1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30
31 /*
32 * Btree magic numbers.
33 */
34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36 XFS_FIBT_MAGIC, 0 },
37 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39 XFS_REFC_CRC_MAGIC }
40 };
41
42 uint32_t
xfs_btree_magic(int crc,xfs_btnum_t btnum)43 xfs_btree_magic(
44 int crc,
45 xfs_btnum_t btnum)
46 {
47 uint32_t magic = xfs_magics[crc][btnum];
48
49 /* Ensure we asked for crc for crc-only magics. */
50 ASSERT(magic != 0);
51 return magic;
52 }
53
54 /*
55 * These sibling pointer checks are optimised for null sibling pointers. This
56 * happens a lot, and we don't need to byte swap at runtime if the sibling
57 * pointer is NULL.
58 *
59 * These are explicitly marked at inline because the cost of calling them as
60 * functions instead of inlining them is about 36 bytes extra code per call site
61 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
62 * two sibling check functions reduces the compiled code size by over 300
63 * bytes.
64 */
65 static inline xfs_failaddr_t
xfs_btree_check_lblock_siblings(struct xfs_mount * mp,struct xfs_btree_cur * cur,int level,xfs_fsblock_t fsb,__be64 dsibling)66 xfs_btree_check_lblock_siblings(
67 struct xfs_mount *mp,
68 struct xfs_btree_cur *cur,
69 int level,
70 xfs_fsblock_t fsb,
71 __be64 dsibling)
72 {
73 xfs_fsblock_t sibling;
74
75 if (dsibling == cpu_to_be64(NULLFSBLOCK))
76 return NULL;
77
78 sibling = be64_to_cpu(dsibling);
79 if (sibling == fsb)
80 return __this_address;
81 if (level >= 0) {
82 if (!xfs_btree_check_lptr(cur, sibling, level + 1))
83 return __this_address;
84 } else {
85 if (!xfs_verify_fsbno(mp, sibling))
86 return __this_address;
87 }
88
89 return NULL;
90 }
91
92 static inline xfs_failaddr_t
xfs_btree_check_sblock_siblings(struct xfs_perag * pag,struct xfs_btree_cur * cur,int level,xfs_agblock_t agbno,__be32 dsibling)93 xfs_btree_check_sblock_siblings(
94 struct xfs_perag *pag,
95 struct xfs_btree_cur *cur,
96 int level,
97 xfs_agblock_t agbno,
98 __be32 dsibling)
99 {
100 xfs_agblock_t sibling;
101
102 if (dsibling == cpu_to_be32(NULLAGBLOCK))
103 return NULL;
104
105 sibling = be32_to_cpu(dsibling);
106 if (sibling == agbno)
107 return __this_address;
108 if (level >= 0) {
109 if (!xfs_btree_check_sptr(cur, sibling, level + 1))
110 return __this_address;
111 } else {
112 if (!xfs_verify_agbno(pag, sibling))
113 return __this_address;
114 }
115 return NULL;
116 }
117
118 /*
119 * Check a long btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122 xfs_failaddr_t
__xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)123 __xfs_btree_check_lblock(
124 struct xfs_btree_cur *cur,
125 struct xfs_btree_block *block,
126 int level,
127 struct xfs_buf *bp)
128 {
129 struct xfs_mount *mp = cur->bc_mp;
130 xfs_btnum_t btnum = cur->bc_btnum;
131 int crc = xfs_has_crc(mp);
132 xfs_failaddr_t fa;
133 xfs_fsblock_t fsb = NULLFSBLOCK;
134
135 if (crc) {
136 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
137 return __this_address;
138 if (block->bb_u.l.bb_blkno !=
139 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
140 return __this_address;
141 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
142 return __this_address;
143 }
144
145 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
146 return __this_address;
147 if (be16_to_cpu(block->bb_level) != level)
148 return __this_address;
149 if (be16_to_cpu(block->bb_numrecs) >
150 cur->bc_ops->get_maxrecs(cur, level))
151 return __this_address;
152
153 if (bp)
154 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
155
156 fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
157 block->bb_u.l.bb_leftsib);
158 if (!fa)
159 fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
160 block->bb_u.l.bb_rightsib);
161 return fa;
162 }
163
164 /* Check a long btree block header. */
165 static int
xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)166 xfs_btree_check_lblock(
167 struct xfs_btree_cur *cur,
168 struct xfs_btree_block *block,
169 int level,
170 struct xfs_buf *bp)
171 {
172 struct xfs_mount *mp = cur->bc_mp;
173 xfs_failaddr_t fa;
174
175 fa = __xfs_btree_check_lblock(cur, block, level, bp);
176 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
177 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
178 if (bp)
179 trace_xfs_btree_corrupt(bp, _RET_IP_);
180 return -EFSCORRUPTED;
181 }
182 return 0;
183 }
184
185 /*
186 * Check a short btree block header. Return the address of the failing check,
187 * or NULL if everything is ok.
188 */
189 xfs_failaddr_t
__xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)190 __xfs_btree_check_sblock(
191 struct xfs_btree_cur *cur,
192 struct xfs_btree_block *block,
193 int level,
194 struct xfs_buf *bp)
195 {
196 struct xfs_mount *mp = cur->bc_mp;
197 struct xfs_perag *pag = cur->bc_ag.pag;
198 xfs_btnum_t btnum = cur->bc_btnum;
199 int crc = xfs_has_crc(mp);
200 xfs_failaddr_t fa;
201 xfs_agblock_t agbno = NULLAGBLOCK;
202
203 if (crc) {
204 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
205 return __this_address;
206 if (block->bb_u.s.bb_blkno !=
207 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
208 return __this_address;
209 }
210
211 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
212 return __this_address;
213 if (be16_to_cpu(block->bb_level) != level)
214 return __this_address;
215 if (be16_to_cpu(block->bb_numrecs) >
216 cur->bc_ops->get_maxrecs(cur, level))
217 return __this_address;
218
219 if (bp)
220 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
221
222 fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
223 block->bb_u.s.bb_leftsib);
224 if (!fa)
225 fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
226 block->bb_u.s.bb_rightsib);
227 return fa;
228 }
229
230 /* Check a short btree block header. */
231 STATIC int
xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)232 xfs_btree_check_sblock(
233 struct xfs_btree_cur *cur,
234 struct xfs_btree_block *block,
235 int level,
236 struct xfs_buf *bp)
237 {
238 struct xfs_mount *mp = cur->bc_mp;
239 xfs_failaddr_t fa;
240
241 fa = __xfs_btree_check_sblock(cur, block, level, bp);
242 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
243 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
244 if (bp)
245 trace_xfs_btree_corrupt(bp, _RET_IP_);
246 return -EFSCORRUPTED;
247 }
248 return 0;
249 }
250
251 /*
252 * Debug routine: check that block header is ok.
253 */
254 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)255 xfs_btree_check_block(
256 struct xfs_btree_cur *cur, /* btree cursor */
257 struct xfs_btree_block *block, /* generic btree block pointer */
258 int level, /* level of the btree block */
259 struct xfs_buf *bp) /* buffer containing block, if any */
260 {
261 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
262 return xfs_btree_check_lblock(cur, block, level, bp);
263 else
264 return xfs_btree_check_sblock(cur, block, level, bp);
265 }
266
267 /* Check that this long pointer is valid and points within the fs. */
268 bool
xfs_btree_check_lptr(struct xfs_btree_cur * cur,xfs_fsblock_t fsbno,int level)269 xfs_btree_check_lptr(
270 struct xfs_btree_cur *cur,
271 xfs_fsblock_t fsbno,
272 int level)
273 {
274 if (level <= 0)
275 return false;
276 return xfs_verify_fsbno(cur->bc_mp, fsbno);
277 }
278
279 /* Check that this short pointer is valid and points within the AG. */
280 bool
xfs_btree_check_sptr(struct xfs_btree_cur * cur,xfs_agblock_t agbno,int level)281 xfs_btree_check_sptr(
282 struct xfs_btree_cur *cur,
283 xfs_agblock_t agbno,
284 int level)
285 {
286 if (level <= 0)
287 return false;
288 return xfs_verify_agbno(cur->bc_ag.pag, agbno);
289 }
290
291 /*
292 * Check that a given (indexed) btree pointer at a certain level of a
293 * btree is valid and doesn't point past where it should.
294 */
295 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int index,int level)296 xfs_btree_check_ptr(
297 struct xfs_btree_cur *cur,
298 const union xfs_btree_ptr *ptr,
299 int index,
300 int level)
301 {
302 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
303 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
304 level))
305 return 0;
306 xfs_err(cur->bc_mp,
307 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
308 cur->bc_ino.ip->i_ino,
309 cur->bc_ino.whichfork, cur->bc_btnum,
310 level, index);
311 } else {
312 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
313 level))
314 return 0;
315 xfs_err(cur->bc_mp,
316 "AG %u: Corrupt btree %d pointer at level %d index %d.",
317 cur->bc_ag.pag->pag_agno, cur->bc_btnum,
318 level, index);
319 }
320
321 return -EFSCORRUPTED;
322 }
323
324 #ifdef DEBUG
325 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr
326 #else
327 # define xfs_btree_debug_check_ptr(...) (0)
328 #endif
329
330 /*
331 * Calculate CRC on the whole btree block and stuff it into the
332 * long-form btree header.
333 *
334 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
335 * it into the buffer so recovery knows what the last modification was that made
336 * it to disk.
337 */
338 void
xfs_btree_lblock_calc_crc(struct xfs_buf * bp)339 xfs_btree_lblock_calc_crc(
340 struct xfs_buf *bp)
341 {
342 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
343 struct xfs_buf_log_item *bip = bp->b_log_item;
344
345 if (!xfs_has_crc(bp->b_mount))
346 return;
347 if (bip)
348 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
349 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
350 }
351
352 bool
xfs_btree_lblock_verify_crc(struct xfs_buf * bp)353 xfs_btree_lblock_verify_crc(
354 struct xfs_buf *bp)
355 {
356 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
357 struct xfs_mount *mp = bp->b_mount;
358
359 if (xfs_has_crc(mp)) {
360 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
361 return false;
362 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
363 }
364
365 return true;
366 }
367
368 /*
369 * Calculate CRC on the whole btree block and stuff it into the
370 * short-form btree header.
371 *
372 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
373 * it into the buffer so recovery knows what the last modification was that made
374 * it to disk.
375 */
376 void
xfs_btree_sblock_calc_crc(struct xfs_buf * bp)377 xfs_btree_sblock_calc_crc(
378 struct xfs_buf *bp)
379 {
380 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
381 struct xfs_buf_log_item *bip = bp->b_log_item;
382
383 if (!xfs_has_crc(bp->b_mount))
384 return;
385 if (bip)
386 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
387 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
388 }
389
390 bool
xfs_btree_sblock_verify_crc(struct xfs_buf * bp)391 xfs_btree_sblock_verify_crc(
392 struct xfs_buf *bp)
393 {
394 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
395 struct xfs_mount *mp = bp->b_mount;
396
397 if (xfs_has_crc(mp)) {
398 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
399 return false;
400 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
401 }
402
403 return true;
404 }
405
406 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)407 xfs_btree_free_block(
408 struct xfs_btree_cur *cur,
409 struct xfs_buf *bp)
410 {
411 int error;
412
413 error = cur->bc_ops->free_block(cur, bp);
414 if (!error) {
415 xfs_trans_binval(cur->bc_tp, bp);
416 XFS_BTREE_STATS_INC(cur, free);
417 }
418 return error;
419 }
420
421 /*
422 * Delete the btree cursor.
423 */
424 void
xfs_btree_del_cursor(struct xfs_btree_cur * cur,int error)425 xfs_btree_del_cursor(
426 struct xfs_btree_cur *cur, /* btree cursor */
427 int error) /* del because of error */
428 {
429 int i; /* btree level */
430
431 /*
432 * Clear the buffer pointers and release the buffers. If we're doing
433 * this because of an error, inspect all of the entries in the bc_bufs
434 * array for buffers to be unlocked. This is because some of the btree
435 * code works from level n down to 0, and if we get an error along the
436 * way we won't have initialized all the entries down to 0.
437 */
438 for (i = 0; i < cur->bc_nlevels; i++) {
439 if (cur->bc_levels[i].bp)
440 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
441 else if (!error)
442 break;
443 }
444
445 /*
446 * If we are doing a BMBT update, the number of unaccounted blocks
447 * allocated during this cursor life time should be zero. If it's not
448 * zero, then we should be shut down or on our way to shutdown due to
449 * cancelling a dirty transaction on error.
450 */
451 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
452 xfs_is_shutdown(cur->bc_mp) || error != 0);
453 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
454 kmem_free(cur->bc_ops);
455 if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
456 xfs_perag_put(cur->bc_ag.pag);
457 kmem_cache_free(cur->bc_cache, cur);
458 }
459
460 /*
461 * Duplicate the btree cursor.
462 * Allocate a new one, copy the record, re-get the buffers.
463 */
464 int /* error */
xfs_btree_dup_cursor(struct xfs_btree_cur * cur,struct xfs_btree_cur ** ncur)465 xfs_btree_dup_cursor(
466 struct xfs_btree_cur *cur, /* input cursor */
467 struct xfs_btree_cur **ncur) /* output cursor */
468 {
469 struct xfs_buf *bp; /* btree block's buffer pointer */
470 int error; /* error return value */
471 int i; /* level number of btree block */
472 xfs_mount_t *mp; /* mount structure for filesystem */
473 struct xfs_btree_cur *new; /* new cursor value */
474 xfs_trans_t *tp; /* transaction pointer, can be NULL */
475
476 tp = cur->bc_tp;
477 mp = cur->bc_mp;
478
479 /*
480 * Allocate a new cursor like the old one.
481 */
482 new = cur->bc_ops->dup_cursor(cur);
483
484 /*
485 * Copy the record currently in the cursor.
486 */
487 new->bc_rec = cur->bc_rec;
488
489 /*
490 * For each level current, re-get the buffer and copy the ptr value.
491 */
492 for (i = 0; i < new->bc_nlevels; i++) {
493 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
494 new->bc_levels[i].ra = cur->bc_levels[i].ra;
495 bp = cur->bc_levels[i].bp;
496 if (bp) {
497 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
498 xfs_buf_daddr(bp), mp->m_bsize,
499 0, &bp,
500 cur->bc_ops->buf_ops);
501 if (error) {
502 xfs_btree_del_cursor(new, error);
503 *ncur = NULL;
504 return error;
505 }
506 }
507 new->bc_levels[i].bp = bp;
508 }
509 *ncur = new;
510 return 0;
511 }
512
513 /*
514 * XFS btree block layout and addressing:
515 *
516 * There are two types of blocks in the btree: leaf and non-leaf blocks.
517 *
518 * The leaf record start with a header then followed by records containing
519 * the values. A non-leaf block also starts with the same header, and
520 * then first contains lookup keys followed by an equal number of pointers
521 * to the btree blocks at the previous level.
522 *
523 * +--------+-------+-------+-------+-------+-------+-------+
524 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
525 * +--------+-------+-------+-------+-------+-------+-------+
526 *
527 * +--------+-------+-------+-------+-------+-------+-------+
528 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
529 * +--------+-------+-------+-------+-------+-------+-------+
530 *
531 * The header is called struct xfs_btree_block for reasons better left unknown
532 * and comes in different versions for short (32bit) and long (64bit) block
533 * pointers. The record and key structures are defined by the btree instances
534 * and opaque to the btree core. The block pointers are simple disk endian
535 * integers, available in a short (32bit) and long (64bit) variant.
536 *
537 * The helpers below calculate the offset of a given record, key or pointer
538 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
539 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
540 * inside the btree block is done using indices starting at one, not zero!
541 *
542 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
543 * overlapping intervals. In such a tree, records are still sorted lowest to
544 * highest and indexed by the smallest key value that refers to the record.
545 * However, nodes are different: each pointer has two associated keys -- one
546 * indexing the lowest key available in the block(s) below (the same behavior
547 * as the key in a regular btree) and another indexing the highest key
548 * available in the block(s) below. Because records are /not/ sorted by the
549 * highest key, all leaf block updates require us to compute the highest key
550 * that matches any record in the leaf and to recursively update the high keys
551 * in the nodes going further up in the tree, if necessary. Nodes look like
552 * this:
553 *
554 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
555 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
556 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
557 *
558 * To perform an interval query on an overlapped tree, perform the usual
559 * depth-first search and use the low and high keys to decide if we can skip
560 * that particular node. If a leaf node is reached, return the records that
561 * intersect the interval. Note that an interval query may return numerous
562 * entries. For a non-overlapped tree, simply search for the record associated
563 * with the lowest key and iterate forward until a non-matching record is
564 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
565 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
566 * more detail.
567 *
568 * Why do we care about overlapping intervals? Let's say you have a bunch of
569 * reverse mapping records on a reflink filesystem:
570 *
571 * 1: +- file A startblock B offset C length D -----------+
572 * 2: +- file E startblock F offset G length H --------------+
573 * 3: +- file I startblock F offset J length K --+
574 * 4: +- file L... --+
575 *
576 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
577 * we'd simply increment the length of record 1. But how do we find the record
578 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
579 * record 3 because the keys are ordered first by startblock. An interval
580 * query would return records 1 and 2 because they both overlap (B+D-1), and
581 * from that we can pick out record 1 as the appropriate left neighbor.
582 *
583 * In the non-overlapped case you can do a LE lookup and decrement the cursor
584 * because a record's interval must end before the next record.
585 */
586
587 /*
588 * Return size of the btree block header for this btree instance.
589 */
xfs_btree_block_len(struct xfs_btree_cur * cur)590 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
591 {
592 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
593 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
594 return XFS_BTREE_LBLOCK_CRC_LEN;
595 return XFS_BTREE_LBLOCK_LEN;
596 }
597 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
598 return XFS_BTREE_SBLOCK_CRC_LEN;
599 return XFS_BTREE_SBLOCK_LEN;
600 }
601
602 /*
603 * Return size of btree block pointers for this btree instance.
604 */
xfs_btree_ptr_len(struct xfs_btree_cur * cur)605 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
606 {
607 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
608 sizeof(__be64) : sizeof(__be32);
609 }
610
611 /*
612 * Calculate offset of the n-th record in a btree block.
613 */
614 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)615 xfs_btree_rec_offset(
616 struct xfs_btree_cur *cur,
617 int n)
618 {
619 return xfs_btree_block_len(cur) +
620 (n - 1) * cur->bc_ops->rec_len;
621 }
622
623 /*
624 * Calculate offset of the n-th key in a btree block.
625 */
626 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)627 xfs_btree_key_offset(
628 struct xfs_btree_cur *cur,
629 int n)
630 {
631 return xfs_btree_block_len(cur) +
632 (n - 1) * cur->bc_ops->key_len;
633 }
634
635 /*
636 * Calculate offset of the n-th high key in a btree block.
637 */
638 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)639 xfs_btree_high_key_offset(
640 struct xfs_btree_cur *cur,
641 int n)
642 {
643 return xfs_btree_block_len(cur) +
644 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
645 }
646
647 /*
648 * Calculate offset of the n-th block pointer in a btree block.
