1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * zswap.c - zswap driver file
4 *
5 * zswap is a backend for frontswap that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
10 *
11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/frontswap.h>
24 #include <linux/rbtree.h>
25 #include <linux/swap.h>
26 #include <linux/crypto.h>
27 #include <linux/scatterlist.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38
39 #include "swap.h"
40
41 /*********************************
42 * statistics
43 **********************************/
44 /* Total bytes used by the compressed storage */
45 u64 zswap_pool_total_size;
46 /* The number of compressed pages currently stored in zswap */
47 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
48 /* The number of same-value filled pages currently stored in zswap */
49 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
50
51 /*
52 * The statistics below are not protected from concurrent access for
53 * performance reasons so they may not be a 100% accurate. However,
54 * they do provide useful information on roughly how many times a
55 * certain event is occurring.
56 */
57
58 /* Pool limit was hit (see zswap_max_pool_percent) */
59 static u64 zswap_pool_limit_hit;
60 /* Pages written back when pool limit was reached */
61 static u64 zswap_written_back_pages;
62 /* Store failed due to a reclaim failure after pool limit was reached */
63 static u64 zswap_reject_reclaim_fail;
64 /* Compressed page was too big for the allocator to (optimally) store */
65 static u64 zswap_reject_compress_poor;
66 /* Store failed because underlying allocator could not get memory */
67 static u64 zswap_reject_alloc_fail;
68 /* Store failed because the entry metadata could not be allocated (rare) */
69 static u64 zswap_reject_kmemcache_fail;
70 /* Duplicate store was encountered (rare) */
71 static u64 zswap_duplicate_entry;
72
73 /* Shrinker work queue */
74 static struct workqueue_struct *shrink_wq;
75 /* Pool limit was hit, we need to calm down */
76 static bool zswap_pool_reached_full;
77
78 /*********************************
79 * tunables
80 **********************************/
81
82 #define ZSWAP_PARAM_UNSET ""
83
84 /* Enable/disable zswap */
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87 const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89 .set = zswap_enabled_param_set,
90 .get = param_get_bool,
91 };
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97 const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99 .set = zswap_compressor_param_set,
100 .get = param_get_charp,
101 .free = param_free_charp,
102 };
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104 &zswap_compressor, 0644);
105
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110 .set = zswap_zpool_param_set,
111 .get = param_get_charp,
112 .free = param_free_charp,
113 };
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123 uint, 0644);
124
125 /*
126 * Enable/disable handling same-value filled pages (enabled by default).
127 * If disabled every page is considered non-same-value filled.
128 */
129 static bool zswap_same_filled_pages_enabled = true;
130 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
131 bool, 0644);
132
133 /* Enable/disable handling non-same-value filled pages (enabled by default) */
134 static bool zswap_non_same_filled_pages_enabled = true;
135 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
136 bool, 0644);
137
138 /*********************************
139 * data structures
140 **********************************/
141
142 struct crypto_acomp_ctx {
143 struct crypto_acomp *acomp;
144 struct acomp_req *req;
145 struct crypto_wait wait;
146 u8 *dstmem;
147 struct mutex *mutex;
148 };
149
150 struct zswap_pool {
151 struct zpool *zpool;
152 struct crypto_acomp_ctx __percpu *acomp_ctx;
153 struct kref kref;
154 struct list_head list;
155 struct work_struct release_work;
156 struct work_struct shrink_work;
157 struct hlist_node node;
158 char tfm_name[CRYPTO_MAX_ALG_NAME];
159 };
160
161 /*
162 * struct zswap_entry
163 *
164 * This structure contains the metadata for tracking a single compressed
165 * page within zswap.
166 *
167 * rbnode - links the entry into red-black tree for the appropriate swap type
168 * offset - the swap offset for the entry. Index into the red-black tree.
169 * refcount - the number of outstanding reference to the entry. This is needed
170 * to protect against premature freeing of the entry by code
171 * concurrent calls to load, invalidate, and writeback. The lock
172 * for the zswap_tree structure that contains the entry must
173 * be held while changing the refcount. Since the lock must
174 * be held, there is no reason to also make refcount atomic.
175 * length - the length in bytes of the compressed page data. Needed during
176 * decompression. For a same value filled page length is 0.
177 * pool - the zswap_pool the entry's data is in
178 * handle - zpool allocation handle that stores the compressed page data
179 * value - value of the same-value filled pages which have same content
180 */
181 struct zswap_entry {
182 struct rb_node rbnode;
183 pgoff_t offset;
184 int refcount;
185 unsigned int length;
186 struct zswap_pool *pool;
187 union {
188 unsigned long handle;
189 unsigned long value;
190 };
191 struct obj_cgroup *objcg;
192 };
193
194 struct zswap_header {
195 swp_entry_t swpentry;
196 };
197
198 /*
199 * The tree lock in the zswap_tree struct protects a few things:
200 * - the rbtree
201 * - the refcount field of each entry in the tree
202 */
203 struct zswap_tree {
204 struct rb_root rbroot;
205 spinlock_t lock;
206 };
207
208 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
209
210 /* RCU-protected iteration */
211 static LIST_HEAD(zswap_pools);
212 /* protects zswap_pools list modification */
213 static DEFINE_SPINLOCK(zswap_pools_lock);
214 /* pool counter to provide unique names to zpool */
215 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
216
217 /* used by param callback function */
218 static bool zswap_init_started;
219
220 /* fatal error during init */
221 static bool zswap_init_failed;
