1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_alloc.h"
17 #include "xfs_btree.h"
18 #include "xfs_bmap_btree.h"
19 #include "xfs_bmap.h"
20 #include "xfs_error.h"
21 #include "xfs_quota.h"
22 #include "xfs_trace.h"
23 #include "xfs_rmap.h"
24 #include "xfs_ag.h"
25
26 static struct kmem_cache *xfs_bmbt_cur_cache;
27
28 /*
29 * Convert on-disk form of btree root to in-memory form.
30 */
31 void
xfs_bmdr_to_bmbt(struct xfs_inode * ip,xfs_bmdr_block_t * dblock,int dblocklen,struct xfs_btree_block * rblock,int rblocklen)32 xfs_bmdr_to_bmbt(
33 struct xfs_inode *ip,
34 xfs_bmdr_block_t *dblock,
35 int dblocklen,
36 struct xfs_btree_block *rblock,
37 int rblocklen)
38 {
39 struct xfs_mount *mp = ip->i_mount;
40 int dmxr;
41 xfs_bmbt_key_t *fkp;
42 __be64 *fpp;
43 xfs_bmbt_key_t *tkp;
44 __be64 *tpp;
45
46 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL,
47 XFS_BTNUM_BMAP, 0, 0, ip->i_ino,
48 XFS_BTREE_LONG_PTRS);
49 rblock->bb_level = dblock->bb_level;
50 ASSERT(be16_to_cpu(rblock->bb_level) > 0);
51 rblock->bb_numrecs = dblock->bb_numrecs;
52 dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
53 fkp = XFS_BMDR_KEY_ADDR(dblock, 1);
54 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
55 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
56 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
57 dmxr = be16_to_cpu(dblock->bb_numrecs);
58 memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
59 memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
60 }
61
62 void
xfs_bmbt_disk_get_all(const struct xfs_bmbt_rec * rec,struct xfs_bmbt_irec * irec)63 xfs_bmbt_disk_get_all(
64 const struct xfs_bmbt_rec *rec,
65 struct xfs_bmbt_irec *irec)
66 {
67 uint64_t l0 = get_unaligned_be64(&rec->l0);
68 uint64_t l1 = get_unaligned_be64(&rec->l1);
69
70 irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
71 irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
72 irec->br_blockcount = l1 & xfs_mask64lo(21);
73 if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
74 irec->br_state = XFS_EXT_UNWRITTEN;
75 else
76 irec->br_state = XFS_EXT_NORM;
77 }
78
79 /*
80 * Extract the blockcount field from an on disk bmap extent record.
81 */
82 xfs_filblks_t
xfs_bmbt_disk_get_blockcount(const struct xfs_bmbt_rec * r)83 xfs_bmbt_disk_get_blockcount(
84 const struct xfs_bmbt_rec *r)
85 {
86 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
87 }
88
89 /*
90 * Extract the startoff field from a disk format bmap extent record.
91 */
92 xfs_fileoff_t
xfs_bmbt_disk_get_startoff(const struct xfs_bmbt_rec * r)93 xfs_bmbt_disk_get_startoff(
94 const struct xfs_bmbt_rec *r)
95 {
96 return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
97 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
98 }
99
100 /*
101 * Set all the fields in a bmap extent record from the uncompressed form.
102 */
103 void
xfs_bmbt_disk_set_all(struct xfs_bmbt_rec * r,struct xfs_bmbt_irec * s)104 xfs_bmbt_disk_set_all(
105 struct xfs_bmbt_rec *r,
106 struct xfs_bmbt_irec *s)
107 {
108 int extent_flag = (s->br_state != XFS_EXT_NORM);
109
110 ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
111 ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
112 ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
113 ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
114
115 put_unaligned_be64(
116 ((xfs_bmbt_rec_base_t)extent_flag << 63) |
117 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
118 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
119 put_unaligned_be64(
120 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
121 ((xfs_bmbt_rec_base_t)s->br_blockcount &
122 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
123 }
124
125 /*
126 * Convert in-memory form of btree root to on-disk form.