649 */
650 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)651 xfs_btree_ptr_offset(
652 struct xfs_btree_cur *cur,
653 int n,
654 int level)
655 {
656 return xfs_btree_block_len(cur) +
657 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
658 (n - 1) * xfs_btree_ptr_len(cur);
659 }
660
661 /*
662 * Return a pointer to the n-th record in the btree block.
663 */
664 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)665 xfs_btree_rec_addr(
666 struct xfs_btree_cur *cur,
667 int n,
668 struct xfs_btree_block *block)
669 {
670 return (union xfs_btree_rec *)
671 ((char *)block + xfs_btree_rec_offset(cur, n));
672 }
673
674 /*
675 * Return a pointer to the n-th key in the btree block.
676 */
677 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)678 xfs_btree_key_addr(
679 struct xfs_btree_cur *cur,
680 int n,
681 struct xfs_btree_block *block)
682 {
683 return (union xfs_btree_key *)
684 ((char *)block + xfs_btree_key_offset(cur, n));
685 }
686
687 /*
688 * Return a pointer to the n-th high key in the btree block.
689 */
690 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)691 xfs_btree_high_key_addr(
692 struct xfs_btree_cur *cur,
693 int n,
694 struct xfs_btree_block *block)
695 {
696 return (union xfs_btree_key *)
697 ((char *)block + xfs_btree_high_key_offset(cur, n));
698 }
699
700 /*
701 * Return a pointer to the n-th block pointer in the btree block.
702 */
703 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)704 xfs_btree_ptr_addr(
705 struct xfs_btree_cur *cur,
706 int n,
707 struct xfs_btree_block *block)
708 {
709 int level = xfs_btree_get_level(block);
710
711 ASSERT(block->bb_level != 0);
712
713 return (union xfs_btree_ptr *)
714 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
715 }
716
717 struct xfs_ifork *
xfs_btree_ifork_ptr(struct xfs_btree_cur * cur)718 xfs_btree_ifork_ptr(
719 struct xfs_btree_cur *cur)
720 {
721 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
722
723 if (cur->bc_flags & XFS_BTREE_STAGING)
724 return cur->bc_ino.ifake->if_fork;
725 return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
726 }
727
728 /*
729 * Get the root block which is stored in the inode.
730 *
731 * For now this btree implementation assumes the btree root is always
732 * stored in the if_broot field of an inode fork.
733 */
734 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)735 xfs_btree_get_iroot(
736 struct xfs_btree_cur *cur)
737 {
738 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
739
740 return (struct xfs_btree_block *)ifp->if_broot;
741 }
742
743 /*
744 * Retrieve the block pointer from the cursor at the given level.
745 * This may be an inode btree root or from a buffer.
746 */
747 struct xfs_btree_block * /* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)748 xfs_btree_get_block(
749 struct xfs_btree_cur *cur, /* btree cursor */
750 int level, /* level in btree */
751 struct xfs_buf **bpp) /* buffer containing the block */
752 {
753 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
754 (level == cur->bc_nlevels - 1)) {
755 *bpp = NULL;
756 return xfs_btree_get_iroot(cur);
757 }
758
759 *bpp = cur->bc_levels[level].bp;
760 return XFS_BUF_TO_BLOCK(*bpp);
761 }
762
763 /*
764 * Change the cursor to point to the first record at the given level.
765 * Other levels are unaffected.
766 */
767 STATIC int /* success=1, failure=0 */
xfs_btree_firstrec(struct xfs_btree_cur * cur,int level)768 xfs_btree_firstrec(
769 struct xfs_btree_cur *cur, /* btree cursor */
770 int level) /* level to change */
771 {
772 struct xfs_btree_block *block; /* generic btree block pointer */
773 struct xfs_buf *bp; /* buffer containing block */
774
775 /*
776 * Get the block pointer for this level.
777 */
778 block = xfs_btree_get_block(cur, level, &bp);
779 if (xfs_btree_check_block(cur, block, level, bp))
780 return 0;
781 /*
782 * It's empty, there is no such record.
783 */
784 if (!block->bb_numrecs)
785 return 0;
786 /*
787 * Set the ptr value to 1, that's the first record/key.
788 */
789 cur->bc_levels[level].ptr = 1;
790 return 1;
791 }
792
793 /*
794 * Change the cursor to point to the last record in the current block
795 * at the given level. Other levels are unaffected.
796 */
797 STATIC int /* success=1, failure=0 */
xfs_btree_lastrec(struct xfs_btree_cur * cur,int level)798 xfs_btree_lastrec(
799 struct xfs_btree_cur *cur, /* btree cursor */
800 int level) /* level to change */
801 {
802 struct xfs_btree_block *block; /* generic btree block pointer */
803 struct xfs_buf *bp; /* buffer containing block */
804
805 /*
806 * Get the block pointer for this level.
807 */
808 block = xfs_btree_get_block(cur, level, &bp);
809 if (xfs_btree_check_block(cur, block, level, bp))
810 return 0;
811 /*
812 * It's empty, there is no such record.
813 */
814 if (!block->bb_numrecs)
815 return 0;
816 /*
817 * Set the ptr value to numrecs, that's the last record/key.
818 */
819 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
820 return 1;
821 }
822
823 /*
824 * Compute first and last byte offsets for the fields given.
825 * Interprets the offsets table, which contains struct field offsets.
826 */
827 void
xfs_btree_offsets(uint32_t fields,const short * offsets,int nbits,int * first,int * last)828 xfs_btree_offsets(
829 uint32_t fields, /* bitmask of fields */
830 const short *offsets, /* table of field offsets */
831 int nbits, /* number of bits to inspect */
832 int *first, /* output: first byte offset */
833 int *last) /* output: last byte offset */
834 {
835 int i; /* current bit number */
836 uint32_t imask; /* mask for current bit number */
837
838 ASSERT(fields != 0);
839 /*
840 * Find the lowest bit, so the first byte offset.
841 */
842 for (i = 0, imask = 1u; ; i++, imask <<= 1) {
843 if (imask & fields) {
844 *first = offsets[i];
845 break;
846 }
847 }
848 /*
849 * Find the highest bit, so the last byte offset.
850 */
851 for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
852 if (imask & fields) {
853 *last = offsets[i + 1] - 1;
854 break;
855 }
856 }
857 }
858
859 /*
860 * Get a buffer for the block, return it read in.
861 * Long-form addressing.
862 */
863 int
xfs_btree_read_bufl(struct xfs_mount * mp,struct xfs_trans * tp,xfs_fsblock_t fsbno,struct xfs_buf ** bpp,int refval,const struct xfs_buf_ops * ops)864 xfs_btree_read_bufl(
865 struct xfs_mount *mp, /* file system mount point */
866 struct xfs_trans *tp, /* transaction pointer */
867 xfs_fsblock_t fsbno, /* file system block number */
868 struct xfs_buf **bpp, /* buffer for fsbno */
869 int refval, /* ref count value for buffer */
870 const struct xfs_buf_ops *ops)
871 {
872 struct xfs_buf *bp; /* return value */
873 xfs_daddr_t d; /* real disk block address */
874 int error;
875
876 if (!xfs_verify_fsbno(mp, fsbno))
877 return -EFSCORRUPTED;
878 d = XFS_FSB_TO_DADDR(mp, fsbno);
879 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
880 mp->m_bsize, 0, &bp, ops);
881 if (error)
882 return error;
883 if (bp)
884 xfs_buf_set_ref(bp, refval);
885 *bpp = bp;
886 return 0;
887 }
888
889 /*
890 * Read-ahead the block, don't wait for it, don't return a buffer.
891 * Long-form addressing.
892 */
893 /* ARGSUSED */
894 void
xfs_btree_reada_bufl(struct xfs_mount * mp,xfs_fsblock_t fsbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)895 xfs_btree_reada_bufl(
896 struct xfs_mount *mp, /* file system mount point */
897 xfs_fsblock_t fsbno, /* file system block number */
898 xfs_extlen_t count, /* count of filesystem blocks */
899 const struct xfs_buf_ops *ops)
900 {
901 xfs_daddr_t d;
902
903 ASSERT(fsbno != NULLFSBLOCK);
904 d = XFS_FSB_TO_DADDR(mp, fsbno);
905 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
906 }
907
908 /*
909 * Read-ahead the block, don't wait for it, don't return a buffer.
910 * Short-form addressing.
911 */
912 /* ARGSUSED */
913 void
xfs_btree_reada_bufs(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)914 xfs_btree_reada_bufs(
915 struct xfs_mount *mp, /* file system mount point */
916 xfs_agnumber_t agno, /* allocation group number */
917 xfs_agblock_t agbno, /* allocation group block number */
918 xfs_extlen_t count, /* count of filesystem blocks */
919 const struct xfs_buf_ops *ops)
920 {
921 xfs_daddr_t d;
922
923 ASSERT(agno != NULLAGNUMBER);
924 ASSERT(agbno != NULLAGBLOCK);
925 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
926 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
927 }
928
929 STATIC int
xfs_btree_readahead_lblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)930 xfs_btree_readahead_lblock(
931 struct xfs_btree_cur *cur,
932 int lr,
933 struct xfs_btree_block *block)
934 {
935 int rval = 0;
936 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
937 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
938
939 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
940 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
941 cur->bc_ops->buf_ops);
942 rval++;
943 }
944
945 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
946 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
947 cur->bc_ops->buf_ops);
948 rval++;
949 }
950
951 return rval;
952 }
953
954 STATIC int
xfs_btree_readahead_sblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)955 xfs_btree_readahead_sblock(
956 struct xfs_btree_cur *cur,
957 int lr,
958 struct xfs_btree_block *block)
959 {
960 int rval = 0;
961 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
962 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
963
964
965 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
966 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
967 left, 1, cur->bc_ops->buf_ops);
968 rval++;
969 }
970
971 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
972 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
973 right, 1, cur->bc_ops->buf_ops);
974 rval++;
975 }
976
977 return rval;
978 }
979
980 /*
981 * Read-ahead btree blocks, at the given level.
982 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
983 */
984 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)985 xfs_btree_readahead(
986 struct xfs_btree_cur *cur, /* btree cursor */
987 int lev, /* level in btree */
988 int lr) /* left/right bits */
989 {
990 struct xfs_btree_block *block;
991
992 /*
993 * No readahead needed if we are at the root level and the
994 * btree root is stored in the inode.
995 */
996 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
997 (lev == cur->bc_nlevels - 1))
998 return 0;
999
1000 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1001 return 0;
1002
1003 cur->bc_levels[lev].ra |= lr;
1004 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1005
1006 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1007 return xfs_btree_readahead_lblock(cur, lr, block);
1008 return xfs_btree_readahead_sblock(cur, lr, block);
1009 }
1010
1011 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)1012 xfs_btree_ptr_to_daddr(
1013 struct xfs_btree_cur *cur,
1014 const union xfs_btree_ptr *ptr,
1015 xfs_daddr_t *daddr)
1016 {
1017 xfs_fsblock_t fsbno;
1018 xfs_agblock_t agbno;
1019 int error;
1020
1021 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1022 if (error)
1023 return error;
1024
1025 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1026 fsbno = be64_to_cpu(ptr->l);
1027 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1028 } else {
1029 agbno = be32_to_cpu(ptr->s);
1030 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1031 agbno);
1032 }
1033
1034 return 0;
1035 }
1036
1037 /*
1038 * Readahead @count btree blocks at the given @ptr location.
1039 *
1040 * We don't need to care about long or short form btrees here as we have a
1041 * method of converting the ptr directly to a daddr available to us.
1042 */
1043 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)1044 xfs_btree_readahead_ptr(
1045 struct xfs_btree_cur *cur,
1046 union xfs_btree_ptr *ptr,
1047 xfs_extlen_t count)
1048 {
1049 xfs_daddr_t daddr;
1050
1051 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1052 return;
1053 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1054 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1055 }
1056
1057 /*
1058 * Set the buffer for level "lev" in the cursor to bp, releasing
1059 * any previous buffer.
1060 */
1061 STATIC void
xfs_btree_setbuf(struct xfs_btree_cur * cur,int lev,struct xfs_buf * bp)1062 xfs_btree_setbuf(
1063 struct xfs_btree_cur *cur, /* btree cursor */
1064 int lev, /* level in btree */
1065 struct xfs_buf *bp) /* new buffer to set */
1066 {
1067 struct xfs_btree_block *b; /* btree block */
1068
1069 if (cur->bc_levels[lev].bp)
1070 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1071 cur->bc_levels[lev].bp = bp;
1072 cur->bc_levels[lev].ra = 0;
1073
1074 b = XFS_BUF_TO_BLOCK(bp);
1075 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1077 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1078 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1079 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1080 } else {
1081 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1082 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1083 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1084 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1085 }
1086 }
1087
1088 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr)1089 xfs_btree_ptr_is_null(
1090 struct xfs_btree_cur *cur,
1091 const union xfs_btree_ptr *ptr)
1092 {
1093 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1094 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1095 else
1096 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1097 }
1098
1099 void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1100 xfs_btree_set_ptr_null(
1101 struct xfs_btree_cur *cur,
1102 union xfs_btree_ptr *ptr)
1103 {
1104 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1105 ptr->l = cpu_to_be64(NULLFSBLOCK);
1106 else
1107 ptr->s = cpu_to_be32(NULLAGBLOCK);
1108 }
1109
1110 /*
1111 * Get/set/init sibling pointers
1112 */
1113 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1114 xfs_btree_get_sibling(
1115 struct xfs_btree_cur *cur,
1116 struct xfs_btree_block *block,
1117 union xfs_btree_ptr *ptr,
1118 int lr)
1119 {
1120 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1121
1122 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1123 if (lr == XFS_BB_RIGHTSIB)
1124 ptr->l = block->bb_u.l.bb_rightsib;
1125 else
1126 ptr->l = block->bb_u.l.bb_leftsib;
1127 } else {
1128 if (lr == XFS_BB_RIGHTSIB)
1129 ptr->s = block->bb_u.s.bb_rightsib;
1130 else
1131 ptr->s = block->bb_u.s.bb_leftsib;
1132 }
1133 }
1134
1135 void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,const union xfs_btree_ptr * ptr,int lr)1136 xfs_btree_set_sibling(
1137 struct xfs_btree_cur *cur,
1138 struct xfs_btree_block *block,
1139 const union xfs_btree_ptr *ptr,
1140 int lr)
1141 {
1142 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1143
1144 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1145 if (lr == XFS_BB_RIGHTSIB)
1146 block->bb_u.l.bb_rightsib = ptr->l;
1147 else
1148 block->bb_u.l.bb_leftsib = ptr->l;
1149 } else {
1150 if (lr == XFS_BB_RIGHTSIB)
1151 block->bb_u.s.bb_rightsib = ptr->s;
1152 else
1153 block->bb_u.s.bb_leftsib = ptr->s;
1154 }
1155 }
1156
1157 void
xfs_btree_init_block_int(struct xfs_mount * mp,struct xfs_btree_block * buf,xfs_daddr_t blkno,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner,unsigned int flags)1158 xfs_btree_init_block_int(
1159 struct xfs_mount *mp,
1160 struct xfs_btree_block *buf,
1161 xfs_daddr_t blkno,
1162 xfs_btnum_t btnum,
1163 __u16 level,
1164 __u16 numrecs,
1165 __u64 owner,
1166 unsigned int flags)
1167 {
1168 int crc = xfs_has_crc(mp);
1169 __u32 magic = xfs_btree_magic(crc, btnum);
1170
1171 buf->bb_magic = cpu_to_be32(magic);
1172 buf->bb_level = cpu_to_be16(level);
1173 buf->bb_numrecs = cpu_to_be16(numrecs);
1174
1175 if (flags & XFS_BTREE_LONG_PTRS) {
1176 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1177 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1178 if (crc) {
1179 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1180 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1181 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1182 buf->bb_u.l.bb_pad = 0;
1183 buf->bb_u.l.bb_lsn = 0;
1184 }
1185 } else {
1186 /* owner is a 32 bit value on short blocks */
1187 __u32 __owner = (__u32)owner;
1188
1189 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1190 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1191 if (crc) {
1192 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1193 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1194 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1195 buf->bb_u.s.bb_lsn = 0;
1196 }
1197 }
1198 }
1199
1200 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_buf * bp,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner)1201 xfs_btree_init_block(
1202 struct xfs_mount *mp,
1203 struct xfs_buf *bp,
1204 xfs_btnum_t btnum,
1205 __u16 level,
1206 __u16 numrecs,
1207 __u64 owner)
1208 {
1209 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1210 btnum, level, numrecs, owner, 0);
1211 }
1212
1213 void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1214 xfs_btree_init_block_cur(
1215 struct xfs_btree_cur *cur,
1216 struct xfs_buf *bp,
1217 int level,
1218 int numrecs)
1219 {
1220 __u64 owner;
1221
1222 /*
1223 * we can pull the owner from the cursor right now as the different
1224 * owners align directly with the pointer size of the btree. This may
1225 * change in future, but is safe for current users of the generic btree
1226 * code.
1227 */
1228 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1229 owner = cur->bc_ino.ip->i_ino;
1230 else
1231 owner = cur->bc_ag.pag->pag_agno;
1232
1233 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1234 xfs_buf_daddr(bp), cur->bc_btnum, level,
1235 numrecs, owner, cur->bc_flags);
1236 }
1237
1238 /*
1239 * Return true if ptr is the last record in the btree and
1240 * we need to track updates to this record. The decision
1241 * will be further refined in the update_lastrec method.
1242 */
1243 STATIC int
xfs_btree_is_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level)1244 xfs_btree_is_lastrec(
1245 struct xfs_btree_cur *cur,
1246 struct xfs_btree_block *block,
1247 int level)
1248 {
1249 union xfs_btree_ptr ptr;
1250
1251 if (level > 0)
1252 return 0;
1253 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1254 return 0;
1255
1256 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1257 if (!xfs_btree_ptr_is_null(cur, &ptr))
1258 return 0;
1259 return 1;
1260 }
1261
1262 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1263 xfs_btree_buf_to_ptr(
1264 struct xfs_btree_cur *cur,
1265 struct xfs_buf *bp,
1266 union xfs_btree_ptr *ptr)
1267 {
1268 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1269 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1270 xfs_buf_daddr(bp)));
1271 else {
1272 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1273 xfs_buf_daddr(bp)));
1274 }
1275 }
1276
1277 STATIC void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1278 xfs_btree_set_refs(
1279 struct xfs_btree_cur *cur,
1280 struct xfs_buf *bp)
1281 {
1282 switch (cur->bc_btnum) {
1283 case XFS_BTNUM_BNO:
1284 case XFS_BTNUM_CNT:
1285 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1286 break;
1287 case XFS_BTNUM_INO:
1288 case XFS_BTNUM_FINO:
1289 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1290 break;
1291 case XFS_BTNUM_BMAP:
1292 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1293 break;
1294 case XFS_BTNUM_RMAP:
1295 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1296 break;
1297 case XFS_BTNUM_REFC:
1298 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1299 break;
1300 default:
1301 ASSERT(0);
1302 }
1303 }
1304
1305 int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1306 xfs_btree_get_buf_block(
1307 struct xfs_btree_cur *cur,
1308 const union xfs_btree_ptr *ptr,
1309 struct xfs_btree_block **block,
1310 struct xfs_buf **bpp)
1311 {
1312 struct xfs_mount *mp = cur->bc_mp;
1313 xfs_daddr_t d;
1314 int error;
1315
1316 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1317 if (error)
1318 return error;
1319 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1320 0, bpp);
1321 if (error)
1322 return error;
1323
1324 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1325 *block = XFS_BUF_TO_BLOCK(*bpp);
1326 return 0;
1327 }
1328
1329 /*
1330 * Read in the buffer at the given ptr and return the buffer and
1331 * the block pointer within the buffer.
