinating support among dependent 1113 * devices. Enabling device low power entry does not guarantee lower power 1114 * usage by the device, nor is a mechanism provided through this feature to 1115 * know the current power state of the device. If any device access happens 1116 * (either from the host or through the vfio uAPI) when the device is in the 1117 * low power state, then the host will move the device out of the low power 1118 * state as necessary prior to the access. Once the access is completed, the 1119 * device may re-enter the low power state. For single shot low power support 1120 * with wake-up notification, see 1121 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below. Access to mmap'd 1122 * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after 1123 * calling LOW_POWER_EXIT. 1124 */ 1125 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3 1126 1127 /* 1128 * This device feature has the same behavior as 1129 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user 1130 * provides an eventfd for wake-up notification. When the device moves out of 1131 * the low power state for the wake-up, the host will not allow the device to 1132 * re-enter a low power state without a subsequent user call to one of the low 1133 * power entry device feature IOCTLs. Access to mmap'd device regions is 1134 * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the 1135 * low power exit. The low power exit can happen either through LOW_POWER_EXIT 1136 * or through any other access (where the wake-up notification has been 1137 * generated). The access to mmap'd device regions will not trigger low power 1138 * exit. 1139 * 1140 * The notification through the provided eventfd will be generated only when 1141 * the device has entered and is resumed from a low power state after 1142 * calling this device feature IOCTL. A device that has not entered low power 1143 * state, as managed through the runtime power management core, will not 1144 * generate a notification through the provided eventfd on access. Calling the 1145 * LOW_POWER_EXIT feature is optional in the case where notification has been 1146 * signaled on the provided eventfd that a resume from low power has occurred. 1147 */ 1148 struct vfio_device_low_power_entry_with_wakeup { 1149 __s32 wakeup_eventfd; 1150 __u32 reserved; 1151 }; 1152 1153 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4 1154 1155 /* 1156 * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as 1157 * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or 1158 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features. 1159 * This device feature IOCTL may itself generate a wakeup eventfd notification 1160 * in the latter case if the device had previously entered a low power state. 1161 */ 1162 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5 1163 1164 /* 1165 * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging. 1166 * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports 1167 * DMA logging. 1168 * 1169 * DMA logging allows a device to internally record what DMAs the device is 1170 * initiating and report them back to userspace. It is part of the VFIO 1171 * migration infrastructure that allows implementing dirty page tracking 1172 * during the pre copy phase of live migration. Only DMA WRITEs are logged, 1173 * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. 1174 * 1175 * When DMA logging is started a range of IOVAs to monitor is provided and the 1176 * device can optimize its logging to cover only the IOVA range given. Each 1177 * DMA that the device initiates inside the range will be logged by the device 1178 * for later retrieval. 1179 * 1180 * page_size is an input that hints what tracking granularity the device 1181 * should try to achieve. If the device cannot do the hinted page size then 1182 * it's the driver choice which page size to pick based on its support. 1183 * On output the device will return the page size it selected. 1184 * 1185 * ranges is a pointer to an array of 1186 * struct vfio_device_feature_dma_logging_range. 1187 * 1188 * The core kernel code guarantees to support by minimum num_ranges that fit 1189 * into a single kernel page. User space can try higher values but should give 1190 * up if the above can't be achieved as of some driver limitations. 1191 * 1192 * A single call to start device DMA logging can be issued and a matching stop 1193 * should follow at the end. Another start is not allowed in the meantime. 1194 */ 1195 struct vfio_device_feature_dma_logging_control { 1196 __aligned_u64 page_size; 1197 __u32 num_ranges; 1198 __u32 __reserved; 1199 __aligned_u64 ranges; 1200 }; 1201 1202 struct vfio_device_feature_dma_logging_range { 1203 __aligned_u64 iova; 1204 __aligned_u64 length; 1205 }; 1206 1207 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6 1208 1209 /* 1210 * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started 1211 * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START 1212 */ 1213 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7 1214 1215 /* 1216 * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log 1217 * 1218 * Query the device's DMA log for written pages within the given IOVA range. 