127 */
128 void
xfs_bmbt_to_bmdr(struct xfs_mount * mp,struct xfs_btree_block * rblock,int rblocklen,xfs_bmdr_block_t * dblock,int dblocklen)129 xfs_bmbt_to_bmdr(
130 struct xfs_mount *mp,
131 struct xfs_btree_block *rblock,
132 int rblocklen,
133 xfs_bmdr_block_t *dblock,
134 int dblocklen)
135 {
136 int dmxr;
137 xfs_bmbt_key_t *fkp;
138 __be64 *fpp;
139 xfs_bmbt_key_t *tkp;
140 __be64 *tpp;
141
142 if (xfs_has_crc(mp)) {
143 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
144 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
145 &mp->m_sb.sb_meta_uuid));
146 ASSERT(rblock->bb_u.l.bb_blkno ==
147 cpu_to_be64(XFS_BUF_DADDR_NULL));
148 } else
149 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
150 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
151 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
152 ASSERT(rblock->bb_level != 0);
153 dblock->bb_level = rblock->bb_level;
154 dblock->bb_numrecs = rblock->bb_numrecs;
155 dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
156 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
157 tkp = XFS_BMDR_KEY_ADDR(dblock, 1);
158 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
159 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
160 dmxr = be16_to_cpu(dblock->bb_numrecs);
161 memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
162 memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
163 }
164
165 STATIC struct xfs_btree_cur *
xfs_bmbt_dup_cursor(struct xfs_btree_cur * cur)166 xfs_bmbt_dup_cursor(
167 struct xfs_btree_cur *cur)
168 {
169 struct xfs_btree_cur *new;
170
171 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
172 cur->bc_ino.ip, cur->bc_ino.whichfork);
173
174 /*
175 * Copy the firstblock, dfops, and flags values,
176 * since init cursor doesn't get them.
177 */
178 new->bc_ino.flags = cur->bc_ino.flags;
179
180 return new;
181 }
182
183 STATIC void
xfs_bmbt_update_cursor(struct xfs_btree_cur * src,struct xfs_btree_cur * dst)184 xfs_bmbt_update_cursor(
185 struct xfs_btree_cur *src,
186 struct xfs_btree_cur *dst)
187 {
188 ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) ||
189 (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME));
190
191 dst->bc_ino.allocated += src->bc_ino.allocated;
192 dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno;
193
194 src->bc_ino.allocated = 0;
195 }
196
197 STATIC int
xfs_bmbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)198 xfs_bmbt_alloc_block(
199 struct xfs_btree_cur *cur,
200 const union xfs_btree_ptr *start,
201 union xfs_btree_ptr *new,
202 int *stat)
203 {
204 struct xfs_alloc_arg args;
205 int error;
206
207 memset(&args, 0, sizeof(args));
208 args.tp = cur->bc_tp;
209 args.mp = cur->bc_mp;
210 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino,
211 cur->bc_ino.whichfork);
212 args.minlen = args.maxlen = args.prod = 1;
213 args.wasdel = cur->bc_ino.flags & XFS_BTCUR_BMBT_WASDEL;
214 if (!args.wasdel && args.tp->t_blk_res == 0)
215 return -ENOSPC;
216
217 /*
218 * If we are coming here from something like unwritten extent
219 * conversion, there has been no data extent allocation already done, so
220 * we have to ensure that we attempt to locate the entire set of bmbt
221 * allocations in the same AG, as xfs_bmapi_write() would have reserved.
222 */
223 if (cur->bc_tp->t_highest_agno == NULLAGNUMBER)
224 args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip,
225 cur->bc_ino.whichfork);
226
227 error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l));
228 if (error)
229 return error;
230
231 if (args.fsbno == NULLFSBLOCK && args.minleft) {
232 /*
233 * Could not find an AG with enough free space to satisfy
234 * a full btree split. Try again and if
235 * successful activate the lowspace algorithm.