1332 */
1333 STATIC int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1334 xfs_btree_read_buf_block(
1335 struct xfs_btree_cur *cur,
1336 const union xfs_btree_ptr *ptr,
1337 int flags,
1338 struct xfs_btree_block **block,
1339 struct xfs_buf **bpp)
1340 {
1341 struct xfs_mount *mp = cur->bc_mp;
1342 xfs_daddr_t d;
1343 int error;
1344
1345 /* need to sort out how callers deal with failures first */
1346 ASSERT(!(flags & XBF_TRYLOCK));
1347
1348 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1349 if (error)
1350 return error;
1351 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1352 mp->m_bsize, flags, bpp,
1353 cur->bc_ops->buf_ops);
1354 if (error)
1355 return error;
1356
1357 xfs_btree_set_refs(cur, *bpp);
1358 *block = XFS_BUF_TO_BLOCK(*bpp);
1359 return 0;
1360 }
1361
1362 /*
1363 * Copy keys from one btree block to another.
1364 */
1365 void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,const union xfs_btree_key * src_key,int numkeys)1366 xfs_btree_copy_keys(
1367 struct xfs_btree_cur *cur,
1368 union xfs_btree_key *dst_key,
1369 const union xfs_btree_key *src_key,
1370 int numkeys)
1371 {
1372 ASSERT(numkeys >= 0);
1373 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1374 }
1375
1376 /*
1377 * Copy records from one btree block to another.
1378 */
1379 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1380 xfs_btree_copy_recs(
1381 struct xfs_btree_cur *cur,
1382 union xfs_btree_rec *dst_rec,
1383 union xfs_btree_rec *src_rec,
1384 int numrecs)
1385 {
1386 ASSERT(numrecs >= 0);
1387 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1388 }
1389
1390 /*
1391 * Copy block pointers from one btree block to another.
1392 */
1393 void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,const union xfs_btree_ptr * src_ptr,int numptrs)1394 xfs_btree_copy_ptrs(
1395 struct xfs_btree_cur *cur,
1396 union xfs_btree_ptr *dst_ptr,
1397 const union xfs_btree_ptr *src_ptr,
1398 int numptrs)
1399 {
1400 ASSERT(numptrs >= 0);
1401 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1402 }
1403
1404 /*
1405 * Shift keys one index left/right inside a single btree block.
1406 */
1407 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1408 xfs_btree_shift_keys(
1409 struct xfs_btree_cur *cur,
1410 union xfs_btree_key *key,
1411 int dir,
1412 int numkeys)
1413 {
1414 char *dst_key;
1415
1416 ASSERT(numkeys >= 0);
1417 ASSERT(dir == 1 || dir == -1);
1418
1419 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1420 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1421 }
1422
1423 /*
1424 * Shift records one index left/right inside a single btree block.
1425 */
1426 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1427 xfs_btree_shift_recs(
1428 struct xfs_btree_cur *cur,
1429 union xfs_btree_rec *rec,
1430 int dir,
1431 int numrecs)
1432 {
1433 char *dst_rec;
1434
1435 ASSERT(numrecs >= 0);
1436 ASSERT(dir == 1 || dir == -1);
1437
1438 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1439 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1440 }
1441
1442 /*
1443 * Shift block pointers one index left/right inside a single btree block.
1444 */
1445 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1446 xfs_btree_shift_ptrs(
1447 struct xfs_btree_cur *cur,
1448 union xfs_btree_ptr *ptr,
1449 int dir,
1450 int numptrs)
1451 {
1452 char *dst_ptr;
1453
1454 ASSERT(numptrs >= 0);
1455 ASSERT(dir == 1 || dir == -1);
1456
1457 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1458 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1459 }
1460
1461 /*
1462 * Log key values from the btree block.
1463 */
1464 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1465 xfs_btree_log_keys(
1466 struct xfs_btree_cur *cur,
1467 struct xfs_buf *bp,
1468 int first,
1469 int last)
1470 {
1471
1472 if (bp) {
1473 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1474 xfs_trans_log_buf(cur->bc_tp, bp,
1475 xfs_btree_key_offset(cur, first),
1476 xfs_btree_key_offset(cur, last + 1) - 1);
1477 } else {
1478 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1479 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1480 }
1481 }
1482
1483 /*
1484 * Log record values from the btree block.
1485 */
1486 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1487 xfs_btree_log_recs(
1488 struct xfs_btree_cur *cur,
1489 struct xfs_buf *bp,
1490 int first,
1491 int last)
1492 {
1493
1494 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1495 xfs_trans_log_buf(cur->bc_tp, bp,
1496 xfs_btree_rec_offset(cur, first),
1497 xfs_btree_rec_offset(cur, last + 1) - 1);
1498
1499 }
1500
1501 /*
1502 * Log block pointer fields from a btree block (nonleaf).
1503 */
1504 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1505 xfs_btree_log_ptrs(
1506 struct xfs_btree_cur *cur, /* btree cursor */
1507 struct xfs_buf *bp, /* buffer containing btree block */
1508 int first, /* index of first pointer to log */
1509 int last) /* index of last pointer to log */
1510 {
1511
1512 if (bp) {
1513 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1514 int level = xfs_btree_get_level(block);
1515
1516 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1517 xfs_trans_log_buf(cur->bc_tp, bp,
1518 xfs_btree_ptr_offset(cur, first, level),
1519 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1520 } else {
1521 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523 }
1524
1525 }
1526
1527 /*
1528 * Log fields from a btree block header.
1529 */
1530 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,uint32_t fields)1531 xfs_btree_log_block(
1532 struct xfs_btree_cur *cur, /* btree cursor */
1533 struct xfs_buf *bp, /* buffer containing btree block */
1534 uint32_t fields) /* mask of fields: XFS_BB_... */
1535 {
1536 int first; /* first byte offset logged */
1537 int last; /* last byte offset logged */
1538 static const short soffsets[] = { /* table of offsets (short) */
1539 offsetof(struct xfs_btree_block, bb_magic),
1540 offsetof(struct xfs_btree_block, bb_level),
1541 offsetof(struct xfs_btree_block, bb_numrecs),
1542 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1543 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1544 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1545 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1546 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1547 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1548 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1549 XFS_BTREE_SBLOCK_CRC_LEN
1550 };
1551 static const short loffsets[] = { /* table of offsets (long) */
1552 offsetof(struct xfs_btree_block, bb_magic),
1553 offsetof(struct xfs_btree_block, bb_level),
1554 offsetof(struct xfs_btree_block, bb_numrecs),
1555 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1556 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1557 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1558 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1559 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1560 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1561 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1562 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1563 XFS_BTREE_LBLOCK_CRC_LEN
1564 };
1565
1566 if (bp) {
1567 int nbits;
1568
1569 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1570 /*
1571 * We don't log the CRC when updating a btree
1572 * block but instead recreate it during log
1573 * recovery. As the log buffers have checksums
1574 * of their own this is safe and avoids logging a crc
1575 * update in a lot of places.
1576 */
1577 if (fields == XFS_BB_ALL_BITS)
1578 fields = XFS_BB_ALL_BITS_CRC;
1579 nbits = XFS_BB_NUM_BITS_CRC;
1580 } else {
1581 nbits = XFS_BB_NUM_BITS;
1582 }
1583 xfs_btree_offsets(fields,
1584 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1585 loffsets : soffsets,
1586 nbits, &first, &last);
1587 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1588 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1589 } else {
1590 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1591 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1592 }
1593 }
1594
1595 /*
1596 * Increment cursor by one record at the level.
1597 * For nonzero levels the leaf-ward information is untouched.
1598 */
1599 int /* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1600 xfs_btree_increment(
1601 struct xfs_btree_cur *cur,
1602 int level,
1603 int *stat) /* success/failure */
1604 {
1605 struct xfs_btree_block *block;
1606 union xfs_btree_ptr ptr;
1607 struct xfs_buf *bp;
1608 int error; /* error return value */
1609 int lev;
1610
1611 ASSERT(level < cur->bc_nlevels);
1612
1613 /* Read-ahead to the right at this level. */
1614 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1615
1616 /* Get a pointer to the btree block. */
1617 block = xfs_btree_get_block(cur, level, &bp);
1618
1619 #ifdef DEBUG
1620 error = xfs_btree_check_block(cur, block, level, bp);
1621 if (error)
1622 goto error0;
1623 #endif
1624
1625 /* We're done if we remain in the block after the increment. */
1626 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1627 goto out1;
1628
1629 /* Fail if we just went off the right edge of the tree. */
1630 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1631 if (xfs_btree_ptr_is_null(cur, &ptr))
1632 goto out0;
1633
1634 XFS_BTREE_STATS_INC(cur, increment);
1635
1636 /*
1637 * March up the tree incrementing pointers.
1638 * Stop when we don't go off the right edge of a block.
1639 */
1640 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1641 block = xfs_btree_get_block(cur, lev, &bp);
1642
1643 #ifdef DEBUG
1644 error = xfs_btree_check_block(cur, block, lev, bp);
1645 if (error)
1646 goto error0;
1647 #endif
1648
1649 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1650 break;
1651
1652 /* Read-ahead the right block for the next loop. */
1653 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1654 }
1655
1656 /*
1657 * If we went off the root then we are either seriously
1658 * confused or have the tree root in an inode.
1659 */
1660 if (lev == cur->bc_nlevels) {
1661 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1662 goto out0;
1663 ASSERT(0);
1664 error = -EFSCORRUPTED;
1665 goto error0;
1666 }
1667 ASSERT(lev < cur->bc_nlevels);
1668
1669 /*
1670 * Now walk back down the tree, fixing up the cursor's buffer
1671 * pointers and key numbers.
1672 */
1673 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1674 union xfs_btree_ptr *ptrp;
1675
1676 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1677 --lev;
1678 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1679 if (error)
1680 goto error0;
1681
1682 xfs_btree_setbuf(cur, lev, bp);
1683 cur->bc_levels[lev].ptr = 1;
1684 }
1685 out1:
1686 *stat = 1;
1687 return 0;
1688
1689 out0:
1690 *stat = 0;
1691 return 0;
1692
1693 error0:
1694 return error;
1695 }
1696
1697 /*
1698 * Decrement cursor by one record at the level.
1699 * For nonzero levels the leaf-ward information is untouched.
1700 */
1701 int /* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1702 xfs_btree_decrement(
1703 struct xfs_btree_cur *cur,
1704 int level,
1705 int *stat) /* success/failure */
1706 {
1707 struct xfs_btree_block *block;
1708 struct xfs_buf *bp;
1709 int error; /* error return value */
1710 int lev;
1711 union xfs_btree_ptr ptr;
1712
1713 ASSERT(level < cur->bc_nlevels);
1714
1715 /* Read-ahead to the left at this level. */
1716 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1717
1718 /* We're done if we remain in the block after the decrement. */
1719 if (--cur->bc_levels[level].ptr > 0)
1720 goto out1;
1721
1722 /* Get a pointer to the btree block. */
1723 block = xfs_btree_get_block(cur, level, &bp);
1724
1725 #ifdef DEBUG
1726 error = xfs_btree_check_block(cur, block, level, bp);
1727 if (error)
1728 goto error0;
1729 #endif
1730
1731 /* Fail if we just went off the left edge of the tree. */
1732 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1733 if (xfs_btree_ptr_is_null(cur, &ptr))
1734 goto out0;
1735
1736 XFS_BTREE_STATS_INC(cur, decrement);
1737
1738 /*
1739 * March up the tree decrementing pointers.
1740 * Stop when we don't go off the left edge of a block.
1741 */
1742 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1743 if (--cur->bc_levels[lev].ptr > 0)
1744 break;
1745 /* Read-ahead the left block for the next loop. */
1746 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1747 }
1748
1749 /*
1750 * If we went off the root then we are seriously confused.
1751 * or the root of the tree is in an inode.
1752 */
1753 if (lev == cur->bc_nlevels) {
1754 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1755 goto out0;
1756 ASSERT(0);
1757 error = -EFSCORRUPTED;
1758 goto error0;
1759 }
1760 ASSERT(lev < cur->bc_nlevels);
1761
1762 /*
1763 * Now walk back down the tree, fixing up the cursor's buffer
1764 * pointers and key numbers.
1765 */
1766 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1767 union xfs_btree_ptr *ptrp;
1768
1769 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1770 --lev;
1771 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1772 if (error)
1773 goto error0;
1774 xfs_btree_setbuf(cur, lev, bp);
1775 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1776 }
1777 out1:
1778 *stat = 1;
1779 return 0;
1780
1781 out0:
1782 *stat = 0;
1783 return 0;
1784
1785 error0:
1786 return error;
1787 }
1788
1789 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,const union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1790 xfs_btree_lookup_get_block(
1791 struct xfs_btree_cur *cur, /* btree cursor */
1792 int level, /* level in the btree */
1793 const union xfs_btree_ptr *pp, /* ptr to btree block */
1794 struct xfs_btree_block **blkp) /* return btree block */
1795 {
1796 struct xfs_buf *bp; /* buffer pointer for btree block */
1797 xfs_daddr_t daddr;
1798 int error = 0;
1799
1800 /* special case the root block if in an inode */
1801 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1802 (level == cur->bc_nlevels - 1)) {
1803 *blkp = xfs_btree_get_iroot(cur);
1804 return 0;
1805 }
1806
1807 /*
1808 * If the old buffer at this level for the disk address we are
1809 * looking for re-use it.
1810 *
1811 * Otherwise throw it away and get a new one.
1812 */
1813 bp = cur->bc_levels[level].bp;
1814 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1815 if (error)
1816 return error;
1817 if (bp && xfs_buf_daddr(bp) == daddr) {
1818 *blkp = XFS_BUF_TO_BLOCK(bp);
1819 return 0;
1820 }
1821
1822 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1823 if (error)
1824 return error;
1825
1826 /* Check the inode owner since the verifiers don't. */
1827 if (xfs_has_crc(cur->bc_mp) &&
1828 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1829 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1830 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1831 cur->bc_ino.ip->i_ino)
1832 goto out_bad;
1833
1834 /* Did we get the level we were looking for? */
1835 if (be16_to_cpu((*blkp)->bb_level) != level)
1836 goto out_bad;
1837
1838 /* Check that internal nodes have at least one record. */
1839 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1840 goto out_bad;
1841
1842 xfs_btree_setbuf(cur, level, bp);
1843 return 0;
1844
1845 out_bad:
1846 *blkp = NULL;
1847 xfs_buf_mark_corrupt(bp);
1848 xfs_trans_brelse(cur->bc_tp, bp);
1849 return -EFSCORRUPTED;
1850 }
1851
1852 /*
1853 * Get current search key. For level 0 we don't actually have a key
1854 * structure so we make one up from the record. For all other levels
1855 * we just return the right key.
1856 */
1857 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1858 xfs_lookup_get_search_key(
1859 struct xfs_btree_cur *cur,
1860 int level,
1861 int keyno,
1862 struct xfs_btree_block *block,
1863 union xfs_btree_key *kp)
1864 {
1865 if (level == 0) {
1866 cur->bc_ops->init_key_from_rec(kp,
1867 xfs_btree_rec_addr(cur, keyno, block));
1868 return kp;
1869 }
1870
1871 return xfs_btree_key_addr(cur, keyno, block);
1872 }
1873
1874 /*
1875 * Lookup the record. The cursor is made to point to it, based on dir.
1876 * stat is set to 0 if can't find any such record, 1 for success.
1877 */
1878 int /* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1879 xfs_btree_lookup(
1880 struct xfs_btree_cur *cur, /* btree cursor */
1881 xfs_lookup_t dir, /* <=, ==, or >= */
1882 int *stat) /* success/failure */
1883 {
1884 struct xfs_btree_block *block; /* current btree block */
1885 int64_t diff; /* difference for the current key */
1886 int error; /* error return value */
1887 int keyno; /* current key number */
1888 int level; /* level in the btree */
1889 union xfs_btree_ptr *pp; /* ptr to btree block */
1890 union xfs_btree_ptr ptr; /* ptr to btree block */
1891
1892 XFS_BTREE_STATS_INC(cur, lookup);
1893
1894 /* No such thing as a zero-level tree. */
1895 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1896 return -EFSCORRUPTED;
1897
1898 block = NULL;
1899 keyno = 0;
1900
1901 /* initialise start pointer from cursor */
1902 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1903 pp = &ptr;
1904
1905 /*
1906 * Iterate over each level in the btree, starting at the root.
1907 * For each level above the leaves, find the key we need, based
1908 * on the lookup record, then follow the corresponding block
1909 * pointer down to the next level.
1910 */
1911 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1912 /* Get the block we need to do the lookup on. */
1913 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1914 if (error)
1915 goto error0;
1916
1917 if (diff == 0) {
1918 /*
1919 * If we already had a key match at a higher level, we
1920 * know we need to use the first entry in this block.
1921 */
1922 keyno = 1;
1923 } else {
1924 /* Otherwise search this block. Do a binary search. */
1925
1926 int high; /* high entry number */
1927 int low; /* low entry number */
1928
1929 /* Set low and high entry numbers, 1-based. */
1930 low = 1;
1931 high = xfs_btree_get_numrecs(block);
1932 if (!high) {
1933 /* Block is empty, must be an empty leaf. */
1934 if (level != 0 || cur->bc_nlevels != 1) {
1935 XFS_CORRUPTION_ERROR(__func__,
1936 XFS_ERRLEVEL_LOW,
1937 cur->bc_mp, block,
1938 sizeof(*block));
1939 return -EFSCORRUPTED;
1940 }
1941
1942 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1943 *stat = 0;
1944 return 0;
1945 }
1946
1947 /* Binary search the block. */
1948 while (low <= high) {
1949 union xfs_btree_key key;
1950 union xfs_btree_key *kp;
1951
1952 XFS_BTREE_STATS_INC(cur, compare);
1953
1954 /* keyno is average of low and high. */
1955 keyno = (low + high) >> 1;
1956
1957 /* Get current search key */
1958 kp = xfs_lookup_get_search_key(cur, level,
1959 keyno, block, &key);
1960
1961 /*
1962 * Compute difference to get next direction:
1963 * - less than, move right
1964 * - greater than, move left
1965 * - equal, we're done
1966 */
1967 diff = cur->bc_ops->key_diff(cur, kp);
1968 if (diff < 0)
1969 low = keyno + 1;
1970 else if (diff > 0)
1971 high = keyno - 1;
1972 else
1973 break;
1974 }
1975 }
1976
1977 /*
1978 * If there are more levels, set up for the next level
1979 * by getting the block number and filling in the cursor.
