1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  #ifndef _ASM_X86_INSN_H
3  #define _ASM_X86_INSN_H
4  /*
5   * x86 instruction analysis
6   *
7   * Copyright (C) IBM Corporation, 2009
8   */
9  
10  #include <asm/byteorder.h>
11  /* insn_attr_t is defined in inat.h */
12  #include "inat.h" /* __ignore_sync_check__ */
13  
14  #if defined(__BYTE_ORDER) ? __BYTE_ORDER == __LITTLE_ENDIAN : defined(__LITTLE_ENDIAN)
15  
16  struct insn_field {
17  	union {
18  		insn_value_t value;
19  		insn_byte_t bytes[4];
20  	};
21  	/* !0 if we've run insn_get_xxx() for this field */
22  	unsigned char got;
23  	unsigned char nbytes;
24  };
25  
insn_field_set(struct insn_field * p,insn_value_t v,unsigned char n)26  static inline void insn_field_set(struct insn_field *p, insn_value_t v,
27  				  unsigned char n)
28  {
29  	p->value = v;
30  	p->nbytes = n;
31  }
32  
insn_set_byte(struct insn_field * p,unsigned char n,insn_byte_t v)33  static inline void insn_set_byte(struct insn_field *p, unsigned char n,
34  				 insn_byte_t v)
35  {
36  	p->bytes[n] = v;
37  }
38  
39  #else
40  
41  struct insn_field {
42  	insn_value_t value;
43  	union {
44  		insn_value_t little;
45  		insn_byte_t bytes[4];
46  	};
47  	/* !0 if we've run insn_get_xxx() for this field */
48  	unsigned char got;
49  	unsigned char nbytes;
50  };
51  
insn_field_set(struct insn_field * p,insn_value_t v,unsigned char n)52  static inline void insn_field_set(struct insn_field *p, insn_value_t v,
53  				  unsigned char n)
54  {
55  	p->value = v;
56  	p->little = __cpu_to_le32(v);
57  	p->nbytes = n;
58  }
59  
insn_set_byte(struct insn_field * p,unsigned char n,insn_byte_t v)60  static inline void insn_set_byte(struct insn_field *p, unsigned char n,
61  				 insn_byte_t v)
62  {
63  	p->bytes[n] = v;
64  	p->value = __le32_to_cpu(p->little);
65  }
66  #endif
67  
68  struct insn {
69  	struct insn_field prefixes;	/*
70  					 * Prefixes
71  					 * prefixes.bytes[3]: last prefix
72  					 */
73  	struct insn_field rex_prefix;	/* REX prefix */
74  	struct insn_field vex_prefix;	/* VEX prefix */
75  	struct insn_field opcode;	/*
76  					 * opcode.bytes[0]: opcode1
77  					 * opcode.bytes[1]: opcode2
78  					 * opcode.bytes[2]: opcode3
79  					 */
80  	struct insn_field modrm;
81  	struct insn_field sib;
82  	struct insn_field displacement;
83  	union {
84  		struct insn_field immediate;
85  		struct insn_field moffset1;	/* for 64bit MOV */
86  		struct insn_field immediate1;	/* for 64bit imm or off16/32 */
87  	};
88  	union {
89  		struct insn_field moffset2;	/* for 64bit MOV */
90  		struct insn_field immediate2;	/* for 64bit imm or seg16 */
91  	};
92  
93  	int	emulate_prefix_size;
94  	insn_attr_t attr;
95  	unsigned char opnd_bytes;
96  	unsigned char addr_bytes;
97  	unsigned char length;
98  	unsigned char x86_64;
99  
100  	const insn_byte_t *kaddr;	/* kernel address of insn to analyze */
101  	const insn_byte_t *end_kaddr;	/* kernel address of last insn in buffer */
102  	const insn_byte_t *next_byte;
103  };
104  
105  #define MAX_INSN_SIZE	15
106  
107  #define X86_MODRM_MOD(modrm) (((modrm) & 0xc0) >> 6)
108  #define X86_MODRM_REG(modrm) (((modrm) & 0x38) >> 3)
109  #define X86_MODRM_RM(modrm) ((modrm) & 0x07)
110  
111  #define X86_SIB_SCALE(sib) (((sib) & 0xc0) >> 6)