222
223 /* init completed, but couldn't create the initial pool */
224 static bool zswap_has_pool;
225
226 /*********************************
227 * helpers and fwd declarations
228 **********************************/
229
230 #define zswap_pool_debug(msg, p) \
231 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
232 zpool_get_type((p)->zpool))
233
234 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
235 static int zswap_pool_get(struct zswap_pool *pool);
236 static void zswap_pool_put(struct zswap_pool *pool);
237
238 static const struct zpool_ops zswap_zpool_ops = {
239 .evict = zswap_writeback_entry
240 };
241
zswap_is_full(void)242 static bool zswap_is_full(void)
243 {
244 return totalram_pages() * zswap_max_pool_percent / 100 <
245 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
246 }
247
zswap_can_accept(void)248 static bool zswap_can_accept(void)
249 {
250 return totalram_pages() * zswap_accept_thr_percent / 100 *
251 zswap_max_pool_percent / 100 >
252 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
253 }
254
zswap_update_total_size(void)255 static void zswap_update_total_size(void)
256 {
257 struct zswap_pool *pool;
258 u64 total = 0;
259
260 rcu_read_lock();
261
262 list_for_each_entry_rcu(pool, &zswap_pools, list)
263 total += zpool_get_total_size(pool->zpool);
264
265 rcu_read_unlock();
266
267 zswap_pool_total_size = total;
268 }
269
270 /*********************************
271 * zswap entry functions
272 **********************************/
273 static struct kmem_cache *zswap_entry_cache;
274
zswap_entry_cache_create(void)275 static int __init zswap_entry_cache_create(void)
276 {
277 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
278 return zswap_entry_cache == NULL;
279 }
280
zswap_entry_cache_destroy(void)281 static void __init zswap_entry_cache_destroy(void)
282 {
283 kmem_cache_destroy(zswap_entry_cache);
284 }
285
zswap_entry_cache_alloc(gfp_t gfp)286 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
287 {
288 struct zswap_entry *entry;
289 entry = kmem_cache_alloc(zswap_entry_cache, gfp);
290 if (!entry)
291 return NULL;
292 entry->refcount = 1;
293 RB_CLEAR_NODE(&entry->rbnode);
294 return entry;
295 }
296
zswap_entry_cache_free(struct zswap_entry * entry)297 static void zswap_entry_cache_free(struct zswap_entry *entry)
298 {
299 kmem_cache_free(zswap_entry_cache, entry);
300 }
301
302 /*********************************
303 * rbtree functions
304 **********************************/
zswap_rb_search(struct rb_root * root,pgoff_t offset)305 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
306 {
307 struct rb_node *node = root->rb_node;
308 struct zswap_entry *entry;
309
310 while (node) {
311 entry = rb_entry(node, struct zswap_entry, rbnode);
312 if (entry->offset > offset)
313 node = node->rb_left;
314 else if (entry->offset < offset)
315 node = node->rb_right;
316 else
317 return entry;
318 }
319 return NULL;
320 }
321
322 /*
323 * In the case that a entry with the same offset is found, a pointer to
324 * the existing entry is stored in dupentry and the function returns -EEXIST
325 */
zswap_rb_insert(struct rb_root * root,struct zswap_entry * entry,struct zswap_entry ** dupentry)326 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
327 struct zswap_entry **dupentry)
328 {
329 struct rb_node **link = &root->rb_node, *parent = NULL;
330 struct zswap_entry *myentry;
331
332 while (*link) {
333 parent = *link;
334 myentry = rb_entry(parent, struct zswap_entry, rbnode);
335 if (myentry->offset > entry->offset)
336 link = &(*link)->rb_left;
337 else if (myentry->offset < entry->offset)
338 link = &(*link)->rb_right;
339 else {
340 *dupentry = myentry;
341 return -EEXIST;
342 }
343 }
344 rb_link_node(&entry->rbnode, parent, link);
345 rb_insert_color(&entry->rbnode, root);
346 return 0;
347 }
348
zswap_rb_erase(struct rb_root * root,struct zswap_entry * entry)349 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
350 {
351 if (!RB_EMPTY_NODE(&entry->rbnode)) {
352 rb_erase(&entry->rbnode, root);
353 RB_CLEAR_NODE(&entry->rbnode);
354 }
355 }
356
357 /*
358 * Carries out the common pattern of freeing and entry's zpool allocation,
359 * freeing the entry itself, and decrementing the number of stored pages.
360 */
zswap_free_entry(struct zswap_entry * entry)361 static void zswap_free_entry(struct zswap_entry *entry)
362 {
363 if (entry->objcg) {
364 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
365 obj_cgroup_put(entry->objcg);
366 }
367 if (!entry->length)
368 atomic_dec(&zswap_same_filled_pages);
369 else {
370 zpool_free(entry->pool->zpool, entry->handle);
371 zswap_pool_put(entry->pool);
372 }
373 zswap_entry_cache_free(entry);
374 atomic_dec(&zswap_stored_pages);
375 zswap_update_total_size();
376 }
377
378 /* caller must hold the tree lock */
zswap_entry_get(struct zswap_entry * entry)379 static void zswap_entry_get(struct zswap_entry *entry)
380 {
381 entry->refcount++;
382 }
383
384 /* caller must hold the tree lock
385 * remove from the tree and free it, if nobody reference the entry
386 */
zswap_entry_put(struct zswap_tree * tree,struct zswap_entry * entry)387 static void zswap_entry_put(struct zswap_tree *tree,
388 struct zswap_entry *entry)
389 {
390 int refcount = --entry->refcount;
391
392 BUG_ON(refcount < 0);
393 if (refcount == 0) {
394 zswap_rb_erase(&tree->rbroot, entry);
395 zswap_free_entry(entry);
396 }
397 }
398
399 /* caller must hold the tree lock */
zswap_entry_find_get(struct rb_root * root,pgoff_t offset)400 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
401 pgoff_t offset)
402 {
403 struct zswap_entry *entry;
404
405 entry = zswap_rb_search(root, offset);
406 if (entry)
407 zswap_entry_get(entry);
408
409 return entry;
410 }
411
412 /*********************************
413 * per-cpu code
414 **********************************/
415 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
416 /*
417 * If users dynamically change the zpool type and compressor at runtime, i.e.
418 * zswap is running, zswap can have more than one zpool on one cpu, but they
419 * are sharing dtsmem. So we need this mutex to be per-cpu.
