1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12
13 #include <assert.h>
14 #include <sched.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20
21 #define KVM_UTIL_MIN_PFN 2
22
23 static int vcpu_mmap_sz(void);
24
open_path_or_exit(const char * path,int flags)25 int open_path_or_exit(const char *path, int flags)
26 {
27 int fd;
28
29 fd = open(path, flags);
30 __TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
31
32 return fd;
33 }
34
35 /*
36 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
37 *
38 * Input Args:
39 * flags - The flags to pass when opening KVM_DEV_PATH.
40 *
41 * Return:
42 * The opened file descriptor of /dev/kvm.
43 */
_open_kvm_dev_path_or_exit(int flags)44 static int _open_kvm_dev_path_or_exit(int flags)
45 {
46 return open_path_or_exit(KVM_DEV_PATH, flags);
47 }
48
open_kvm_dev_path_or_exit(void)49 int open_kvm_dev_path_or_exit(void)
50 {
51 return _open_kvm_dev_path_or_exit(O_RDONLY);
52 }
53
get_module_param_bool(const char * module_name,const char * param)54 static bool get_module_param_bool(const char *module_name, const char *param)
55 {
56 const int path_size = 128;
57 char path[path_size];
58 char value;
59 ssize_t r;
60 int fd;
61
62 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
63 module_name, param);
64 TEST_ASSERT(r < path_size,
65 "Failed to construct sysfs path in %d bytes.", path_size);
66
67 fd = open_path_or_exit(path, O_RDONLY);
68
69 r = read(fd, &value, 1);
70 TEST_ASSERT(r == 1, "read(%s) failed", path);
71
72 r = close(fd);
73 TEST_ASSERT(!r, "close(%s) failed", path);
74
75 if (value == 'Y')
76 return true;
77 else if (value == 'N')
78 return false;
79
80 TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
81 }
82
get_kvm_intel_param_bool(const char * param)83 bool get_kvm_intel_param_bool(const char *param)
84 {
85 return get_module_param_bool("kvm_intel", param);
86 }
87
get_kvm_amd_param_bool(const char * param)88 bool get_kvm_amd_param_bool(const char *param)
89 {
90 return get_module_param_bool("kvm_amd", param);
91 }
92
93 /*
94 * Capability
95 *
96 * Input Args:
97 * cap - Capability
98 *
99 * Output Args: None
100 *
101 * Return:
102 * On success, the Value corresponding to the capability (KVM_CAP_*)
103 * specified by the value of cap. On failure a TEST_ASSERT failure
104 * is produced.
105 *
106 * Looks up and returns the value corresponding to the capability
107 * (KVM_CAP_*) given by cap.
108 */
kvm_check_cap(long cap)109 unsigned int kvm_check_cap(long cap)
110 {
111 int ret;
112 int kvm_fd;
113
114 kvm_fd = open_kvm_dev_path_or_exit();
115 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
116 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
117
118 close(kvm_fd);
119
120 return (unsigned int)ret;
121 }
122
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)123 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
124 {
125 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
126 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
127 else
128 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
129 vm->dirty_ring_size = ring_size;
130 }
131
vm_open(struct kvm_vm * vm)132 static void vm_open(struct kvm_vm *vm)
133 {
134 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
135
136 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
137
138 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
139 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
140 }
141
vm_guest_mode_string(uint32_t i)142 const char *vm_guest_mode_string(uint32_t i)
143 {
144 static const char * const strings[] = {
145 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
146 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
147 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
148 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
149 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
150 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
151 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
152 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
153 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
154 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
155 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
156 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
157 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
158 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
159 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
160 };
161 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
162 "Missing new mode strings?");
163
164 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
165
166 return strings[i];
167 }
168
169 const struct vm_guest_mode_params vm_guest_mode_params[] = {
170 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
171 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
172 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
173 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
174 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
175 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
176 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
177 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
178 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
179 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
180 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
181 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
182 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
183 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
184 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
185 };
186 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
187 "Missing new mode params?");
188
189 /*
190 * Initializes vm->vpages_valid to match the canonical VA space of the
191 * architecture.
192 *
193 * The default implementation is valid for architectures which split the
194 * range addressed by a single page table into a low and high region
195 * based on the MSB of the VA. On architectures with this behavior
196 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
197 */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)198 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
199 {
200 sparsebit_set_num(vm->vpages_valid,
201 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
202 sparsebit_set_num(vm->vpages_valid,
203 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
204 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
205 }
206
____vm_create(enum vm_guest_mode mode)207 struct kvm_vm *____vm_create(enum vm_guest_mode mode)
208 {
209 struct kvm_vm *vm;
210
211 vm = calloc(1, sizeof(*vm));
212 TEST_ASSERT(vm != NULL, "Insufficient Memory");
213
214 INIT_LIST_HEAD(&vm->vcpus);
215 vm->regions.gpa_tree = RB_ROOT;
216 vm->regions.hva_tree = RB_ROOT;
217 hash_init(vm->regions.slot_hash);
218
219 vm->mode = mode;
220 vm->type = 0;
221
222 vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
223 vm->va_bits = vm_guest_mode_params[mode].va_bits;
224 vm->page_size = vm_guest_mode_params[mode].page_size;
225 vm->page_shift = vm_guest_mode_params[mode].page_shift;
226
227 /* Setup mode specific traits. */
228 switch (vm->mode) {
229 case VM_MODE_P52V48_4K:
230 vm->pgtable_levels = 4;
231 break;
232 case VM_MODE_P52V48_64K:
233 vm->pgtable_levels = 3;
234 break;
235 case VM_MODE_P48V48_4K:
236 vm->pgtable_levels = 4;
237 break;
238 case VM_MODE_P48V48_64K:
239 vm->pgtable_levels = 3;
240 break;
241 case VM_MODE_P40V48_4K:
242 case VM_MODE_P36V48_4K:
243 vm->pgtable_levels = 4;
244 break;
245 case VM_MODE_P40V48_64K:
246 case VM_MODE_P36V48_64K:
247 vm->pgtable_levels = 3;
248 break;
249 case VM_MODE_P48V48_16K:
250 case VM_MODE_P40V48_16K:
251 case VM_MODE_P36V48_16K:
252 vm->pgtable_levels = 4;
253 break;
254 case VM_MODE_P36V47_16K:
255 vm->pgtable_levels = 3;
256 break;
257 case VM_MODE_PXXV48_4K:
258 #ifdef __x86_64__
259 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
260 /*
261 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
262 * it doesn't take effect unless a CR4.LA57 is set, which it
263 * isn't for this VM_MODE.