1980 */
1981 if (level > 0) {
1982 /*
1983 * If we moved left, need the previous key number,
1984 * unless there isn't one.
1985 */
1986 if (diff > 0 && --keyno < 1)
1987 keyno = 1;
1988 pp = xfs_btree_ptr_addr(cur, keyno, block);
1989
1990 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1991 if (error)
1992 goto error0;
1993
1994 cur->bc_levels[level].ptr = keyno;
1995 }
1996 }
1997
1998 /* Done with the search. See if we need to adjust the results. */
1999 if (dir != XFS_LOOKUP_LE && diff < 0) {
2000 keyno++;
2001 /*
2002 * If ge search and we went off the end of the block, but it's
2003 * not the last block, we're in the wrong block.
2004 */
2005 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2006 if (dir == XFS_LOOKUP_GE &&
2007 keyno > xfs_btree_get_numrecs(block) &&
2008 !xfs_btree_ptr_is_null(cur, &ptr)) {
2009 int i;
2010
2011 cur->bc_levels[0].ptr = keyno;
2012 error = xfs_btree_increment(cur, 0, &i);
2013 if (error)
2014 goto error0;
2015 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
2016 return -EFSCORRUPTED;
2017 *stat = 1;
2018 return 0;
2019 }
2020 } else if (dir == XFS_LOOKUP_LE && diff > 0)
2021 keyno--;
2022 cur->bc_levels[0].ptr = keyno;
2023
2024 /* Return if we succeeded or not. */
2025 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2026 *stat = 0;
2027 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2028 *stat = 1;
2029 else
2030 *stat = 0;
2031 return 0;
2032
2033 error0:
2034 return error;
2035 }
2036
2037 /* Find the high key storage area from a regular key. */
2038 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)2039 xfs_btree_high_key_from_key(
2040 struct xfs_btree_cur *cur,
2041 union xfs_btree_key *key)
2042 {
2043 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2044 return (union xfs_btree_key *)((char *)key +
2045 (cur->bc_ops->key_len / 2));
2046 }
2047
2048 /* Determine the low (and high if overlapped) keys of a leaf block */
2049 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2050 xfs_btree_get_leaf_keys(
2051 struct xfs_btree_cur *cur,
2052 struct xfs_btree_block *block,
2053 union xfs_btree_key *key)
2054 {
2055 union xfs_btree_key max_hkey;
2056 union xfs_btree_key hkey;
2057 union xfs_btree_rec *rec;
2058 union xfs_btree_key *high;
2059 int n;
2060
2061 rec = xfs_btree_rec_addr(cur, 1, block);
2062 cur->bc_ops->init_key_from_rec(key, rec);
2063
2064 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2065
2066 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2067 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2068 rec = xfs_btree_rec_addr(cur, n, block);
2069 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2070 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2071 > 0)
2072 max_hkey = hkey;
2073 }
2074
2075 high = xfs_btree_high_key_from_key(cur, key);
2076 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2077 }
2078 }
2079
2080 /* Determine the low (and high if overlapped) keys of a node block */
2081 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2082 xfs_btree_get_node_keys(
2083 struct xfs_btree_cur *cur,
2084 struct xfs_btree_block *block,
2085 union xfs_btree_key *key)
2086 {
2087 union xfs_btree_key *hkey;
2088 union xfs_btree_key *max_hkey;
2089 union xfs_btree_key *high;
2090 int n;
2091
2092 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2093 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2094 cur->bc_ops->key_len / 2);
2095
2096 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2097 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2098 hkey = xfs_btree_high_key_addr(cur, n, block);
2099 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2100 max_hkey = hkey;
2101 }
2102
2103 high = xfs_btree_high_key_from_key(cur, key);
2104 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2105 } else {
2106 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2107 cur->bc_ops->key_len);
2108 }
2109 }
2110
2111 /* Derive the keys for any btree block. */
2112 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2113 xfs_btree_get_keys(
2114 struct xfs_btree_cur *cur,
2115 struct xfs_btree_block *block,
2116 union xfs_btree_key *key)
2117 {
2118 if (be16_to_cpu(block->bb_level) == 0)
2119 xfs_btree_get_leaf_keys(cur, block, key);
2120 else
2121 xfs_btree_get_node_keys(cur, block, key);
2122 }
2123
2124 /*
2125 * Decide if we need to update the parent keys of a btree block. For
2126 * a standard btree this is only necessary if we're updating the first
2127 * record/key. For an overlapping btree, we must always update the
2128 * keys because the highest key can be in any of the records or keys
2129 * in the block.
2130 */
2131 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2132 xfs_btree_needs_key_update(
2133 struct xfs_btree_cur *cur,
2134 int ptr)
2135 {
2136 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2137 }
2138
2139 /*
2140 * Update the low and high parent keys of the given level, progressing
2141 * towards the root. If force_all is false, stop if the keys for a given
2142 * level do not need updating.
2143 */
2144 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2145 __xfs_btree_updkeys(
2146 struct xfs_btree_cur *cur,
2147 int level,
2148 struct xfs_btree_block *block,
2149 struct xfs_buf *bp0,
2150 bool force_all)
2151 {
2152 union xfs_btree_key key; /* keys from current level */
2153 union xfs_btree_key *lkey; /* keys from the next level up */
2154 union xfs_btree_key *hkey;
2155 union xfs_btree_key *nlkey; /* keys from the next level up */
2156 union xfs_btree_key *nhkey;
2157 struct xfs_buf *bp;
2158 int ptr;
2159
2160 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2161
2162 /* Exit if there aren't any parent levels to update. */
2163 if (level + 1 >= cur->bc_nlevels)
2164 return 0;
2165
2166 trace_xfs_btree_updkeys(cur, level, bp0);
2167
2168 lkey = &key;
2169 hkey = xfs_btree_high_key_from_key(cur, lkey);
2170 xfs_btree_get_keys(cur, block, lkey);
2171 for (level++; level < cur->bc_nlevels; level++) {
2172 #ifdef DEBUG
2173 int error;
2174 #endif
2175 block = xfs_btree_get_block(cur, level, &bp);
2176 trace_xfs_btree_updkeys(cur, level, bp);
2177 #ifdef DEBUG
2178 error = xfs_btree_check_block(cur, block, level, bp);
2179 if (error)
2180 return error;
2181 #endif
2182 ptr = cur->bc_levels[level].ptr;
2183 nlkey = xfs_btree_key_addr(cur, ptr, block);
2184 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2185 if (!force_all &&
2186 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2187 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2188 break;
2189 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2190 xfs_btree_log_keys(cur, bp, ptr, ptr);
2191 if (level + 1 >= cur->bc_nlevels)
2192 break;
2193 xfs_btree_get_node_keys(cur, block, lkey);
2194 }
2195
2196 return 0;
2197 }
2198
2199 /* Update all the keys from some level in cursor back to the root. */
2200 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2201 xfs_btree_updkeys_force(
2202 struct xfs_btree_cur *cur,
2203 int level)
2204 {
2205 struct xfs_buf *bp;
2206 struct xfs_btree_block *block;
2207
2208 block = xfs_btree_get_block(cur, level, &bp);
2209 return __xfs_btree_updkeys(cur, level, block, bp, true);
2210 }
2211
2212 /*
2213 * Update the parent keys of the given level, progressing towards the root.
2214 */
2215 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2216 xfs_btree_update_keys(
2217 struct xfs_btree_cur *cur,
2218 int level)
2219 {
2220 struct xfs_btree_block *block;
2221 struct xfs_buf *bp;
2222 union xfs_btree_key *kp;
2223 union xfs_btree_key key;
2224 int ptr;
2225
2226 ASSERT(level >= 0);
2227
2228 block = xfs_btree_get_block(cur, level, &bp);
2229 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2230 return __xfs_btree_updkeys(cur, level, block, bp, false);
2231
2232 /*
2233 * Go up the tree from this level toward the root.
2234 * At each level, update the key value to the value input.
2235 * Stop when we reach a level where the cursor isn't pointing
2236 * at the first entry in the block.
2237 */
2238 xfs_btree_get_keys(cur, block, &key);
2239 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2240 #ifdef DEBUG
2241 int error;
2242 #endif
2243 block = xfs_btree_get_block(cur, level, &bp);
2244 #ifdef DEBUG
2245 error = xfs_btree_check_block(cur, block, level, bp);
2246 if (error)
2247 return error;
2248 #endif
2249 ptr = cur->bc_levels[level].ptr;
2250 kp = xfs_btree_key_addr(cur, ptr, block);
2251 xfs_btree_copy_keys(cur, kp, &key, 1);
2252 xfs_btree_log_keys(cur, bp, ptr, ptr);
2253 }
2254
2255 return 0;
2256 }
2257
2258 /*
2259 * Update the record referred to by cur to the value in the
2260 * given record. This either works (return 0) or gets an
2261 * EFSCORRUPTED error.
2262 */
2263 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2264 xfs_btree_update(
2265 struct xfs_btree_cur *cur,
2266 union xfs_btree_rec *rec)
2267 {
2268 struct xfs_btree_block *block;
2269 struct xfs_buf *bp;
2270 int error;
2271 int ptr;
2272 union xfs_btree_rec *rp;
2273
2274 /* Pick up the current block. */
2275 block = xfs_btree_get_block(cur, 0, &bp);
2276
2277 #ifdef DEBUG
2278 error = xfs_btree_check_block(cur, block, 0, bp);
2279 if (error)
2280 goto error0;
2281 #endif
2282 /* Get the address of the rec to be updated. */
2283 ptr = cur->bc_levels[0].ptr;
2284 rp = xfs_btree_rec_addr(cur, ptr, block);
2285
2286 /* Fill in the new contents and log them. */
2287 xfs_btree_copy_recs(cur, rp, rec, 1);
2288 xfs_btree_log_recs(cur, bp, ptr, ptr);
2289
2290 /*
2291 * If we are tracking the last record in the tree and
2292 * we are at the far right edge of the tree, update it.
2293 */
2294 if (xfs_btree_is_lastrec(cur, block, 0)) {
2295 cur->bc_ops->update_lastrec(cur, block, rec,
2296 ptr, LASTREC_UPDATE);
2297 }
2298
2299 /* Pass new key value up to our parent. */
2300 if (xfs_btree_needs_key_update(cur, ptr)) {
2301 error = xfs_btree_update_keys(cur, 0);
2302 if (error)
2303 goto error0;
2304 }
2305
2306 return 0;
2307
2308 error0:
2309 return error;
2310 }
2311
2312 /*
2313 * Move 1 record left from cur/level if possible.
2314 * Update cur to reflect the new path.
2315 */
2316 STATIC int /* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2317 xfs_btree_lshift(
2318 struct xfs_btree_cur *cur,
2319 int level,
2320 int *stat) /* success/failure */
2321 {
2322 struct xfs_buf *lbp; /* left buffer pointer */
2323 struct xfs_btree_block *left; /* left btree block */
2324 int lrecs; /* left record count */
2325 struct xfs_buf *rbp; /* right buffer pointer */
2326 struct xfs_btree_block *right; /* right btree block */
2327 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2328 int rrecs; /* right record count */
2329 union xfs_btree_ptr lptr; /* left btree pointer */
2330 union xfs_btree_key *rkp = NULL; /* right btree key */
2331 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2332 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2333 int error; /* error return value */
2334 int i;
2335
2336 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2337 level == cur->bc_nlevels - 1)
2338 goto out0;
2339
2340 /* Set up variables for this block as "right". */
2341 right = xfs_btree_get_block(cur, level, &rbp);
2342
2343 #ifdef DEBUG
2344 error = xfs_btree_check_block(cur, right, level, rbp);
2345 if (error)
2346 goto error0;
2347 #endif
2348
2349 /* If we've got no left sibling then we can't shift an entry left. */
2350 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2351 if (xfs_btree_ptr_is_null(cur, &lptr))
2352 goto out0;
2353
2354 /*
2355 * If the cursor entry is the one that would be moved, don't
2356 * do it... it's too complicated.
2357 */
2358 if (cur->bc_levels[level].ptr <= 1)
2359 goto out0;
2360
2361 /* Set up the left neighbor as "left". */
2362 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2363 if (error)
2364 goto error0;
2365
2366 /* If it's full, it can't take another entry. */
2367 lrecs = xfs_btree_get_numrecs(left);
2368 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2369 goto out0;
2370
2371 rrecs = xfs_btree_get_numrecs(right);
2372
2373 /*
2374 * We add one entry to the left side and remove one for the right side.
2375 * Account for it here, the changes will be updated on disk and logged
2376 * later.
2377 */
2378 lrecs++;
2379 rrecs--;
2380
2381 XFS_BTREE_STATS_INC(cur, lshift);
2382 XFS_BTREE_STATS_ADD(cur, moves, 1);
2383
2384 /*
2385 * If non-leaf, copy a key and a ptr to the left block.
2386 * Log the changes to the left block.
2387 */
2388 if (level > 0) {
2389 /* It's a non-leaf. Move keys and pointers. */
2390 union xfs_btree_key *lkp; /* left btree key */
2391 union xfs_btree_ptr *lpp; /* left address pointer */
2392
2393 lkp = xfs_btree_key_addr(cur, lrecs, left);
2394 rkp = xfs_btree_key_addr(cur, 1, right);
2395
2396 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2397 rpp = xfs_btree_ptr_addr(cur, 1, right);
2398
2399 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2400 if (error)
2401 goto error0;
2402
2403 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2404 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2405
2406 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2407 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2408
2409 ASSERT(cur->bc_ops->keys_inorder(cur,
2410 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2411 } else {
2412 /* It's a leaf. Move records. */
2413 union xfs_btree_rec *lrp; /* left record pointer */
2414
2415 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2416 rrp = xfs_btree_rec_addr(cur, 1, right);
2417
2418 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2419 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2420
2421 ASSERT(cur->bc_ops->recs_inorder(cur,
2422 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2423 }
2424
2425 xfs_btree_set_numrecs(left, lrecs);
2426 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2427
2428 xfs_btree_set_numrecs(right, rrecs);
2429 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2430
2431 /*
2432 * Slide the contents of right down one entry.
2433 */
2434 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2435 if (level > 0) {
2436 /* It's a nonleaf. operate on keys and ptrs */
2437 for (i = 0; i < rrecs; i++) {
2438 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2439 if (error)
2440 goto error0;
2441 }
2442
2443 xfs_btree_shift_keys(cur,
2444 xfs_btree_key_addr(cur, 2, right),
2445 -1, rrecs);
2446 xfs_btree_shift_ptrs(cur,
2447 xfs_btree_ptr_addr(cur, 2, right),
2448 -1, rrecs);
2449
2450 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2451 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2452 } else {
2453 /* It's a leaf. operate on records */
2454 xfs_btree_shift_recs(cur,
2455 xfs_btree_rec_addr(cur, 2, right),
2456 -1, rrecs);
2457 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2458 }
2459
2460 /*
2461 * Using a temporary cursor, update the parent key values of the
2462 * block on the left.
2463 */
2464 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2465 error = xfs_btree_dup_cursor(cur, &tcur);
2466 if (error)
2467 goto error0;
2468 i = xfs_btree_firstrec(tcur, level);
2469 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2470 error = -EFSCORRUPTED;
2471 goto error0;
2472 }
2473
2474 error = xfs_btree_decrement(tcur, level, &i);
2475 if (error)
2476 goto error1;
2477
2478 /* Update the parent high keys of the left block, if needed. */
2479 error = xfs_btree_update_keys(tcur, level);
2480 if (error)
2481 goto error1;
2482
2483 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2484 }
2485
2486 /* Update the parent keys of the right block. */
2487 error = xfs_btree_update_keys(cur, level);
2488 if (error)
2489 goto error0;
2490
2491 /* Slide the cursor value left one. */
2492 cur->bc_levels[level].ptr--;
2493
2494 *stat = 1;
2495 return 0;
2496
2497 out0:
2498 *stat = 0;
2499 return 0;
2500
2501 error0:
2502 return error;
2503
2504 error1:
2505 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2506 return error;
2507 }
2508
2509 /*
2510 * Move 1 record right from cur/level if possible.
2511 * Update cur to reflect the new path.
2512 */
2513 STATIC int /* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2514 xfs_btree_rshift(
2515 struct xfs_btree_cur *cur,
2516 int level,
2517 int *stat) /* success/failure */
2518 {
2519 struct xfs_buf *lbp; /* left buffer pointer */
2520 struct xfs_btree_block *left; /* left btree block */
2521 struct xfs_buf *rbp; /* right buffer pointer */
2522 struct xfs_btree_block *right; /* right btree block */
2523 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2524 union xfs_btree_ptr rptr; /* right block pointer */
2525 union xfs_btree_key *rkp; /* right btree key */
2526 int rrecs; /* right record count */
2527 int lrecs; /* left record count */
2528 int error; /* error return value */
2529 int i; /* loop counter */
2530
2531 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2532 (level == cur->bc_nlevels - 1))
2533 goto out0;
2534
2535 /* Set up variables for this block as "left". */
2536 left = xfs_btree_get_block(cur, level, &lbp);
2537
2538 #ifdef DEBUG
2539 error = xfs_btree_check_block(cur, left, level, lbp);
2540 if (error)
2541 goto error0;
2542 #endif
2543
2544 /* If we've got no right sibling then we can't shift an entry right. */
2545 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2546 if (xfs_btree_ptr_is_null(cur, &rptr))
2547 goto out0;
2548
2549 /*
2550 * If the cursor entry is the one that would be moved, don't
2551 * do it... it's too complicated.
2552 */
2553 lrecs = xfs_btree_get_numrecs(left);
2554 if (cur->bc_levels[level].ptr >= lrecs)
2555 goto out0;
2556
2557 /* Set up the right neighbor as "right". */
2558 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2559 if (error)
2560 goto error0;
2561
2562 /* If it's full, it can't take another entry. */
2563 rrecs = xfs_btree_get_numrecs(right);
2564 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2565 goto out0;
2566
2567 XFS_BTREE_STATS_INC(cur, rshift);
2568 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2569
2570 /*
2571 * Make a hole at the start of the right neighbor block, then
2572 * copy the last left block entry to the hole.