420 */
421 static DEFINE_PER_CPU(struct mutex *, zswap_mutex);
422
zswap_dstmem_prepare(unsigned int cpu)423 static int zswap_dstmem_prepare(unsigned int cpu)
424 {
425 struct mutex *mutex;
426 u8 *dst;
427
428 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
429 if (!dst)
430 return -ENOMEM;
431
432 mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu));
433 if (!mutex) {
434 kfree(dst);
435 return -ENOMEM;
436 }
437
438 mutex_init(mutex);
439 per_cpu(zswap_dstmem, cpu) = dst;
440 per_cpu(zswap_mutex, cpu) = mutex;
441 return 0;
442 }
443
zswap_dstmem_dead(unsigned int cpu)444 static int zswap_dstmem_dead(unsigned int cpu)
445 {
446 struct mutex *mutex;
447 u8 *dst;
448
449 mutex = per_cpu(zswap_mutex, cpu);
450 kfree(mutex);
451 per_cpu(zswap_mutex, cpu) = NULL;
452
453 dst = per_cpu(zswap_dstmem, cpu);
454 kfree(dst);
455 per_cpu(zswap_dstmem, cpu) = NULL;
456
457 return 0;
458 }
459
zswap_cpu_comp_prepare(unsigned int cpu,struct hlist_node * node)460 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
461 {
462 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
463 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
464 struct crypto_acomp *acomp;
465 struct acomp_req *req;
466
467 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
468 if (IS_ERR(acomp)) {
469 pr_err("could not alloc crypto acomp %s : %ld\n",
470 pool->tfm_name, PTR_ERR(acomp));
471 return PTR_ERR(acomp);
472 }
473 acomp_ctx->acomp = acomp;
474
475 req = acomp_request_alloc(acomp_ctx->acomp);
476 if (!req) {
477 pr_err("could not alloc crypto acomp_request %s\n",
478 pool->tfm_name);
479 crypto_free_acomp(acomp_ctx->acomp);
480 return -ENOMEM;
481 }
482 acomp_ctx->req = req;
483
484 crypto_init_wait(&acomp_ctx->wait);
485 /*
486 * if the backend of acomp is async zip, crypto_req_done() will wakeup
487 * crypto_wait_req(); if the backend of acomp is scomp, the callback
488 * won't be called, crypto_wait_req() will return without blocking.
489 */
490 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
491 crypto_req_done, &acomp_ctx->wait);
492
493 acomp_ctx->mutex = per_cpu(zswap_mutex, cpu);
494 acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu);
495
496 return 0;
497 }
498
zswap_cpu_comp_dead(unsigned int cpu,struct hlist_node * node)499 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
500 {
501 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
502 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
503
504 if (!IS_ERR_OR_NULL(acomp_ctx)) {
505 if (!IS_ERR_OR_NULL(acomp_ctx->req))
506 acomp_request_free(acomp_ctx->req);
507 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
508 crypto_free_acomp(acomp_ctx->acomp);
509 }
510
511 return 0;
512 }
513
514 /*********************************
515 * pool functions
516 **********************************/
517
__zswap_pool_current(void)518 static struct zswap_pool *__zswap_pool_current(void)
519 {
520 struct zswap_pool *pool;
521
522 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
523 WARN_ONCE(!pool && zswap_has_pool,
524 "%s: no page storage pool!\n", __func__);
525
526 return pool;
527 }
528
zswap_pool_current(void)529 static struct zswap_pool *zswap_pool_current(void)
530 {
531 assert_spin_locked(&zswap_pools_lock);
532
533 return __zswap_pool_current();
534 }
535
zswap_pool_current_get(void)536 static struct zswap_pool *zswap_pool_current_get(void)
537 {
538 struct zswap_pool *pool;
539
540 rcu_read_lock();
541
542 pool = __zswap_pool_current();
543 if (!zswap_pool_get(pool))
544 pool = NULL;
545
546 rcu_read_unlock();
547
548 return pool;
549 }
550
zswap_pool_last_get(void)551 static struct zswap_pool *zswap_pool_last_get(void)
552 {
553 struct zswap_pool *pool, *last = NULL;
554
555 rcu_read_lock();
556
557 list_for_each_entry_rcu(pool, &zswap_pools, list)
558 last = pool;
559 WARN_ONCE(!last && zswap_has_pool,
560 "%s: no page storage pool!\n", __func__);
561 if (!zswap_pool_get(last))
562 last = NULL;
563
564 rcu_read_unlock();
565
566 return last;
567 }
568
569 /* type and compressor must be null-terminated */
zswap_pool_find_get(char * type,char * compressor)570 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
571 {
572 struct zswap_pool *pool;
573
574 assert_spin_locked(&zswap_pools_lock);
575
576 list_for_each_entry_rcu(pool, &zswap_pools, list) {
577 if (strcmp(pool->tfm_name, compressor))
578 continue;
579 if (strcmp(zpool_get_type(pool->zpool), type))
580 continue;
581 /* if we can't get it, it's about to be destroyed */
582 if (!zswap_pool_get(pool))
583 continue;
584 return pool;
585 }
586
587 return NULL;
588 }
589
shrink_worker(struct work_struct * w)590 static void shrink_worker(struct work_struct *w)
591 {
592 struct zswap_pool *pool = container_of(w, typeof(*pool),
593 shrink_work);
594
595 if (zpool_shrink(pool->zpool, 1, NULL))
596 zswap_reject_reclaim_fail++;
597 zswap_pool_put(pool);
598 }
599
zswap_pool_create(char * type,char * compressor)600 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
601 {
602 struct zswap_pool *pool;
603 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
604 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
605 int ret;
606
607 if (!zswap_has_pool) {
608 /* if either are unset, pool initialization failed, and we
609 * need both params to be set correctly before trying to
610 * create a pool.