264 */
265 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
266 "Linear address width (%d bits) not supported",
267 vm->va_bits);
268 pr_debug("Guest physical address width detected: %d\n",
269 vm->pa_bits);
270 vm->pgtable_levels = 4;
271 vm->va_bits = 48;
272 #else
273 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
274 #endif
275 break;
276 case VM_MODE_P47V64_4K:
277 vm->pgtable_levels = 5;
278 break;
279 case VM_MODE_P44V64_4K:
280 vm->pgtable_levels = 5;
281 break;
282 default:
283 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
284 }
285
286 #ifdef __aarch64__
287 if (vm->pa_bits != 40)
288 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
289 #endif
290
291 vm_open(vm);
292
293 /* Limit to VA-bit canonical virtual addresses. */
294 vm->vpages_valid = sparsebit_alloc();
295 vm_vaddr_populate_bitmap(vm);
296
297 /* Limit physical addresses to PA-bits. */
298 vm->max_gfn = vm_compute_max_gfn(vm);
299
300 /* Allocate and setup memory for guest. */
301 vm->vpages_mapped = sparsebit_alloc();
302
303 return vm;
304 }
305
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)306 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
307 uint32_t nr_runnable_vcpus,
308 uint64_t extra_mem_pages)
309 {
310 uint64_t nr_pages;
311
312 TEST_ASSERT(nr_runnable_vcpus,
313 "Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
314
315 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
316 "nr_vcpus = %d too large for host, max-vcpus = %d",
317 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
318
319 /*
320 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
321 * test code and other per-VM assets that will be loaded into memslot0.
322 */
323 nr_pages = 512;
324
325 /* Account for the per-vCPU stacks on behalf of the test. */
326 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
327
328 /*
329 * Account for the number of pages needed for the page tables. The
330 * maximum page table size for a memory region will be when the
331 * smallest page size is used. Considering each page contains x page
332 * table descriptors, the total extra size for page tables (for extra
333 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
334 * than N/x*2.
335 */
336 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
337
338 return vm_adjust_num_guest_pages(mode, nr_pages);
339 }
340
__vm_create(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)341 struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
342 uint64_t nr_extra_pages)
343 {
344 uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
345 nr_extra_pages);
346 struct userspace_mem_region *slot0;
347 struct kvm_vm *vm;
348 int i;
349
350 pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
351 vm_guest_mode_string(mode), nr_pages);
352
353 vm = ____vm_create(mode);
354
355 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
356 for (i = 0; i < NR_MEM_REGIONS; i++)
357 vm->memslots[i] = 0;
358
359 kvm_vm_elf_load(vm, program_invocation_name);
360
361 /*
362 * TODO: Add proper defines to protect the library's memslots, and then
363 * carve out memslot1 for the ucall MMIO address. KVM treats writes to
364 * read-only memslots as MMIO, and creating a read-only memslot for the
365 * MMIO region would prevent silently clobbering the MMIO region.
366 */
367 slot0 = memslot2region(vm, 0);
368 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
369
370 kvm_arch_vm_post_create(vm);
371
372 return vm;
373 }
374
375 /*
376 * VM Create with customized parameters
377 *
378 * Input Args:
379 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
380 * nr_vcpus - VCPU count
381 * extra_mem_pages - Non-slot0 physical memory total size
382 * guest_code - Guest entry point
383 * vcpuids - VCPU IDs
384 *
385 * Output Args: None
386 *
387 * Return:
388 * Pointer to opaque structure that describes the created VM.
389 *
390 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
391 * extra_mem_pages is only used to calculate the maximum page table size,
392 * no real memory allocation for non-slot0 memory in this function.
393 */
__vm_create_with_vcpus(enum vm_guest_mode mode,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])394 struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
395 uint64_t extra_mem_pages,
396 void *guest_code, struct kvm_vcpu *vcpus[])
397 {
398 struct kvm_vm *vm;
399 int i;
400
401 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
402
403 vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
404
405 for (i = 0; i < nr_vcpus; ++i)
406 vcpus[i] = vm_vcpu_add(vm, i, guest_code);
407
408 return vm;
409 }
410
__vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)411 struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
412 uint64_t extra_mem_pages,
413 void *guest_code)
414 {
415 struct kvm_vcpu *vcpus[1];
416 struct kvm_vm *vm;
417
418 vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
419 guest_code, vcpus);
420
421 *vcpu = vcpus[0];
422 return vm;
423 }
424
425 /*
426 * VM Restart
427 *
428 * Input Args:
429 * vm - VM that has been released before
430 *
431 * Output Args: None
432 *
433 * Reopens the file descriptors associated to the VM and reinstates the
434 * global state, such as the irqchip and the memory regions that are mapped
435 * into the guest.
436 */
kvm_vm_restart(struct kvm_vm * vmp)437 void kvm_vm_restart(struct kvm_vm *vmp)
438 {
439 int ctr;
440 struct userspace_mem_region *region;
441
442 vm_open(vmp);
443 if (vmp->has_irqchip)
444 vm_create_irqchip(vmp);
445
446 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
447 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
448 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
449 " rc: %i errno: %i\n"
450 " slot: %u flags: 0x%x\n"
451 " guest_phys_addr: 0x%llx size: 0x%llx",
452 ret, errno, region->region.slot,
453 region->region.flags,
454 region->region.guest_phys_addr,
455 region->region.memory_size);
456 }
457 }
458
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)459 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
460 uint32_t vcpu_id)
461 {
462 return __vm_vcpu_add(vm, vcpu_id);
463 }
464
vm_recreate_with_one_vcpu(struct kvm_vm * vm)465 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
466 {
467 kvm_vm_restart(vm);
468
469 return vm_vcpu_recreate(vm, 0);
470 }
471
kvm_pin_this_task_to_pcpu(uint32_t pcpu)472 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
473 {
474 cpu_set_t mask;
475 int r;
476
477 CPU_ZERO(&mask);
478 CPU_SET(pcpu, &mask);
479 r = sched_setaffinity(0, sizeof(mask), &mask);
480 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.\n", pcpu);
481 }
482
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)483 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
484 {
485 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
486
487 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
488 "Not allowed to run on pCPU '%d', check cgroups?\n", pcpu);
489 return pcpu;
490 }
491
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)492 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
493 int nr_vcpus)
494 {
495 cpu_set_t allowed_mask;
496 char *cpu, *cpu_list;
497 char delim[2] = ",";
498 int i, r;
499
500 cpu_list = strdup(pcpus_string);
501 TEST_ASSERT(cpu_list, "strdup() allocation failed.\n");
502
503 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
504 TEST_ASSERT(!r, "sched_getaffinity() failed");
505
506 cpu = strtok(cpu_list, delim);
507
508 /* 1. Get all pcpus for vcpus. */
509 for (i = 0; i < nr_vcpus; i++) {
510 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'\n", i);
511 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
512 cpu = strtok(NULL, delim);
513 }
514
515 /* 2. Check if the main worker needs to be pinned. */
516 if (cpu) {
517 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
518 cpu = strtok(NULL, delim);
519 }
520
521 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
522 free(cpu_list);
523 }
524
525 /*
526 * Userspace Memory Region Find
527 *
528 * Input Args:
529 * vm - Virtual Machine
530 * start - Starting VM physical address
531 * end - Ending VM physical address, inclusive.
532 *
533 * Output Args: None
534 *
535 * Return:
536 * Pointer to overlapping region, NULL if no such region.
537 *
538 * Searches for a region with any physical memory that overlaps with
539 * any portion of the guest physical addresses from start to end
540 * inclusive. If multiple overlapping regions exist, a pointer to any
541 * of the regions is returned. Null is returned only when no overlapping
542 * region exists.