112  #define X86_SIB_INDEX(sib) (((sib) & 0x38) >> 3)
113  #define X86_SIB_BASE(sib) ((sib) & 0x07)
114  
115  #define X86_REX_W(rex) ((rex) & 8)
116  #define X86_REX_R(rex) ((rex) & 4)
117  #define X86_REX_X(rex) ((rex) & 2)
118  #define X86_REX_B(rex) ((rex) & 1)
119  
120  /* VEX bit flags  */
121  #define X86_VEX_W(vex)	((vex) & 0x80)	/* VEX3 Byte2 */
122  #define X86_VEX_R(vex)	((vex) & 0x80)	/* VEX2/3 Byte1 */
123  #define X86_VEX_X(vex)	((vex) & 0x40)	/* VEX3 Byte1 */
124  #define X86_VEX_B(vex)	((vex) & 0x20)	/* VEX3 Byte1 */
125  #define X86_VEX_L(vex)	((vex) & 0x04)	/* VEX3 Byte2, VEX2 Byte1 */
126  /* VEX bit fields */
127  #define X86_EVEX_M(vex)	((vex) & 0x07)		/* EVEX Byte1 */
128  #define X86_VEX3_M(vex)	((vex) & 0x1f)		/* VEX3 Byte1 */
129  #define X86_VEX2_M	1			/* VEX2.M always 1 */
130  #define X86_VEX_V(vex)	(((vex) & 0x78) >> 3)	/* VEX3 Byte2, VEX2 Byte1 */
131  #define X86_VEX_P(vex)	((vex) & 0x03)		/* VEX3 Byte2, VEX2 Byte1 */
132  #define X86_VEX_M_MAX	0x1f			/* VEX3.M Maximum value */
133  
134  extern void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64);
135  extern int insn_get_prefixes(struct insn *insn);
136  extern int insn_get_opcode(struct insn *insn);
137  extern int insn_get_modrm(struct insn *insn);
138  extern int insn_get_sib(struct insn *insn);
139  extern int insn_get_displacement(struct insn *insn);
140  extern int insn_get_immediate(struct insn *insn);
141  extern int insn_get_length(struct insn *insn);
142  
143  enum insn_mode {
144  	INSN_MODE_32,
145  	INSN_MODE_64,
146  	/* Mode is determined by the current kernel build. */
147  	INSN_MODE_KERN,
148  	INSN_NUM_MODES,
149  };
150  
151  extern int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m);
152  
153  #define insn_decode_kernel(_insn, _ptr) insn_decode((_insn), (_ptr), MAX_INSN_SIZE, INSN_MODE_KERN)
154  
155  /* Attribute will be determined after getting ModRM (for opcode groups) */
insn_get_attribute(struct insn * insn)156  static inline void insn_get_attribute(struct insn *insn)
157  {
158  	insn_get_modrm(insn);
159  }
160  
161  /* Instruction uses RIP-relative addressing */
162  extern int insn_rip_relative(struct insn *insn);
163  
insn_is_avx(struct insn * insn)164  static inline int insn_is_avx(struct insn *insn)
165  {
166  	if (!insn->prefixes.got)
167  		insn_get_prefixes(insn);
168  	return (insn->vex_prefix.value != 0);
169  }
170  
insn_is_evex(struct insn * insn)171  static inline int insn_is_evex(struct insn *insn)
172  {
173  	if (!insn->prefixes.got)
174  		insn_get_prefixes(insn);
175  	return (insn->vex_prefix.nbytes == 4);
176  }
177  
insn_has_emulate_prefix(struct insn * insn)178  static inline int insn_has_emulate_prefix(struct insn *insn)
179  {
180  	return !!insn->emulate_prefix_size;
181  }
182  
insn_vex_m_bits(struct insn * insn)183  static inline insn_byte_t insn_vex_m_bits(struct insn *insn)
184  {
185  	if (insn->vex_prefix.nbytes == 2)	/* 2 bytes VEX */
186  		return X86_VEX2_M;
187  	else if (insn->vex_prefix.nbytes == 3)	/* 3 bytes VEX */
188  		return X86_VEX3_M(insn->vex_prefix.bytes[1]);
189  	else					/* EVEX */
190  		return X86_EVEX_M(insn->vex_prefix.bytes[1]);
191  }
192  
insn_vex_p_bits(struct insn * insn)193  static inline insn_byte_t insn_vex_p_bits(struct insn *insn)
194  {