611 */
612 if (!strcmp(type, ZSWAP_PARAM_UNSET))
613 return NULL;
614 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
615 return NULL;
616 }
617
618 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
619 if (!pool)
620 return NULL;
621
622 /* unique name for each pool specifically required by zsmalloc */
623 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
624
625 pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
626 if (!pool->zpool) {
627 pr_err("%s zpool not available\n", type);
628 goto error;
629 }
630 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
631
632 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
633
634 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
635 if (!pool->acomp_ctx) {
636 pr_err("percpu alloc failed\n");
637 goto error;
638 }
639
640 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
641 &pool->node);
642 if (ret)
643 goto error;
644 pr_debug("using %s compressor\n", pool->tfm_name);
645
646 /* being the current pool takes 1 ref; this func expects the
647 * caller to always add the new pool as the current pool
648 */
649 kref_init(&pool->kref);
650 INIT_LIST_HEAD(&pool->list);
651 INIT_WORK(&pool->shrink_work, shrink_worker);
652
653 zswap_pool_debug("created", pool);
654
655 return pool;
656
657 error:
658 if (pool->acomp_ctx)
659 free_percpu(pool->acomp_ctx);
660 if (pool->zpool)
661 zpool_destroy_pool(pool->zpool);
662 kfree(pool);
663 return NULL;
664 }
665
__zswap_pool_create_fallback(void)666 static __init struct zswap_pool *__zswap_pool_create_fallback(void)
667 {
668 bool has_comp, has_zpool;
669
670 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
671 if (!has_comp && strcmp(zswap_compressor,
672 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
673 pr_err("compressor %s not available, using default %s\n",
674 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
675 param_free_charp(&zswap_compressor);
676 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
677 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
678 }
679 if (!has_comp) {
680 pr_err("default compressor %s not available\n",
681 zswap_compressor);
682 param_free_charp(&zswap_compressor);
683 zswap_compressor = ZSWAP_PARAM_UNSET;
684 }
685
686 has_zpool = zpool_has_pool(zswap_zpool_type);
687 if (!has_zpool && strcmp(zswap_zpool_type,
688 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
689 pr_err("zpool %s not available, using default %s\n",
690 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
691 param_free_charp(&zswap_zpool_type);
692 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
693 has_zpool = zpool_has_pool(zswap_zpool_type);
694 }
695 if (!has_zpool) {
696 pr_err("default zpool %s not available\n",
697 zswap_zpool_type);
698 param_free_charp(&zswap_zpool_type);
699 zswap_zpool_type = ZSWAP_PARAM_UNSET;
700 }
701
702 if (!has_comp || !has_zpool)
703 return NULL;
704
705 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
706 }
707
zswap_pool_destroy(struct zswap_pool * pool)708 static void zswap_pool_destroy(struct zswap_pool *pool)
709 {
710 zswap_pool_debug("destroying", pool);
711
712 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
713 free_percpu(pool->acomp_ctx);
714 zpool_destroy_pool(pool->zpool);
715 kfree(pool);
716 }
717
zswap_pool_get(struct zswap_pool * pool)718 static int __must_check zswap_pool_get(struct zswap_pool *pool)
719 {
720 if (!pool)
721 return 0;
722
723 return kref_get_unless_zero(&pool->kref);
724 }
725
__zswap_pool_release(struct work_struct * work)726 static void __zswap_pool_release(struct work_struct *work)
727 {
728 struct zswap_pool *pool = container_of(work, typeof(*pool),
729 release_work);
730
731 synchronize_rcu();
732
733 /* nobody should have been able to get a kref... */
734 WARN_ON(kref_get_unless_zero(&pool->kref));
735
736 /* pool is now off zswap_pools list and has no references. */
737 zswap_pool_destroy(pool);
738 }
739
__zswap_pool_empty(struct kref * kref)740 static void __zswap_pool_empty(struct kref *kref)
741 {
742 struct zswap_pool *pool;
743
744 pool = container_of(kref, typeof(*pool), kref);
745
746 spin_lock(&zswap_pools_lock);
747
748 WARN_ON(pool == zswap_pool_current());
749
750 list_del_rcu(&pool->list);
751
752 INIT_WORK(&pool->release_work, __zswap_pool_release);
753 schedule_work(&pool->release_work);
754
755 spin_unlock(&zswap_pools_lock);
756 }
757
zswap_pool_put(struct zswap_pool * pool)758 static void zswap_pool_put(struct zswap_pool *pool)
759 {
760 kref_put(&pool->kref, __zswap_pool_empty);
761 }
762
763 /*********************************
764 * param callbacks
765 **********************************/
766
767 /* val must be a null-terminated string */
__zswap_param_set(const char * val,const struct kernel_param * kp,char * type,char * compressor)768 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
769 char *type, char *compressor)
770 {
771 struct zswap_pool *pool, *put_pool = NULL;
772 char *s = strstrip((char *)val);
773 int ret;
774
775 if (zswap_init_failed) {
776 pr_err("can't set param, initialization failed\n");
777 return -ENODEV;
778 }
779
780 /* no change required */
781 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
782 return 0;
783
784 /* if this is load-time (pre-init) param setting,
785 * don't create a pool; that's done during init.
786 */
787 if (!zswap_init_started)
788 return param_set_charp(s, kp);
789
790 if (!type) {
791 if (!zpool_has_pool(s)) {
792 pr_err("zpool %s not available\n", s);
793 return -ENOENT;
794 }
795 type = s;
796 } else if (!compressor) {
797 if (!crypto_has_acomp(s, 0, 0)) {
798 pr_err("compressor %s not available\n", s);
799 return -ENOENT;
800 }
801 compressor = s;
802 } else {
803 WARN_ON(1);
804 return -EINVAL;
805 }
806
807 spin_lock(&zswap_pools_lock);
808
809 pool = zswap_pool_find_get(type, compressor);
810 if (pool) {
811 zswap_pool_debug("using existing", pool);
812 WARN_ON(pool == zswap_pool_current());
813 list_del_rcu(&pool->list);
814 }
815
816 spin_unlock(&zswap_pools_lock);
817
818 if (!pool)
819 pool = zswap_pool_create(type, compressor);
820
821 if (pool)
822 ret = param_set_charp(s, kp);
823 else
824 ret = -EINVAL;
825
826 spin_lock(&zswap_pools_lock);
827
828 if (!ret) {
829 put_pool = zswap_pool_current();
830 list_add_rcu(&pool->list, &zswap_pools);
831 zswap_has_pool = true;
832 } else if (pool) {
833 /* add the possibly pre-existing pool to the end of the pools
834 * list; if it's new (and empty) then it'll be removed and
835 * destroyed by the put after we drop the lock
836 */
837 list_add_tail_rcu(&pool->list, &zswap_pools);
838 put_pool = pool;
839 }
840
841 spin_unlock(&zswap_pools_lock);
842
843 if (!zswap_has_pool && !pool) {
844 /* if initial pool creation failed, and this pool creation also
845 * failed, maybe both compressor and zpool params were bad.
