1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RMAP_H
3 #define _LINUX_RMAP_H
4 /*
5 * Declarations for Reverse Mapping functions in mm/rmap.c
6 */
7
8 #include <linux/list.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/rwsem.h>
12 #include <linux/memcontrol.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/memremap.h>
16
17 /*
18 * The anon_vma heads a list of private "related" vmas, to scan if
19 * an anonymous page pointing to this anon_vma needs to be unmapped:
20 * the vmas on the list will be related by forking, or by splitting.
21 *
22 * Since vmas come and go as they are split and merged (particularly
23 * in mprotect), the mapping field of an anonymous page cannot point
24 * directly to a vma: instead it points to an anon_vma, on whose list
25 * the related vmas can be easily linked or unlinked.
26 *
27 * After unlinking the last vma on the list, we must garbage collect
28 * the anon_vma object itself: we're guaranteed no page can be
29 * pointing to this anon_vma once its vma list is empty.
30 */
31 struct anon_vma {
32 struct anon_vma *root; /* Root of this anon_vma tree */
33 struct rw_semaphore rwsem; /* W: modification, R: walking the list */
34 /*
35 * The refcount is taken on an anon_vma when there is no
36 * guarantee that the vma of page tables will exist for
37 * the duration of the operation. A caller that takes
38 * the reference is responsible for clearing up the
39 * anon_vma if they are the last user on release
40 */
41 atomic_t refcount;
42
43 /*
44 * Count of child anon_vmas. Equals to the count of all anon_vmas that
45 * have ->parent pointing to this one, including itself.
46 *
47 * This counter is used for making decision about reusing anon_vma
48 * instead of forking new one. See comments in function anon_vma_clone.
49 */
50 unsigned long num_children;
51 /* Count of VMAs whose ->anon_vma pointer points to this object. */
52 unsigned long num_active_vmas;
53
54 struct anon_vma *parent; /* Parent of this anon_vma */
55
56 /*
57 * NOTE: the LSB of the rb_root.rb_node is set by
58 * mm_take_all_locks() _after_ taking the above lock. So the
59 * rb_root must only be read/written after taking the above lock
60 * to be sure to see a valid next pointer. The LSB bit itself
61 * is serialized by a system wide lock only visible to
62 * mm_take_all_locks() (mm_all_locks_mutex).
63 */
64
65 /* Interval tree of private "related" vmas */
66 struct rb_root_cached rb_root;
67 };
68
69 /*
70 * The copy-on-write semantics of fork mean that an anon_vma
71 * can become associated with multiple processes. Furthermore,
72 * each child process will have its own anon_vma, where new
73 * pages for that process are instantiated.
74 *
75 * This structure allows us to find the anon_vmas associated
76 * with a VMA, or the VMAs associated with an anon_vma.
77 * The "same_vma" list contains the anon_vma_chains linking
78 * all the anon_vmas associated with this VMA.
79 * The "rb" field indexes on an interval tree the anon_vma_chains
80 * which link all the VMAs associated with this anon_vma.
81 */
82 struct anon_vma_chain {
83 struct vm_area_struct *vma;
84 struct anon_vma *anon_vma;
85 struct list_head same_vma; /* locked by mmap_lock & page_table_lock */
86 struct rb_node rb; /* locked by anon_vma->rwsem */
87 unsigned long rb_subtree_last;
88 #ifdef CONFIG_DEBUG_VM_RB
89 unsigned long cached_vma_start, cached_vma_last;
90 #endif
91 };
92
93 enum ttu_flags {
94 TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */
95 TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */
96 TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */
97 TTU_HWPOISON = 0x20, /* do convert pte to hwpoison entry */
98 TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible
99 * and caller guarantees they will
100 * do a final flush if necessary */
101 TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock:
102 * caller holds it */
103 };
104
105 #ifdef CONFIG_MMU
get_anon_vma(struct anon_vma * anon_vma)106 static inline void get_anon_vma(struct anon_vma *anon_vma)
107 {
108 atomic_inc(&anon_vma->refcount);
109 }
110
111 void __put_anon_vma(struct anon_vma *anon_vma);
112
put_anon_vma(struct anon_vma * anon_vma)113 static inline void put_anon_vma(struct anon_vma *anon_vma)
114 {
115 if (atomic_dec_and_test(&anon_vma->refcount))
116 __put_anon_vma(anon_vma);
117 }
118
anon_vma_lock_write(struct anon_vma * anon_vma)119 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
120 {
121 down_write(&anon_vma->root->rwsem);
122 }
123
anon_vma_unlock_write(struct anon_vma * anon_vma)124 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
125 {
126 up_write(&anon_vma->root->rwsem);
127 }
128
anon_vma_lock_read(struct anon_vma * anon_vma)129 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
130 {
131 down_read(&anon_vma->root->rwsem);
132 }
133
anon_vma_trylock_read(struct anon_vma * anon_vma)134 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma)
135 {
136 return down_read_trylock(&anon_vma->root->rwsem);
137 }
138
anon_vma_unlock_read(struct anon_vma * anon_vma)139 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
140 {
141 up_read(&anon_vma->root->rwsem);
142 }
143
144
145 /*
146 * anon_vma helper functions.