543 */
544 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)545 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
546 {
547 struct rb_node *node;
548
549 for (node = vm->regions.gpa_tree.rb_node; node; ) {
550 struct userspace_mem_region *region =
551 container_of(node, struct userspace_mem_region, gpa_node);
552 uint64_t existing_start = region->region.guest_phys_addr;
553 uint64_t existing_end = region->region.guest_phys_addr
554 + region->region.memory_size - 1;
555 if (start <= existing_end && end >= existing_start)
556 return region;
557
558 if (start < existing_start)
559 node = node->rb_left;
560 else
561 node = node->rb_right;
562 }
563
564 return NULL;
565 }
566
567 /*
568 * KVM Userspace Memory Region Find
569 *
570 * Input Args:
571 * vm - Virtual Machine
572 * start - Starting VM physical address
573 * end - Ending VM physical address, inclusive.
574 *
575 * Output Args: None
576 *
577 * Return:
578 * Pointer to overlapping region, NULL if no such region.
579 *
580 * Public interface to userspace_mem_region_find. Allows tests to look up
581 * the memslot datastructure for a given range of guest physical memory.
582 */
583 struct kvm_userspace_memory_region *
kvm_userspace_memory_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)584 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
585 uint64_t end)
586 {
587 struct userspace_mem_region *region;
588
589 region = userspace_mem_region_find(vm, start, end);
590 if (!region)
591 return NULL;
592
593 return ®ion->region;
594 }
595
vcpu_arch_free(struct kvm_vcpu * vcpu)596 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
597 {
598
599 }
600
601 /*
602 * VM VCPU Remove
603 *
604 * Input Args:
605 * vcpu - VCPU to remove
606 *
607 * Output Args: None
608 *
609 * Return: None, TEST_ASSERT failures for all error conditions
610 *
611 * Removes a vCPU from a VM and frees its resources.
612 */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)613 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
614 {
615 int ret;
616
617 if (vcpu->dirty_gfns) {
618 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
619 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
620 vcpu->dirty_gfns = NULL;
621 }
622
623 ret = munmap(vcpu->run, vcpu_mmap_sz());
624 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
625
626 ret = close(vcpu->fd);
627 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
628
629 list_del(&vcpu->list);
630
631 vcpu_arch_free(vcpu);
632 free(vcpu);
633 }
634
kvm_vm_release(struct kvm_vm * vmp)635 void kvm_vm_release(struct kvm_vm *vmp)
636 {
637 struct kvm_vcpu *vcpu, *tmp;
638 int ret;
639
640 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
641 vm_vcpu_rm(vmp, vcpu);
642
643 ret = close(vmp->fd);
644 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
645
646 ret = close(vmp->kvm_fd);
647 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
648 }
649
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region,bool unlink)650 static void __vm_mem_region_delete(struct kvm_vm *vm,
651 struct userspace_mem_region *region,
652 bool unlink)
653 {
654 int ret;
655
656 if (unlink) {
657 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
658 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
659 hash_del(®ion->slot_node);
660 }
661
662 region->region.memory_size = 0;
663 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region);
664
665 sparsebit_free(®ion->unused_phy_pages);
666 ret = munmap(region->mmap_start, region->mmap_size);
667 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
668 if (region->fd >= 0) {
669 /* There's an extra map when using shared memory. */
670 ret = munmap(region->mmap_alias, region->mmap_size);
671 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
672 close(region->fd);
673 }
674
675 free(region);
676 }
677
678 /*
679 * Destroys and frees the VM pointed to by vmp.
680 */
kvm_vm_free(struct kvm_vm * vmp)681 void kvm_vm_free(struct kvm_vm *vmp)
682 {
683 int ctr;
684 struct hlist_node *node;
685 struct userspace_mem_region *region;
686
687 if (vmp == NULL)
688 return;
689
690 /* Free cached stats metadata and close FD */
691 if (vmp->stats_fd) {
692 free(vmp->stats_desc);
693 close(vmp->stats_fd);
694 }
695
696 /* Free userspace_mem_regions. */
697 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
698 __vm_mem_region_delete(vmp, region, false);
699
700 /* Free sparsebit arrays. */
701 sparsebit_free(&vmp->vpages_valid);
702 sparsebit_free(&vmp->vpages_mapped);
703
704 kvm_vm_release(vmp);
705
706 /* Free the structure describing the VM. */
707 free(vmp);
708 }
709
kvm_memfd_alloc(size_t size,bool hugepages)710 int kvm_memfd_alloc(size_t size, bool hugepages)
711 {
712 int memfd_flags = MFD_CLOEXEC;
713 int fd, r;
714
715 if (hugepages)
716 memfd_flags |= MFD_HUGETLB;
717
718 fd = memfd_create("kvm_selftest", memfd_flags);
719 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
720
721 r = ftruncate(fd, size);
722 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
723
724 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
725 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
726
727 return fd;
728 }
729
730 /*
731 * Memory Compare, host virtual to guest virtual
732 *
733 * Input Args:
734 * hva - Starting host virtual address
735 * vm - Virtual Machine
736 * gva - Starting guest virtual address
737 * len - number of bytes to compare
738 *
739 * Output Args: None
740 *
741 * Input/Output Args: None
742 *
743 * Return:
744 * Returns 0 if the bytes starting at hva for a length of len
745 * are equal the guest virtual bytes starting at gva. Returns
746 * a value < 0, if bytes at hva are less than those at gva.
747 * Otherwise a value > 0 is returned.
748 *
749 * Compares the bytes starting at the host virtual address hva, for
750 * a length of len, to the guest bytes starting at the guest virtual
751 * address given by gva.
752 */
kvm_memcmp_hva_gva(void * hva,struct kvm_vm * vm,vm_vaddr_t gva,size_t len)753 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
754 {
755 size_t amt;
756
757 /*
758 * Compare a batch of bytes until either a match is found
759 * or all the bytes have been compared.
760 */
761 for (uintptr_t offset = 0; offset < len; offset += amt) {
762 uintptr_t ptr1 = (uintptr_t)hva + offset;
763
764 /*
765 * Determine host address for guest virtual address
766 * at offset.
767 */
768 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
769
770 /*
771 * Determine amount to compare on this pass.
772 * Don't allow the comparsion to cross a page boundary.
773 */
774 amt = len - offset;
775 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
776 amt = vm->page_size - (ptr1 % vm->page_size);
777 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
778 amt = vm->page_size - (ptr2 % vm->page_size);
779
780 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
781 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
782
783 /*
784 * Perform the comparison. If there is a difference
785 * return that result to the caller, otherwise need
786 * to continue on looking for a mismatch.
787 */
788 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
789 if (ret != 0)
790 return ret;
791 }
792
793 /*
794 * No mismatch found. Let the caller know the two memory
795 * areas are equal.