2573 */
2574 if (level > 0) {
2575 /* It's a nonleaf. make a hole in the keys and ptrs */
2576 union xfs_btree_key *lkp;
2577 union xfs_btree_ptr *lpp;
2578 union xfs_btree_ptr *rpp;
2579
2580 lkp = xfs_btree_key_addr(cur, lrecs, left);
2581 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2582 rkp = xfs_btree_key_addr(cur, 1, right);
2583 rpp = xfs_btree_ptr_addr(cur, 1, right);
2584
2585 for (i = rrecs - 1; i >= 0; i--) {
2586 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2587 if (error)
2588 goto error0;
2589 }
2590
2591 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2592 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2593
2594 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2595 if (error)
2596 goto error0;
2597
2598 /* Now put the new data in, and log it. */
2599 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2600 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2601
2602 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2603 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2604
2605 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2606 xfs_btree_key_addr(cur, 2, right)));
2607 } else {
2608 /* It's a leaf. make a hole in the records */
2609 union xfs_btree_rec *lrp;
2610 union xfs_btree_rec *rrp;
2611
2612 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2613 rrp = xfs_btree_rec_addr(cur, 1, right);
2614
2615 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2616
2617 /* Now put the new data in, and log it. */
2618 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2619 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2620 }
2621
2622 /*
2623 * Decrement and log left's numrecs, bump and log right's numrecs.
2624 */
2625 xfs_btree_set_numrecs(left, --lrecs);
2626 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2627
2628 xfs_btree_set_numrecs(right, ++rrecs);
2629 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2630
2631 /*
2632 * Using a temporary cursor, update the parent key values of the
2633 * block on the right.
2634 */
2635 error = xfs_btree_dup_cursor(cur, &tcur);
2636 if (error)
2637 goto error0;
2638 i = xfs_btree_lastrec(tcur, level);
2639 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2640 error = -EFSCORRUPTED;
2641 goto error0;
2642 }
2643
2644 error = xfs_btree_increment(tcur, level, &i);
2645 if (error)
2646 goto error1;
2647
2648 /* Update the parent high keys of the left block, if needed. */
2649 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2650 error = xfs_btree_update_keys(cur, level);
2651 if (error)
2652 goto error1;
2653 }
2654
2655 /* Update the parent keys of the right block. */
2656 error = xfs_btree_update_keys(tcur, level);
2657 if (error)
2658 goto error1;
2659
2660 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2661
2662 *stat = 1;
2663 return 0;
2664
2665 out0:
2666 *stat = 0;
2667 return 0;
2668
2669 error0:
2670 return error;
2671
2672 error1:
2673 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2674 return error;
2675 }
2676
2677 /*
2678 * Split cur/level block in half.
2679 * Return new block number and the key to its first
2680 * record (to be inserted into parent).
2681 */
2682 STATIC int /* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2683 __xfs_btree_split(
2684 struct xfs_btree_cur *cur,
2685 int level,
2686 union xfs_btree_ptr *ptrp,
2687 union xfs_btree_key *key,
2688 struct xfs_btree_cur **curp,
2689 int *stat) /* success/failure */
2690 {
2691 union xfs_btree_ptr lptr; /* left sibling block ptr */
2692 struct xfs_buf *lbp; /* left buffer pointer */
2693 struct xfs_btree_block *left; /* left btree block */
2694 union xfs_btree_ptr rptr; /* right sibling block ptr */
2695 struct xfs_buf *rbp; /* right buffer pointer */
2696 struct xfs_btree_block *right; /* right btree block */
2697 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2698 struct xfs_buf *rrbp; /* right-right buffer pointer */
2699 struct xfs_btree_block *rrblock; /* right-right btree block */
2700 int lrecs;
2701 int rrecs;
2702 int src_index;
2703 int error; /* error return value */
2704 int i;
2705
2706 XFS_BTREE_STATS_INC(cur, split);
2707
2708 /* Set up left block (current one). */
2709 left = xfs_btree_get_block(cur, level, &lbp);
2710
2711 #ifdef DEBUG
2712 error = xfs_btree_check_block(cur, left, level, lbp);
2713 if (error)
2714 goto error0;
2715 #endif
2716
2717 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2718
2719 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2720 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2721 if (error)
2722 goto error0;
2723 if (*stat == 0)
2724 goto out0;
2725 XFS_BTREE_STATS_INC(cur, alloc);
2726
2727 /* Set up the new block as "right". */
2728 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2729 if (error)
2730 goto error0;
2731
2732 /* Fill in the btree header for the new right block. */
2733 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2734
2735 /*
2736 * Split the entries between the old and the new block evenly.
2737 * Make sure that if there's an odd number of entries now, that
2738 * each new block will have the same number of entries.
2739 */
2740 lrecs = xfs_btree_get_numrecs(left);
2741 rrecs = lrecs / 2;
2742 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2743 rrecs++;
2744 src_index = (lrecs - rrecs + 1);
2745
2746 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2747
2748 /* Adjust numrecs for the later get_*_keys() calls. */
2749 lrecs -= rrecs;
2750 xfs_btree_set_numrecs(left, lrecs);
2751 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2752
2753 /*
2754 * Copy btree block entries from the left block over to the
2755 * new block, the right. Update the right block and log the
2756 * changes.
2757 */
2758 if (level > 0) {
2759 /* It's a non-leaf. Move keys and pointers. */
2760 union xfs_btree_key *lkp; /* left btree key */
2761 union xfs_btree_ptr *lpp; /* left address pointer */
2762 union xfs_btree_key *rkp; /* right btree key */
2763 union xfs_btree_ptr *rpp; /* right address pointer */
2764
2765 lkp = xfs_btree_key_addr(cur, src_index, left);
2766 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2767 rkp = xfs_btree_key_addr(cur, 1, right);
2768 rpp = xfs_btree_ptr_addr(cur, 1, right);
2769
2770 for (i = src_index; i < rrecs; i++) {
2771 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2772 if (error)
2773 goto error0;
2774 }
2775
2776 /* Copy the keys & pointers to the new block. */
2777 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2778 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2779
2780 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2781 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2782
2783 /* Stash the keys of the new block for later insertion. */
2784 xfs_btree_get_node_keys(cur, right, key);
2785 } else {
2786 /* It's a leaf. Move records. */
2787 union xfs_btree_rec *lrp; /* left record pointer */
2788 union xfs_btree_rec *rrp; /* right record pointer */
2789
2790 lrp = xfs_btree_rec_addr(cur, src_index, left);
2791 rrp = xfs_btree_rec_addr(cur, 1, right);
2792
2793 /* Copy records to the new block. */
2794 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2795 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2796
2797 /* Stash the keys of the new block for later insertion. */
2798 xfs_btree_get_leaf_keys(cur, right, key);
2799 }
2800
2801 /*
2802 * Find the left block number by looking in the buffer.
2803 * Adjust sibling pointers.
2804 */
2805 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2806 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2807 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2808 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2809
2810 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2811 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2812
2813 /*
2814 * If there's a block to the new block's right, make that block
2815 * point back to right instead of to left.
2816 */
2817 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2818 error = xfs_btree_read_buf_block(cur, &rrptr,
2819 0, &rrblock, &rrbp);
2820 if (error)
2821 goto error0;
2822 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2823 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2824 }
2825
2826 /* Update the parent high keys of the left block, if needed. */
2827 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2828 error = xfs_btree_update_keys(cur, level);
2829 if (error)
2830 goto error0;
2831 }
2832
2833 /*
2834 * If the cursor is really in the right block, move it there.
2835 * If it's just pointing past the last entry in left, then we'll
2836 * insert there, so don't change anything in that case.
2837 */
2838 if (cur->bc_levels[level].ptr > lrecs + 1) {
2839 xfs_btree_setbuf(cur, level, rbp);
2840 cur->bc_levels[level].ptr -= lrecs;
2841 }
2842 /*
2843 * If there are more levels, we'll need another cursor which refers
2844 * the right block, no matter where this cursor was.
2845 */
2846 if (level + 1 < cur->bc_nlevels) {
2847 error = xfs_btree_dup_cursor(cur, curp);
2848 if (error)
2849 goto error0;
2850 (*curp)->bc_levels[level + 1].ptr++;
2851 }
2852 *ptrp = rptr;
2853 *stat = 1;
2854 return 0;
2855 out0:
2856 *stat = 0;
2857 return 0;
2858
2859 error0:
2860 return error;
2861 }
2862
2863 #ifdef __KERNEL__
2864 struct xfs_btree_split_args {
2865 struct xfs_btree_cur *cur;
2866 int level;
2867 union xfs_btree_ptr *ptrp;
2868 union xfs_btree_key *key;
2869 struct xfs_btree_cur **curp;
2870 int *stat; /* success/failure */
2871 int result;
2872 bool kswapd; /* allocation in kswapd context */
2873 struct completion *done;
2874 struct work_struct work;
2875 };
2876
2877 /*
2878 * Stack switching interfaces for allocation
2879 */
2880 static void
xfs_btree_split_worker(struct work_struct * work)2881 xfs_btree_split_worker(
2882 struct work_struct *work)
2883 {
2884 struct xfs_btree_split_args *args = container_of(work,
2885 struct xfs_btree_split_args, work);
2886 unsigned long pflags;
2887 unsigned long new_pflags = 0;
2888
2889 /*
2890 * we are in a transaction context here, but may also be doing work
2891 * in kswapd context, and hence we may need to inherit that state
2892 * temporarily to ensure that we don't block waiting for memory reclaim
2893 * in any way.
2894 */
2895 if (args->kswapd)
2896 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2897
2898 current_set_flags_nested(&pflags, new_pflags);
2899 xfs_trans_set_context(args->cur->bc_tp);
2900
2901 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2902 args->key, args->curp, args->stat);
2903
2904 xfs_trans_clear_context(args->cur->bc_tp);
2905 current_restore_flags_nested(&pflags, new_pflags);
2906
2907 /*
2908 * Do not access args after complete() has run here. We don't own args
2909 * and the owner may run and free args before we return here.
2910 */
2911 complete(args->done);
2912
2913 }
2914
2915 /*
2916 * BMBT split requests often come in with little stack to work on so we push
2917 * them off to a worker thread so there is lots of stack to use. For the other
2918 * btree types, just call directly to avoid the context switch overhead here.
2919 *
2920 * Care must be taken here - the work queue rescuer thread introduces potential
2921 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
2922 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
2923 * lock an AGF that is already locked by a task queued to run by the rescuer,
2924 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
2925 * release it until the current thread it is running gains the lock.
2926 *
2927 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
2928 * already locked to allocate from. The only place that doesn't hold an AGF
2929 * locked is unwritten extent conversion at IO completion, but that has already
2930 * been offloaded to a worker thread and hence has no stack consumption issues
2931 * we have to worry about.
2932 */
2933 STATIC int /* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2934 xfs_btree_split(
2935 struct xfs_btree_cur *cur,
2936 int level,
2937 union xfs_btree_ptr *ptrp,
2938 union xfs_btree_key *key,
2939 struct xfs_btree_cur **curp,
2940 int *stat) /* success/failure */
2941 {
2942 struct xfs_btree_split_args args;
2943 DECLARE_COMPLETION_ONSTACK(done);
2944
2945 if (cur->bc_btnum != XFS_BTNUM_BMAP ||
2946 cur->bc_tp->t_highest_agno == NULLAGNUMBER)
2947 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2948
2949 args.cur = cur;
2950 args.level = level;
2951 args.ptrp = ptrp;
2952 args.key = key;
2953 args.curp = curp;
2954 args.stat = stat;
2955 args.done = &done;
2956 args.kswapd = current_is_kswapd();
2957 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2958 queue_work(xfs_alloc_wq, &args.work);
2959 wait_for_completion(&done);
2960 destroy_work_on_stack(&args.work);
2961 return args.result;
2962 }
2963 #else
2964 #define xfs_btree_split __xfs_btree_split
2965 #endif /* __KERNEL__ */
2966
2967
2968 /*
2969 * Copy the old inode root contents into a real block and make the
2970 * broot point to it.
2971 */
2972 int /* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)2973 xfs_btree_new_iroot(
2974 struct xfs_btree_cur *cur, /* btree cursor */
2975 int *logflags, /* logging flags for inode */
2976 int *stat) /* return status - 0 fail */
2977 {
2978 struct xfs_buf *cbp; /* buffer for cblock */
2979 struct xfs_btree_block *block; /* btree block */
2980 struct xfs_btree_block *cblock; /* child btree block */
2981 union xfs_btree_key *ckp; /* child key pointer */
2982 union xfs_btree_ptr *cpp; /* child ptr pointer */
2983 union xfs_btree_key *kp; /* pointer to btree key */
2984 union xfs_btree_ptr *pp; /* pointer to block addr */
2985 union xfs_btree_ptr nptr; /* new block addr */
2986 int level; /* btree level */
2987 int error; /* error return code */
2988 int i; /* loop counter */
2989
2990 XFS_BTREE_STATS_INC(cur, newroot);
2991
2992 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2993
2994 level = cur->bc_nlevels - 1;
2995
2996 block = xfs_btree_get_iroot(cur);
2997 pp = xfs_btree_ptr_addr(cur, 1, block);
2998
2999 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3000 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
3001 if (error)
3002 goto error0;
3003 if (*stat == 0)
3004 return 0;
3005
3006 XFS_BTREE_STATS_INC(cur, alloc);
3007
3008 /* Copy the root into a real block. */
3009 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3010 if (error)
3011 goto error0;
3012
3013 /*
3014 * we can't just memcpy() the root in for CRC enabled btree blocks.
3015 * In that case have to also ensure the blkno remains correct
3016 */
3017 memcpy(cblock, block, xfs_btree_block_len(cur));
3018 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3019 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3020 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3021 cblock->bb_u.l.bb_blkno = bno;
3022 else
3023 cblock->bb_u.s.bb_blkno = bno;
3024 }
3025
3026 be16_add_cpu(&block->bb_level, 1);
3027 xfs_btree_set_numrecs(block, 1);
3028 cur->bc_nlevels++;
3029 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3030 cur->bc_levels[level + 1].ptr = 1;
3031
3032 kp = xfs_btree_key_addr(cur, 1, block);
3033 ckp = xfs_btree_key_addr(cur, 1, cblock);
3034 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3035
3036 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3037 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3038 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3039 if (error)
3040 goto error0;
3041 }
3042
3043 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3044
3045 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3046 if (error)
3047 goto error0;
3048
3049 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3050
3051 xfs_iroot_realloc(cur->bc_ino.ip,
3052 1 - xfs_btree_get_numrecs(cblock),
3053 cur->bc_ino.whichfork);
3054
3055 xfs_btree_setbuf(cur, level, cbp);
3056
3057 /*
3058 * Do all this logging at the end so that
3059 * the root is at the right level.
3060 */
3061 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3062 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3063 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3064
3065 *logflags |=
3066 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3067 *stat = 1;
3068 return 0;
3069 error0:
3070 return error;
3071 }
3072
3073 /*
3074 * Allocate a new root block, fill it in.
3075 */
3076 STATIC int /* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)3077 xfs_btree_new_root(
3078 struct xfs_btree_cur *cur, /* btree cursor */
3079 int *stat) /* success/failure */
3080 {
3081 struct xfs_btree_block *block; /* one half of the old root block */
3082 struct xfs_buf *bp; /* buffer containing block */
3083 int error; /* error return value */
3084 struct xfs_buf *lbp; /* left buffer pointer */
3085 struct xfs_btree_block *left; /* left btree block */
3086 struct xfs_buf *nbp; /* new (root) buffer */
3087 struct xfs_btree_block *new; /* new (root) btree block */
3088 int nptr; /* new value for key index, 1 or 2 */
3089 struct xfs_buf *rbp; /* right buffer pointer */
3090 struct xfs_btree_block *right; /* right btree block */
3091 union xfs_btree_ptr rptr;
3092 union xfs_btree_ptr lptr;
3093
3094 XFS_BTREE_STATS_INC(cur, newroot);
3095
3096 /* initialise our start point from the cursor */
3097 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3098
3099 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3100 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3101 if (error)
3102 goto error0;
3103 if (*stat == 0)
3104 goto out0;
3105 XFS_BTREE_STATS_INC(cur, alloc);
3106
3107 /* Set up the new block. */
3108 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3109 if (error)
3110 goto error0;
3111
3112 /* Set the root in the holding structure increasing the level by 1. */
3113 cur->bc_ops->set_root(cur, &lptr, 1);
3114
3115 /*
3116 * At the previous root level there are now two blocks: the old root,
3117 * and the new block generated when it was split. We don't know which
3118 * one the cursor is pointing at, so we set up variables "left" and
3119 * "right" for each case.
3120 */
3121 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3122
3123 #ifdef DEBUG
3124 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3125 if (error)
3126 goto error0;
3127 #endif
3128
3129 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3130 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3131 /* Our block is left, pick up the right block. */
3132 lbp = bp;
3133 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3134 left = block;
3135 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3136 if (error)
3137 goto error0;
3138 bp = rbp;
3139 nptr = 1;
3140 } else {
3141 /* Our block is right, pick up the left block. */
3142 rbp = bp;
3143 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3144 right = block;
3145 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3146 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3147 if (error)
3148 goto error0;
3149 bp = lbp;
3150 nptr = 2;
3151 }
3152
3153 /* Fill in the new block's btree header and log it. */
3154 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3155 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3156 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3157 !xfs_btree_ptr_is_null(cur, &rptr));
3158
3159 /* Fill in the key data in the new root. */
3160 if (xfs_btree_get_level(left) > 0) {
3161 /*
3162 * Get the keys for the left block's keys and put them directly
3163 * in the parent block. Do the same for the right block.
3164 */
3165 xfs_btree_get_node_keys(cur, left,
3166 xfs_btree_key_addr(cur, 1, new));
3167 xfs_btree_get_node_keys(cur, right,
3168 xfs_btree_key_addr(cur, 2, new));
3169 } else {
3170 /*
3171 * Get the keys for the left block's records and put them
3172 * directly in the parent block. Do the same for the right
3173 * block.
3174 */
3175 xfs_btree_get_leaf_keys(cur, left,
3176 xfs_btree_key_addr(cur, 1, new));
3177 xfs_btree_get_leaf_keys(cur, right,
3178 xfs_btree_key_addr(cur, 2, new));
3179 }
3180 xfs_btree_log_keys(cur, nbp, 1, 2);
3181
3182 /* Fill in the pointer data in the new root. */
3183 xfs_btree_copy_ptrs(cur,
3184 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3185 xfs_btree_copy_ptrs(cur,
3186 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3187 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3188
3189 /* Fix up the cursor. */
3190 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3191 cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3192 cur->bc_nlevels++;
3193 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3194 *stat = 1;
3195 return 0;
3196 error0:
3197 return error;
3198 out0:
3199 *stat = 0;
3200 return 0;
3201 }
3202
3203 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3204 xfs_btree_make_block_unfull(
3205 struct xfs_btree_cur *cur, /* btree cursor */
3206 int level, /* btree level */
3207 int numrecs,/* # of recs in block */
3208 int *oindex,/* old tree index */
3209 int *index, /* new tree index */
3210 union xfs_btree_ptr *nptr, /* new btree ptr */
3211 struct xfs_btree_cur **ncur, /* new btree cursor */
3212 union xfs_btree_key *key, /* key of new block */
3213 int *stat)
3214 {
3215 int error = 0;
3216
3217 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3218 level == cur->bc_nlevels - 1) {
3219 struct xfs_inode *ip = cur->bc_ino.ip;
3220
3221 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3222 /* A root block that can be made bigger. */
3223 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3224 *stat = 1;
3225 } else {
3226 /* A root block that needs replacing */
3227 int logflags = 0;
3228
3229 error = xfs_btree_new_iroot(cur, &logflags, stat);
3230 if (error || *stat == 0)
3231 return error;
3232
3233 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3234 }
3235
3236 return 0;
3237 }
3238
3239 /* First, try shifting an entry to the right neighbor. */
3240 error = xfs_btree_rshift(cur, level, stat);
3241 if (error || *stat)
3242 return error;
3243
3244 /* Next, try shifting an entry to the left neighbor. */
3245 error = xfs_btree_lshift(cur, level, stat);
3246 if (error)
3247 return error;
3248
3249 if (*stat) {
3250 *oindex = *index = cur->bc_levels[level].ptr;
3251 return 0;
3252 }
3253
3254 /*
3255 * Next, try splitting the current block in half.