1219 * During querying the log is cleared for the IOVA range. 1220 * 1221 * bitmap is a pointer to an array of u64s that will hold the output bitmap 1222 * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits 1223 * is given by: 1224 * bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64)) 1225 * 1226 * The input page_size can be any power of two value and does not have to 1227 * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver 1228 * will format its internal logging to match the reporting page size, possibly 1229 * by replicating bits if the internal page size is lower than requested. 1230 * 1231 * The LOGGING_REPORT will only set bits in the bitmap and never clear or 1232 * perform any initialization of the user provided bitmap. 1233 * 1234 * If any error is returned userspace should assume that the dirty log is 1235 * corrupted. Error recovery is to consider all memory dirty and try to 1236 * restart the dirty tracking, or to abort/restart the whole migration. 1237 * 1238 * If DMA logging is not enabled, an error will be returned. 1239 * 1240 */ 1241 struct vfio_device_feature_dma_logging_report { 1242 __aligned_u64 iova; 1243 __aligned_u64 length; 1244 __aligned_u64 page_size; 1245 __aligned_u64 bitmap; 1246 }; 1247 1248 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8 1249 1250 /* 1251 * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will 1252 * be required to complete stop copy. 1253 * 1254 * Note: Can be called on each device state. 1255 */ 1256 1257 struct vfio_device_feature_mig_data_size { 1258 __aligned_u64 stop_copy_length; 1259 }; 1260 1261 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9 1262 1263 /* -------- API for Type1 VFIO IOMMU -------- */ 1264 1265 /** 1266 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info) 1267 * 1268 * Retrieve information about the IOMMU object. Fills in provided 1269 * struct vfio_iommu_info. Caller sets argsz. 1270 * 1271 * XXX Should we do these by CHECK_EXTENSION too? 1272 */ 1273 struct vfio_iommu_type1_info { 1274 __u32 argsz; 1275 __u32 flags; 1276 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */ 1277 #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */ 1278 __u64 iova_pgsizes; /* Bitmap of supported page sizes */ 1279 __u32 cap_offset; /* Offset within info struct of first cap */ 1280 }; 1281 1282 /* 1283 * The IOVA capability allows to report the valid IOVA range(s) 1284 * excluding any non-relaxable reserved regions exposed by 1285 * devices attached to the container. Any DMA map attempt 1286 * outside the valid iova range will return error. 1287 * 1288 * The structures below define version 1 of this capability. 1289 */ 1290 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1 1291 1292 struct vfio_iova_range { 1293 __u64 start; 1294 __u64 end; 1295 }; 1296 1297 struct vfio_iommu_type1_info_cap_iova_range { 1298 struct vfio_info_cap_header header; 1299 __u32 nr_iovas; 1300 __u32 reserved; 1301 struct vfio_iova_range iova_ranges[]; 1302 }; 1303 1304 /* 1305 * The migration capability allows to report supported features for migration. 1306 * 1307 * The structures below define version 1 of this capability. 1308 * 1309 * The existence of this capability indicates that IOMMU kernel driver supports 1310 * dirty page logging. 1311 * 1312 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty 1313 * page logging. 1314 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap 1315 * size in bytes that can be used by user applications when getting the dirty 1316 * bitmap. 1317 */ 1318 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2 1319 1320 struct vfio_iommu_type1_info_cap_migration { 1321 struct vfio_info_cap_header header; 1322 __u32 flags; 1323 __u64 pgsize_bitmap; 1324 __u64 max_dirty_bitmap_size; /* in bytes */ 1325 }; 1326 1327 /* 1328 * The DMA available capability allows to report the current number of 1329 * simultaneously outstanding DMA mappings that are allowed. 1330 * 1331 * The structure below defines version 1 of this capability. 1332 * 1333 * avail: specifies the current number of outstanding DMA mappings allowed. 1334 */ 1335 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3 1336 1337 struct vfio_iommu_type1_info_dma_avail { 1338 struct vfio_info_cap_header header; 1339 __u32 avail; 1340 }; 1341 1342 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1343 1344 /** 1345 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map) 1346 * 1347 * Map process virtual addresses to IO virtual addresses using the 1348 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required. 1349 * 1350 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr 1351 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR. To 1352 * maintain memory consistency within the user application, the updated vaddr 1353 * must address the same memory object as originally mapped. Failure to do so 1354 * will result in user memory corruption and/or device misbehavior. iova and 1355 * size must match those in the original MAP_DMA call. Protection is not 1356 * changed, and the READ & WRITE flags must be 0. 