1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory subsystem support
4 *
5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
6 * Dave Hansen <haveblue@us.ibm.com>
7 *
8 * This file provides the necessary infrastructure to represent
9 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
10 * All arch-independent code that assumes MEMORY_HOTPLUG requires
11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12 */
13
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 #include <linux/xarray.h>
25
26 #include <linux/atomic.h>
27 #include <linux/uaccess.h>
28
29 #define MEMORY_CLASS_NAME "memory"
30
31 static const char *const online_type_to_str[] = {
32 [MMOP_OFFLINE] = "offline",
33 [MMOP_ONLINE] = "online",
34 [MMOP_ONLINE_KERNEL] = "online_kernel",
35 [MMOP_ONLINE_MOVABLE] = "online_movable",
36 };
37
mhp_online_type_from_str(const char * str)38 int mhp_online_type_from_str(const char *str)
39 {
40 int i;
41
42 for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
43 if (sysfs_streq(str, online_type_to_str[i]))
44 return i;
45 }
46 return -EINVAL;
47 }
48
49 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
50
51 static int sections_per_block;
52
memory_block_id(unsigned long section_nr)53 static inline unsigned long memory_block_id(unsigned long section_nr)
54 {
55 return section_nr / sections_per_block;
56 }
57
pfn_to_block_id(unsigned long pfn)58 static inline unsigned long pfn_to_block_id(unsigned long pfn)
59 {
60 return memory_block_id(pfn_to_section_nr(pfn));
61 }
62
phys_to_block_id(unsigned long phys)63 static inline unsigned long phys_to_block_id(unsigned long phys)
64 {
65 return pfn_to_block_id(PFN_DOWN(phys));
66 }
67
68 static int memory_subsys_online(struct device *dev);
69 static int memory_subsys_offline(struct device *dev);
70
71 static struct bus_type memory_subsys = {
72 .name = MEMORY_CLASS_NAME,
73 .dev_name = MEMORY_CLASS_NAME,
74 .online = memory_subsys_online,
75 .offline = memory_subsys_offline,
76 };
77
78 /*
79 * Memory blocks are cached in a local radix tree to avoid
80 * a costly linear search for the corresponding device on
81 * the subsystem bus.
82 */
83 static DEFINE_XARRAY(memory_blocks);
84
85 /*
86 * Memory groups, indexed by memory group id (mgid).
87 */
88 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
89 #define MEMORY_GROUP_MARK_DYNAMIC XA_MARK_1
90
91 static BLOCKING_NOTIFIER_HEAD(memory_chain);
92
register_memory_notifier(struct notifier_block * nb)93 int register_memory_notifier(struct notifier_block *nb)
94 {
95 return blocking_notifier_chain_register(&memory_chain, nb);
96 }
97 EXPORT_SYMBOL(register_memory_notifier);
98
unregister_memory_notifier(struct notifier_block * nb)99 void unregister_memory_notifier(struct notifier_block *nb)
100 {
101 blocking_notifier_chain_unregister(&memory_chain, nb);
102 }
103 EXPORT_SYMBOL(unregister_memory_notifier);
104
memory_block_release(struct device * dev)105 static void memory_block_release(struct device *dev)
106 {
107 struct memory_block *mem = to_memory_block(dev);
108
109 kfree(mem);
110 }
111
memory_block_size_bytes(void)112 unsigned long __weak memory_block_size_bytes(void)
113 {
114 return MIN_MEMORY_BLOCK_SIZE;
115 }
116 EXPORT_SYMBOL_GPL(memory_block_size_bytes);
117
118 /* Show the memory block ID, relative to the memory block size */
phys_index_show(struct device * dev,struct device_attribute * attr,char * buf)119 static ssize_t phys_index_show(struct device *dev,
120 struct device_attribute *attr, char *buf)
121 {
122 struct memory_block *mem = to_memory_block(dev);
123
124 return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
125 }
126
127 /*
128 * Legacy interface that we cannot remove. Always indicate "removable"
129 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
130 */
removable_show(struct device * dev,struct device_attribute * attr,char * buf)131 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
132 char *buf)
133 {
134 return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
135 }
136
137 /*
138 * online, offline, going offline, etc.