3256 *
3257 * If this works we have to re-set our variables because we
3258 * could be in a different block now.
3259 */
3260 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3261 if (error || *stat == 0)
3262 return error;
3263
3264
3265 *index = cur->bc_levels[level].ptr;
3266 return 0;
3267 }
3268
3269 /*
3270 * Insert one record/level. Return information to the caller
3271 * allowing the next level up to proceed if necessary.
3272 */
3273 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3274 xfs_btree_insrec(
3275 struct xfs_btree_cur *cur, /* btree cursor */
3276 int level, /* level to insert record at */
3277 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3278 union xfs_btree_rec *rec, /* record to insert */
3279 union xfs_btree_key *key, /* i/o: block key for ptrp */
3280 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3281 int *stat) /* success/failure */
3282 {
3283 struct xfs_btree_block *block; /* btree block */
3284 struct xfs_buf *bp; /* buffer for block */
3285 union xfs_btree_ptr nptr; /* new block ptr */
3286 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */
3287 union xfs_btree_key nkey; /* new block key */
3288 union xfs_btree_key *lkey;
3289 int optr; /* old key/record index */
3290 int ptr; /* key/record index */
3291 int numrecs;/* number of records */
3292 int error; /* error return value */
3293 int i;
3294 xfs_daddr_t old_bn;
3295
3296 ncur = NULL;
3297 lkey = &nkey;
3298
3299 /*
3300 * If we have an external root pointer, and we've made it to the
3301 * root level, allocate a new root block and we're done.
3302 */
3303 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3304 (level >= cur->bc_nlevels)) {
3305 error = xfs_btree_new_root(cur, stat);
3306 xfs_btree_set_ptr_null(cur, ptrp);
3307
3308 return error;
3309 }
3310
3311 /* If we're off the left edge, return failure. */
3312 ptr = cur->bc_levels[level].ptr;
3313 if (ptr == 0) {
3314 *stat = 0;
3315 return 0;
3316 }
3317
3318 optr = ptr;
3319
3320 XFS_BTREE_STATS_INC(cur, insrec);
3321
3322 /* Get pointers to the btree buffer and block. */
3323 block = xfs_btree_get_block(cur, level, &bp);
3324 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3325 numrecs = xfs_btree_get_numrecs(block);
3326
3327 #ifdef DEBUG
3328 error = xfs_btree_check_block(cur, block, level, bp);
3329 if (error)
3330 goto error0;
3331
3332 /* Check that the new entry is being inserted in the right place. */
3333 if (ptr <= numrecs) {
3334 if (level == 0) {
3335 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3336 xfs_btree_rec_addr(cur, ptr, block)));
3337 } else {
3338 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3339 xfs_btree_key_addr(cur, ptr, block)));
3340 }
3341 }
3342 #endif
3343
3344 /*
3345 * If the block is full, we can't insert the new entry until we
3346 * make the block un-full.
3347 */
3348 xfs_btree_set_ptr_null(cur, &nptr);
3349 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3350 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3351 &optr, &ptr, &nptr, &ncur, lkey, stat);
3352 if (error || *stat == 0)
3353 goto error0;
3354 }
3355
3356 /*
3357 * The current block may have changed if the block was
3358 * previously full and we have just made space in it.
3359 */
3360 block = xfs_btree_get_block(cur, level, &bp);
3361 numrecs = xfs_btree_get_numrecs(block);
3362
3363 #ifdef DEBUG
3364 error = xfs_btree_check_block(cur, block, level, bp);
3365 if (error)
3366 goto error0;
3367 #endif
3368
3369 /*
3370 * At this point we know there's room for our new entry in the block
3371 * we're pointing at.
3372 */
3373 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3374
3375 if (level > 0) {
3376 /* It's a nonleaf. make a hole in the keys and ptrs */
3377 union xfs_btree_key *kp;
3378 union xfs_btree_ptr *pp;
3379
3380 kp = xfs_btree_key_addr(cur, ptr, block);
3381 pp = xfs_btree_ptr_addr(cur, ptr, block);
3382
3383 for (i = numrecs - ptr; i >= 0; i--) {
3384 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3385 if (error)
3386 goto error0;
3387 }
3388
3389 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3390 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3391
3392 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3393 if (error)
3394 goto error0;
3395
3396 /* Now put the new data in, bump numrecs and log it. */
3397 xfs_btree_copy_keys(cur, kp, key, 1);
3398 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3399 numrecs++;
3400 xfs_btree_set_numrecs(block, numrecs);
3401 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3402 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3403 #ifdef DEBUG
3404 if (ptr < numrecs) {
3405 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3406 xfs_btree_key_addr(cur, ptr + 1, block)));
3407 }
3408 #endif
3409 } else {
3410 /* It's a leaf. make a hole in the records */
3411 union xfs_btree_rec *rp;
3412
3413 rp = xfs_btree_rec_addr(cur, ptr, block);
3414
3415 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3416
3417 /* Now put the new data in, bump numrecs and log it. */
3418 xfs_btree_copy_recs(cur, rp, rec, 1);
3419 xfs_btree_set_numrecs(block, ++numrecs);
3420 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3421 #ifdef DEBUG
3422 if (ptr < numrecs) {
3423 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3424 xfs_btree_rec_addr(cur, ptr + 1, block)));
3425 }
3426 #endif
3427 }
3428
3429 /* Log the new number of records in the btree header. */
3430 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3431
3432 /*
3433 * If we just inserted into a new tree block, we have to
3434 * recalculate nkey here because nkey is out of date.
3435 *
3436 * Otherwise we're just updating an existing block (having shoved
3437 * some records into the new tree block), so use the regular key
3438 * update mechanism.
3439 */
3440 if (bp && xfs_buf_daddr(bp) != old_bn) {
3441 xfs_btree_get_keys(cur, block, lkey);
3442 } else if (xfs_btree_needs_key_update(cur, optr)) {
3443 error = xfs_btree_update_keys(cur, level);
3444 if (error)
3445 goto error0;
3446 }
3447
3448 /*
3449 * If we are tracking the last record in the tree and
3450 * we are at the far right edge of the tree, update it.
3451 */
3452 if (xfs_btree_is_lastrec(cur, block, level)) {
3453 cur->bc_ops->update_lastrec(cur, block, rec,
3454 ptr, LASTREC_INSREC);
3455 }
3456
3457 /*
3458 * Return the new block number, if any.
3459 * If there is one, give back a record value and a cursor too.
3460 */
3461 *ptrp = nptr;
3462 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3463 xfs_btree_copy_keys(cur, key, lkey, 1);
3464 *curp = ncur;
3465 }
3466
3467 *stat = 1;
3468 return 0;
3469
3470 error0:
3471 if (ncur)
3472 xfs_btree_del_cursor(ncur, error);
3473 return error;
3474 }
3475
3476 /*
3477 * Insert the record at the point referenced by cur.
3478 *
3479 * A multi-level split of the tree on insert will invalidate the original
3480 * cursor. All callers of this function should assume that the cursor is
3481 * no longer valid and revalidate it.
3482 */
3483 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3484 xfs_btree_insert(
3485 struct xfs_btree_cur *cur,
3486 int *stat)
3487 {
3488 int error; /* error return value */
3489 int i; /* result value, 0 for failure */
3490 int level; /* current level number in btree */
3491 union xfs_btree_ptr nptr; /* new block number (split result) */
3492 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3493 struct xfs_btree_cur *pcur; /* previous level's cursor */
3494 union xfs_btree_key bkey; /* key of block to insert */
3495 union xfs_btree_key *key;
3496 union xfs_btree_rec rec; /* record to insert */
3497
3498 level = 0;
3499 ncur = NULL;
3500 pcur = cur;
3501 key = &bkey;
3502
3503 xfs_btree_set_ptr_null(cur, &nptr);
3504
3505 /* Make a key out of the record data to be inserted, and save it. */
3506 cur->bc_ops->init_rec_from_cur(cur, &rec);
3507 cur->bc_ops->init_key_from_rec(key, &rec);
3508
3509 /*
3510 * Loop going up the tree, starting at the leaf level.
3511 * Stop when we don't get a split block, that must mean that
3512 * the insert is finished with this level.
3513 */
3514 do {
3515 /*
3516 * Insert nrec/nptr into this level of the tree.
3517 * Note if we fail, nptr will be null.
3518 */
3519 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3520 &ncur, &i);
3521 if (error) {
3522 if (pcur != cur)
3523 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3524 goto error0;
3525 }
3526
3527 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3528 error = -EFSCORRUPTED;
3529 goto error0;
3530 }
3531 level++;
3532
3533 /*
3534 * See if the cursor we just used is trash.
3535 * Can't trash the caller's cursor, but otherwise we should
3536 * if ncur is a new cursor or we're about to be done.
3537 */
3538 if (pcur != cur &&
3539 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3540 /* Save the state from the cursor before we trash it */
3541 if (cur->bc_ops->update_cursor)
3542 cur->bc_ops->update_cursor(pcur, cur);
3543 cur->bc_nlevels = pcur->bc_nlevels;
3544 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3545 }
3546 /* If we got a new cursor, switch to it. */
3547 if (ncur) {
3548 pcur = ncur;
3549 ncur = NULL;
3550 }
3551 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3552
3553 *stat = i;
3554 return 0;
3555 error0:
3556 return error;
3557 }
3558
3559 /*
3560 * Try to merge a non-leaf block back into the inode root.
3561 *
3562 * Note: the killroot names comes from the fact that we're effectively
3563 * killing the old root block. But because we can't just delete the
3564 * inode we have to copy the single block it was pointing to into the
3565 * inode.
3566 */
3567 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3568 xfs_btree_kill_iroot(
3569 struct xfs_btree_cur *cur)
3570 {
3571 int whichfork = cur->bc_ino.whichfork;
3572 struct xfs_inode *ip = cur->bc_ino.ip;
3573 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
3574 struct xfs_btree_block *block;
3575 struct xfs_btree_block *cblock;
3576 union xfs_btree_key *kp;
3577 union xfs_btree_key *ckp;
3578 union xfs_btree_ptr *pp;
3579 union xfs_btree_ptr *cpp;
3580 struct xfs_buf *cbp;
3581 int level;
3582 int index;
3583 int numrecs;
3584 int error;
3585 #ifdef DEBUG
3586 union xfs_btree_ptr ptr;
3587 #endif
3588 int i;
3589
3590 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3591 ASSERT(cur->bc_nlevels > 1);
3592
3593 /*
3594 * Don't deal with the root block needs to be a leaf case.
3595 * We're just going to turn the thing back into extents anyway.
3596 */
3597 level = cur->bc_nlevels - 1;
3598 if (level == 1)
3599 goto out0;
3600
3601 /*
3602 * Give up if the root has multiple children.
3603 */
3604 block = xfs_btree_get_iroot(cur);
3605 if (xfs_btree_get_numrecs(block) != 1)
3606 goto out0;
3607
3608 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3609 numrecs = xfs_btree_get_numrecs(cblock);
3610
3611 /*
3612 * Only do this if the next level will fit.
3613 * Then the data must be copied up to the inode,
3614 * instead of freeing the root you free the next level.
3615 */
3616 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3617 goto out0;
3618
3619 XFS_BTREE_STATS_INC(cur, killroot);
3620
3621 #ifdef DEBUG
3622 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3623 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3624 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3625 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3626 #endif
3627
3628 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3629 if (index) {
3630 xfs_iroot_realloc(cur->bc_ino.ip, index,
3631 cur->bc_ino.whichfork);
3632 block = ifp->if_broot;
3633 }
3634
3635 be16_add_cpu(&block->bb_numrecs, index);
3636 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3637
3638 kp = xfs_btree_key_addr(cur, 1, block);
3639 ckp = xfs_btree_key_addr(cur, 1, cblock);
3640 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3641
3642 pp = xfs_btree_ptr_addr(cur, 1, block);
3643 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3644
3645 for (i = 0; i < numrecs; i++) {
3646 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3647 if (error)
3648 return error;
3649 }
3650
3651 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3652
3653 error = xfs_btree_free_block(cur, cbp);
3654 if (error)
3655 return error;
3656
3657 cur->bc_levels[level - 1].bp = NULL;
3658 be16_add_cpu(&block->bb_level, -1);
3659 xfs_trans_log_inode(cur->bc_tp, ip,
3660 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3661 cur->bc_nlevels--;
3662 out0:
3663 return 0;
3664 }
3665
3666 /*
3667 * Kill the current root node, and replace it with it's only child node.
3668 */
3669 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3670 xfs_btree_kill_root(
3671 struct xfs_btree_cur *cur,
3672 struct xfs_buf *bp,
3673 int level,
3674 union xfs_btree_ptr *newroot)
3675 {
3676 int error;
3677
3678 XFS_BTREE_STATS_INC(cur, killroot);
3679
3680 /*
3681 * Update the root pointer, decreasing the level by 1 and then
3682 * free the old root.
3683 */
3684 cur->bc_ops->set_root(cur, newroot, -1);
3685
3686 error = xfs_btree_free_block(cur, bp);
3687 if (error)
3688 return error;
3689
3690 cur->bc_levels[level].bp = NULL;
3691 cur->bc_levels[level].ra = 0;
3692 cur->bc_nlevels--;
3693
3694 return 0;
3695 }
3696
3697 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)3698 xfs_btree_dec_cursor(
3699 struct xfs_btree_cur *cur,
3700 int level,
3701 int *stat)
3702 {
3703 int error;
3704 int i;
3705
3706 if (level > 0) {
3707 error = xfs_btree_decrement(cur, level, &i);
3708 if (error)
3709 return error;
3710 }
3711
3712 *stat = 1;
3713 return 0;
3714 }
3715
3716 /*
3717 * Single level of the btree record deletion routine.
3718 * Delete record pointed to by cur/level.
3719 * Remove the record from its block then rebalance the tree.
3720 * Return 0 for error, 1 for done, 2 to go on to the next level.
3721 */
3722 STATIC int /* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)3723 xfs_btree_delrec(
3724 struct xfs_btree_cur *cur, /* btree cursor */
3725 int level, /* level removing record from */
3726 int *stat) /* fail/done/go-on */
3727 {
3728 struct xfs_btree_block *block; /* btree block */
3729 union xfs_btree_ptr cptr; /* current block ptr */
3730 struct xfs_buf *bp; /* buffer for block */
3731 int error; /* error return value */
3732 int i; /* loop counter */
3733 union xfs_btree_ptr lptr; /* left sibling block ptr */
3734 struct xfs_buf *lbp; /* left buffer pointer */
3735 struct xfs_btree_block *left; /* left btree block */
3736 int lrecs = 0; /* left record count */
3737 int ptr; /* key/record index */
3738 union xfs_btree_ptr rptr; /* right sibling block ptr */
3739 struct xfs_buf *rbp; /* right buffer pointer */
3740 struct xfs_btree_block *right; /* right btree block */
3741 struct xfs_btree_block *rrblock; /* right-right btree block */
3742 struct xfs_buf *rrbp; /* right-right buffer pointer */
3743 int rrecs = 0; /* right record count */
3744 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3745 int numrecs; /* temporary numrec count */
3746
3747 tcur = NULL;
3748
3749 /* Get the index of the entry being deleted, check for nothing there. */
3750 ptr = cur->bc_levels[level].ptr;
3751 if (ptr == 0) {
3752 *stat = 0;
3753 return 0;
3754 }
3755
3756 /* Get the buffer & block containing the record or key/ptr. */
3757 block = xfs_btree_get_block(cur, level, &bp);
3758 numrecs = xfs_btree_get_numrecs(block);
3759
3760 #ifdef DEBUG
3761 error = xfs_btree_check_block(cur, block, level, bp);
3762 if (error)
3763 goto error0;
3764 #endif
3765
3766 /* Fail if we're off the end of the block. */
3767 if (ptr > numrecs) {
3768 *stat = 0;
3769 return 0;
3770 }
3771
3772 XFS_BTREE_STATS_INC(cur, delrec);
3773 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3774
3775 /* Excise the entries being deleted. */
3776 if (level > 0) {
3777 /* It's a nonleaf. operate on keys and ptrs */
3778 union xfs_btree_key *lkp;
3779 union xfs_btree_ptr *lpp;
3780
3781 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3782 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3783
3784 for (i = 0; i < numrecs - ptr; i++) {
3785 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3786 if (error)
3787 goto error0;
3788 }
3789
3790 if (ptr < numrecs) {
3791 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3792 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3793 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3794 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3795 }
3796 } else {
3797 /* It's a leaf. operate on records */
3798 if (ptr < numrecs) {
3799 xfs_btree_shift_recs(cur,
3800 xfs_btree_rec_addr(cur, ptr + 1, block),
3801 -1, numrecs - ptr);
3802 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3803 }
3804 }
3805
3806 /*
3807 * Decrement and log the number of entries in the block.
3808 */
3809 xfs_btree_set_numrecs(block, --numrecs);
3810 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3811
3812 /*
3813 * If we are tracking the last record in the tree and
3814 * we are at the far right edge of the tree, update it.
3815 */
3816 if (xfs_btree_is_lastrec(cur, block, level)) {
3817 cur->bc_ops->update_lastrec(cur, block, NULL,
3818 ptr, LASTREC_DELREC);
3819 }
3820
3821 /*
3822 * We're at the root level. First, shrink the root block in-memory.
3823 * Try to get rid of the next level down. If we can't then there's
3824 * nothing left to do.
3825 */
3826 if (level == cur->bc_nlevels - 1) {
3827 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3828 xfs_iroot_realloc(cur->bc_ino.ip, -1,
3829 cur->bc_ino.whichfork);
3830
3831 error = xfs_btree_kill_iroot(cur);
3832 if (error)
3833 goto error0;
3834
3835 error = xfs_btree_dec_cursor(cur, level, stat);
3836 if (error)
3837 goto error0;
3838 *stat = 1;
3839 return 0;
3840 }
3841
3842 /*
3843 * If this is the root level, and there's only one entry left,
3844 * and it's NOT the leaf level, then we can get rid of this
3845 * level.
3846 */
3847 if (numrecs == 1 && level > 0) {
3848 union xfs_btree_ptr *pp;
3849 /*
3850 * pp is still set to the first pointer in the block.
