1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SLUB_DEF_H
3 #define _LINUX_SLUB_DEF_H
4 
5 /*
6  * SLUB : A Slab allocator without object queues.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 #include <linux/kfence.h>
11 #include <linux/kobject.h>
12 #include <linux/reciprocal_div.h>
13 #include <linux/local_lock.h>
14 
15 enum stat_item {
16 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
17 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
18 	FREE_FASTPATH,		/* Free to cpu slab */
19 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
20 	FREE_FROZEN,		/* Freeing to frozen slab */
21 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
22 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
23 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
24 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
25 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
26 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
27 	FREE_SLAB,		/* Slab freed to the page allocator */
28 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
29 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
30 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
31 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
32 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
33 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
34 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
35 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
36 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
37 	CMPXCHG_DOUBLE_FAIL,	/* Number of times that cmpxchg double did not match */
38 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
39 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
40 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
41 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
42 	NR_SLUB_STAT_ITEMS };
43 
44 #ifndef CONFIG_SLUB_TINY
45 /*
46  * When changing the layout, make sure freelist and tid are still compatible
47  * with this_cpu_cmpxchg_double() alignment requirements.
48  */
49 struct kmem_cache_cpu {
50 	void **freelist;	/* Pointer to next available object */
51 	unsigned long tid;	/* Globally unique transaction id */
52 	struct slab *slab;	/* The slab from which we are allocating */
53 #ifdef CONFIG_SLUB_CPU_PARTIAL
54 	struct slab *partial;	/* Partially allocated frozen slabs */
55 #endif
56 	local_lock_t lock;	/* Protects the fields above */
57 #ifdef CONFIG_SLUB_STATS
58 	unsigned stat[NR_SLUB_STAT_ITEMS];
59 #endif
60 };
61 #endif /* CONFIG_SLUB_TINY */
62 
63 #ifdef CONFIG_SLUB_CPU_PARTIAL
64 #define slub_percpu_partial(c)		((c)->partial)
65 
66 #define slub_set_percpu_partial(c, p)		\
67 ({						\
68 	slub_percpu_partial(c) = (p)->next;	\
69 })
70 
71 #define slub_percpu_partial_read_once(c)     READ_ONCE(slub_percpu_partial(c))
72 #else
73 #define slub_percpu_partial(c)			NULL
74 
75 #define slub_set_percpu_partial(c, p)
76 
77 #define slub_percpu_partial_read_once(c)	NULL
78 #endif // CONFIG_SLUB_CPU_PARTIAL
79 
80 /*
81  * Word size structure that can be atomically updated or read and that
82  * contains both the order and the number of objects that a slab of the
83  * given order would contain.
84  */
85 struct kmem_cache_order_objects {
86 	unsigned int x;
87 };
88 
89 /*
90  * Slab cache management.
91  */
92 struct kmem_cache {
93 #ifndef CONFIG_SLUB_TINY
94 	struct kmem_cache_cpu __percpu *cpu_slab;
95 #endif
96 	/* Used for retrieving partial slabs, etc. */
97 	slab_flags_t flags;
98 	unsigned long min_partial;
99 	unsigned int size;	/* The size of an object including metadata */
100 	unsigned int object_size;/* The size of an object without metadata */
101 	struct reciprocal_value reciprocal_size;
102 	unsigned int offset;	/* Free pointer offset */
103 #ifdef CONFIG_SLUB_CPU_PARTIAL
104 	/* Number of per cpu partial objects to keep around */
105 	unsigned int cpu_partial;
106 	/* Number of per cpu partial slabs to keep around */
107 	unsigned int cpu_partial_slabs;
108 #endif
109 	struct kmem_cache_order_objects oo;
110 
111 	/* Allocation and freeing of slabs */
112 	struct kmem_cache_order_objects min;
113 	gfp_t allocflags;	/* gfp flags to use on each alloc */
114 	int refcount;		/* Refcount for slab cache destroy */
115 	void (*ctor)(void *);
116 	unsigned int inuse;		/* Offset to metadata */
117 	unsigned int align;		/* Alignment */
118 	unsigned int red_left_pad;	/* Left redzone padding size */
119 	const char *name;	/* Name (only for display!) */
120 	struct list_head list;	/* List of slab caches */
121 #ifdef CONFIG_SYSFS
122 	struct kobject kobj;	/* For sysfs */
123 #endif
124 #ifdef CONFIG_SLAB_FREELIST_HARDENED
125 	unsigned long random;
126 #endif
127 
128 #ifdef CONFIG_NUMA
129 	/*
130 	 * Defragmentation by allocating from a remote node.
131 	 */
132 	unsigned int remote_node_defrag_ratio;
133 #endif
134 
135 #ifdef CONFIG_SLAB_FREELIST_RANDOM
136 	unsigned int *random_seq;
137 #endif
138 
139 #ifdef CONFIG_KASAN_GENERIC
140 	struct kasan_cache kasan_info;
141 #endif
142 
143 #ifdef CONFIG_HARDENED_USERCOPY
144 	unsigned int useroffset;	/* Usercopy region offset */
145 	unsigned int usersize;		/* Usercopy region size */
146 #endif
147 
148 	struct kmem_cache_node *node[MAX_NUMNODES];
149 };
150 
151 #if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY)
152 #define SLAB_SUPPORTS_SYSFS
153 void sysfs_slab_unlink(struct kmem_cache *);
154 void sysfs_slab_release(struct kmem_cache *);
155 #else
sysfs_slab_unlink(struct kmem_cache * s)156 static inline void sysfs_slab_unlink(struct kmem_cache *s)
157 {
158 }
sysfs_slab_release(struct kmem_cache * s)159 static inline void sysfs_slab_release(struct kmem_cache *s)
160 {
161 }
162 #endif
163 
164 void *fixup_red_left(struct kmem_cache *s, void *p);
165 
nearest_obj(struct kmem_cache * cache,const struct slab * slab,void * x)166 static inline void *nearest_obj(struct kmem_cache *cache, const struct slab *slab,
167 				void *x) {
168 	void *object = x - (x - slab_address(slab)) % cache->size;
169 	void *last_object = slab_address(slab) +
170 		(slab->objects - 1) * cache->size;
171 	void *result = (unlikely(object > last_object)) ? last_object : object;
172 
173 	result = fixup_red_left(cache, result);
174 	return result;
175 }
176 
177 /* Determine object index from a given position */
__obj_to_index(const struct kmem_cache * cache,void * addr,void * obj)178 static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
179 					  void *addr, void *obj)
180 {
181 	return reciprocal_divide(kasan_reset_tag(obj) - addr,
182 				 cache->reciprocal_size);
183 }
184 
obj_to_index(const struct kmem_cache * cache,const struct slab * slab,void * obj)185 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
186 					const struct slab *slab, void *obj)
187 {
188 	if (is_kfence_address(obj))
189 		return 0;
190 	return __obj_to_index(cache, slab_address(slab), obj);
191 }
192 
objs_per_slab(const struct kmem_cache * cache,const struct slab * slab)193 static inline int objs_per_slab(const struct kmem_cache *cache,
194 				     const struct slab *slab)
195 {
196 	return slab->objects;
197 }
198 #endif /* _LINUX_SLUB_DEF_H */
199