796 */
797 return 0;
798 }
799
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)800 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
801 struct userspace_mem_region *region)
802 {
803 struct rb_node **cur, *parent;
804
805 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
806 struct userspace_mem_region *cregion;
807
808 cregion = container_of(*cur, typeof(*cregion), gpa_node);
809 parent = *cur;
810 if (region->region.guest_phys_addr <
811 cregion->region.guest_phys_addr)
812 cur = &(*cur)->rb_left;
813 else {
814 TEST_ASSERT(region->region.guest_phys_addr !=
815 cregion->region.guest_phys_addr,
816 "Duplicate GPA in region tree");
817
818 cur = &(*cur)->rb_right;
819 }
820 }
821
822 rb_link_node(®ion->gpa_node, parent, cur);
823 rb_insert_color(®ion->gpa_node, gpa_tree);
824 }
825
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)826 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
827 struct userspace_mem_region *region)
828 {
829 struct rb_node **cur, *parent;
830
831 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
832 struct userspace_mem_region *cregion;
833
834 cregion = container_of(*cur, typeof(*cregion), hva_node);
835 parent = *cur;
836 if (region->host_mem < cregion->host_mem)
837 cur = &(*cur)->rb_left;
838 else {
839 TEST_ASSERT(region->host_mem !=
840 cregion->host_mem,
841 "Duplicate HVA in region tree");
842
843 cur = &(*cur)->rb_right;
844 }
845 }
846
847 rb_link_node(®ion->hva_node, parent, cur);
848 rb_insert_color(®ion->hva_node, hva_tree);
849 }
850
851
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)852 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
853 uint64_t gpa, uint64_t size, void *hva)
854 {
855 struct kvm_userspace_memory_region region = {
856 .slot = slot,
857 .flags = flags,
858 .guest_phys_addr = gpa,
859 .memory_size = size,
860 .userspace_addr = (uintptr_t)hva,
861 };
862
863 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion);
864 }
865
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)866 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
867 uint64_t gpa, uint64_t size, void *hva)
868 {
869 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
870
871 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
872 errno, strerror(errno));
873 }
874
875 /*
876 * VM Userspace Memory Region Add
877 *
878 * Input Args:
879 * vm - Virtual Machine
880 * src_type - Storage source for this region.
881 * NULL to use anonymous memory.
882 * guest_paddr - Starting guest physical address
883 * slot - KVM region slot
884 * npages - Number of physical pages
885 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
886 *
887 * Output Args: None
888 *
889 * Return: None
890 *
891 * Allocates a memory area of the number of pages specified by npages
892 * and maps it to the VM specified by vm, at a starting physical address
893 * given by guest_paddr. The region is created with a KVM region slot
894 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
895 * region is created with the flags given by flags.
896 */
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)897 void vm_userspace_mem_region_add(struct kvm_vm *vm,
898 enum vm_mem_backing_src_type src_type,
899 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
900 uint32_t flags)
901 {
902 int ret;
903 struct userspace_mem_region *region;
904 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
905 size_t alignment;
906
907 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
908 "Number of guest pages is not compatible with the host. "
909 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
910
911 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
912 "address not on a page boundary.\n"
913 " guest_paddr: 0x%lx vm->page_size: 0x%x",
914 guest_paddr, vm->page_size);
915 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
916 <= vm->max_gfn, "Physical range beyond maximum "
917 "supported physical address,\n"
918 " guest_paddr: 0x%lx npages: 0x%lx\n"
919 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
920 guest_paddr, npages, vm->max_gfn, vm->page_size);
921
922 /*
923 * Confirm a mem region with an overlapping address doesn't
924 * already exist.
925 */
926 region = (struct userspace_mem_region *) userspace_mem_region_find(
927 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
928 if (region != NULL)
929 TEST_FAIL("overlapping userspace_mem_region already "
930 "exists\n"
931 " requested guest_paddr: 0x%lx npages: 0x%lx "
932 "page_size: 0x%x\n"
933 " existing guest_paddr: 0x%lx size: 0x%lx",
934 guest_paddr, npages, vm->page_size,
935 (uint64_t) region->region.guest_phys_addr,
936 (uint64_t) region->region.memory_size);
937
938 /* Confirm no region with the requested slot already exists. */
939 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
940 slot) {
941 if (region->region.slot != slot)
942 continue;
943
944 TEST_FAIL("A mem region with the requested slot "
945 "already exists.\n"
946 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
947 " existing slot: %u paddr: 0x%lx size: 0x%lx",
948 slot, guest_paddr, npages,
949 region->region.slot,
950 (uint64_t) region->region.guest_phys_addr,
951 (uint64_t) region->region.memory_size);
952 }
953
954 /* Allocate and initialize new mem region structure. */
955 region = calloc(1, sizeof(*region));
956 TEST_ASSERT(region != NULL, "Insufficient Memory");
957 region->mmap_size = npages * vm->page_size;
958
959 #ifdef __s390x__
960 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
961 alignment = 0x100000;
962 #else
963 alignment = 1;
964 #endif
965
966 /*
967 * When using THP mmap is not guaranteed to returned a hugepage aligned
968 * address so we have to pad the mmap. Padding is not needed for HugeTLB
969 * because mmap will always return an address aligned to the HugeTLB
970 * page size.
971 */
972 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
973 alignment = max(backing_src_pagesz, alignment);
974
975 ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
976
977 /* Add enough memory to align up if necessary */
978 if (alignment > 1)
979 region->mmap_size += alignment;
980
981 region->fd = -1;
982 if (backing_src_is_shared(src_type))
983 region->fd = kvm_memfd_alloc(region->mmap_size,
984 src_type == VM_MEM_SRC_SHARED_HUGETLB);
985
986 region->mmap_start = mmap(NULL, region->mmap_size,
987 PROT_READ | PROT_WRITE,
988 vm_mem_backing_src_alias(src_type)->flag,
989 region->fd, 0);
990 TEST_ASSERT(region->mmap_start != MAP_FAILED,
991 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
992
993 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
994 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
995 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
996 region->mmap_start, backing_src_pagesz);
997
998 /* Align host address */
999 region->host_mem = align_ptr_up(region->mmap_start, alignment);
1000
1001 /* As needed perform madvise */
1002 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1003 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1004 ret = madvise(region->host_mem, npages * vm->page_size,
1005 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1006 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1007 region->host_mem, npages * vm->page_size,
1008 vm_mem_backing_src_alias(src_type)->name);
1009 }
1010
1011 region->backing_src_type = src_type;
1012 region->unused_phy_pages = sparsebit_alloc();
1013 sparsebit_set_num(region->unused_phy_pages,
1014 guest_paddr >> vm->page_shift, npages);
1015 region->region.slot = slot;
1016 region->region.flags = flags;
1017 region->region.guest_phys_addr = guest_paddr;
1018 region->region.memory_size = npages * vm->page_size;
1019 region->region.userspace_addr = (uintptr_t) region->host_mem;
1020 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1021 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1022 " rc: %i errno: %i\n"
1023 " slot: %u flags: 0x%x\n"
1024 " guest_phys_addr: 0x%lx size: 0x%lx",
1025 ret, errno, slot, flags,
1026 guest_paddr, (uint64_t) region->region.memory_size);
1027
1028 /* Add to quick lookup data structures */
1029 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1030 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1031 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
1032
1033 /* If shared memory, create an alias. */
1034 if (region->fd >= 0) {
1035 region->mmap_alias = mmap(NULL, region->mmap_size,
1036 PROT_READ | PROT_WRITE,
1037 vm_mem_backing_src_alias(src_type)->flag,
1038 region->fd, 0);
1039 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1040 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1041
1042 /* Align host alias address */
1043 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1044 }
1045 }
1046
1047 /*
1048 * Memslot to region
1049 *
1050 * Input Args:
1051 * vm - Virtual Machine
1052 * memslot - KVM memory slot ID
1053 *
1054 * Output Args: None
1055 *
1056 * Return:
1057 * Pointer to memory region structure that describe memory region
1058 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
1059 * on error (e.g. currently no memory region using memslot as a KVM
1060 * memory slot ID).