846 * Allow changing this param, so pool creation will succeed
847 * when the other param is changed. We already verified this
848 * param is ok in the zpool_has_pool() or crypto_has_acomp()
849 * checks above.
850 */
851 ret = param_set_charp(s, kp);
852 }
853
854 /* drop the ref from either the old current pool,
855 * or the new pool we failed to add
856 */
857 if (put_pool)
858 zswap_pool_put(put_pool);
859
860 return ret;
861 }
862
zswap_compressor_param_set(const char * val,const struct kernel_param * kp)863 static int zswap_compressor_param_set(const char *val,
864 const struct kernel_param *kp)
865 {
866 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
867 }
868
zswap_zpool_param_set(const char * val,const struct kernel_param * kp)869 static int zswap_zpool_param_set(const char *val,
870 const struct kernel_param *kp)
871 {
872 return __zswap_param_set(val, kp, NULL, zswap_compressor);
873 }
874
zswap_enabled_param_set(const char * val,const struct kernel_param * kp)875 static int zswap_enabled_param_set(const char *val,
876 const struct kernel_param *kp)
877 {
878 if (zswap_init_failed) {
879 pr_err("can't enable, initialization failed\n");
880 return -ENODEV;
881 }
882 if (!zswap_has_pool && zswap_init_started) {
883 pr_err("can't enable, no pool configured\n");
884 return -ENODEV;
885 }
886
887 return param_set_bool(val, kp);
888 }
889
890 /*********************************
891 * writeback code
892 **********************************/
893 /* return enum for zswap_get_swap_cache_page */
894 enum zswap_get_swap_ret {
895 ZSWAP_SWAPCACHE_NEW,
896 ZSWAP_SWAPCACHE_EXIST,
897 ZSWAP_SWAPCACHE_FAIL,
898 };
899
900 /*
901 * zswap_get_swap_cache_page
902 *
903 * This is an adaption of read_swap_cache_async()
904 *
905 * This function tries to find a page with the given swap entry
906 * in the swapper_space address space (the swap cache). If the page
907 * is found, it is returned in retpage. Otherwise, a page is allocated,
908 * added to the swap cache, and returned in retpage.
909 *
910 * If success, the swap cache page is returned in retpage
911 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
912 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
913 * the new page is added to swapcache and locked
914 * Returns ZSWAP_SWAPCACHE_FAIL on error
915 */
zswap_get_swap_cache_page(swp_entry_t entry,struct page ** retpage)916 static int zswap_get_swap_cache_page(swp_entry_t entry,
917 struct page **retpage)
918 {
919 bool page_was_allocated;
920
921 *retpage = __read_swap_cache_async(entry, GFP_KERNEL,
922 NULL, 0, &page_was_allocated);
923 if (page_was_allocated)
924 return ZSWAP_SWAPCACHE_NEW;
925 if (!*retpage)
926 return ZSWAP_SWAPCACHE_FAIL;
927 return ZSWAP_SWAPCACHE_EXIST;
928 }
929
930 /*
931 * Attempts to free an entry by adding a page to the swap cache,
932 * decompressing the entry data into the page, and issuing a
933 * bio write to write the page back to the swap device.
934 *
935 * This can be thought of as a "resumed writeback" of the page
936 * to the swap device. We are basically resuming the same swap
937 * writeback path that was intercepted with the frontswap_store()
938 * in the first place. After the page has been decompressed into
939 * the swap cache, the compressed version stored by zswap can be
940 * freed.
941 */
zswap_writeback_entry(struct zpool * pool,unsigned long handle)942 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
943 {
944 struct zswap_header *zhdr;
945 swp_entry_t swpentry;
946 struct zswap_tree *tree;
947 pgoff_t offset;
948 struct zswap_entry *entry;
949 struct page *page;
950 struct scatterlist input, output;
951 struct crypto_acomp_ctx *acomp_ctx;
952
953 u8 *src, *tmp = NULL;
954 unsigned int dlen;
955 int ret;
956 struct writeback_control wbc = {
957 .sync_mode = WB_SYNC_NONE,
958 };
959
960 if (!zpool_can_sleep_mapped(pool)) {
961 tmp = kmalloc(PAGE_SIZE, GFP_KERNEL);
962 if (!tmp)
963 return -ENOMEM;
964 }
965
966 /* extract swpentry from data */
967 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
968 swpentry = zhdr->swpentry; /* here */
969 tree = zswap_trees[swp_type(swpentry)];
970 offset = swp_offset(swpentry);
971 zpool_unmap_handle(pool, handle);
972
973 /* find and ref zswap entry */
974 spin_lock(&tree->lock);
975 entry = zswap_entry_find_get(&tree->rbroot, offset);
976 if (!entry) {
977 /* entry was invalidated */
978 spin_unlock(&tree->lock);
979 kfree(tmp);
980 return 0;
981 }
982 spin_unlock(&tree->lock);
983 BUG_ON(offset != entry->offset);
984
985 /* try to allocate swap cache page */
986 switch (zswap_get_swap_cache_page(swpentry, &page)) {
987 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
988 ret = -ENOMEM;
989 goto fail;
990
991 case ZSWAP_SWAPCACHE_EXIST:
992 /* page is already in the swap cache, ignore for now */
993 put_page(page);
994 ret = -EEXIST;
995 goto fail;
996
997 case ZSWAP_SWAPCACHE_NEW: /* page is locked */
998 /* decompress */
999 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1000 dlen = PAGE_SIZE;
1001
1002 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
1003 src = (u8 *)zhdr + sizeof(struct zswap_header);
1004 if (!zpool_can_sleep_mapped(pool)) {
1005 memcpy(tmp, src, entry->length);
1006 src = tmp;
1007 zpool_unmap_handle(pool, handle);
1008 }
1009