139 */
state_show(struct device * dev,struct device_attribute * attr,char * buf)140 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
141 char *buf)
142 {
143 struct memory_block *mem = to_memory_block(dev);
144 const char *output;
145
146 /*
147 * We can probably put these states in a nice little array
148 * so that they're not open-coded
149 */
150 switch (mem->state) {
151 case MEM_ONLINE:
152 output = "online";
153 break;
154 case MEM_OFFLINE:
155 output = "offline";
156 break;
157 case MEM_GOING_OFFLINE:
158 output = "going-offline";
159 break;
160 default:
161 WARN_ON(1);
162 return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
163 }
164
165 return sysfs_emit(buf, "%s\n", output);
166 }
167
memory_notify(unsigned long val,void * v)168 int memory_notify(unsigned long val, void *v)
169 {
170 return blocking_notifier_call_chain(&memory_chain, val, v);
171 }
172
173 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
174 static unsigned long memblk_nr_poison(struct memory_block *mem);
175 #else
memblk_nr_poison(struct memory_block * mem)176 static inline unsigned long memblk_nr_poison(struct memory_block *mem)
177 {
178 return 0;
179 }
180 #endif
181
memory_block_online(struct memory_block * mem)182 static int memory_block_online(struct memory_block *mem)
183 {
184 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
185 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
186 unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
187 struct zone *zone;
188 int ret;
189
190 if (memblk_nr_poison(mem))
191 return -EHWPOISON;
192
193 zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
194 start_pfn, nr_pages);
195
196 /*
197 * Although vmemmap pages have a different lifecycle than the pages
198 * they describe (they remain until the memory is unplugged), doing
199 * their initialization and accounting at memory onlining/offlining
200 * stage helps to keep accounting easier to follow - e.g vmemmaps
201 * belong to the same zone as the memory they backed.
202 */
203 if (nr_vmemmap_pages) {
204 ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
205 if (ret)
206 return ret;
207 }
208
209 ret = online_pages(start_pfn + nr_vmemmap_pages,
210 nr_pages - nr_vmemmap_pages, zone, mem->group);
211 if (ret) {
212 if (nr_vmemmap_pages)
213 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
214 return ret;
215 }
216
217 /*
218 * Account once onlining succeeded. If the zone was unpopulated, it is
219 * now already properly populated.
220 */
221 if (nr_vmemmap_pages)
222 adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
223 nr_vmemmap_pages);
224
225 mem->zone = zone;
226 return ret;
227 }
228
memory_block_offline(struct memory_block * mem)229 static int memory_block_offline(struct memory_block *mem)
230 {
231 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
232 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
233 unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
234 int ret;
235
236 if (!mem->zone)
237 return -EINVAL;
238
239 /*
240 * Unaccount before offlining, such that unpopulated zone and kthreads
241 * can properly be torn down in offline_pages().
242 */
243 if (nr_vmemmap_pages)
244 adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
245 -nr_vmemmap_pages);
246
247 ret = offline_pages(start_pfn + nr_vmemmap_pages,
248 nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
249 if (ret) {
250 /* offline_pages() failed. Account back. */
251 if (nr_vmemmap_pages)
252 adjust_present_page_count(pfn_to_page(start_pfn),
253 mem->group, nr_vmemmap_pages);
254 return ret;
255 }
256
257 if (nr_vmemmap_pages)
258 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
259
260 mem->zone = NULL;
261 return ret;
262 }
263
264 /*
265 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
266 * OK to have direct references to sparsemem variables in here.
267 */
268 static int
memory_block_action(struct memory_block * mem,unsigned long action)269 memory_block_action(struct memory_block *mem, unsigned long action)
270 {
271 int ret;
272
273 switch (action) {
274 case MEM_ONLINE:
275 ret = memory_block_online(mem);
276 break;
277 case MEM_OFFLINE:
278 ret = memory_block_offline(mem);
279 break;
280 default:
281 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
282 "%ld\n", __func__, mem->start_section_nr, action, action);
283 ret = -EINVAL;
284 }
285
286 return ret;
287 }
288
memory_block_change_state(struct memory_block * mem,unsigned long to_state,unsigned long from_state_req)289 static int memory_block_change_state(struct memory_block *mem,
290 unsigned long to_state, unsigned long from_state_req)
291 {
292 int ret = 0;
293
294 if (mem->state != from_state_req)
295 return -EINVAL;
296
297 if (to_state == MEM_OFFLINE)
298 mem->state = MEM_GOING_OFFLINE;
299
300 ret = memory_block_action(mem, to_state);
301 mem->state = ret ? from_state_req : to_state;
302
303 return ret;
304 }
305
306 /* The device lock serializes operations on memory_subsys_[online|offline] */
memory_subsys_online(struct device * dev)307 static int memory_subsys_online(struct device *dev)
308 {
309 struct memory_block *mem = to_memory_block(dev);
310 int ret;
311
312 if (mem->state == MEM_ONLINE)
313 return 0;
314
315 /*
316 * When called via device_online() without configuring the online_type,
317 * we want to default to MMOP_ONLINE.