1061 */
1062 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1063 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1064 {
1065 struct userspace_mem_region *region;
1066
1067 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1068 memslot)
1069 if (region->region.slot == memslot)
1070 return region;
1071
1072 fprintf(stderr, "No mem region with the requested slot found,\n"
1073 " requested slot: %u\n", memslot);
1074 fputs("---- vm dump ----\n", stderr);
1075 vm_dump(stderr, vm, 2);
1076 TEST_FAIL("Mem region not found");
1077 return NULL;
1078 }
1079
1080 /*
1081 * VM Memory Region Flags Set
1082 *
1083 * Input Args:
1084 * vm - Virtual Machine
1085 * flags - Starting guest physical address
1086 *
1087 * Output Args: None
1088 *
1089 * Return: None
1090 *
1091 * Sets the flags of the memory region specified by the value of slot,
1092 * to the values given by flags.
1093 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1094 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1095 {
1096 int ret;
1097 struct userspace_mem_region *region;
1098
1099 region = memslot2region(vm, slot);
1100
1101 region->region.flags = flags;
1102
1103 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1104
1105 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1106 " rc: %i errno: %i slot: %u flags: 0x%x",
1107 ret, errno, slot, flags);
1108 }
1109
1110 /*
1111 * VM Memory Region Move
1112 *
1113 * Input Args:
1114 * vm - Virtual Machine
1115 * slot - Slot of the memory region to move
1116 * new_gpa - Starting guest physical address
1117 *
1118 * Output Args: None
1119 *
1120 * Return: None
1121 *
1122 * Change the gpa of a memory region.
1123 */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1124 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1125 {
1126 struct userspace_mem_region *region;
1127 int ret;
1128
1129 region = memslot2region(vm, slot);
1130
1131 region->region.guest_phys_addr = new_gpa;
1132
1133 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1134
1135 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1136 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1137 ret, errno, slot, new_gpa);
1138 }
1139
1140 /*
1141 * VM Memory Region Delete
1142 *
1143 * Input Args:
1144 * vm - Virtual Machine
1145 * slot - Slot of the memory region to delete
1146 *
1147 * Output Args: None
1148 *
1149 * Return: None
1150 *
1151 * Delete a memory region.
1152 */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1153 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1154 {
1155 __vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1156 }
1157
1158 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1159 static int vcpu_mmap_sz(void)
1160 {
1161 int dev_fd, ret;
1162
1163 dev_fd = open_kvm_dev_path_or_exit();
1164
1165 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1166 TEST_ASSERT(ret >= sizeof(struct kvm_run),
1167 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1168
1169 close(dev_fd);
1170
1171 return ret;
1172 }
1173
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1174 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1175 {
1176 struct kvm_vcpu *vcpu;
1177
1178 list_for_each_entry(vcpu, &vm->vcpus, list) {
1179 if (vcpu->id == vcpu_id)
1180 return true;
1181 }
1182
1183 return false;
1184 }
1185
1186 /*
1187 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1188 * No additional vCPU setup is done. Returns the vCPU.
1189 */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1190 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1191 {
1192 struct kvm_vcpu *vcpu;
1193
1194 /* Confirm a vcpu with the specified id doesn't already exist. */
1195 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
1196
1197 /* Allocate and initialize new vcpu structure. */
1198 vcpu = calloc(1, sizeof(*vcpu));
1199 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1200
1201 vcpu->vm = vm;
1202 vcpu->id = vcpu_id;
1203 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1204 TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
1205
1206 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1207 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1208 vcpu_mmap_sz(), sizeof(*vcpu->run));
1209 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1210 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1211 TEST_ASSERT(vcpu->run != MAP_FAILED,
1212 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1213
1214 /* Add to linked-list of VCPUs. */
1215 list_add(&vcpu->list, &vm->vcpus);
1216
1217 return vcpu;
1218 }
1219
1220 /*
1221 * VM Virtual Address Unused Gap
1222 *
1223 * Input Args:
1224 * vm - Virtual Machine
1225 * sz - Size (bytes)
1226 * vaddr_min - Minimum Virtual Address
1227 *
1228 * Output Args: None
1229 *
1230 * Return:
1231 * Lowest virtual address at or below vaddr_min, with at least
1232 * sz unused bytes. TEST_ASSERT failure if no area of at least
1233 * size sz is available.
1234 *
1235 * Within the VM specified by vm, locates the lowest starting virtual
1236 * address >= vaddr_min, that has at least sz unallocated bytes. A
1237 * TEST_ASSERT failure occurs for invalid input or no area of at least
1238 * sz unallocated bytes >= vaddr_min is available.
1239 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1240 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1241 vm_vaddr_t vaddr_min)
1242 {
1243 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1244
1245 /* Determine lowest permitted virtual page index. */
1246 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1247 if ((pgidx_start * vm->page_size) < vaddr_min)
1248 goto no_va_found;
1249
1250 /* Loop over section with enough valid virtual page indexes. */
1251 if (!sparsebit_is_set_num(vm->vpages_valid,
1252 pgidx_start, pages))
1253 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1254 pgidx_start, pages);
1255 do {
1256 /*
1257 * Are there enough unused virtual pages available at
1258 * the currently proposed starting virtual page index.
1259 * If not, adjust proposed starting index to next
1260 * possible.
1261 */
1262 if (sparsebit_is_clear_num(vm->vpages_mapped,
1263 pgidx_start, pages))
1264 goto va_found;
1265 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1266 pgidx_start, pages);
1267 if (pgidx_start == 0)
1268 goto no_va_found;
1269
1270 /*
1271 * If needed, adjust proposed starting virtual address,
1272 * to next range of valid virtual addresses.
1273 */
1274 if (!sparsebit_is_set_num(vm->vpages_valid,
1275 pgidx_start, pages)) {
1276 pgidx_start = sparsebit_next_set_num(
1277 vm->vpages_valid, pgidx_start, pages);
1278 if (pgidx_start == 0)
1279 goto no_va_found;
1280 }
1281 } while (pgidx_start != 0);
1282
1283 no_va_found:
1284 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1285
1286 /* NOT REACHED */
1287 return -1;
1288
1289 va_found:
1290 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1291 pgidx_start, pages),
1292 "Unexpected, invalid virtual page index range,\n"
1293 " pgidx_start: 0x%lx\n"
1294 " pages: 0x%lx",
1295 pgidx_start, pages);
1296 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1297 pgidx_start, pages),
1298 "Unexpected, pages already mapped,\n"
1299 " pgidx_start: 0x%lx\n"
1300 " pages: 0x%lx",
1301 pgidx_start, pages);
1302
1303 return pgidx_start * vm->page_size;
1304 }
1305
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1306 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1307 enum kvm_mem_region_type type)
1308 {
1309 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1310
1311 virt_pgd_alloc(vm);
1312 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1313 KVM_UTIL_MIN_PFN * vm->page_size,
1314 vm->memslots[type]);
1315
1316 /*
1317 * Find an unused range of virtual page addresses of at least
1318 * pages in length.