236 */
237 args.minleft = 0;
238 error = xfs_alloc_vextent_start_ag(&args, 0);
239 if (error)
240 return error;
241 cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE;
242 }
243 if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
244 *stat = 0;
245 return 0;
246 }
247
248 ASSERT(args.len == 1);
249 cur->bc_ino.allocated++;
250 cur->bc_ino.ip->i_nblocks++;
251 xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE);
252 xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip,
253 XFS_TRANS_DQ_BCOUNT, 1L);
254
255 new->l = cpu_to_be64(args.fsbno);
256
257 *stat = 1;
258 return 0;
259 }
260
261 STATIC int
xfs_bmbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)262 xfs_bmbt_free_block(
263 struct xfs_btree_cur *cur,
264 struct xfs_buf *bp)
265 {
266 struct xfs_mount *mp = cur->bc_mp;
267 struct xfs_inode *ip = cur->bc_ino.ip;
268 struct xfs_trans *tp = cur->bc_tp;
269 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
270 struct xfs_owner_info oinfo;
271
272 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork);
273 xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo);
274 ip->i_nblocks--;
275
276 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
277 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
278 return 0;
279 }
280
281 STATIC int
xfs_bmbt_get_minrecs(struct xfs_btree_cur * cur,int level)282 xfs_bmbt_get_minrecs(
283 struct xfs_btree_cur *cur,
284 int level)
285 {
286 if (level == cur->bc_nlevels - 1) {
287 struct xfs_ifork *ifp;
288
289 ifp = xfs_ifork_ptr(cur->bc_ino.ip,
290 cur->bc_ino.whichfork);
291
292 return xfs_bmbt_maxrecs(cur->bc_mp,
293 ifp->if_broot_bytes, level == 0) / 2;
294 }
295
296 return cur->bc_mp->m_bmap_dmnr[level != 0];
297 }
298
299 int
xfs_bmbt_get_maxrecs(struct xfs_btree_cur * cur,int level)300 xfs_bmbt_get_maxrecs(
301 struct xfs_btree_cur *cur,
302 int level)
303 {
304 if (level == cur->bc_nlevels - 1) {
305 struct xfs_ifork *ifp;
306
307 ifp = xfs_ifork_ptr(cur->bc_ino.ip,
308 cur->bc_ino.whichfork);
309
310 return xfs_bmbt_maxrecs(cur->bc_mp,
311 ifp->if_broot_bytes, level == 0);
312 }
313
314 return cur->bc_mp->m_bmap_dmxr[level != 0];
315
316 }
317
318 /*
319 * Get the maximum records we could store in the on-disk format.
320 *
321 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
322 * for the root node this checks the available space in the dinode fork
323 * so that we can resize the in-memory buffer to match it. After a
324 * resize to the maximum size this function returns the same value
325 * as xfs_bmbt_get_maxrecs for the root node, too.