318 */
319 if (mem->online_type == MMOP_OFFLINE)
320 mem->online_type = MMOP_ONLINE;
321
322 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
323 mem->online_type = MMOP_OFFLINE;
324
325 return ret;
326 }
327
memory_subsys_offline(struct device * dev)328 static int memory_subsys_offline(struct device *dev)
329 {
330 struct memory_block *mem = to_memory_block(dev);
331
332 if (mem->state == MEM_OFFLINE)
333 return 0;
334
335 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
336 }
337
state_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)338 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
339 const char *buf, size_t count)
340 {
341 const int online_type = mhp_online_type_from_str(buf);
342 struct memory_block *mem = to_memory_block(dev);
343 int ret;
344
345 if (online_type < 0)
346 return -EINVAL;
347
348 ret = lock_device_hotplug_sysfs();
349 if (ret)
350 return ret;
351
352 switch (online_type) {
353 case MMOP_ONLINE_KERNEL:
354 case MMOP_ONLINE_MOVABLE:
355 case MMOP_ONLINE:
356 /* mem->online_type is protected by device_hotplug_lock */
357 mem->online_type = online_type;
358 ret = device_online(&mem->dev);
359 break;
360 case MMOP_OFFLINE:
361 ret = device_offline(&mem->dev);
362 break;
363 default:
364 ret = -EINVAL; /* should never happen */
365 }
366
367 unlock_device_hotplug();
368
369 if (ret < 0)
370 return ret;
371 if (ret)
372 return -EINVAL;
373
374 return count;
375 }
376
377 /*
378 * Legacy interface that we cannot remove: s390x exposes the storage increment
379 * covered by a memory block, allowing for identifying which memory blocks
380 * comprise a storage increment. Since a memory block spans complete
381 * storage increments nowadays, this interface is basically unused. Other
382 * archs never exposed != 0.
383 */
phys_device_show(struct device * dev,struct device_attribute * attr,char * buf)384 static ssize_t phys_device_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386 {
387 struct memory_block *mem = to_memory_block(dev);
388 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
389
390 return sysfs_emit(buf, "%d\n",
391 arch_get_memory_phys_device(start_pfn));
392 }
393
394 #ifdef CONFIG_MEMORY_HOTREMOVE
print_allowed_zone(char * buf,int len,int nid,struct memory_group * group,unsigned long start_pfn,unsigned long nr_pages,int online_type,struct zone * default_zone)395 static int print_allowed_zone(char *buf, int len, int nid,
396 struct memory_group *group,
397 unsigned long start_pfn, unsigned long nr_pages,
398 int online_type, struct zone *default_zone)
399 {
400 struct zone *zone;
401
402 zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
403 if (zone == default_zone)
404 return 0;
405
406 return sysfs_emit_at(buf, len, " %s", zone->name);
407 }
408
valid_zones_show(struct device * dev,struct device_attribute * attr,char * buf)409 static ssize_t valid_zones_show(struct device *dev,
410 struct device_attribute *attr, char *buf)
411 {
412 struct memory_block *mem = to_memory_block(dev);
413 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
414 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
415 struct memory_group *group = mem->group;
416 struct zone *default_zone;
417 int nid = mem->nid;
418 int len = 0;
419
420 /*
421 * Check the existing zone. Make sure that we do that only on the
422 * online nodes otherwise the page_zone is not reliable
423 */
424 if (mem->state == MEM_ONLINE) {
425 /*
426 * If !mem->zone, the memory block spans multiple zones and
427 * cannot get offlined.
428 */
429 default_zone = mem->zone;
430 if (!default_zone)
431 return sysfs_emit(buf, "%s\n", "none");
432 len += sysfs_emit_at(buf, len, "%s", default_zone->name);
433 goto out;
434 }
435
436 default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
437 start_pfn, nr_pages);
438
439 len += sysfs_emit_at(buf, len, "%s", default_zone->name);
440 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
441 MMOP_ONLINE_KERNEL, default_zone);
442 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
443 MMOP_ONLINE_MOVABLE, default_zone);
444 out:
445 len += sysfs_emit_at(buf, len, "\n");
446 return len;
447 }
448 static DEVICE_ATTR_RO(valid_zones);
449 #endif
450
451 static DEVICE_ATTR_RO(phys_index);
452 static DEVICE_ATTR_RW(state);
453 static DEVICE_ATTR_RO(phys_device);
454 static DEVICE_ATTR_RO(removable);
455
456 /*
457 * Show the memory block size (shared by all memory blocks).
458 */
block_size_bytes_show(struct device * dev,struct device_attribute * attr,char * buf)459 static ssize_t block_size_bytes_show(struct device *dev,
460 struct device_attribute *attr, char *buf)
461 {
462 return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
463 }
464
465 static DEVICE_ATTR_RO(block_size_bytes);
466
467 /*
468 * Memory auto online policy.