1319 */
1320 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1321
1322 /* Map the virtual pages. */
1323 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1324 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1325
1326 virt_pg_map(vm, vaddr, paddr);
1327
1328 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1329 }
1330
1331 return vaddr_start;
1332 }
1333
1334 /*
1335 * VM Virtual Address Allocate
1336 *
1337 * Input Args:
1338 * vm - Virtual Machine
1339 * sz - Size in bytes
1340 * vaddr_min - Minimum starting virtual address
1341 *
1342 * Output Args: None
1343 *
1344 * Return:
1345 * Starting guest virtual address
1346 *
1347 * Allocates at least sz bytes within the virtual address space of the vm
1348 * given by vm. The allocated bytes are mapped to a virtual address >=
1349 * the address given by vaddr_min. Note that each allocation uses a
1350 * a unique set of pages, with the minimum real allocation being at least
1351 * a page. The allocated physical space comes from the TEST_DATA memory region.
1352 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1353 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1354 {
1355 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1356 }
1357
1358 /*
1359 * VM Virtual Address Allocate Pages
1360 *
1361 * Input Args:
1362 * vm - Virtual Machine
1363 *
1364 * Output Args: None
1365 *
1366 * Return:
1367 * Starting guest virtual address
1368 *
1369 * Allocates at least N system pages worth of bytes within the virtual address
1370 * space of the vm.
1371 */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1372 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1373 {
1374 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1375 }
1376
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1377 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1378 {
1379 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1380 }
1381
1382 /*
1383 * VM Virtual Address Allocate Page
1384 *
1385 * Input Args:
1386 * vm - Virtual Machine
1387 *
1388 * Output Args: None
1389 *
1390 * Return:
1391 * Starting guest virtual address
1392 *
1393 * Allocates at least one system page worth of bytes within the virtual address
1394 * space of the vm.
1395 */
vm_vaddr_alloc_page(struct kvm_vm * vm)1396 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1397 {
1398 return vm_vaddr_alloc_pages(vm, 1);
1399 }
1400
1401 /*
1402 * Map a range of VM virtual address to the VM's physical address
1403 *
1404 * Input Args:
1405 * vm - Virtual Machine
1406 * vaddr - Virtuall address to map
1407 * paddr - VM Physical Address
1408 * npages - The number of pages to map
1409 *
1410 * Output Args: None
1411 *
1412 * Return: None
1413 *
1414 * Within the VM given by @vm, creates a virtual translation for
1415 * @npages starting at @vaddr to the page range starting at @paddr.
1416 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1417 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1418 unsigned int npages)
1419 {
1420 size_t page_size = vm->page_size;
1421 size_t size = npages * page_size;
1422
1423 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1424 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1425
1426 while (npages--) {
1427 virt_pg_map(vm, vaddr, paddr);
1428 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1429
1430 vaddr += page_size;
1431 paddr += page_size;
1432 }
1433 }
1434
1435 /*
1436 * Address VM Physical to Host Virtual
1437 *
1438 * Input Args:
1439 * vm - Virtual Machine
1440 * gpa - VM physical address
1441 *
1442 * Output Args: None
1443 *
1444 * Return:
1445 * Equivalent host virtual address
1446 *
1447 * Locates the memory region containing the VM physical address given
1448 * by gpa, within the VM given by vm. When found, the host virtual
1449 * address providing the memory to the vm physical address is returned.
1450 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1451 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1452 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1453 {
1454 struct userspace_mem_region *region;
1455
1456 region = userspace_mem_region_find(vm, gpa, gpa);
1457 if (!region) {
1458 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1459 return NULL;
1460 }
1461
1462 return (void *)((uintptr_t)region->host_mem
1463 + (gpa - region->region.guest_phys_addr));
1464 }
1465
1466 /*
1467 * Address Host Virtual to VM Physical
1468 *
1469 * Input Args:
1470 * vm - Virtual Machine
1471 * hva - Host virtual address
1472 *
1473 * Output Args: None
1474 *
1475 * Return:
1476 * Equivalent VM physical address
1477 *
1478 * Locates the memory region containing the host virtual address given
1479 * by hva, within the VM given by vm. When found, the equivalent
1480 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1481 * region containing hva exists.
1482 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1483 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1484 {
1485 struct rb_node *node;
1486
1487 for (node = vm->regions.hva_tree.rb_node; node; ) {
1488 struct userspace_mem_region *region =
1489 container_of(node, struct userspace_mem_region, hva_node);
1490
1491 if (hva >= region->host_mem) {
1492 if (hva <= (region->host_mem
1493 + region->region.memory_size - 1))
1494 return (vm_paddr_t)((uintptr_t)
1495 region->region.guest_phys_addr
1496 + (hva - (uintptr_t)region->host_mem));
1497
1498 node = node->rb_right;
1499 } else
1500 node = node->rb_left;
1501 }
1502
1503 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1504 return -1;
1505 }
1506
1507 /*
1508 * Address VM physical to Host Virtual *alias*.
1509 *
1510 * Input Args:
1511 * vm - Virtual Machine
1512 * gpa - VM physical address
1513 *
1514 * Output Args: None
1515 *
1516 * Return:
1517 * Equivalent address within the host virtual *alias* area, or NULL
1518 * (without failing the test) if the guest memory is not shared (so
1519 * no alias exists).
1520 *
1521 * Create a writable, shared virtual=>physical alias for the specific GPA.
1522 * The primary use case is to allow the host selftest to manipulate guest
1523 * memory without mapping said memory in the guest's address space. And, for
1524 * userfaultfd-based demand paging, to do so without triggering userfaults.
1525 */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1526 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1527 {
1528 struct userspace_mem_region *region;
1529 uintptr_t offset;
1530
1531 region = userspace_mem_region_find(vm, gpa, gpa);
1532 if (!region)
1533 return NULL;
1534
1535 if (!region->host_alias)
1536 return NULL;
1537
1538 offset = gpa - region->region.guest_phys_addr;
1539 return (void *) ((uintptr_t) region->host_alias + offset);
1540 }
1541
1542 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1543 void vm_create_irqchip(struct kvm_vm *vm)
1544 {
1545 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1546
1547 vm->has_irqchip = true;
1548 }
1549
_vcpu_run(struct kvm_vcpu * vcpu)1550 int _vcpu_run(struct kvm_vcpu *vcpu)
1551 {
1552 int rc;
1553
1554 do {
1555 rc = __vcpu_run(vcpu);
1556 } while (rc == -1 && errno == EINTR);
1557
1558 assert_on_unhandled_exception(vcpu);
1559
1560 return rc;
1561 }
1562
1563 /*
1564 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1565 * Assert if the KVM returns an error (other than -EINTR).
1566 */
vcpu_run(struct kvm_vcpu * vcpu)1567 void vcpu_run(struct kvm_vcpu *vcpu)
1568 {
1569 int ret = _vcpu_run(vcpu);
1570
1571 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1572 }
1573
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1574 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1575 {
1576 int ret;
1577
1578 vcpu->run->immediate_exit = 1;
1579 ret = __vcpu_run(vcpu);
1580 vcpu->run->immediate_exit = 0;
1581
1582 TEST_ASSERT(ret == -1 && errno == EINTR,
1583 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1584 ret, errno);
1585 }
1586
1587 /*
1588 * Get the list of guest registers which are supported for
1589 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer,
1590 * it is the caller's responsibility to free the list.