326 */
327 STATIC int
xfs_bmbt_get_dmaxrecs(struct xfs_btree_cur * cur,int level)328 xfs_bmbt_get_dmaxrecs(
329 struct xfs_btree_cur *cur,
330 int level)
331 {
332 if (level != cur->bc_nlevels - 1)
333 return cur->bc_mp->m_bmap_dmxr[level != 0];
334 return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0);
335 }
336
337 STATIC void
xfs_bmbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)338 xfs_bmbt_init_key_from_rec(
339 union xfs_btree_key *key,
340 const union xfs_btree_rec *rec)
341 {
342 key->bmbt.br_startoff =
343 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
344 }
345
346 STATIC void
xfs_bmbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)347 xfs_bmbt_init_high_key_from_rec(
348 union xfs_btree_key *key,
349 const union xfs_btree_rec *rec)
350 {
351 key->bmbt.br_startoff = cpu_to_be64(
352 xfs_bmbt_disk_get_startoff(&rec->bmbt) +
353 xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
354 }
355
356 STATIC void
xfs_bmbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)357 xfs_bmbt_init_rec_from_cur(
358 struct xfs_btree_cur *cur,
359 union xfs_btree_rec *rec)
360 {
361 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
362 }
363
364 STATIC void
xfs_bmbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)365 xfs_bmbt_init_ptr_from_cur(
366 struct xfs_btree_cur *cur,
367 union xfs_btree_ptr *ptr)
368 {
369 ptr->l = 0;
370 }
371
372 STATIC int64_t
xfs_bmbt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)373 xfs_bmbt_key_diff(
374 struct xfs_btree_cur *cur,
375 const union xfs_btree_key *key)
376 {
377 return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
378 cur->bc_rec.b.br_startoff;
379 }
380
381 STATIC int64_t
xfs_bmbt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)382 xfs_bmbt_diff_two_keys(
383 struct xfs_btree_cur *cur,
384 const union xfs_btree_key *k1,
385 const union xfs_btree_key *k2)
386 {
387 uint64_t a = be64_to_cpu(k1->bmbt.br_startoff);
388 uint64_t b = be64_to_cpu(k2->bmbt.br_startoff);
389
390 /*
391 * Note: This routine previously casted a and b to int64 and subtracted
392 * them to generate a result. This lead to problems if b was the
393 * "maximum" key value (all ones) being signed incorrectly, hence this
394 * somewhat less efficient version.
395 */
396 if (a > b)
397 return 1;
398 if (b > a)
399 return -1;
400 return 0;
401 }
402
403 static xfs_failaddr_t
xfs_bmbt_verify(struct xfs_buf * bp)404 xfs_bmbt_verify(
405 struct xfs_buf *bp)
406 {
407 struct xfs_mount *mp = bp->b_mount;
408 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
409 xfs_failaddr_t fa;
410 unsigned int level;
411
412 if (!xfs_verify_magic(bp, block->bb_magic))
413 return __this_address;
414
415 if (xfs_has_crc(mp)) {
416 /*
417 * XXX: need a better way of verifying the owner here. Right now
418 * just make sure there has been one set.
419 */
420 fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
421 if (fa)
422 return fa;
423 }
424
425 /*
426 * numrecs and level verification.
427 *
428 * We don't know what fork we belong to, so just verify that the level
429 * is less than the maximum of the two. Later checks will be more
430 * precise.
431 */
432 level = be16_to_cpu(block->bb_level);
433 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
434 return __this_address;
435
436 return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
437 }
438
439 static void
xfs_bmbt_read_verify(struct xfs_buf * bp)440 xfs_bmbt_read_verify(
441 struct xfs_buf *bp)
442 {
443 xfs_failaddr_t fa;
444
445 if (!xfs_btree_lblock_verify_crc(bp))
446 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
447 else {
448 fa = xfs_bmbt_verify(bp);
449 if (fa)
450 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
451 }
452
453 if (bp->b_error)
454 trace_xfs_btree_corrupt(bp, _RET_IP_);
455 }
456
457 static void