3851 * Make it the new root of the btree.
3852 */
3853 pp = xfs_btree_ptr_addr(cur, 1, block);
3854 error = xfs_btree_kill_root(cur, bp, level, pp);
3855 if (error)
3856 goto error0;
3857 } else if (level > 0) {
3858 error = xfs_btree_dec_cursor(cur, level, stat);
3859 if (error)
3860 goto error0;
3861 }
3862 *stat = 1;
3863 return 0;
3864 }
3865
3866 /*
3867 * If we deleted the leftmost entry in the block, update the
3868 * key values above us in the tree.
3869 */
3870 if (xfs_btree_needs_key_update(cur, ptr)) {
3871 error = xfs_btree_update_keys(cur, level);
3872 if (error)
3873 goto error0;
3874 }
3875
3876 /*
3877 * If the number of records remaining in the block is at least
3878 * the minimum, we're done.
3879 */
3880 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3881 error = xfs_btree_dec_cursor(cur, level, stat);
3882 if (error)
3883 goto error0;
3884 return 0;
3885 }
3886
3887 /*
3888 * Otherwise, we have to move some records around to keep the
3889 * tree balanced. Look at the left and right sibling blocks to
3890 * see if we can re-balance by moving only one record.
3891 */
3892 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3893 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3894
3895 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3896 /*
3897 * One child of root, need to get a chance to copy its contents
3898 * into the root and delete it. Can't go up to next level,
3899 * there's nothing to delete there.
3900 */
3901 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3902 xfs_btree_ptr_is_null(cur, &lptr) &&
3903 level == cur->bc_nlevels - 2) {
3904 error = xfs_btree_kill_iroot(cur);
3905 if (!error)
3906 error = xfs_btree_dec_cursor(cur, level, stat);
3907 if (error)
3908 goto error0;
3909 return 0;
3910 }
3911 }
3912
3913 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3914 !xfs_btree_ptr_is_null(cur, &lptr));
3915
3916 /*
3917 * Duplicate the cursor so our btree manipulations here won't
3918 * disrupt the next level up.
3919 */
3920 error = xfs_btree_dup_cursor(cur, &tcur);
3921 if (error)
3922 goto error0;
3923
3924 /*
3925 * If there's a right sibling, see if it's ok to shift an entry
3926 * out of it.
3927 */
3928 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3929 /*
3930 * Move the temp cursor to the last entry in the next block.
3931 * Actually any entry but the first would suffice.
3932 */
3933 i = xfs_btree_lastrec(tcur, level);
3934 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3935 error = -EFSCORRUPTED;
3936 goto error0;
3937 }
3938
3939 error = xfs_btree_increment(tcur, level, &i);
3940 if (error)
3941 goto error0;
3942 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3943 error = -EFSCORRUPTED;
3944 goto error0;
3945 }
3946
3947 i = xfs_btree_lastrec(tcur, level);
3948 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3949 error = -EFSCORRUPTED;
3950 goto error0;
3951 }
3952
3953 /* Grab a pointer to the block. */
3954 right = xfs_btree_get_block(tcur, level, &rbp);
3955 #ifdef DEBUG
3956 error = xfs_btree_check_block(tcur, right, level, rbp);
3957 if (error)
3958 goto error0;
3959 #endif
3960 /* Grab the current block number, for future use. */
3961 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3962
3963 /*
3964 * If right block is full enough so that removing one entry
3965 * won't make it too empty, and left-shifting an entry out
3966 * of right to us works, we're done.
3967 */
3968 if (xfs_btree_get_numrecs(right) - 1 >=
3969 cur->bc_ops->get_minrecs(tcur, level)) {
3970 error = xfs_btree_lshift(tcur, level, &i);
3971 if (error)
3972 goto error0;
3973 if (i) {
3974 ASSERT(xfs_btree_get_numrecs(block) >=
3975 cur->bc_ops->get_minrecs(tcur, level));
3976
3977 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3978 tcur = NULL;
3979
3980 error = xfs_btree_dec_cursor(cur, level, stat);
3981 if (error)
3982 goto error0;
3983 return 0;
3984 }
3985 }
3986
3987 /*
3988 * Otherwise, grab the number of records in right for
3989 * future reference, and fix up the temp cursor to point
3990 * to our block again (last record).
3991 */
3992 rrecs = xfs_btree_get_numrecs(right);
3993 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3994 i = xfs_btree_firstrec(tcur, level);
3995 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3996 error = -EFSCORRUPTED;
3997 goto error0;
3998 }
3999
4000 error = xfs_btree_decrement(tcur, level, &i);
4001 if (error)
4002 goto error0;
4003 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4004 error = -EFSCORRUPTED;
4005 goto error0;
4006 }
4007 }
4008 }
4009
4010 /*
4011 * If there's a left sibling, see if it's ok to shift an entry
4012 * out of it.
4013 */
4014 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4015 /*
4016 * Move the temp cursor to the first entry in the
4017 * previous block.
4018 */
4019 i = xfs_btree_firstrec(tcur, level);
4020 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4021 error = -EFSCORRUPTED;
4022 goto error0;
4023 }
4024
4025 error = xfs_btree_decrement(tcur, level, &i);
4026 if (error)
4027 goto error0;
4028 i = xfs_btree_firstrec(tcur, level);
4029 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4030 error = -EFSCORRUPTED;
4031 goto error0;
4032 }
4033
4034 /* Grab a pointer to the block. */
4035 left = xfs_btree_get_block(tcur, level, &lbp);
4036 #ifdef DEBUG
4037 error = xfs_btree_check_block(cur, left, level, lbp);
4038 if (error)
4039 goto error0;
4040 #endif
4041 /* Grab the current block number, for future use. */
4042 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4043
4044 /*
4045 * If left block is full enough so that removing one entry
4046 * won't make it too empty, and right-shifting an entry out
4047 * of left to us works, we're done.
4048 */
4049 if (xfs_btree_get_numrecs(left) - 1 >=
4050 cur->bc_ops->get_minrecs(tcur, level)) {
4051 error = xfs_btree_rshift(tcur, level, &i);
4052 if (error)
4053 goto error0;
4054 if (i) {
4055 ASSERT(xfs_btree_get_numrecs(block) >=
4056 cur->bc_ops->get_minrecs(tcur, level));
4057 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4058 tcur = NULL;
4059 if (level == 0)
4060 cur->bc_levels[0].ptr++;
4061
4062 *stat = 1;
4063 return 0;
4064 }
4065 }
4066
4067 /*
4068 * Otherwise, grab the number of records in right for
4069 * future reference.
4070 */
4071 lrecs = xfs_btree_get_numrecs(left);
4072 }
4073
4074 /* Delete the temp cursor, we're done with it. */
4075 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4076 tcur = NULL;
4077
4078 /* If here, we need to do a join to keep the tree balanced. */
4079 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4080
4081 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4082 lrecs + xfs_btree_get_numrecs(block) <=
4083 cur->bc_ops->get_maxrecs(cur, level)) {
4084 /*
4085 * Set "right" to be the starting block,
4086 * "left" to be the left neighbor.
4087 */
4088 rptr = cptr;
4089 right = block;
4090 rbp = bp;
4091 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4092 if (error)
4093 goto error0;
4094
4095 /*
4096 * If that won't work, see if we can join with the right neighbor block.
4097 */
4098 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4099 rrecs + xfs_btree_get_numrecs(block) <=
4100 cur->bc_ops->get_maxrecs(cur, level)) {
4101 /*
4102 * Set "left" to be the starting block,
4103 * "right" to be the right neighbor.
4104 */
4105 lptr = cptr;
4106 left = block;
4107 lbp = bp;
4108 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4109 if (error)
4110 goto error0;
4111
4112 /*
4113 * Otherwise, we can't fix the imbalance.
4114 * Just return. This is probably a logic error, but it's not fatal.
4115 */
4116 } else {
4117 error = xfs_btree_dec_cursor(cur, level, stat);
4118 if (error)
4119 goto error0;
4120 return 0;
4121 }
4122
4123 rrecs = xfs_btree_get_numrecs(right);
4124 lrecs = xfs_btree_get_numrecs(left);
4125
4126 /*
4127 * We're now going to join "left" and "right" by moving all the stuff
4128 * in "right" to "left" and deleting "right".
4129 */
4130 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4131 if (level > 0) {
4132 /* It's a non-leaf. Move keys and pointers. */
4133 union xfs_btree_key *lkp; /* left btree key */
4134 union xfs_btree_ptr *lpp; /* left address pointer */
4135 union xfs_btree_key *rkp; /* right btree key */
4136 union xfs_btree_ptr *rpp; /* right address pointer */
4137
4138 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4139 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4140 rkp = xfs_btree_key_addr(cur, 1, right);
4141 rpp = xfs_btree_ptr_addr(cur, 1, right);
4142
4143 for (i = 1; i < rrecs; i++) {
4144 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4145 if (error)
4146 goto error0;
4147 }
4148
4149 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4150 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4151
4152 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4153 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4154 } else {
4155 /* It's a leaf. Move records. */
4156 union xfs_btree_rec *lrp; /* left record pointer */
4157 union xfs_btree_rec *rrp; /* right record pointer */
4158
4159 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4160 rrp = xfs_btree_rec_addr(cur, 1, right);
4161
4162 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4163 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4164 }
4165
4166 XFS_BTREE_STATS_INC(cur, join);
4167
4168 /*
4169 * Fix up the number of records and right block pointer in the
4170 * surviving block, and log it.
4171 */
4172 xfs_btree_set_numrecs(left, lrecs + rrecs);
4173 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4174 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4175 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4176
4177 /* If there is a right sibling, point it to the remaining block. */
4178 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4179 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4180 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4181 if (error)
4182 goto error0;
4183 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4184 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4185 }
4186
4187 /* Free the deleted block. */
4188 error = xfs_btree_free_block(cur, rbp);
4189 if (error)
4190 goto error0;
4191
4192 /*
4193 * If we joined with the left neighbor, set the buffer in the
4194 * cursor to the left block, and fix up the index.
4195 */
4196 if (bp != lbp) {
4197 cur->bc_levels[level].bp = lbp;
4198 cur->bc_levels[level].ptr += lrecs;
4199 cur->bc_levels[level].ra = 0;
4200 }
4201 /*
4202 * If we joined with the right neighbor and there's a level above
4203 * us, increment the cursor at that level.
4204 */
4205 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4206 (level + 1 < cur->bc_nlevels)) {
4207 error = xfs_btree_increment(cur, level + 1, &i);
4208 if (error)
4209 goto error0;
4210 }
4211
4212 /*
4213 * Readjust the ptr at this level if it's not a leaf, since it's
4214 * still pointing at the deletion point, which makes the cursor
4215 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4216 * We can't use decrement because it would change the next level up.
4217 */
4218 if (level > 0)
4219 cur->bc_levels[level].ptr--;
4220
4221 /*
4222 * We combined blocks, so we have to update the parent keys if the
4223 * btree supports overlapped intervals. However,
4224 * bc_levels[level + 1].ptr points to the old block so that the caller
4225 * knows which record to delete. Therefore, the caller must be savvy
4226 * enough to call updkeys for us if we return stat == 2. The other
4227 * exit points from this function don't require deletions further up
4228 * the tree, so they can call updkeys directly.
4229 */
4230
4231 /* Return value means the next level up has something to do. */
4232 *stat = 2;
4233 return 0;
4234
4235 error0:
4236 if (tcur)
4237 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4238 return error;
4239 }
4240
4241 /*
4242 * Delete the record pointed to by cur.
4243 * The cursor refers to the place where the record was (could be inserted)
4244 * when the operation returns.
4245 */
4246 int /* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4247 xfs_btree_delete(
4248 struct xfs_btree_cur *cur,
4249 int *stat) /* success/failure */
4250 {
4251 int error; /* error return value */
4252 int level;
4253 int i;
4254 bool joined = false;
4255
4256 /*
4257 * Go up the tree, starting at leaf level.
4258 *
4259 * If 2 is returned then a join was done; go to the next level.
4260 * Otherwise we are done.
4261 */
4262 for (level = 0, i = 2; i == 2; level++) {
4263 error = xfs_btree_delrec(cur, level, &i);
4264 if (error)
4265 goto error0;
4266 if (i == 2)
4267 joined = true;
4268 }
4269
4270 /*
4271 * If we combined blocks as part of deleting the record, delrec won't
4272 * have updated the parent high keys so we have to do that here.
4273 */
4274 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4275 error = xfs_btree_updkeys_force(cur, 0);
4276 if (error)
4277 goto error0;
4278 }
4279
4280 if (i == 0) {
4281 for (level = 1; level < cur->bc_nlevels; level++) {
4282 if (cur->bc_levels[level].ptr == 0) {
4283 error = xfs_btree_decrement(cur, level, &i);
4284 if (error)
4285 goto error0;
4286 break;
4287 }
4288 }
4289 }
4290
4291 *stat = i;
4292 return 0;
4293 error0:
4294 return error;
4295 }
4296
4297 /*
4298 * Get the data from the pointed-to record.
4299 */
4300 int /* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4301 xfs_btree_get_rec(
4302 struct xfs_btree_cur *cur, /* btree cursor */
4303 union xfs_btree_rec **recp, /* output: btree record */
4304 int *stat) /* output: success/failure */
4305 {
4306 struct xfs_btree_block *block; /* btree block */
4307 struct xfs_buf *bp; /* buffer pointer */
4308 int ptr; /* record number */
4309 #ifdef DEBUG
4310 int error; /* error return value */
4311 #endif
4312
4313 ptr = cur->bc_levels[0].ptr;
4314 block = xfs_btree_get_block(cur, 0, &bp);
4315
4316 #ifdef DEBUG
4317 error = xfs_btree_check_block(cur, block, 0, bp);
4318 if (error)
4319 return error;
4320 #endif
4321
4322 /*
4323 * Off the right end or left end, return failure.
4324 */
4325 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4326 *stat = 0;
4327 return 0;
4328 }
4329
4330 /*
4331 * Point to the record and extract its data.
4332 */
4333 *recp = xfs_btree_rec_addr(cur, ptr, block);
4334 *stat = 1;
4335 return 0;
4336 }
4337
4338 /* Visit a block in a btree. */
4339 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4340 xfs_btree_visit_block(
4341 struct xfs_btree_cur *cur,
4342 int level,
4343 xfs_btree_visit_blocks_fn fn,
4344 void *data)
4345 {
4346 struct xfs_btree_block *block;
4347 struct xfs_buf *bp;
4348 union xfs_btree_ptr rptr;
4349 int error;
4350
4351 /* do right sibling readahead */
4352 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4353 block = xfs_btree_get_block(cur, level, &bp);
4354
4355 /* process the block */
4356 error = fn(cur, level, data);
4357 if (error)
4358 return error;
4359
4360 /* now read rh sibling block for next iteration */
4361 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4362 if (xfs_btree_ptr_is_null(cur, &rptr))
4363 return -ENOENT;
4364
4365 /*
4366 * We only visit blocks once in this walk, so we have to avoid the
4367 * internal xfs_btree_lookup_get_block() optimisation where it will
4368 * return the same block without checking if the right sibling points
4369 * back to us and creates a cyclic reference in the btree.
4370 */
4371 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4372 if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4373 xfs_buf_daddr(bp)))
4374 return -EFSCORRUPTED;
4375 } else {
4376 if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4377 xfs_buf_daddr(bp)))
4378 return -EFSCORRUPTED;
4379 }
4380 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4381 }
4382
4383
4384 /* Visit every block in a btree. */
4385 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,unsigned int flags,void * data)4386 xfs_btree_visit_blocks(
4387 struct xfs_btree_cur *cur,
4388 xfs_btree_visit_blocks_fn fn,
4389 unsigned int flags,
4390 void *data)
4391 {
4392 union xfs_btree_ptr lptr;
4393 int level;
4394 struct xfs_btree_block *block = NULL;
4395 int error = 0;
4396
4397 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4398
4399 /* for each level */
4400 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4401 /* grab the left hand block */
4402 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4403 if (error)
4404 return error;
4405
4406 /* readahead the left most block for the next level down */
4407 if (level > 0) {
4408 union xfs_btree_ptr *ptr;
4409
4410 ptr = xfs_btree_ptr_addr(cur, 1, block);
4411 xfs_btree_readahead_ptr(cur, ptr, 1);
4412
4413 /* save for the next iteration of the loop */
4414 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4415
4416 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4417 continue;
4418 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4419 continue;
4420 }
4421
4422 /* for each buffer in the level */
4423 do {
4424 error = xfs_btree_visit_block(cur, level, fn, data);
4425 } while (!error);
4426
4427 if (error != -ENOENT)
4428 return error;
4429 }
4430
4431 return 0;
4432 }
4433
4434 /*
4435 * Change the owner of a btree.
4436 *
4437 * The mechanism we use here is ordered buffer logging. Because we don't know
4438 * how many buffers were are going to need to modify, we don't really want to
4439 * have to make transaction reservations for the worst case of every buffer in a
4440 * full size btree as that may be more space that we can fit in the log....
4441 *
4442 * We do the btree walk in the most optimal manner possible - we have sibling
4443 * pointers so we can just walk all the blocks on each level from left to right
4444 * in a single pass, and then move to the next level and do the same. We can
4445 * also do readahead on the sibling pointers to get IO moving more quickly,
4446 * though for slow disks this is unlikely to make much difference to performance
4447 * as the amount of CPU work we have to do before moving to the next block is
4448 * relatively small.
4449 *
4450 * For each btree block that we load, modify the owner appropriately, set the
4451 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4452 * we mark the region we change dirty so that if the buffer is relogged in
4453 * a subsequent transaction the changes we make here as an ordered buffer are
4454 * correctly relogged in that transaction. If we are in recovery context, then
4455 * just queue the modified buffer as delayed write buffer so the transaction
4456 * recovery completion writes the changes to disk.
4457 */
4458 struct xfs_btree_block_change_owner_info {
4459 uint64_t new_owner;
4460 struct list_head *buffer_list;
4461 };
4462
4463 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4464 xfs_btree_block_change_owner(
4465 struct xfs_btree_cur *cur,
4466 int level,
4467 void *data)
4468 {
4469 struct xfs_btree_block_change_owner_info *bbcoi = data;
4470 struct xfs_btree_block *block;
4471 struct xfs_buf *bp;
4472
4473 /* modify the owner */
4474 block = xfs_btree_get_block(cur, level, &bp);
4475 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4476 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4477 return 0;
4478 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4479 } else {
4480 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4481 return 0;
4482 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4483 }
4484
4485 /*
4486 * If the block is a root block hosted in an inode, we might not have a
4487 * buffer pointer here and we shouldn't attempt to log the change as the
4488 * information is already held in the inode and discarded when the root
4489 * block is formatted into the on-disk inode fork. We still change it,
4490 * though, so everything is consistent in memory.