147 */
148 void anon_vma_init(void); /* create anon_vma_cachep */
149 int __anon_vma_prepare(struct vm_area_struct *);
150 void unlink_anon_vmas(struct vm_area_struct *);
151 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
152 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
153
anon_vma_prepare(struct vm_area_struct * vma)154 static inline int anon_vma_prepare(struct vm_area_struct *vma)
155 {
156 if (likely(vma->anon_vma))
157 return 0;
158
159 return __anon_vma_prepare(vma);
160 }
161
anon_vma_merge(struct vm_area_struct * vma,struct vm_area_struct * next)162 static inline void anon_vma_merge(struct vm_area_struct *vma,
163 struct vm_area_struct *next)
164 {
165 VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
166 unlink_anon_vmas(next);
167 }
168
169 struct anon_vma *folio_get_anon_vma(struct folio *folio);
170
171 /* RMAP flags, currently only relevant for some anon rmap operations. */
172 typedef int __bitwise rmap_t;
173
174 /*
175 * No special request: if the page is a subpage of a compound page, it is
176 * mapped via a PTE. The mapped (sub)page is possibly shared between processes.
177 */
178 #define RMAP_NONE ((__force rmap_t)0)
179
180 /* The (sub)page is exclusive to a single process. */
181 #define RMAP_EXCLUSIVE ((__force rmap_t)BIT(0))
182
183 /*
184 * The compound page is not mapped via PTEs, but instead via a single PMD and
185 * should be accounted accordingly.
186 */
187 #define RMAP_COMPOUND ((__force rmap_t)BIT(1))
188
189 /*
190 * rmap interfaces called when adding or removing pte of page
191 */
192 void page_move_anon_rmap(struct page *, struct vm_area_struct *);
193 void page_add_anon_rmap(struct page *, struct vm_area_struct *,
194 unsigned long address, rmap_t flags);
195 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
196 unsigned long address);
197 void folio_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
198 unsigned long address);
199 void page_add_file_rmap(struct page *, struct vm_area_struct *,
200 bool compound);
201 void page_remove_rmap(struct page *, struct vm_area_struct *,
202 bool compound);
203
204 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
205 unsigned long address, rmap_t flags);
206 void hugepage_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
207 unsigned long address);
208
__page_dup_rmap(struct page * page,bool compound)209 static inline void __page_dup_rmap(struct page *page, bool compound)
210 {
211 if (compound) {
212 struct folio *folio = (struct folio *)page;
213
214 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
215 atomic_inc(&folio->_entire_mapcount);
216 } else {
217 atomic_inc(&page->_mapcount);
218 }
219 }
220
page_dup_file_rmap(struct page * page,bool compound)221 static inline void page_dup_file_rmap(struct page *page, bool compound)
222 {
223 __page_dup_rmap(page, compound);
224 }
225
226 /**
227 * page_try_dup_anon_rmap - try duplicating a mapping of an already mapped
228 * anonymous page
229 * @page: the page to duplicate the mapping for
230 * @compound: the page is mapped as compound or as a small page
231 * @vma: the source vma
232 *
233 * The caller needs to hold the PT lock and the vma->vma_mm->write_protect_seq.
234 *
235 * Duplicating the mapping can only fail if the page may be pinned; device
236 * private pages cannot get pinned and consequently this function cannot fail.
237 *
238 * If duplicating the mapping succeeds, the page has to be mapped R/O into
239 * the parent and the child. It must *not* get mapped writable after this call.
240 *
241 * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise.
242 */
page_try_dup_anon_rmap(struct page * page,bool compound,struct vm_area_struct * vma)243 static inline int page_try_dup_anon_rmap(struct page *page, bool compound,
244 struct vm_area_struct *vma)
245 {
246 VM_BUG_ON_PAGE(!PageAnon(page), page);
247
248 /*
249 * No need to check+clear for already shared pages, including KSM
250 * pages.