469 */
470
auto_online_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)471 static ssize_t auto_online_blocks_show(struct device *dev,
472 struct device_attribute *attr, char *buf)
473 {
474 return sysfs_emit(buf, "%s\n",
475 online_type_to_str[mhp_default_online_type]);
476 }
477
auto_online_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)478 static ssize_t auto_online_blocks_store(struct device *dev,
479 struct device_attribute *attr,
480 const char *buf, size_t count)
481 {
482 const int online_type = mhp_online_type_from_str(buf);
483
484 if (online_type < 0)
485 return -EINVAL;
486
487 mhp_default_online_type = online_type;
488 return count;
489 }
490
491 static DEVICE_ATTR_RW(auto_online_blocks);
492
493 /*
494 * Some architectures will have custom drivers to do this, and
495 * will not need to do it from userspace. The fake hot-add code
496 * as well as ppc64 will do all of their discovery in userspace
497 * and will require this interface.
498 */
499 #ifdef CONFIG_ARCH_MEMORY_PROBE
probe_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)500 static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
501 const char *buf, size_t count)
502 {
503 u64 phys_addr;
504 int nid, ret;
505 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
506
507 ret = kstrtoull(buf, 0, &phys_addr);
508 if (ret)
509 return ret;
510
511 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
512 return -EINVAL;
513
514 ret = lock_device_hotplug_sysfs();
515 if (ret)
516 return ret;
517
518 nid = memory_add_physaddr_to_nid(phys_addr);
519 ret = __add_memory(nid, phys_addr,
520 MIN_MEMORY_BLOCK_SIZE * sections_per_block,
521 MHP_NONE);
522
523 if (ret)
524 goto out;
525
526 ret = count;
527 out:
528 unlock_device_hotplug();
529 return ret;
530 }
531
532 static DEVICE_ATTR_WO(probe);
533 #endif
534
535 #ifdef CONFIG_MEMORY_FAILURE
536 /*
537 * Support for offlining pages of memory
538 */
539
540 /* Soft offline a page */
soft_offline_page_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)541 static ssize_t soft_offline_page_store(struct device *dev,
542 struct device_attribute *attr,
543 const char *buf, size_t count)
544 {
545 int ret;
546 u64 pfn;
547 if (!capable(CAP_SYS_ADMIN))
548 return -EPERM;
549 if (kstrtoull(buf, 0, &pfn) < 0)
550 return -EINVAL;
551 pfn >>= PAGE_SHIFT;
552 ret = soft_offline_page(pfn, 0);
553 return ret == 0 ? count : ret;
554 }
555
556 /* Forcibly offline a page, including killing processes. */
hard_offline_page_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)557 static ssize_t hard_offline_page_store(struct device *dev,
558 struct device_attribute *attr,
559 const char *buf, size_t count)
560 {
561 int ret;
562 u64 pfn;
563 if (!capable(CAP_SYS_ADMIN))
564 return -EPERM;
565 if (kstrtoull(buf, 0, &pfn) < 0)
566 return -EINVAL;
567 pfn >>= PAGE_SHIFT;
568 ret = memory_failure(pfn, MF_SW_SIMULATED);
569 if (ret == -EOPNOTSUPP)
570 ret = 0;
571 return ret ? ret : count;
572 }
573
574 static DEVICE_ATTR_WO(soft_offline_page);
575 static DEVICE_ATTR_WO(hard_offline_page);
576 #endif
577
578 /* See phys_device_show(). */
arch_get_memory_phys_device(unsigned long start_pfn)579 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
580 {
581 return 0;
582 }
583
584 /*
585 * A reference for the returned memory block device is acquired.
586 *
587 * Called under device_hotplug_lock.
588 */
find_memory_block_by_id(unsigned long block_id)589 static struct memory_block *find_memory_block_by_id(unsigned long block_id)
590 {
591 struct memory_block *mem;
592
593 mem = xa_load(&memory_blocks, block_id);
594 if (mem)
595 get_device(&mem->dev);
596 return mem;
597 }
598
599 /*
600 * Called under device_hotplug_lock.