1010 mutex_lock(acomp_ctx->mutex);
1011 sg_init_one(&input, src, entry->length);
1012 sg_init_table(&output, 1);
1013 sg_set_page(&output, page, PAGE_SIZE, 0);
1014 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1015 ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1016 dlen = acomp_ctx->req->dlen;
1017 mutex_unlock(acomp_ctx->mutex);
1018
1019 if (!zpool_can_sleep_mapped(pool))
1020 kfree(tmp);
1021 else
1022 zpool_unmap_handle(pool, handle);
1023
1024 BUG_ON(ret);
1025 BUG_ON(dlen != PAGE_SIZE);
1026
1027 /* page is up to date */
1028 SetPageUptodate(page);
1029 }
1030
1031 /* move it to the tail of the inactive list after end_writeback */
1032 SetPageReclaim(page);
1033
1034 /* start writeback */
1035 __swap_writepage(page, &wbc);
1036 put_page(page);
1037 zswap_written_back_pages++;
1038
1039 spin_lock(&tree->lock);
1040 /* drop local reference */
1041 zswap_entry_put(tree, entry);
1042
1043 /*
1044 * There are two possible situations for entry here:
1045 * (1) refcount is 1(normal case), entry is valid and on the tree
1046 * (2) refcount is 0, entry is freed and not on the tree
1047 * because invalidate happened during writeback
1048 * search the tree and free the entry if find entry
1049 */
1050 if (entry == zswap_rb_search(&tree->rbroot, offset))
1051 zswap_entry_put(tree, entry);
1052 spin_unlock(&tree->lock);
1053
1054 return ret;
1055
1056 fail:
1057 if (!zpool_can_sleep_mapped(pool))
1058 kfree(tmp);
1059
1060 /*
1061 * if we get here due to ZSWAP_SWAPCACHE_EXIST
1062 * a load may be happening concurrently.
1063 * it is safe and okay to not free the entry.
1064 * if we free the entry in the following put
1065 * it is also okay to return !0
1066 */
1067 spin_lock(&tree->lock);
1068 zswap_entry_put(tree, entry);
1069 spin_unlock(&tree->lock);
1070
1071 return ret;
1072 }
1073
zswap_is_page_same_filled(void * ptr,unsigned long * value)1074 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1075 {
1076 unsigned int pos;
1077 unsigned long *page;
1078
1079 page = (unsigned long *)ptr;
1080 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
1081 if (page[pos] != page[0])
1082 return 0;
1083 }
1084 *value = page[0];
1085 return 1;
1086 }
1087
zswap_fill_page(void * ptr,unsigned long value)1088 static void zswap_fill_page(void *ptr, unsigned long value)
1089 {
1090 unsigned long *page;
1091
1092 page = (unsigned long *)ptr;
1093 memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1094 }
1095
1096 /*********************************
1097 * frontswap hooks
1098 **********************************/
1099 /* attempts to compress and store an single page */
zswap_frontswap_store(unsigned type,pgoff_t offset,struct page * page)1100 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
1101 struct page *page)
1102 {
1103 struct zswap_tree *tree = zswap_trees[type];
1104 struct zswap_entry *entry, *dupentry;
1105 struct scatterlist input, output;
1106 struct crypto_acomp_ctx *acomp_ctx;
1107 struct obj_cgroup *objcg = NULL;
1108 struct zswap_pool *pool;
1109 int ret;
1110 unsigned int hlen, dlen = PAGE_SIZE;
1111 unsigned long handle, value;
1112 char *buf;
1113 u8 *src, *dst;
1114 struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) };
1115 gfp_t gfp;
1116
1117 /* THP isn't supported */
1118 if (PageTransHuge(page)) {
1119 ret = -EINVAL;
1120 goto reject;
1121 }
1122
1123 if (!zswap_enabled || !tree) {
1124 ret = -ENODEV;
1125 goto reject;
1126 }
1127
1128 objcg = get_obj_cgroup_from_page(page);
1129 if (objcg && !obj_cgroup_may_zswap(objcg))
1130 goto shrink;
1131
1132 /* reclaim space if needed */
1133 if (zswap_is_full()) {
1134 zswap_pool_limit_hit++;
1135 zswap_pool_reached_full = true;
1136 goto shrink;
1137 }
1138
1139 if (zswap_pool_reached_full) {
1140 if (!zswap_can_accept()) {
1141 ret = -ENOMEM;
1142 goto reject;
1143 } else
1144 zswap_pool_reached_full = false;
1145 }
1146
1147 /* allocate entry */
1148 entry = zswap_entry_cache_alloc(GFP_KERNEL);
1149 if (!entry) {
1150 zswap_reject_kmemcache_fail++;
1151 ret = -ENOMEM;
1152 goto reject;
1153 }
1154
1155 if (zswap_same_filled_pages_enabled) {
1156 src = kmap_atomic(page);
1157 if (zswap_is_page_same_filled(src, &value)) {
1158 kunmap_atomic(src);
1159 entry->offset = offset;
1160 entry->length = 0;
1161 entry->value = value;
1162 atomic_inc(&zswap_same_filled_pages);
1163 goto insert_entry;
1164 }
1165 kunmap_atomic(src);
1166 }
1167
1168 if (!zswap_non_same_filled_pages_enabled) {
1169 ret = -EINVAL;
1170 goto freepage;
1171 }
1172
1173 /* if entry is successfully added, it keeps the reference */
1174 entry->pool = zswap_pool_current_get();
1175 if (!entry->pool) {
1176 ret = -EINVAL;
1177 goto freepage;
1178 }
1179
1180 /* compress */
1181 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1182
1183 mutex_lock(acomp_ctx->mutex);
1184
1185 dst = acomp_ctx->dstmem;
1186 sg_init_table(&input, 1);
1187 sg_set_page(&input, page, PAGE_SIZE, 0);
1188
1189 /* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */
1190 sg_init_one(&output, dst, PAGE_SIZE * 2);
1191 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1192 /*
1193 * it maybe looks a little bit silly that we send an asynchronous request,
1194 * then wait for its completion synchronously. This makes the process look
1195 * synchronous in fact.