1591 */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1592 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1593 {
1594 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1595 int ret;
1596
1597 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n);
1598 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1599
1600 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1601 reg_list->n = reg_list_n.n;
1602 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1603 return reg_list;
1604 }
1605
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1606 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1607 {
1608 uint32_t page_size = getpagesize();
1609 uint32_t size = vcpu->vm->dirty_ring_size;
1610
1611 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1612
1613 if (!vcpu->dirty_gfns) {
1614 void *addr;
1615
1616 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1617 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1618 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1619
1620 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1621 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1622 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1623
1624 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1625 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1626 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1627
1628 vcpu->dirty_gfns = addr;
1629 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1630 }
1631
1632 return vcpu->dirty_gfns;
1633 }
1634
1635 /*
1636 * Device Ioctl
1637 */
1638
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1639 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1640 {
1641 struct kvm_device_attr attribute = {
1642 .group = group,
1643 .attr = attr,
1644 .flags = 0,
1645 };
1646
1647 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1648 }
1649
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1650 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1651 {
1652 struct kvm_create_device create_dev = {
1653 .type = type,
1654 .flags = KVM_CREATE_DEVICE_TEST,
1655 };
1656
1657 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1658 }
1659
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1660 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1661 {
1662 struct kvm_create_device create_dev = {
1663 .type = type,
1664 .fd = -1,
1665 .flags = 0,
1666 };
1667 int err;
1668
1669 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1670 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1671 return err ? : create_dev.fd;
1672 }
1673
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1674 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1675 {
1676 struct kvm_device_attr kvmattr = {
1677 .group = group,
1678 .attr = attr,
1679 .flags = 0,
1680 .addr = (uintptr_t)val,
1681 };
1682
1683 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1684 }
1685
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1686 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1687 {
1688 struct kvm_device_attr kvmattr = {
1689 .group = group,
1690 .attr = attr,
1691 .flags = 0,
1692 .addr = (uintptr_t)val,
1693 };
1694
1695 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1696 }
1697
1698 /*
1699 * IRQ related functions.
1700 */
1701
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1702 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1703 {
1704 struct kvm_irq_level irq_level = {
1705 .irq = irq,
1706 .level = level,
1707 };
1708
1709 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1710 }
1711
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1712 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1713 {
1714 int ret = _kvm_irq_line(vm, irq, level);
1715
1716 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1717 }
1718
kvm_gsi_routing_create(void)1719 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1720 {
1721 struct kvm_irq_routing *routing;
1722 size_t size;
1723
1724 size = sizeof(struct kvm_irq_routing);
1725 /* Allocate space for the max number of entries: this wastes 196 KBs. */
1726 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1727 routing = calloc(1, size);
1728 assert(routing);
1729
1730 return routing;
1731 }
1732
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1733 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1734 uint32_t gsi, uint32_t pin)
1735 {
1736 int i;
1737
1738 assert(routing);
1739 assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1740
1741 i = routing->nr;
1742 routing->entries[i].gsi = gsi;
1743 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1744 routing->entries[i].flags = 0;
1745 routing->entries[i].u.irqchip.irqchip = 0;
1746 routing->entries[i].u.irqchip.pin = pin;
1747 routing->nr++;
1748 }
1749
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1750 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1751 {
1752 int ret;
1753
1754 assert(routing);
1755 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1756 free(routing);
1757
1758 return ret;
1759 }
1760
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1761 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1762 {
1763 int ret;
1764
1765 ret = _kvm_gsi_routing_write(vm, routing);
1766 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1767 }
1768
1769 /*
1770 * VM Dump
1771 *
1772 * Input Args:
1773 * vm - Virtual Machine
1774 * indent - Left margin indent amount
1775 *
1776 * Output Args:
1777 * stream - Output FILE stream
1778 *
1779 * Return: None
1780 *
1781 * Dumps the current state of the VM given by vm, to the FILE stream
1782 * given by stream.
1783 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1784 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1785 {
1786 int ctr;
1787 struct userspace_mem_region *region;
1788 struct kvm_vcpu *vcpu;
1789
1790 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1791 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1792 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1793 fprintf(stream, "%*sMem Regions:\n", indent, "");
1794 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1795 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1796 "host_virt: %p\n", indent + 2, "",
1797 (uint64_t) region->region.guest_phys_addr,
1798 (uint64_t) region->region.memory_size,
1799 region->host_mem);
1800 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1801 sparsebit_dump(stream, region->unused_phy_pages, 0);
1802 }
1803 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1804 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1805 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1806 vm->pgd_created);
1807 if (vm->pgd_created) {
1808 fprintf(stream, "%*sVirtual Translation Tables:\n",
1809 indent + 2, "");
1810 virt_dump(stream, vm, indent + 4);
1811 }
1812 fprintf(stream, "%*sVCPUs:\n", indent, "");
1813
1814 list_for_each_entry(vcpu, &vm->vcpus, list)
1815 vcpu_dump(stream, vcpu, indent + 2);
1816 }
1817
1818 /* Known KVM exit reasons */
1819 static struct exit_reason {
1820 unsigned int reason;
1821 const char *name;
1822 } exit_reasons_known[] = {
1823 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
1824 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
1825 {KVM_EXIT_IO, "IO"},
1826 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
1827 {KVM_EXIT_DEBUG, "DEBUG"},
1828 {KVM_EXIT_HLT, "HLT"},
1829 {KVM_EXIT_MMIO, "MMIO"},
1830 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1831 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1832 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1833 {KVM_EXIT_INTR, "INTR"},
1834 {KVM_EXIT_SET_TPR, "SET_TPR"},
1835 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1836 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1837 {KVM_EXIT_S390_RESET, "S390_RESET"},
1838 {KVM_EXIT_DCR, "DCR"},
1839 {KVM_EXIT_NMI, "NMI"},
1840 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1841 {KVM_EXIT_OSI, "OSI"},
1842 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1843 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
1844 {KVM_EXIT_X86_RDMSR, "RDMSR"},
1845 {KVM_EXIT_X86_WRMSR, "WRMSR"},
1846 {KVM_EXIT_XEN, "XEN"},
1847 {KVM_EXIT_HYPERV, "HYPERV"},
1848 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1849 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1850 #endif
1851 };
1852
1853 /*
1854 * Exit Reason String
1855 *
1856 * Input Args:
1857 * exit_reason - Exit reason
1858 *
1859 * Output Args: None
1860 *
1861 * Return:
1862 * Constant string pointer describing the exit reason.
1863 *
1864 * Locates and returns a constant string that describes the KVM exit
1865 * reason given by exit_reason. If no such string is found, a constant
1866 * string of "Unknown" is returned.
1867 */
exit_reason_str(unsigned int exit_reason)1868 const char *exit_reason_str(unsigned int exit_reason)
1869 {
1870 unsigned int n1;
1871
1872 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1873 if (exit_reason == exit_reasons_known[n1].reason)
1874 return exit_reasons_known[n1].name;
1875 }
1876
1877 return "Unknown";
1878 }
1879
1880 /*
1881 * Physical Contiguous Page Allocator
1882 *
1883 * Input Args:
1884 * vm - Virtual Machine
1885 * num - number of pages
1886 * paddr_min - Physical address minimum
1887 * memslot - Memory region to allocate page from
1888 *
1889 * Output Args: None
1890 *
1891 * Return:
1892 * Starting physical address
1893 *
1894 * Within the VM specified by vm, locates a range of available physical
1895 * pages at or above paddr_min. If found, the pages are marked as in use
1896 * and their base address is returned. A TEST_ASSERT failure occurs if
1897 * not enough pages are available at or above paddr_min.