4491 */
4492 if (!bp) {
4493 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4494 ASSERT(level == cur->bc_nlevels - 1);
4495 return 0;
4496 }
4497
4498 if (cur->bc_tp) {
4499 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4500 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4501 return -EAGAIN;
4502 }
4503 } else {
4504 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4505 }
4506
4507 return 0;
4508 }
4509
4510 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4511 xfs_btree_change_owner(
4512 struct xfs_btree_cur *cur,
4513 uint64_t new_owner,
4514 struct list_head *buffer_list)
4515 {
4516 struct xfs_btree_block_change_owner_info bbcoi;
4517
4518 bbcoi.new_owner = new_owner;
4519 bbcoi.buffer_list = buffer_list;
4520
4521 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4522 XFS_BTREE_VISIT_ALL, &bbcoi);
4523 }
4524
4525 /* Verify the v5 fields of a long-format btree block. */
4526 xfs_failaddr_t
xfs_btree_lblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4527 xfs_btree_lblock_v5hdr_verify(
4528 struct xfs_buf *bp,
4529 uint64_t owner)
4530 {
4531 struct xfs_mount *mp = bp->b_mount;
4532 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4533
4534 if (!xfs_has_crc(mp))
4535 return __this_address;
4536 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4537 return __this_address;
4538 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4539 return __this_address;
4540 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4541 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4542 return __this_address;
4543 return NULL;
4544 }
4545
4546 /* Verify a long-format btree block. */
4547 xfs_failaddr_t
xfs_btree_lblock_verify(struct xfs_buf * bp,unsigned int max_recs)4548 xfs_btree_lblock_verify(
4549 struct xfs_buf *bp,
4550 unsigned int max_recs)
4551 {
4552 struct xfs_mount *mp = bp->b_mount;
4553 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4554 xfs_fsblock_t fsb;
4555 xfs_failaddr_t fa;
4556
4557 /* numrecs verification */
4558 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4559 return __this_address;
4560
4561 /* sibling pointer verification */
4562 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4563 fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4564 block->bb_u.l.bb_leftsib);
4565 if (!fa)
4566 fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4567 block->bb_u.l.bb_rightsib);
4568 return fa;
4569 }
4570
4571 /**
4572 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4573 * btree block
4574 *
4575 * @bp: buffer containing the btree block
4576 */
4577 xfs_failaddr_t
xfs_btree_sblock_v5hdr_verify(struct xfs_buf * bp)4578 xfs_btree_sblock_v5hdr_verify(
4579 struct xfs_buf *bp)
4580 {
4581 struct xfs_mount *mp = bp->b_mount;
4582 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4583 struct xfs_perag *pag = bp->b_pag;
4584
4585 if (!xfs_has_crc(mp))
4586 return __this_address;
4587 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4588 return __this_address;
4589 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4590 return __this_address;
4591 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4592 return __this_address;
4593 return NULL;
4594 }
4595
4596 /**
4597 * xfs_btree_sblock_verify() -- verify a short-format btree block
4598 *
4599 * @bp: buffer containing the btree block
4600 * @max_recs: maximum records allowed in this btree node
4601 */
4602 xfs_failaddr_t
xfs_btree_sblock_verify(struct xfs_buf * bp,unsigned int max_recs)4603 xfs_btree_sblock_verify(
4604 struct xfs_buf *bp,
4605 unsigned int max_recs)
4606 {
4607 struct xfs_mount *mp = bp->b_mount;
4608 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4609 xfs_agblock_t agbno;
4610 xfs_failaddr_t fa;
4611
4612 /* numrecs verification */
4613 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4614 return __this_address;
4615
4616 /* sibling pointer verification */
4617 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4618 fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4619 block->bb_u.s.bb_leftsib);
4620 if (!fa)
4621 fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4622 block->bb_u.s.bb_rightsib);
4623 return fa;
4624 }
4625
4626 /*
4627 * For the given limits on leaf and keyptr records per block, calculate the
4628 * height of the tree needed to index the number of leaf records.
4629 */
4630 unsigned int
xfs_btree_compute_maxlevels(const unsigned int * limits,unsigned long long records)4631 xfs_btree_compute_maxlevels(
4632 const unsigned int *limits,
4633 unsigned long long records)
4634 {
4635 unsigned long long level_blocks = howmany_64(records, limits[0]);
4636 unsigned int height = 1;
4637
4638 while (level_blocks > 1) {
4639 level_blocks = howmany_64(level_blocks, limits[1]);
4640 height++;
4641 }
4642
4643 return height;
4644 }
4645
4646 /*
4647 * For the given limits on leaf and keyptr records per block, calculate the
4648 * number of blocks needed to index the given number of leaf records.
4649 */
4650 unsigned long long
xfs_btree_calc_size(const unsigned int * limits,unsigned long long records)4651 xfs_btree_calc_size(
4652 const unsigned int *limits,
4653 unsigned long long records)
4654 {
4655 unsigned long long level_blocks = howmany_64(records, limits[0]);
4656 unsigned long long blocks = level_blocks;
4657
4658 while (level_blocks > 1) {
4659 level_blocks = howmany_64(level_blocks, limits[1]);
4660 blocks += level_blocks;
4661 }
4662
4663 return blocks;
4664 }
4665
4666 /*
4667 * Given a number of available blocks for the btree to consume with records and
4668 * pointers, calculate the height of the tree needed to index all the records
4669 * that space can hold based on the number of pointers each interior node
4670 * holds.
4671 *
4672 * We start by assuming a single level tree consumes a single block, then track
4673 * the number of blocks each node level consumes until we no longer have space
4674 * to store the next node level. At this point, we are indexing all the leaf
4675 * blocks in the space, and there's no more free space to split the tree any
4676 * further. That's our maximum btree height.
4677 */
4678 unsigned int
xfs_btree_space_to_height(const unsigned int * limits,unsigned long long leaf_blocks)4679 xfs_btree_space_to_height(
4680 const unsigned int *limits,
4681 unsigned long long leaf_blocks)
4682 {
4683 /*
4684 * The root btree block can have fewer than minrecs pointers in it
4685 * because the tree might not be big enough to require that amount of
4686 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4687 */
4688 unsigned long long node_blocks = 2;
4689 unsigned long long blocks_left = leaf_blocks - 1;
4690 unsigned int height = 1;
4691
4692 if (leaf_blocks < 1)
4693 return 0;
4694
4695 while (node_blocks < blocks_left) {
4696 blocks_left -= node_blocks;
4697 node_blocks *= limits[1];
4698 height++;
4699 }
4700
4701 return height;
4702 }
4703
4704 /*
4705 * Query a regular btree for all records overlapping a given interval.
4706 * Start with a LE lookup of the key of low_rec and return all records
4707 * until we find a record with a key greater than the key of high_rec.
4708 */
4709 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4710 xfs_btree_simple_query_range(
4711 struct xfs_btree_cur *cur,
4712 const union xfs_btree_key *low_key,
4713 const union xfs_btree_key *high_key,
4714 xfs_btree_query_range_fn fn,
4715 void *priv)
4716 {
4717 union xfs_btree_rec *recp;
4718 union xfs_btree_key rec_key;
4719 int64_t diff;
4720 int stat;
4721 bool firstrec = true;
4722 int error;
4723
4724 ASSERT(cur->bc_ops->init_high_key_from_rec);
4725 ASSERT(cur->bc_ops->diff_two_keys);
4726
4727 /*
4728 * Find the leftmost record. The btree cursor must be set
4729 * to the low record used to generate low_key.
4730 */
4731 stat = 0;
4732 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4733 if (error)
4734 goto out;
4735
4736 /* Nothing? See if there's anything to the right. */
4737 if (!stat) {
4738 error = xfs_btree_increment(cur, 0, &stat);
4739 if (error)
4740 goto out;
4741 }
4742
4743 while (stat) {
4744 /* Find the record. */
4745 error = xfs_btree_get_rec(cur, &recp, &stat);
4746 if (error || !stat)
4747 break;
4748
4749 /* Skip if high_key(rec) < low_key. */
4750 if (firstrec) {
4751 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4752 firstrec = false;
4753 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4754 &rec_key);
4755 if (diff > 0)
4756 goto advloop;
4757 }
4758
4759 /* Stop if high_key < low_key(rec). */
4760 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4761 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4762 if (diff > 0)
4763 break;
4764
4765 /* Callback */
4766 error = fn(cur, recp, priv);
4767 if (error)
4768 break;
4769
4770 advloop:
4771 /* Move on to the next record. */
4772 error = xfs_btree_increment(cur, 0, &stat);
4773 if (error)
4774 break;
4775 }
4776
4777 out:
4778 return error;
4779 }
4780
4781 /*
4782 * Query an overlapped interval btree for all records overlapping a given
4783 * interval. This function roughly follows the algorithm given in
4784 * "Interval Trees" of _Introduction to Algorithms_, which is section
4785 * 14.3 in the 2nd and 3rd editions.
4786 *
4787 * First, generate keys for the low and high records passed in.
4788 *
4789 * For any leaf node, generate the high and low keys for the record.
4790 * If the record keys overlap with the query low/high keys, pass the
4791 * record to the function iterator.
4792 *
4793 * For any internal node, compare the low and high keys of each
4794 * pointer against the query low/high keys. If there's an overlap,
4795 * follow the pointer.
4796 *
4797 * As an optimization, we stop scanning a block when we find a low key
4798 * that is greater than the query's high key.
4799 */
4800 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4801 xfs_btree_overlapped_query_range(
4802 struct xfs_btree_cur *cur,
4803 const union xfs_btree_key *low_key,
4804 const union xfs_btree_key *high_key,
4805 xfs_btree_query_range_fn fn,
4806 void *priv)
4807 {
4808 union xfs_btree_ptr ptr;
4809 union xfs_btree_ptr *pp;
4810 union xfs_btree_key rec_key;
4811 union xfs_btree_key rec_hkey;
4812 union xfs_btree_key *lkp;
4813 union xfs_btree_key *hkp;
4814 union xfs_btree_rec *recp;
4815 struct xfs_btree_block *block;
4816 int64_t ldiff;
4817 int64_t hdiff;
4818 int level;
4819 struct xfs_buf *bp;
4820 int i;
4821 int error;
4822
4823 /* Load the root of the btree. */
4824 level = cur->bc_nlevels - 1;
4825 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4826 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4827 if (error)
4828 return error;
4829 xfs_btree_get_block(cur, level, &bp);
4830 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4831 #ifdef DEBUG
4832 error = xfs_btree_check_block(cur, block, level, bp);
4833 if (error)
4834 goto out;
4835 #endif
4836 cur->bc_levels[level].ptr = 1;
4837
4838 while (level < cur->bc_nlevels) {
4839 block = xfs_btree_get_block(cur, level, &bp);
4840
4841 /* End of node, pop back towards the root. */
4842 if (cur->bc_levels[level].ptr >
4843 be16_to_cpu(block->bb_numrecs)) {
4844 pop_up:
4845 if (level < cur->bc_nlevels - 1)
4846 cur->bc_levels[level + 1].ptr++;
4847 level++;
4848 continue;
4849 }
4850
4851 if (level == 0) {
4852 /* Handle a leaf node. */
4853 recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4854 block);
4855
4856 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4857 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4858 low_key);
4859
4860 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4861 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4862 &rec_key);
4863
4864 /*
4865 * If (record's high key >= query's low key) and
4866 * (query's high key >= record's low key), then
4867 * this record overlaps the query range; callback.
4868 */
4869 if (ldiff >= 0 && hdiff >= 0) {
4870 error = fn(cur, recp, priv);
4871 if (error)
4872 break;
4873 } else if (hdiff < 0) {
4874 /* Record is larger than high key; pop. */
4875 goto pop_up;
4876 }
4877 cur->bc_levels[level].ptr++;
4878 continue;
4879 }
4880
4881 /* Handle an internal node. */
4882 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4883 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4884 block);
4885 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4886
4887 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4888 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4889
4890 /*
4891 * If (pointer's high key >= query's low key) and
4892 * (query's high key >= pointer's low key), then
4893 * this record overlaps the query range; follow pointer.
4894 */
4895 if (ldiff >= 0 && hdiff >= 0) {
4896 level--;
4897 error = xfs_btree_lookup_get_block(cur, level, pp,
4898 &block);
4899 if (error)
4900 goto out;
4901 xfs_btree_get_block(cur, level, &bp);
4902 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4903 #ifdef DEBUG
4904 error = xfs_btree_check_block(cur, block, level, bp);
4905 if (error)
4906 goto out;
4907 #endif
4908 cur->bc_levels[level].ptr = 1;
4909 continue;
4910 } else if (hdiff < 0) {
4911 /* The low key is larger than the upper range; pop. */
4912 goto pop_up;
4913 }
4914 cur->bc_levels[level].ptr++;
4915 }
4916
4917 out:
4918 /*
4919 * If we don't end this function with the cursor pointing at a record
4920 * block, a subsequent non-error cursor deletion will not release
4921 * node-level buffers, causing a buffer leak. This is quite possible
4922 * with a zero-results range query, so release the buffers if we
4923 * failed to return any results.
4924 */
4925 if (cur->bc_levels[0].bp == NULL) {
4926 for (i = 0; i < cur->bc_nlevels; i++) {
4927 if (cur->bc_levels[i].bp) {
4928 xfs_trans_brelse(cur->bc_tp,
4929 cur->bc_levels[i].bp);
4930 cur->bc_levels[i].bp = NULL;
4931 cur->bc_levels[i].ptr = 0;
4932 cur->bc_levels[i].ra = 0;
4933 }
4934 }
4935 }
4936
4937 return error;
4938 }
4939
4940 /*
4941 * Query a btree for all records overlapping a given interval of keys. The
4942 * supplied function will be called with each record found; return one of the
4943 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4944 * code. This function returns -ECANCELED, zero, or a negative error code.
4945 */
4946 int
xfs_btree_query_range(struct xfs_btree_cur * cur,const union xfs_btree_irec * low_rec,const union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)4947 xfs_btree_query_range(
4948 struct xfs_btree_cur *cur,
4949 const union xfs_btree_irec *low_rec,
4950 const union xfs_btree_irec *high_rec,
4951 xfs_btree_query_range_fn fn,
4952 void *priv)
4953 {
4954 union xfs_btree_rec rec;
4955 union xfs_btree_key low_key;
4956 union xfs_btree_key high_key;
4957
4958 /* Find the keys of both ends of the interval. */
4959 cur->bc_rec = *high_rec;
4960 cur->bc_ops->init_rec_from_cur(cur, &rec);
4961 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4962
4963 cur->bc_rec = *low_rec;
4964 cur->bc_ops->init_rec_from_cur(cur, &rec);
4965 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4966
4967 /* Enforce low key < high key. */
4968 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4969 return -EINVAL;
4970
4971 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4972 return xfs_btree_simple_query_range(cur, &low_key,
4973 &high_key, fn, priv);
4974 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4975 fn, priv);
4976 }
4977
4978 /* Query a btree for all records. */
4979 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)4980 xfs_btree_query_all(
4981 struct xfs_btree_cur *cur,
4982 xfs_btree_query_range_fn fn,
4983 void *priv)
4984 {
4985 union xfs_btree_key low_key;
4986 union xfs_btree_key high_key;
4987
4988 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4989 memset(&low_key, 0, sizeof(low_key));
4990 memset(&high_key, 0xFF, sizeof(high_key));
4991
4992 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4993 }
4994
4995 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)4996 xfs_btree_count_blocks_helper(
4997 struct xfs_btree_cur *cur,
4998 int level,
4999 void *data)
5000 {
5001 xfs_extlen_t *blocks = data;
5002 (*blocks)++;
5003
5004 return 0;
5005 }
5006
5007 /* Count the blocks in a btree and return the result in *blocks. */
5008 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_extlen_t * blocks)5009 xfs_btree_count_blocks(
5010 struct xfs_btree_cur *cur,
5011 xfs_extlen_t *blocks)
5012 {
5013 *blocks = 0;
5014 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5015 XFS_BTREE_VISIT_ALL, blocks);
5016 }
5017
5018 /* Compare two btree pointers. */
5019 int64_t
xfs_btree_diff_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)5020 xfs_btree_diff_two_ptrs(
5021 struct xfs_btree_cur *cur,
5022 const union xfs_btree_ptr *a,
5023 const union xfs_btree_ptr *b)
5024 {
5025 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5026 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5027 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5028 }
5029
5030 /* If there's an extent, we're done. */
5031 STATIC int
xfs_btree_has_record_helper(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)5032 xfs_btree_has_record_helper(
5033 struct xfs_btree_cur *cur,
5034 const union xfs_btree_rec *rec,
5035 void *priv)
5036 {
5037 return -ECANCELED;
5038 }
5039
5040 /* Is there a record covering a given range of keys? */
5041 int
xfs_btree_has_record(struct xfs_btree_cur * cur,const union xfs_btree_irec * low,const union xfs_btree_irec * high,bool * exists)5042 xfs_btree_has_record(
5043 struct xfs_btree_cur *cur,
5044 const union xfs_btree_irec *low,
5045 const union xfs_btree_irec *high,
5046 bool *exists)
5047 {
5048 int error;
5049
5050 error = xfs_btree_query_range(cur, low, high,
5051 &xfs_btree_has_record_helper, NULL);
5052 if (error == -ECANCELED) {
5053 *exists = true;
5054 return 0;
5055 }
5056 *exists = false;
5057 return error;
5058 }
5059
5060 /* Are there more records in this btree? */
5061 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)5062 xfs_btree_has_more_records(
5063 struct xfs_btree_cur *cur)
5064 {
5065 struct xfs_btree_block *block;
5066 struct xfs_buf *bp;
5067
5068 block = xfs_btree_get_block(cur, 0, &bp);
5069
5070 /* There are still records in this block. */
5071 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5072 return true;
5073
5074 /* There are more record blocks. */
5075 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5076 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5077 else
5078 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5079 }
5080
5081 /* Set up all the btree cursor caches. */
5082 int __init
xfs_btree_init_cur_caches(void)5083 xfs_btree_init_cur_caches(void)
5084 {
5085 int error;
5086
5087 error = xfs_allocbt_init_cur_cache();
5088 if (error)
5089 return error;
5090 error = xfs_inobt_init_cur_cache();
5091 if (error)
5092 goto err;
5093 error = xfs_bmbt_init_cur_cache();
5094 if (error)
5095 goto err;
5096 error = xfs_rmapbt_init_cur_cache();
5097 if (error)
5098 goto err;
5099 error = xfs_refcountbt_init_cur_cache();
5100 if (error)
5101 goto err;
5102
5103 return 0;
5104 err:
5105 xfs_btree_destroy_cur_caches();
5106 return error;
5107 }
5108
5109 /* Destroy all the btree cursor caches, if they've been allocated. */
5110 void
xfs_btree_destroy_cur_caches(void)5111 xfs_btree_destroy_cur_caches(void)
5112 {
5113 xfs_allocbt_destroy_cur_cache();
5114 xfs_inobt_destroy_cur_cache();
5115 xfs_bmbt_destroy_cur_cache();
5116 xfs_rmapbt_destroy_cur_cache();
5117 xfs_refcountbt_destroy_cur_cache();
5118 }
5119