601 */
find_memory_block(unsigned long section_nr)602 struct memory_block *find_memory_block(unsigned long section_nr)
603 {
604 unsigned long block_id = memory_block_id(section_nr);
605
606 return find_memory_block_by_id(block_id);
607 }
608
609 static struct attribute *memory_memblk_attrs[] = {
610 &dev_attr_phys_index.attr,
611 &dev_attr_state.attr,
612 &dev_attr_phys_device.attr,
613 &dev_attr_removable.attr,
614 #ifdef CONFIG_MEMORY_HOTREMOVE
615 &dev_attr_valid_zones.attr,
616 #endif
617 NULL
618 };
619
620 static const struct attribute_group memory_memblk_attr_group = {
621 .attrs = memory_memblk_attrs,
622 };
623
624 static const struct attribute_group *memory_memblk_attr_groups[] = {
625 &memory_memblk_attr_group,
626 NULL,
627 };
628
__add_memory_block(struct memory_block * memory)629 static int __add_memory_block(struct memory_block *memory)
630 {
631 int ret;
632
633 memory->dev.bus = &memory_subsys;
634 memory->dev.id = memory->start_section_nr / sections_per_block;
635 memory->dev.release = memory_block_release;
636 memory->dev.groups = memory_memblk_attr_groups;
637 memory->dev.offline = memory->state == MEM_OFFLINE;
638
639 ret = device_register(&memory->dev);
640 if (ret) {
641 put_device(&memory->dev);
642 return ret;
643 }
644 ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
645 GFP_KERNEL));
646 if (ret)
647 device_unregister(&memory->dev);
648
649 return ret;
650 }
651
early_node_zone_for_memory_block(struct memory_block * mem,int nid)652 static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
653 int nid)
654 {
655 const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
656 const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
657 struct zone *zone, *matching_zone = NULL;
658 pg_data_t *pgdat = NODE_DATA(nid);
659 int i;
660
661 /*
662 * This logic only works for early memory, when the applicable zones
663 * already span the memory block. We don't expect overlapping zones on
664 * a single node for early memory. So if we're told that some PFNs
665 * of a node fall into this memory block, we can assume that all node
666 * zones that intersect with the memory block are actually applicable.
667 * No need to look at the memmap.
668 */
669 for (i = 0; i < MAX_NR_ZONES; i++) {
670 zone = pgdat->node_zones + i;
671 if (!populated_zone(zone))
672 continue;
673 if (!zone_intersects(zone, start_pfn, nr_pages))
674 continue;
675 if (!matching_zone) {
676 matching_zone = zone;
677 continue;
678 }
679 /* Spans multiple zones ... */
680 matching_zone = NULL;
681 break;
682 }
683 return matching_zone;
684 }
685
686 #ifdef CONFIG_NUMA
687 /**
688 * memory_block_add_nid() - Indicate that system RAM falling into this memory
689 * block device (partially) belongs to the given node.
690 * @mem: The memory block device.
691 * @nid: The node id.
692 * @context: The memory initialization context.
693 *
694 * Indicate that system RAM falling into this memory block (partially) belongs
695 * to the given node. If the context indicates ("early") that we are adding the
696 * node during node device subsystem initialization, this will also properly
697 * set/adjust mem->zone based on the zone ranges of the given node.
698 */
memory_block_add_nid(struct memory_block * mem,int nid,enum meminit_context context)699 void memory_block_add_nid(struct memory_block *mem, int nid,
700 enum meminit_context context)
701 {
702 if (context == MEMINIT_EARLY && mem->nid != nid) {
703 /*
704 * For early memory we have to determine the zone when setting
705 * the node id and handle multiple nodes spanning a single
706 * memory block by indicate via zone == NULL that we're not
707 * dealing with a single zone. So if we're setting the node id
708 * the first time, determine if there is a single zone. If we're
709 * setting the node id a second time to a different node,
710 * invalidate the single detected zone.
711 */
712 if (mem->nid == NUMA_NO_NODE)
713 mem->zone = early_node_zone_for_memory_block(mem, nid);
714 else
715 mem->zone = NULL;
716 }
717
718 /*
719 * If this memory block spans multiple nodes, we only indicate
720 * the last processed node. If we span multiple nodes (not applicable
721 * to hotplugged memory), zone == NULL will prohibit memory offlining
722 * and consequently unplug.
723 */
724 mem->nid = nid;
725 }
726 #endif
727
add_memory_block(unsigned long block_id,unsigned long state,unsigned long nr_vmemmap_pages,struct memory_group * group)728 static int add_memory_block(unsigned long block_id, unsigned long state,
729 unsigned long nr_vmemmap_pages,
730 struct memory_group *group)
731 {
732 struct memory_block *mem;
733 int ret = 0;
734
735 mem = find_memory_block_by_id(block_id);
736 if (mem) {
737 put_device(&mem->dev);
738 return -EEXIST;
739 }
740 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
741 if (!mem)
742 return -ENOMEM;
743
744 mem->start_section_nr = block_id * sections_per_block;
745 mem->state = state;
746 mem->nid = NUMA_NO_NODE;
747 mem->nr_vmemmap_pages = nr_vmemmap_pages;
748 INIT_LIST_HEAD(&mem->group_next);
749
750 #ifndef CONFIG_NUMA
751 if (state == MEM_ONLINE)
752 /*
753 * MEM_ONLINE at this point implies early memory. With NUMA,
754 * we'll determine the zone when setting the node id via
755 * memory_block_add_nid(). Memory hotplug updated the zone
756 * manually when memory onlining/offlining succeeds.