251 */
252 if (!PageAnonExclusive(page))
253 goto dup;
254
255 /*
256 * If this page may have been pinned by the parent process,
257 * don't allow to duplicate the mapping but instead require to e.g.,
258 * copy the page immediately for the child so that we'll always
259 * guarantee the pinned page won't be randomly replaced in the
260 * future on write faults.
261 */
262 if (likely(!is_device_private_page(page) &&
263 unlikely(page_needs_cow_for_dma(vma, page))))
264 return -EBUSY;
265
266 ClearPageAnonExclusive(page);
267 /*
268 * It's okay to share the anon page between both processes, mapping
269 * the page R/O into both processes.
270 */
271 dup:
272 __page_dup_rmap(page, compound);
273 return 0;
274 }
275
276 /**
277 * page_try_share_anon_rmap - try marking an exclusive anonymous page possibly
278 * shared to prepare for KSM or temporary unmapping
279 * @page: the exclusive anonymous page to try marking possibly shared
280 *
281 * The caller needs to hold the PT lock and has to have the page table entry
282 * cleared/invalidated.
283 *
284 * This is similar to page_try_dup_anon_rmap(), however, not used during fork()
285 * to duplicate a mapping, but instead to prepare for KSM or temporarily
286 * unmapping a page (swap, migration) via page_remove_rmap().
287 *
288 * Marking the page shared can only fail if the page may be pinned; device
289 * private pages cannot get pinned and consequently this function cannot fail.
290 *
291 * Returns 0 if marking the page possibly shared succeeded. Returns -EBUSY
292 * otherwise.
293 */
page_try_share_anon_rmap(struct page * page)294 static inline int page_try_share_anon_rmap(struct page *page)
295 {
296 VM_BUG_ON_PAGE(!PageAnon(page) || !PageAnonExclusive(page), page);
297
298 /* device private pages cannot get pinned via GUP. */
299 if (unlikely(is_device_private_page(page))) {
300 ClearPageAnonExclusive(page);
301 return 0;
302 }
303
304 /*
305 * We have to make sure that when we clear PageAnonExclusive, that
306 * the page is not pinned and that concurrent GUP-fast won't succeed in
307 * concurrently pinning the page.
308 *
309 * Conceptually, PageAnonExclusive clearing consists of:
310 * (A1) Clear PTE
311 * (A2) Check if the page is pinned; back off if so.
312 * (A3) Clear PageAnonExclusive
313 * (A4) Restore PTE (optional, but certainly not writable)
314 *
315 * When clearing PageAnonExclusive, we cannot possibly map the page
316 * writable again, because anon pages that may be shared must never
317 * be writable. So in any case, if the PTE was writable it cannot
318 * be writable anymore afterwards and there would be a PTE change. Only
319 * if the PTE wasn't writable, there might not be a PTE change.
320 *
321 * Conceptually, GUP-fast pinning of an anon page consists of:
322 * (B1) Read the PTE
323 * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so.
324 * (B3) Pin the mapped page
325 * (B4) Check if the PTE changed by re-reading it; back off if so.
326 * (B5) If the original PTE is not writable, check if
327 * PageAnonExclusive is not set; back off if so.
328 *
329 * If the PTE was writable, we only have to make sure that GUP-fast
330 * observes a PTE change and properly backs off.
331 *
332 * If the PTE was not writable, we have to make sure that GUP-fast either
333 * detects a (temporary) PTE change or that PageAnonExclusive is cleared
334 * and properly backs off.
335 *
336 * Consequently, when clearing PageAnonExclusive(), we have to make
337 * sure that (A1), (A2)/(A3) and (A4) happen in the right memory
338 * order. In GUP-fast pinning code, we have to make sure that (B3),(B4)
339 * and (B5) happen in the right memory order.
340 *
341 * We assume that there might not be a memory barrier after
342 * clearing/invalidating the PTE (A1) and before restoring the PTE (A4),
343 * so we use explicit ones here.
344 */
345
346 /* Paired with the memory barrier in try_grab_folio(). */
347 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
348 smp_mb();
349
350 if (unlikely(page_maybe_dma_pinned(page)))
351 return -EBUSY;
352 ClearPageAnonExclusive(page);
353
354 /*
355 * This is conceptually a smp_wmb() paired with the smp_rmb() in
356 * gup_must_unshare().