1898 */
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)1899 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1900 vm_paddr_t paddr_min, uint32_t memslot)
1901 {
1902 struct userspace_mem_region *region;
1903 sparsebit_idx_t pg, base;
1904
1905 TEST_ASSERT(num > 0, "Must allocate at least one page");
1906
1907 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1908 "not divisible by page size.\n"
1909 " paddr_min: 0x%lx page_size: 0x%x",
1910 paddr_min, vm->page_size);
1911
1912 region = memslot2region(vm, memslot);
1913 base = pg = paddr_min >> vm->page_shift;
1914
1915 do {
1916 for (; pg < base + num; ++pg) {
1917 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1918 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1919 break;
1920 }
1921 }
1922 } while (pg && pg != base + num);
1923
1924 if (pg == 0) {
1925 fprintf(stderr, "No guest physical page available, "
1926 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1927 paddr_min, vm->page_size, memslot);
1928 fputs("---- vm dump ----\n", stderr);
1929 vm_dump(stderr, vm, 2);
1930 abort();
1931 }
1932
1933 for (pg = base; pg < base + num; ++pg)
1934 sparsebit_clear(region->unused_phy_pages, pg);
1935
1936 return base * vm->page_size;
1937 }
1938
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)1939 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1940 uint32_t memslot)
1941 {
1942 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1943 }
1944
vm_alloc_page_table(struct kvm_vm * vm)1945 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
1946 {
1947 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
1948 vm->memslots[MEM_REGION_PT]);
1949 }
1950
1951 /*
1952 * Address Guest Virtual to Host Virtual
1953 *
1954 * Input Args:
1955 * vm - Virtual Machine
1956 * gva - VM virtual address
1957 *
1958 * Output Args: None
1959 *
1960 * Return:
1961 * Equivalent host virtual address
1962 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)1963 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1964 {
1965 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1966 }
1967
vm_compute_max_gfn(struct kvm_vm * vm)1968 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
1969 {
1970 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
1971 }
1972
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)1973 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1974 unsigned int page_shift,
1975 unsigned int new_page_shift,
1976 bool ceil)
1977 {
1978 unsigned int n = 1 << (new_page_shift - page_shift);
1979
1980 if (page_shift >= new_page_shift)
1981 return num_pages * (1 << (page_shift - new_page_shift));
1982
1983 return num_pages / n + !!(ceil && num_pages % n);
1984 }
1985
getpageshift(void)1986 static inline int getpageshift(void)
1987 {
1988 return __builtin_ffs(getpagesize()) - 1;
1989 }
1990
1991 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)1992 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1993 {
1994 return vm_calc_num_pages(num_guest_pages,
1995 vm_guest_mode_params[mode].page_shift,
1996 getpageshift(), true);
1997 }
1998
1999 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2000 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2001 {
2002 return vm_calc_num_pages(num_host_pages, getpageshift(),
2003 vm_guest_mode_params[mode].page_shift, false);
2004 }
2005
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2006 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2007 {
2008 unsigned int n;
2009 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2010 return vm_adjust_num_guest_pages(mode, n);
2011 }
2012
2013 /*
2014 * Read binary stats descriptors
2015 *
2016 * Input Args:
2017 * stats_fd - the file descriptor for the binary stats file from which to read
2018 * header - the binary stats metadata header corresponding to the given FD
2019 *
2020 * Output Args: None
2021 *
2022 * Return:
2023 * A pointer to a newly allocated series of stat descriptors.
2024 * Caller is responsible for freeing the returned kvm_stats_desc.
2025 *
2026 * Read the stats descriptors from the binary stats interface.
2027 */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2028 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2029 struct kvm_stats_header *header)
2030 {
2031 struct kvm_stats_desc *stats_desc;
2032 ssize_t desc_size, total_size, ret;
2033
2034 desc_size = get_stats_descriptor_size(header);
2035 total_size = header->num_desc * desc_size;
2036
2037 stats_desc = calloc(header->num_desc, desc_size);
2038 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2039
2040 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2041 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2042
2043 return stats_desc;
2044 }
2045
2046 /*
2047 * Read stat data for a particular stat
2048 *
2049 * Input Args:
2050 * stats_fd - the file descriptor for the binary stats file from which to read
2051 * header - the binary stats metadata header corresponding to the given FD
2052 * desc - the binary stat metadata for the particular stat to be read
2053 * max_elements - the maximum number of 8-byte values to read into data
2054 *
2055 * Output Args:
2056 * data - the buffer into which stat data should be read
2057 *
2058 * Read the data values of a specified stat from the binary stats interface.
2059 */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2060 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2061 struct kvm_stats_desc *desc, uint64_t *data,
2062 size_t max_elements)
2063 {
2064 size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2065 size_t size = nr_elements * sizeof(*data);
2066 ssize_t ret;
2067
2068 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2069 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2070
2071 ret = pread(stats_fd, data, size,
2072 header->data_offset + desc->offset);
2073
2074 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2075 desc->name, errno, strerror(errno));
2076 TEST_ASSERT(ret == size,
2077 "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2078 desc->name, size, ret);
2079 }
2080
2081 /*
2082 * Read the data of the named stat
2083 *
2084 * Input Args:
2085 * vm - the VM for which the stat should be read
2086 * stat_name - the name of the stat to read
2087 * max_elements - the maximum number of 8-byte values to read into data
2088 *
2089 * Output Args:
2090 * data - the buffer into which stat data should be read
2091 *
2092 * Read the data values of a specified stat from the binary stats interface.
2093 */
__vm_get_stat(struct kvm_vm * vm,const char * stat_name,uint64_t * data,size_t max_elements)2094 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2095 size_t max_elements)
2096 {
2097 struct kvm_stats_desc *desc;
2098 size_t size_desc;
2099 int i;
2100
2101 if (!vm->stats_fd) {
2102 vm->stats_fd = vm_get_stats_fd(vm);
2103 read_stats_header(vm->stats_fd, &vm->stats_header);
2104 vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2105 &vm->stats_header);
2106 }
2107
2108 size_desc = get_stats_descriptor_size(&vm->stats_header);
2109
2110 for (i = 0; i < vm->stats_header.num_desc; ++i) {
2111 desc = (void *)vm->stats_desc + (i * size_desc);
2112
2113 if (strcmp(desc->name, stat_name))
2114 continue;
2115
2116 read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2117 data, max_elements);
2118
2119 break;
2120 }
2121 }
2122
kvm_arch_vm_post_create(struct kvm_vm * vm)2123 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2124 {
2125 }
2126
kvm_selftest_arch_init(void)2127 __weak void kvm_selftest_arch_init(void)
2128 {
2129 }
2130
kvm_selftest_init(void)2131 void __attribute((constructor)) kvm_selftest_init(void)
2132 {
2133 /* Tell stdout not to buffer its content. */
2134 setbuf(stdout, NULL);
2135
2136 kvm_selftest_arch_init();
2137 }
2138