1357 */ 1358 struct vfio_iommu_type1_dma_map { 1359 __u32 argsz; 1360 __u32 flags; 1361 #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */ 1362 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */ 1363 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2) 1364 __u64 vaddr; /* Process virtual address */ 1365 __u64 iova; /* IO virtual address */ 1366 __u64 size; /* Size of mapping (bytes) */ 1367 }; 1368 1369 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13) 1370 1371 struct vfio_bitmap { 1372 __u64 pgsize; /* page size for bitmap in bytes */ 1373 __u64 size; /* in bytes */ 1374 __u64 __user *data; /* one bit per page */ 1375 }; 1376 1377 /** 1378 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14, 1379 * struct vfio_dma_unmap) 1380 * 1381 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap. 1382 * Caller sets argsz. The actual unmapped size is returned in the size 1383 * field. No guarantee is made to the user that arbitrary unmaps of iova 1384 * or size different from those used in the original mapping call will 1385 * succeed. 1386 * 1387 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap 1388 * before unmapping IO virtual addresses. When this flag is set, the user must 1389 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated 1390 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field. 1391 * A bit in the bitmap represents one page, of user provided page size in 1392 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set 1393 * indicates that the page at that offset from iova is dirty. A Bitmap of the 1394 * pages in the range of unmapped size is returned in the user-provided 1395 * vfio_bitmap.data. 1396 * 1397 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses. iova and size 1398 * must be 0. This cannot be combined with the get-dirty-bitmap flag. 1399 * 1400 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host 1401 * virtual addresses in the iova range. DMA to already-mapped pages continues. 1402 * Groups may not be added to the container while any addresses are invalid. 1403 * This cannot be combined with the get-dirty-bitmap flag. 1404 */ 1405 struct vfio_iommu_type1_dma_unmap { 1406 __u32 argsz; 1407 __u32 flags; 1408 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0) 1409 #define VFIO_DMA_UNMAP_FLAG_ALL (1 << 1) 1410 #define VFIO_DMA_UNMAP_FLAG_VADDR (1 << 2) 1411 __u64 iova; /* IO virtual address */ 1412 __u64 size; /* Size of mapping (bytes) */ 1413 __u8 data[]; 1414 }; 1415 1416 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14) 1417 1418 /* 1419 * IOCTLs to enable/disable IOMMU container usage. 1420 * No parameters are supported. 1421 */ 1422 #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15) 1423 #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16) 1424 1425 /** 1426 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 1427 * struct vfio_iommu_type1_dirty_bitmap) 1428 * IOCTL is used for dirty pages logging. 1429 * Caller should set flag depending on which operation to perform, details as 1430 * below: 1431 * 1432 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs 1433 * the IOMMU driver to log pages that are dirtied or potentially dirtied by 1434 * the device; designed to be used when a migration is in progress. Dirty pages 1435 * are logged until logging is disabled by user application by calling the IOCTL 1436 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag. 1437 * 1438 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs 1439 * the IOMMU driver to stop logging dirtied pages. 1440 * 1441 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set 1442 * returns the dirty pages bitmap for IOMMU container for a given IOVA range. 1443 * The user must specify the IOVA range and the pgsize through the structure 1444 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface 1445 * supports getting a bitmap of the smallest supported pgsize only and can be 1446 * modified in future to get a bitmap of any specified supported pgsize. The 1447 * user must provide a zeroed memory area for the bitmap memory and specify its 1448 * size in bitmap.size. One bit is used to represent one page consecutively 1449 * starting from iova offset. The user should provide page size in bitmap.pgsize 1450 * field. A bit set in the bitmap indicates that the page at that offset from 1451 * iova is dirty. The caller must set argsz to a value including the size of 1452 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the 1453 * actual bitmap. If dirty pages logging is not enabled, an error will be 1454 * returned. 1455 * 1456 * Only one of the flags _START, _STOP and _GET may be specified at a time. 1457 * 1458 */ 1459 struct vfio_iommu_type1_dirty_bitmap { 1460 __u32 argsz; 1461 __u32 flags; 1462 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0) 1463 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1) 1464 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2) 1465 __u8 data[]; 1466 }; 1467 1468 struct vfio_iommu_type1_dirty_bitmap_get { 1469 __u64 iova; /* IO virtual address */ 1470 __u64 size; /* Size of iova range */ 1471 struct vfio_bitmap bitmap; 1472 }; 1473 1474 #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17) 1475 1476 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */ 1477 1478 /* 1479 * The SPAPR TCE DDW info struct provides the information about 1480 * the details of Dynamic DMA window capability. 