357 */
358 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
359 smp_mb__after_atomic();
360 return 0;
361 }
362
363 /*
364 * Called from mm/vmscan.c to handle paging out
365 */
366 int folio_referenced(struct folio *, int is_locked,
367 struct mem_cgroup *memcg, unsigned long *vm_flags);
368
369 void try_to_migrate(struct folio *folio, enum ttu_flags flags);
370 void try_to_unmap(struct folio *, enum ttu_flags flags);
371
372 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
373 unsigned long end, struct page **pages,
374 void *arg);
375
376 /* Avoid racy checks */
377 #define PVMW_SYNC (1 << 0)
378 /* Look for migration entries rather than present PTEs */
379 #define PVMW_MIGRATION (1 << 1)
380
381 struct page_vma_mapped_walk {
382 unsigned long pfn;
383 unsigned long nr_pages;
384 pgoff_t pgoff;
385 struct vm_area_struct *vma;
386 unsigned long address;
387 pmd_t *pmd;
388 pte_t *pte;
389 spinlock_t *ptl;
390 unsigned int flags;
391 };
392
393 #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags) \
394 struct page_vma_mapped_walk name = { \
395 .pfn = page_to_pfn(_page), \
396 .nr_pages = compound_nr(_page), \
397 .pgoff = page_to_pgoff(_page), \
398 .vma = _vma, \
399 .address = _address, \
400 .flags = _flags, \
401 }
402
403 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags) \
404 struct page_vma_mapped_walk name = { \
405 .pfn = folio_pfn(_folio), \
406 .nr_pages = folio_nr_pages(_folio), \
407 .pgoff = folio_pgoff(_folio), \
408 .vma = _vma, \
409 .address = _address, \
410 .flags = _flags, \
411 }
412
page_vma_mapped_walk_done(struct page_vma_mapped_walk * pvmw)413 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
414 {
415 /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
416 if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma))
417 pte_unmap(pvmw->pte);
418 if (pvmw->ptl)
419 spin_unlock(pvmw->ptl);
420 }
421
422 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
423
424 /*
425 * Used by swapoff to help locate where page is expected in vma.
426 */
427 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
428
429 /*
430 * Cleans the PTEs of shared mappings.
431 * (and since clean PTEs should also be readonly, write protects them too)
432 *
433 * returns the number of cleaned PTEs.
434 */
435 int folio_mkclean(struct folio *);
436
437 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
438 struct vm_area_struct *vma);
439
440 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked);
441
442 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
443
444 /*
445 * rmap_walk_control: To control rmap traversing for specific needs
446 *
447 * arg: passed to rmap_one() and invalid_vma()
448 * try_lock: bail out if the rmap lock is contended
449 * contended: indicate the rmap traversal bailed out due to lock contention
450 * rmap_one: executed on each vma where page is mapped
451 * done: for checking traversing termination condition
452 * anon_lock: for getting anon_lock by optimized way rather than default
453 * invalid_vma: for skipping uninterested vma
454 */
455 struct rmap_walk_control {
456 void *arg;
457 bool try_lock;
458 bool contended;
459 /*
460 * Return false if page table scanning in rmap_walk should be stopped.
461 * Otherwise, return true.
462 */
463 bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma,
464 unsigned long addr, void *arg);
465 int (*done)(struct folio *folio);
466 struct anon_vma *(*anon_lock)(struct folio *folio,
467 struct rmap_walk_control *rwc);
468 bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
469 };
470
471 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc);
472 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc);
473 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
474 struct rmap_walk_control *rwc);
475
476 #else /* !CONFIG_MMU */
477
478 #define anon_vma_init() do {} while (0)
479 #define anon_vma_prepare(vma) (0)
480 #define anon_vma_link(vma) do {} while (0)
481
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)482 static inline int folio_referenced(struct folio *folio, int is_locked,
483 struct mem_cgroup *memcg,
484 unsigned long *vm_flags)
485 {
486 *vm_flags = 0;
487 return 0;
488 }
489
try_to_unmap(struct folio * folio,enum ttu_flags flags)490 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags)
491 {
492 }
493
folio_mkclean(struct folio * folio)494 static inline int folio_mkclean(struct folio *folio)
495 {
496 return 0;
497 }
498 #endif /* CONFIG_MMU */
499
page_mkclean(struct page * page)500 static inline int page_mkclean(struct page *page)
501 {
502 return folio_mkclean(page_folio(page));
503 }
504 #endif /* _LINUX_RMAP_H */
505