195  	if (insn->vex_prefix.nbytes == 2)	/* 2 bytes VEX */
196  		return X86_VEX_P(insn->vex_prefix.bytes[1]);
197  	else
198  		return X86_VEX_P(insn->vex_prefix.bytes[2]);
199  }
200  
201  /* Get the last prefix id from last prefix or VEX prefix */
insn_last_prefix_id(struct insn * insn)202  static inline int insn_last_prefix_id(struct insn *insn)
203  {
204  	if (insn_is_avx(insn))
205  		return insn_vex_p_bits(insn);	/* VEX_p is a SIMD prefix id */
206  
207  	if (insn->prefixes.bytes[3])
208  		return inat_get_last_prefix_id(insn->prefixes.bytes[3]);
209  
210  	return 0;
211  }
212  
213  /* Offset of each field from kaddr */
insn_offset_rex_prefix(struct insn * insn)214  static inline int insn_offset_rex_prefix(struct insn *insn)
215  {
216  	return insn->prefixes.nbytes;
217  }
insn_offset_vex_prefix(struct insn * insn)218  static inline int insn_offset_vex_prefix(struct insn *insn)
219  {
220  	return insn_offset_rex_prefix(insn) + insn->rex_prefix.nbytes;
221  }
insn_offset_opcode(struct insn * insn)222  static inline int insn_offset_opcode(struct insn *insn)
223  {
224  	return insn_offset_vex_prefix(insn) + insn->vex_prefix.nbytes;
225  }
insn_offset_modrm(struct insn * insn)226  static inline int insn_offset_modrm(struct insn *insn)
227  {
228  	return insn_offset_opcode(insn) + insn->opcode.nbytes;
229  }
insn_offset_sib(struct insn * insn)230  static inline int insn_offset_sib(struct insn *insn)
231  {
232  	return insn_offset_modrm(insn) + insn->modrm.nbytes;
233  }
insn_offset_displacement(struct insn * insn)234  static inline int insn_offset_displacement(struct insn *insn)
235  {
236  	return insn_offset_sib(insn) + insn->sib.nbytes;
237  }
insn_offset_immediate(struct insn * insn)238  static inline int insn_offset_immediate(struct insn *insn)
239  {
240  	return insn_offset_displacement(insn) + insn->displacement.nbytes;
241  }
242  
243  /**
244   * for_each_insn_prefix() -- Iterate prefixes in the instruction
245   * @insn: Pointer to struct insn.
246   * @idx:  Index storage.
247   * @prefix: Prefix byte.
248   *
249   * Iterate prefix bytes of given @insn. Each prefix byte is stored in @prefix
250   * and the index is stored in @idx (note that this @idx is just for a cursor,
251   * do not change it.)
252   * Since prefixes.nbytes can be bigger than 4 if some prefixes
253   * are repeated, it cannot be used for looping over the prefixes.
254   */
255  #define for_each_insn_prefix(insn, idx, prefix)	\
256  	for (idx = 0; idx < ARRAY_SIZE(insn->prefixes.bytes) && (prefix = insn->prefixes.bytes[idx]) != 0; idx++)
257  
258  #define POP_SS_OPCODE 0x1f
259  #define MOV_SREG_OPCODE 0x8e
260  
261  /*
262   * Intel SDM Vol.3A 6.8.3 states;
263   * "Any single-step trap that would be delivered following the MOV to SS
264   * instruction or POP to SS instruction (because EFLAGS.TF is 1) is
265   * suppressed."
266   * This function returns true if @insn is MOV SS or POP SS. On these
267   * instructions, single stepping is suppressed.
268   */
insn_masking_exception(struct insn * insn)269  static inline int insn_masking_exception(struct insn *insn)
270  {
271  	return insn->opcode.bytes[0] == POP_SS_OPCODE ||
272  		(insn->opcode.bytes[0] == MOV_SREG_OPCODE &&
273  		 X86_MODRM_REG(insn->modrm.bytes[0]) == 2);
274  }
275  
276  #endif /* _ASM_X86_INSN_H */
277