757 */
758 mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
759 #endif /* CONFIG_NUMA */
760
761 ret = __add_memory_block(mem);
762 if (ret)
763 return ret;
764
765 if (group) {
766 mem->group = group;
767 list_add(&mem->group_next, &group->memory_blocks);
768 }
769
770 return 0;
771 }
772
add_boot_memory_block(unsigned long base_section_nr)773 static int __init add_boot_memory_block(unsigned long base_section_nr)
774 {
775 int section_count = 0;
776 unsigned long nr;
777
778 for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
779 nr++)
780 if (present_section_nr(nr))
781 section_count++;
782
783 if (section_count == 0)
784 return 0;
785 return add_memory_block(memory_block_id(base_section_nr),
786 MEM_ONLINE, 0, NULL);
787 }
788
add_hotplug_memory_block(unsigned long block_id,unsigned long nr_vmemmap_pages,struct memory_group * group)789 static int add_hotplug_memory_block(unsigned long block_id,
790 unsigned long nr_vmemmap_pages,
791 struct memory_group *group)
792 {
793 return add_memory_block(block_id, MEM_OFFLINE, nr_vmemmap_pages, group);
794 }
795
remove_memory_block(struct memory_block * memory)796 static void remove_memory_block(struct memory_block *memory)
797 {
798 if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
799 return;
800
801 WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
802
803 if (memory->group) {
804 list_del(&memory->group_next);
805 memory->group = NULL;
806 }
807
808 /* drop the ref. we got via find_memory_block() */
809 put_device(&memory->dev);
810 device_unregister(&memory->dev);
811 }
812
813 /*
814 * Create memory block devices for the given memory area. Start and size
815 * have to be aligned to memory block granularity. Memory block devices
816 * will be initialized as offline.
817 *
818 * Called under device_hotplug_lock.
819 */
create_memory_block_devices(unsigned long start,unsigned long size,unsigned long vmemmap_pages,struct memory_group * group)820 int create_memory_block_devices(unsigned long start, unsigned long size,
821 unsigned long vmemmap_pages,
822 struct memory_group *group)
823 {
824 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
825 unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
826 struct memory_block *mem;
827 unsigned long block_id;
828 int ret = 0;
829
830 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
831 !IS_ALIGNED(size, memory_block_size_bytes())))
832 return -EINVAL;
833
834 for (block_id = start_block_id; block_id != end_block_id; block_id++) {
835 ret = add_hotplug_memory_block(block_id, vmemmap_pages, group);
836 if (ret)
837 break;
838 }
839 if (ret) {
840 end_block_id = block_id;
841 for (block_id = start_block_id; block_id != end_block_id;
842 block_id++) {
843 mem = find_memory_block_by_id(block_id);
844 if (WARN_ON_ONCE(!mem))
845 continue;
846 remove_memory_block(mem);
847 }
848 }
849 return ret;
850 }
851
852 /*
853 * Remove memory block devices for the given memory area. Start and size
854 * have to be aligned to memory block granularity. Memory block devices
855 * have to be offline.
856 *
857 * Called under device_hotplug_lock.
858 */
remove_memory_block_devices(unsigned long start,unsigned long size)859 void remove_memory_block_devices(unsigned long start, unsigned long size)
860 {
861 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
862 const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
863 struct memory_block *mem;
864 unsigned long block_id;
865
866 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
867 !IS_ALIGNED(size, memory_block_size_bytes())))
868 return;
869
870 for (block_id = start_block_id; block_id != end_block_id; block_id++) {
871 mem = find_memory_block_by_id(block_id);
872 if (WARN_ON_ONCE(!mem))
873 continue;
874 num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
875 unregister_memory_block_under_nodes(mem);
876 remove_memory_block(mem);
877 }
878 }
879
880 static struct attribute *memory_root_attrs[] = {
881 #ifdef CONFIG_ARCH_MEMORY_PROBE
882 &dev_attr_probe.attr,
883 #endif
884
885 #ifdef CONFIG_MEMORY_FAILURE
886 &dev_attr_soft_offline_page.attr,
887 &dev_attr_hard_offline_page.attr,
888 #endif
889
890 &dev_attr_block_size_bytes.attr,
891 &dev_attr_auto_online_blocks.attr,
892 NULL
893 };
894
895 static const struct attribute_group memory_root_attr_group = {
896 .attrs = memory_root_attrs,
897 };
898
899 static const struct attribute_group *memory_root_attr_groups[] = {
900 &memory_root_attr_group,
901 NULL,
902 };
903
904 /*
905 * Initialize the sysfs support for memory devices. At the time this function
906 * is called, we cannot have concurrent creation/deletion of memory block
907 * devices, the device_hotplug_lock is not needed.