1196 * Theoretically, acomp supports users send multiple acomp requests in one
1197 * acomp instance, then get those requests done simultaneously. but in this
1198 * case, frontswap actually does store and load page by page, there is no
1199 * existing method to send the second page before the first page is done
1200 * in one thread doing frontswap.
1201 * but in different threads running on different cpu, we have different
1202 * acomp instance, so multiple threads can do (de)compression in parallel.
1203 */
1204 ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1205 dlen = acomp_ctx->req->dlen;
1206
1207 if (ret) {
1208 ret = -EINVAL;
1209 goto put_dstmem;
1210 }
1211
1212 /* store */
1213 hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0;
1214 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1215 if (zpool_malloc_support_movable(entry->pool->zpool))
1216 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1217 ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle);
1218 if (ret == -ENOSPC) {
1219 zswap_reject_compress_poor++;
1220 goto put_dstmem;
1221 }
1222 if (ret) {
1223 zswap_reject_alloc_fail++;
1224 goto put_dstmem;
1225 }
1226 buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_WO);
1227 memcpy(buf, &zhdr, hlen);
1228 memcpy(buf + hlen, dst, dlen);
1229 zpool_unmap_handle(entry->pool->zpool, handle);
1230 mutex_unlock(acomp_ctx->mutex);
1231
1232 /* populate entry */
1233 entry->offset = offset;
1234 entry->handle = handle;
1235 entry->length = dlen;
1236
1237 insert_entry:
1238 entry->objcg = objcg;
1239 if (objcg) {
1240 obj_cgroup_charge_zswap(objcg, entry->length);
1241 /* Account before objcg ref is moved to tree */
1242 count_objcg_event(objcg, ZSWPOUT);
1243 }
1244
1245 /* map */
1246 spin_lock(&tree->lock);
1247 do {
1248 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1249 if (ret == -EEXIST) {
1250 zswap_duplicate_entry++;
1251 /* remove from rbtree */
1252 zswap_rb_erase(&tree->rbroot, dupentry);
1253 zswap_entry_put(tree, dupentry);
1254 }
1255 } while (ret == -EEXIST);
1256 spin_unlock(&tree->lock);
1257
1258 /* update stats */
1259 atomic_inc(&zswap_stored_pages);
1260 zswap_update_total_size();
1261 count_vm_event(ZSWPOUT);
1262
1263 return 0;
1264
1265 put_dstmem:
1266 mutex_unlock(acomp_ctx->mutex);
1267 zswap_pool_put(entry->pool);
1268 freepage:
1269 zswap_entry_cache_free(entry);
1270 reject:
1271 if (objcg)
1272 obj_cgroup_put(objcg);
1273 return ret;
1274
1275 shrink:
1276 pool = zswap_pool_last_get();
1277 if (pool)
1278 queue_work(shrink_wq, &pool->shrink_work);
1279 ret = -ENOMEM;
1280 goto reject;
1281 }
1282
1283 /*
1284 * returns 0 if the page was successfully decompressed
1285 * return -1 on entry not found or error
1286 */
zswap_frontswap_load(unsigned type,pgoff_t offset,struct page * page)1287 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1288 struct page *page)
1289 {
1290 struct zswap_tree *tree = zswap_trees[type];
1291 struct zswap_entry *entry;
1292 struct scatterlist input, output;
1293 struct crypto_acomp_ctx *acomp_ctx;
1294 u8 *src, *dst, *tmp;
1295 unsigned int dlen;
1296 int ret;
1297
1298 /* find */
1299 spin_lock(&tree->lock);
1300 entry = zswap_entry_find_get(&tree->rbroot, offset);
1301 if (!entry) {
1302 /* entry was written back */
1303 spin_unlock(&tree->lock);
1304 return -1;
1305 }
1306 spin_unlock(&tree->lock);
1307
1308 if (!entry->length) {
1309 dst = kmap_atomic(page);
1310 zswap_fill_page(dst, entry->value);
1311 kunmap_atomic(dst);
1312 ret = 0;
1313 goto stats;
1314 }
1315
1316 if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1317 tmp = kmalloc(entry->length, GFP_KERNEL);
1318 if (!tmp) {
1319 ret = -ENOMEM;
1320 goto freeentry;
1321 }
1322 }
1323
1324 /* decompress */
1325 dlen = PAGE_SIZE;
1326 src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO);
1327 if (zpool_evictable(entry->pool->zpool))
1328 src += sizeof(struct zswap_header);
1329
1330 if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1331 memcpy(tmp, src, entry->length);
1332 src = tmp;
1333 zpool_unmap_handle(entry->pool->zpool, entry->handle);
1334 }
1335
1336 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1337 mutex_lock(acomp_ctx->mutex);
1338 sg_init_one(&input, src, entry->length);
1339 sg_init_table(&output, 1);
1340 sg_set_page(&output, page, PAGE_SIZE, 0);
1341 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1342 ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1343 mutex_unlock(acomp_ctx->mutex);
1344
1345 if (zpool_can_sleep_mapped(entry->pool->zpool))
1346 zpool_unmap_handle(entry->pool->zpool, entry->handle);
1347 else
1348 kfree(tmp);
1349
1350 BUG_ON(ret);
1351 stats:
1352 count_vm_event(ZSWPIN);
1353 if (entry->objcg)
1354 count_objcg_event(entry->objcg, ZSWPIN);
1355 freeentry:
1356 spin_lock(&tree->lock);
1357 zswap_entry_put(tree, entry);
1358 spin_unlock(&tree->lock);
1359
1360 return ret;
1361 }
1362
1363 /* frees an entry in zswap */
zswap_frontswap_invalidate_page(unsigned type,pgoff_t offset)1364 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1365 {
1366 struct zswap_tree *tree = zswap_trees[type];
1367 struct zswap_entry *entry;
1368
1369 /* find */
1370 spin_lock(&tree->lock);
1371 entry = zswap_rb_search(&tree->rbroot, offset);