xfs_bmbt_write_verify(struct xfs_buf * bp)458 xfs_bmbt_write_verify(
459 struct xfs_buf *bp)
460 {
461 xfs_failaddr_t fa;
462
463 fa = xfs_bmbt_verify(bp);
464 if (fa) {
465 trace_xfs_btree_corrupt(bp, _RET_IP_);
466 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
467 return;
468 }
469 xfs_btree_lblock_calc_crc(bp);
470 }
471
472 const struct xfs_buf_ops xfs_bmbt_buf_ops = {
473 .name = "xfs_bmbt",
474 .magic = { cpu_to_be32(XFS_BMAP_MAGIC),
475 cpu_to_be32(XFS_BMAP_CRC_MAGIC) },
476 .verify_read = xfs_bmbt_read_verify,
477 .verify_write = xfs_bmbt_write_verify,
478 .verify_struct = xfs_bmbt_verify,
479 };
480
481
482 STATIC int
xfs_bmbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)483 xfs_bmbt_keys_inorder(
484 struct xfs_btree_cur *cur,
485 const union xfs_btree_key *k1,
486 const union xfs_btree_key *k2)
487 {
488 return be64_to_cpu(k1->bmbt.br_startoff) <
489 be64_to_cpu(k2->bmbt.br_startoff);
490 }
491
492 STATIC int
xfs_bmbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)493 xfs_bmbt_recs_inorder(
494 struct xfs_btree_cur *cur,
495 const union xfs_btree_rec *r1,
496 const union xfs_btree_rec *r2)
497 {
498 return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
499 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
500 xfs_bmbt_disk_get_startoff(&r2->bmbt);
501 }
502
503 static const struct xfs_btree_ops xfs_bmbt_ops = {
504 .rec_len = sizeof(xfs_bmbt_rec_t),
505 .key_len = sizeof(xfs_bmbt_key_t),
506
507 .dup_cursor = xfs_bmbt_dup_cursor,
508 .update_cursor = xfs_bmbt_update_cursor,
509 .alloc_block = xfs_bmbt_alloc_block,
510 .free_block = xfs_bmbt_free_block,
511 .get_maxrecs = xfs_bmbt_get_maxrecs,
512 .get_minrecs = xfs_bmbt_get_minrecs,
513 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs,
514 .init_key_from_rec = xfs_bmbt_init_key_from_rec,
515 .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec,
516 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur,
517 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur,
518 .key_diff = xfs_bmbt_key_diff,
519 .diff_two_keys = xfs_bmbt_diff_two_keys,
520 .buf_ops = &xfs_bmbt_buf_ops,
521 .keys_inorder = xfs_bmbt_keys_inorder,
522 .recs_inorder = xfs_bmbt_recs_inorder,
523 };
524
525 /*
526 * Allocate a new bmap btree cursor.
527 */
528 struct xfs_btree_cur * /* new bmap btree cursor */
xfs_bmbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_inode * ip,int whichfork)529 xfs_bmbt_init_cursor(
530 struct xfs_mount *mp, /* file system mount point */
531 struct xfs_trans *tp, /* transaction pointer */
532 struct xfs_inode *ip, /* inode owning the btree */
533 int whichfork) /* data or attr fork */
534 {
535 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
536 struct xfs_btree_cur *cur;
537 ASSERT(whichfork != XFS_COW_FORK);
538
539 cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_BMAP,
540 mp->m_bm_maxlevels[whichfork], xfs_bmbt_cur_cache);
541 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
542 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2);
543
544 cur->bc_ops = &xfs_bmbt_ops;
545 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE;
546 if (xfs_has_crc(mp))
547 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
548
549 cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork);
550 cur->bc_ino.ip = ip;
551 cur->bc_ino.allocated = 0;
552 cur->bc_ino.flags = 0;
553 cur->bc_ino.whichfork = whichfork;
554
555 return cur;
556 }
557
558 /* Calculate number of records in a block mapping btree block. */
559 static inline unsigned int
xfs_bmbt_block_maxrecs(unsigned int blocklen,bool leaf)560 xfs_bmbt_block_maxrecs(
561 unsigned int blocklen,
562 bool leaf)
563 {
564 if (leaf)
565 return blocklen / sizeof(xfs_bmbt_rec_t);
566 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
567 }
568
569 /*
570 * Calculate number of records in a bmap btree block.