908 */
memory_dev_init(void)909 void __init memory_dev_init(void)
910 {
911 int ret;
912 unsigned long block_sz, nr;
913
914 /* Validate the configured memory block size */
915 block_sz = memory_block_size_bytes();
916 if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
917 panic("Memory block size not suitable: 0x%lx\n", block_sz);
918 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
919
920 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
921 if (ret)
922 panic("%s() failed to register subsystem: %d\n", __func__, ret);
923
924 /*
925 * Create entries for memory sections that were found
926 * during boot and have been initialized
927 */
928 for (nr = 0; nr <= __highest_present_section_nr;
929 nr += sections_per_block) {
930 ret = add_boot_memory_block(nr);
931 if (ret)
932 panic("%s() failed to add memory block: %d\n", __func__,
933 ret);
934 }
935 }
936
937 /**
938 * walk_memory_blocks - walk through all present memory blocks overlapped
939 * by the range [start, start + size)
940 *
941 * @start: start address of the memory range
942 * @size: size of the memory range
943 * @arg: argument passed to func
944 * @func: callback for each memory section walked
945 *
946 * This function walks through all present memory blocks overlapped by the
947 * range [start, start + size), calling func on each memory block.
948 *
949 * In case func() returns an error, walking is aborted and the error is
950 * returned.
951 *
952 * Called under device_hotplug_lock.
953 */
walk_memory_blocks(unsigned long start,unsigned long size,void * arg,walk_memory_blocks_func_t func)954 int walk_memory_blocks(unsigned long start, unsigned long size,
955 void *arg, walk_memory_blocks_func_t func)
956 {
957 const unsigned long start_block_id = phys_to_block_id(start);
958 const unsigned long end_block_id = phys_to_block_id(start + size - 1);
959 struct memory_block *mem;
960 unsigned long block_id;
961 int ret = 0;
962
963 if (!size)
964 return 0;
965
966 for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
967 mem = find_memory_block_by_id(block_id);
968 if (!mem)
969 continue;
970
971 ret = func(mem, arg);
972 put_device(&mem->dev);
973 if (ret)
974 break;
975 }
976 return ret;
977 }
978
979 struct for_each_memory_block_cb_data {
980 walk_memory_blocks_func_t func;
981 void *arg;
982 };
983
for_each_memory_block_cb(struct device * dev,void * data)984 static int for_each_memory_block_cb(struct device *dev, void *data)
985 {
986 struct memory_block *mem = to_memory_block(dev);
987 struct for_each_memory_block_cb_data *cb_data = data;
988
989 return cb_data->func(mem, cb_data->arg);
990 }
991
992 /**
993 * for_each_memory_block - walk through all present memory blocks
994 *
995 * @arg: argument passed to func
996 * @func: callback for each memory block walked
997 *
998 * This function walks through all present memory blocks, calling func on
999 * each memory block.
1000 *
1001 * In case func() returns an error, walking is aborted and the error is
1002 * returned.
1003 */
for_each_memory_block(void * arg,walk_memory_blocks_func_t func)1004 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1005 {
1006 struct for_each_memory_block_cb_data cb_data = {
1007 .func = func,
1008 .arg = arg,
1009 };
1010
1011 return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1012 for_each_memory_block_cb);
1013 }
1014
1015 /*
1016 * This is an internal helper to unify allocation and initialization of
1017 * memory groups. Note that the passed memory group will be copied to a
1018 * dynamically allocated memory group. After this call, the passed
1019 * memory group should no longer be used.
1020 */
memory_group_register(struct memory_group group)1021 static int memory_group_register(struct memory_group group)
1022 {
1023 struct memory_group *new_group;
1024 uint32_t mgid;
1025 int ret;
1026
1027 if (!node_possible(group.nid))
1028 return -EINVAL;
1029
1030 new_group = kzalloc(sizeof(group), GFP_KERNEL);
1031 if (!new_group)
1032 return -ENOMEM;
1033 *new_group = group;
1034 INIT_LIST_HEAD(&new_group->memory_blocks);
1035
1036 ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1037 GFP_KERNEL);
1038 if (ret) {
1039 kfree(new_group);
1040 return ret;
1041 } else if (group.is_dynamic) {
1042 xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1043 }
1044 return mgid;
1045 }
1046
1047 /**
1048 * memory_group_register_static() - Register a static memory group.
1049 * @nid: The node id.
1050 * @max_pages: The maximum number of pages we'll have in this static memory
1051 * group.
1052 *
1053 * Register a new static memory group and return the memory group id.
1054 * All memory in the group belongs to a single unit, such as a DIMM. All
1055 * memory belonging to a static memory group is added in one go to be removed
1056 * in one go -- it's static.
1057 *
1058 * Returns an error if out of memory, if the node id is invalid, if no new
1059 * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1060 * returns the new memory group id.