1372 if (!entry) {
1373 /* entry was written back */
1374 spin_unlock(&tree->lock);
1375 return;
1376 }
1377
1378 /* remove from rbtree */
1379 zswap_rb_erase(&tree->rbroot, entry);
1380
1381 /* drop the initial reference from entry creation */
1382 zswap_entry_put(tree, entry);
1383
1384 spin_unlock(&tree->lock);
1385 }
1386
1387 /* frees all zswap entries for the given swap type */
zswap_frontswap_invalidate_area(unsigned type)1388 static void zswap_frontswap_invalidate_area(unsigned type)
1389 {
1390 struct zswap_tree *tree = zswap_trees[type];
1391 struct zswap_entry *entry, *n;
1392
1393 if (!tree)
1394 return;
1395
1396 /* walk the tree and free everything */
1397 spin_lock(&tree->lock);
1398 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1399 zswap_free_entry(entry);
1400 tree->rbroot = RB_ROOT;
1401 spin_unlock(&tree->lock);
1402 kfree(tree);
1403 zswap_trees[type] = NULL;
1404 }
1405
zswap_frontswap_init(unsigned type)1406 static void zswap_frontswap_init(unsigned type)
1407 {
1408 struct zswap_tree *tree;
1409
1410 tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1411 if (!tree) {
1412 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1413 return;
1414 }
1415
1416 tree->rbroot = RB_ROOT;
1417 spin_lock_init(&tree->lock);
1418 zswap_trees[type] = tree;
1419 }
1420
1421 static const struct frontswap_ops zswap_frontswap_ops = {
1422 .store = zswap_frontswap_store,
1423 .load = zswap_frontswap_load,
1424 .invalidate_page = zswap_frontswap_invalidate_page,
1425 .invalidate_area = zswap_frontswap_invalidate_area,
1426 .init = zswap_frontswap_init
1427 };
1428
1429 /*********************************
1430 * debugfs functions
1431 **********************************/
1432 #ifdef CONFIG_DEBUG_FS
1433 #include <linux/debugfs.h>
1434
1435 static struct dentry *zswap_debugfs_root;
1436
zswap_debugfs_init(void)1437 static int __init zswap_debugfs_init(void)
1438 {
1439 if (!debugfs_initialized())
1440 return -ENODEV;
1441
1442 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1443
1444 debugfs_create_u64("pool_limit_hit", 0444,
1445 zswap_debugfs_root, &zswap_pool_limit_hit);
1446 debugfs_create_u64("reject_reclaim_fail", 0444,
1447 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1448 debugfs_create_u64("reject_alloc_fail", 0444,
1449 zswap_debugfs_root, &zswap_reject_alloc_fail);
1450 debugfs_create_u64("reject_kmemcache_fail", 0444,
1451 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1452 debugfs_create_u64("reject_compress_poor", 0444,
1453 zswap_debugfs_root, &zswap_reject_compress_poor);
1454 debugfs_create_u64("written_back_pages", 0444,
1455 zswap_debugfs_root, &zswap_written_back_pages);
1456 debugfs_create_u64("duplicate_entry", 0444,
1457 zswap_debugfs_root, &zswap_duplicate_entry);
1458 debugfs_create_u64("pool_total_size", 0444,
1459 zswap_debugfs_root, &zswap_pool_total_size);
1460 debugfs_create_atomic_t("stored_pages", 0444,
1461 zswap_debugfs_root, &zswap_stored_pages);
1462 debugfs_create_atomic_t("same_filled_pages", 0444,
1463 zswap_debugfs_root, &zswap_same_filled_pages);
1464
1465 return 0;
1466 }
1467 #else
zswap_debugfs_init(void)1468 static int __init zswap_debugfs_init(void)
1469 {
1470 return 0;
1471 }
1472 #endif
1473
1474 /*********************************
1475 * module init and exit
1476 **********************************/
init_zswap(void)1477 static int __init init_zswap(void)
1478 {
1479 struct zswap_pool *pool;
1480 int ret;
1481
1482 zswap_init_started = true;
1483
1484 if (zswap_entry_cache_create()) {
1485 pr_err("entry cache creation failed\n");
1486 goto cache_fail;
1487 }
1488
1489 ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1490 zswap_dstmem_prepare, zswap_dstmem_dead);
1491 if (ret) {
1492 pr_err("dstmem alloc failed\n");
1493 goto dstmem_fail;
1494 }
1495
1496 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1497 "mm/zswap_pool:prepare",
1498 zswap_cpu_comp_prepare,
1499 zswap_cpu_comp_dead);
1500 if (ret)
1501 goto hp_fail;
1502
1503 pool = __zswap_pool_create_fallback();
1504 if (pool) {
1505 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1506 zpool_get_type(pool->zpool));
1507 list_add(&pool->list, &zswap_pools);
1508 zswap_has_pool = true;
1509 } else {
1510 pr_err("pool creation failed\n");
1511 zswap_enabled = false;
1512 }
1513
1514 shrink_wq = create_workqueue("zswap-shrink");
1515 if (!shrink_wq)
1516 goto fallback_fail;
1517
1518 ret = frontswap_register_ops(&zswap_frontswap_ops);
1519 if (ret)
1520 goto destroy_wq;
1521 if (zswap_debugfs_init())
1522 pr_warn("debugfs initialization failed\n");
1523 return 0;
1524
1525 destroy_wq:
1526 destroy_workqueue(shrink_wq);
1527 fallback_fail:
1528 if (pool)
1529 zswap_pool_destroy(pool);
1530 hp_fail:
1531 cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1532 dstmem_fail:
1533 zswap_entry_cache_destroy();
1534 cache_fail:
1535 /* if built-in, we aren't unloaded on failure; don't allow use */
1536 zswap_init_failed = true;
1537 zswap_enabled = false;
1538 return -ENOMEM;
1539 }
1540 /* must be late so crypto has time to come up */
1541 late_initcall(init_zswap);
1542
1543 MODULE_LICENSE("GPL");
1544 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1545 MODULE_DESCRIPTION("Compressed cache for swap pages");
1546