1481 * 1482 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported. 1483 * @max_dynamic_windows_supported tells the maximum number of windows 1484 * which the platform can create. 1485 * @levels tells the maximum number of levels in multi-level IOMMU tables; 1486 * this allows splitting a table into smaller chunks which reduces 1487 * the amount of physically contiguous memory required for the table. 1488 */ 1489 struct vfio_iommu_spapr_tce_ddw_info { 1490 __u64 pgsizes; /* Bitmap of supported page sizes */ 1491 __u32 max_dynamic_windows_supported; 1492 __u32 levels; 1493 }; 1494 1495 /* 1496 * The SPAPR TCE info struct provides the information about the PCI bus 1497 * address ranges available for DMA, these values are programmed into 1498 * the hardware so the guest has to know that information. 1499 * 1500 * The DMA 32 bit window start is an absolute PCI bus address. 1501 * The IOVA address passed via map/unmap ioctls are absolute PCI bus 1502 * addresses too so the window works as a filter rather than an offset 1503 * for IOVA addresses. 1504 * 1505 * Flags supported: 1506 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows 1507 * (DDW) support is present. @ddw is only supported when DDW is present. 1508 */ 1509 struct vfio_iommu_spapr_tce_info { 1510 __u32 argsz; 1511 __u32 flags; 1512 #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */ 1513 __u32 dma32_window_start; /* 32 bit window start (bytes) */ 1514 __u32 dma32_window_size; /* 32 bit window size (bytes) */ 1515 struct vfio_iommu_spapr_tce_ddw_info ddw; 1516 }; 1517 1518 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1519 1520 /* 1521 * EEH PE operation struct provides ways to: 1522 * - enable/disable EEH functionality; 1523 * - unfreeze IO/DMA for frozen PE; 1524 * - read PE state; 1525 * - reset PE; 1526 * - configure PE; 1527 * - inject EEH error. 1528 */ 1529 struct vfio_eeh_pe_err { 1530 __u32 type; 1531 __u32 func; 1532 __u64 addr; 1533 __u64 mask; 1534 }; 1535 1536 struct vfio_eeh_pe_op { 1537 __u32 argsz; 1538 __u32 flags; 1539 __u32 op; 1540 union { 1541 struct vfio_eeh_pe_err err; 1542 }; 1543 }; 1544 1545 #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */ 1546 #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */ 1547 #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */ 1548 #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */ 1549 #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */ 1550 #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */ 1551 #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */ 1552 #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */ 1553 #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */ 1554 #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */ 1555 #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */ 1556 #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */ 1557 #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */ 1558 #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */ 1559 #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */ 1560 1561 #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21) 1562 1563 /** 1564 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory) 1565 * 1566 * Registers user space memory where DMA is allowed. It pins 1567 * user pages and does the locked memory accounting so 1568 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls 1569 * get faster. 1570 */ 1571 struct vfio_iommu_spapr_register_memory { 1572 __u32 argsz; 1573 __u32 flags; 1574 __u64 vaddr; /* Process virtual address */ 1575 __u64 size; /* Size of mapping (bytes) */ 1576 }; 1577 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17) 1578 1579 /** 1580 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory) 1581 * 1582 * Unregisters user space memory registered with 1583 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY. 1584 * Uses vfio_iommu_spapr_register_memory for parameters. 1585 */ 1586 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18) 1587 1588 /** 1589 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create) 1590 * 1591 * Creates an additional TCE table and programs it (sets a new DMA window) 1592 * to every IOMMU group in the container. It receives page shift, window 1593 * size and number of levels in the TCE table being created. 1594 * 1595 * It allocates and returns an offset on a PCI bus of the new DMA window. 1596 */ 1597 struct vfio_iommu_spapr_tce_create { 1598 __u32 argsz; 1599 __u32 flags; 1600 /* in */ 1601 __u32 page_shift; 1602 __u32 __resv1; 1603 __u64 window_size; 1604 __u32 levels; 1605 __u32 __resv2; 1606 /* out */ 1607 __u64 start_addr; 1608 }; 1609 #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19) 1610 1611 /** 1612 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove) 1613 * 1614 * Unprograms a TCE table from all groups in the container and destroys it. 1615 * It receives a PCI bus offset as a window id. 1616 */ 1617 struct vfio_iommu_spapr_tce_remove { 1618 __u32 argsz; 1619 __u32 flags; 1620 /* in */ 1621 __u64 start_addr; 1622 }; 1623 #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20) 1624 1625 /* ***************************************************************** */ 1626 1627 #endif /* _UAPIVFIO_H */ 1628