571 */
572 int
xfs_bmbt_maxrecs(struct xfs_mount * mp,int blocklen,int leaf)573 xfs_bmbt_maxrecs(
574 struct xfs_mount *mp,
575 int blocklen,
576 int leaf)
577 {
578 blocklen -= XFS_BMBT_BLOCK_LEN(mp);
579 return xfs_bmbt_block_maxrecs(blocklen, leaf);
580 }
581
582 /*
583 * Calculate the maximum possible height of the btree that the on-disk format
584 * supports. This is used for sizing structures large enough to support every
585 * possible configuration of a filesystem that might get mounted.
586 */
587 unsigned int
xfs_bmbt_maxlevels_ondisk(void)588 xfs_bmbt_maxlevels_ondisk(void)
589 {
590 unsigned int minrecs[2];
591 unsigned int blocklen;
592
593 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
594 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
595
596 minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2;
597 minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2;
598
599 /* One extra level for the inode root. */
600 return xfs_btree_compute_maxlevels(minrecs,
601 XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1;
602 }
603
604 /*
605 * Calculate number of records in a bmap btree inode root.
606 */
607 int
xfs_bmdr_maxrecs(int blocklen,int leaf)608 xfs_bmdr_maxrecs(
609 int blocklen,
610 int leaf)
611 {
612 blocklen -= sizeof(xfs_bmdr_block_t);
613
614 if (leaf)
615 return blocklen / sizeof(xfs_bmdr_rec_t);
616 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
617 }
618
619 /*
620 * Change the owner of a btree format fork fo the inode passed in. Change it to
621 * the owner of that is passed in so that we can change owners before or after
622 * we switch forks between inodes. The operation that the caller is doing will
623 * determine whether is needs to change owner before or after the switch.
624 *
625 * For demand paged transactional modification, the fork switch should be done
626 * after reading in all the blocks, modifying them and pinning them in the
627 * transaction. For modification when the buffers are already pinned in memory,
628 * the fork switch can be done before changing the owner as we won't need to
629 * validate the owner until the btree buffers are unpinned and writes can occur
630 * again.
631 *
632 * For recovery based ownership change, there is no transactional context and
633 * so a buffer list must be supplied so that we can record the buffers that we
634 * modified for the caller to issue IO on.
635 */
636 int
xfs_bmbt_change_owner(struct xfs_trans * tp,struct xfs_inode * ip,int whichfork,xfs_ino_t new_owner,struct list_head * buffer_list)637 xfs_bmbt_change_owner(
638 struct xfs_trans *tp,
639 struct xfs_inode *ip,
640 int whichfork,
641 xfs_ino_t new_owner,
642 struct list_head *buffer_list)
643 {
644 struct xfs_btree_cur *cur;
645 int error;
646
647 ASSERT(tp || buffer_list);
648 ASSERT(!(tp && buffer_list));
649 ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE);
650
651 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
652 cur->bc_ino.flags |= XFS_BTCUR_BMBT_INVALID_OWNER;
653
654 error = xfs_btree_change_owner(cur, new_owner, buffer_list);
655 xfs_btree_del_cursor(cur, error);
656 return error;
657 }
658
659 /* Calculate the bmap btree size for some records. */
660 unsigned long long
xfs_bmbt_calc_size(struct xfs_mount * mp,unsigned long long len)661 xfs_bmbt_calc_size(
662 struct xfs_mount *mp,
663 unsigned long long len)
664 {
665 return xfs_btree_calc_size(mp->m_bmap_dmnr, len);
666 }
667
668 int __init
xfs_bmbt_init_cur_cache(void)669 xfs_bmbt_init_cur_cache(void)
670 {
671 xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur",
672 xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()),
673 0, 0, NULL);
674
675 if (!xfs_bmbt_cur_cache)
676 return -ENOMEM;
677 return 0;
678 }
679
680 void
xfs_bmbt_destroy_cur_cache(void)681 xfs_bmbt_destroy_cur_cache(void)
682 {
683 kmem_cache_destroy(xfs_bmbt_cur_cache);
684 xfs_bmbt_cur_cache = NULL;
685 }
686