1061 */
memory_group_register_static(int nid,unsigned long max_pages)1062 int memory_group_register_static(int nid, unsigned long max_pages)
1063 {
1064 struct memory_group group = {
1065 .nid = nid,
1066 .s = {
1067 .max_pages = max_pages,
1068 },
1069 };
1070
1071 if (!max_pages)
1072 return -EINVAL;
1073 return memory_group_register(group);
1074 }
1075 EXPORT_SYMBOL_GPL(memory_group_register_static);
1076
1077 /**
1078 * memory_group_register_dynamic() - Register a dynamic memory group.
1079 * @nid: The node id.
1080 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1081 * memory group.
1082 *
1083 * Register a new dynamic memory group and return the memory group id.
1084 * Memory within a dynamic memory group is added/removed dynamically
1085 * in unit_pages.
1086 *
1087 * Returns an error if out of memory, if the node id is invalid, if no new
1088 * memory groups can be registered, or if unit_pages is invalid (0, not a
1089 * power of two, smaller than a single memory block). Otherwise, returns the
1090 * new memory group id.
1091 */
memory_group_register_dynamic(int nid,unsigned long unit_pages)1092 int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1093 {
1094 struct memory_group group = {
1095 .nid = nid,
1096 .is_dynamic = true,
1097 .d = {
1098 .unit_pages = unit_pages,
1099 },
1100 };
1101
1102 if (!unit_pages || !is_power_of_2(unit_pages) ||
1103 unit_pages < PHYS_PFN(memory_block_size_bytes()))
1104 return -EINVAL;
1105 return memory_group_register(group);
1106 }
1107 EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1108
1109 /**
1110 * memory_group_unregister() - Unregister a memory group.
1111 * @mgid: the memory group id
1112 *
1113 * Unregister a memory group. If any memory block still belongs to this
1114 * memory group, unregistering will fail.
1115 *
1116 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1117 * memory blocks still belong to this memory group and returns 0 if
1118 * unregistering succeeded.
1119 */
memory_group_unregister(int mgid)1120 int memory_group_unregister(int mgid)
1121 {
1122 struct memory_group *group;
1123
1124 if (mgid < 0)
1125 return -EINVAL;
1126
1127 group = xa_load(&memory_groups, mgid);
1128 if (!group)
1129 return -EINVAL;
1130 if (!list_empty(&group->memory_blocks))
1131 return -EBUSY;
1132 xa_erase(&memory_groups, mgid);
1133 kfree(group);
1134 return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(memory_group_unregister);
1137
1138 /*
1139 * This is an internal helper only to be used in core memory hotplug code to
1140 * lookup a memory group. We don't care about locking, as we don't expect a
1141 * memory group to get unregistered while adding memory to it -- because
1142 * the group and the memory is managed by the same driver.
1143 */
memory_group_find_by_id(int mgid)1144 struct memory_group *memory_group_find_by_id(int mgid)
1145 {
1146 return xa_load(&memory_groups, mgid);
1147 }
1148
1149 /*
1150 * This is an internal helper only to be used in core memory hotplug code to
1151 * walk all dynamic memory groups excluding a given memory group, either
1152 * belonging to a specific node, or belonging to any node.
1153 */
walk_dynamic_memory_groups(int nid,walk_memory_groups_func_t func,struct memory_group * excluded,void * arg)1154 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1155 struct memory_group *excluded, void *arg)
1156 {
1157 struct memory_group *group;
1158 unsigned long index;
1159 int ret = 0;
1160
1161 xa_for_each_marked(&memory_groups, index, group,
1162 MEMORY_GROUP_MARK_DYNAMIC) {
1163 if (group == excluded)
1164 continue;
1165 #ifdef CONFIG_NUMA
1166 if (nid != NUMA_NO_NODE && group->nid != nid)
1167 continue;
1168 #endif /* CONFIG_NUMA */
1169 ret = func(group, arg);
1170 if (ret)
1171 break;
1172 }
1173 return ret;
1174 }
1175
1176 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
memblk_nr_poison_inc(unsigned long pfn)1177 void memblk_nr_poison_inc(unsigned long pfn)
1178 {
1179 const unsigned long block_id = pfn_to_block_id(pfn);
1180 struct memory_block *mem = find_memory_block_by_id(block_id);
1181
1182 if (mem)
1183 atomic_long_inc(&mem->nr_hwpoison);
1184 }
1185
memblk_nr_poison_sub(unsigned long pfn,long i)1186 void memblk_nr_poison_sub(unsigned long pfn, long i)
1187 {
1188 const unsigned long block_id = pfn_to_block_id(pfn);
1189 struct memory_block *mem = find_memory_block_by_id(block_id);
1190
1191 if (mem)
1192 atomic_long_sub(i, &mem->nr_hwpoison);
1193 }
1194
memblk_nr_poison(struct memory_block * mem)1195 static unsigned long memblk_nr_poison(struct memory_block *mem)
1196 {
1197 return atomic_long_read(&mem->nr_hwpoison);
1198 }
1199 #endif
1200