1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis */
2 /* SPDX-License-Identifier: Unlicense */
3 
4 #include "tomcrypt_private.h"
5 
6 /**
7   @file ltc_ecc_projective_add_point.c
8   ECC Crypto, Tom St Denis
9 */
10 
11 #if defined(LTC_MECC) && (!defined(LTC_MECC_ACCEL) || defined(LTM_DESC))
12 
13 /**
14    Add two ECC points
15    @param P        The point to add
16    @param Q        The point to add
17    @param R        [out] The destination of the double
18    @param ma       ECC curve parameter a in montgomery form
19    @param modulus  The modulus of the field the ECC curve is in
20    @param mp       The "b" value from montgomery_setup()
21    @return CRYPT_OK on success
22 */
ltc_ecc_projective_add_point(const ecc_point * P,const ecc_point * Q,ecc_point * R,void * ma,void * modulus,void * mp)23 int ltc_ecc_projective_add_point(const ecc_point *P, const ecc_point *Q, ecc_point *R, void *ma, void *modulus, void *mp)
24 {
25    void  *t1, *t2, *x, *y, *z;
26    int    err, inf;
27 
28    LTC_ARGCHK(P       != NULL);
29    LTC_ARGCHK(Q       != NULL);
30    LTC_ARGCHK(R       != NULL);
31    LTC_ARGCHK(modulus != NULL);
32    LTC_ARGCHK(mp      != NULL);
33 
34    if ((err = mp_init_multi(&t1, &t2, &x, &y, &z, LTC_NULL)) != CRYPT_OK) {
35       return err;
36    }
37 
38    if ((err = ltc_ecc_is_point_at_infinity(P, modulus, &inf)) != CRYPT_OK) return err;
39    if (inf) {
40       /* P is point at infinity >> Result = Q */
41       err = ltc_ecc_copy_point(Q, R);
42       goto done;
43    }
44 
45    if ((err = ltc_ecc_is_point_at_infinity(Q, modulus, &inf)) != CRYPT_OK) return err;
46    if (inf) {
47       /* Q is point at infinity >> Result = P */
48       err = ltc_ecc_copy_point(P, R);
49       goto done;
50    }
51 
52    if ((mp_cmp(P->x, Q->x) == LTC_MP_EQ) && (mp_cmp(P->z, Q->z) == LTC_MP_EQ)) {
53       if (mp_cmp(P->y, Q->y) == LTC_MP_EQ) {
54          /* here P = Q >> Result = 2 * P (use doubling) */
55          mp_clear_multi(t1, t2, x, y, z, LTC_NULL);
56          return ltc_ecc_projective_dbl_point(P, R, ma, modulus, mp);
57       }
58       if ((err = mp_sub(modulus, Q->y, t1)) != CRYPT_OK)                       { goto done; }
59       if (mp_cmp(P->y, t1) == LTC_MP_EQ) {
60          /* here Q = -P >>> Result = the point at infinity */
61          err = ltc_ecc_set_point_xyz(1, 1, 0, R);
62          goto done;
63       }
64    }
65 
66    if ((err = mp_copy(P->x, x)) != CRYPT_OK)                                   { goto done; }
67    if ((err = mp_copy(P->y, y)) != CRYPT_OK)                                   { goto done; }
68    if ((err = mp_copy(P->z, z)) != CRYPT_OK)                                   { goto done; }
69 
70    /* if Z is one then these are no-operations */
71    if (Q->z != NULL) {
72       /* T1 = Z' * Z' */
73       if ((err = mp_sqr(Q->z, t1)) != CRYPT_OK)                                { goto done; }
74       if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)           { goto done; }
75       /* X = X * T1 */
76       if ((err = mp_mul(t1, x, x)) != CRYPT_OK)                                { goto done; }
77       if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)            { goto done; }
78       /* T1 = Z' * T1 */
79       if ((err = mp_mul(Q->z, t1, t1)) != CRYPT_OK)                            { goto done; }
80       if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)           { goto done; }
81       /* Y = Y * T1 */
82       if ((err = mp_mul(t1, y, y)) != CRYPT_OK)                                { goto done; }
83       if ((err = mp_montgomery_reduce(y, modulus, mp)) != CRYPT_OK)            { goto done; }
84    }
85 
86    /* T1 = Z*Z */
87    if ((err = mp_sqr(z, t1)) != CRYPT_OK)                                      { goto done; }
88    if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
89    /* T2 = X' * T1 */
90    if ((err = mp_mul(Q->x, t1, t2)) != CRYPT_OK)                               { goto done; }
91    if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
92    /* T1 = Z * T1 */
93    if ((err = mp_mul(z, t1, t1)) != CRYPT_OK)                                  { goto done; }
94    if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
95    /* T1 = Y' * T1 */
96    if ((err = mp_mul(Q->y, t1, t1)) != CRYPT_OK)                               { goto done; }
97    if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
98 
99    /* Y = Y - T1 */
100    if ((err = mp_sub(y, t1, y)) != CRYPT_OK)                                   { goto done; }
101    if (mp_cmp_d(y, 0) == LTC_MP_LT) {
102       if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
103    }
104    /* T1 = 2T1 */
105    if ((err = mp_add(t1, t1, t1)) != CRYPT_OK)                                 { goto done; }
106    if (mp_cmp(t1, modulus) != LTC_MP_LT) {
107       if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                         { goto done; }
108    }
109    /* T1 = Y + T1 */
110    if ((err = mp_add(t1, y, t1)) != CRYPT_OK)                                  { goto done; }
111    if (mp_cmp(t1, modulus) != LTC_MP_LT) {
112       if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                         { goto done; }
113    }
114    /* X = X - T2 */
115    if ((err = mp_sub(x, t2, x)) != CRYPT_OK)                                   { goto done; }
116    if (mp_cmp_d(x, 0) == LTC_MP_LT) {
117       if ((err = mp_add(x, modulus, x)) != CRYPT_OK)                           { goto done; }
118    }
119    /* T2 = 2T2 */
120    if ((err = mp_add(t2, t2, t2)) != CRYPT_OK)                                 { goto done; }
121    if (mp_cmp(t2, modulus) != LTC_MP_LT) {
122       if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
123    }
124    /* T2 = X + T2 */
125    if ((err = mp_add(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
126    if (mp_cmp(t2, modulus) != LTC_MP_LT) {
127       if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
128    }
129 
130    /* if Z' != 1 */
131    if (Q->z != NULL) {
132       /* Z = Z * Z' */
133       if ((err = mp_mul(z, Q->z, z)) != CRYPT_OK)                              { goto done; }
134       if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK)            { goto done; }
135    }
136 
137    /* Z = Z * X */
138    if ((err = mp_mul(z, x, z)) != CRYPT_OK)                                    { goto done; }
139    if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK)               { goto done; }
140 
141    /* T1 = T1 * X  */
142    if ((err = mp_mul(t1, x, t1)) != CRYPT_OK)                                  { goto done; }
143    if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
144    /* X = X * X */
145    if ((err = mp_sqr(x, x)) != CRYPT_OK)                                       { goto done; }
146    if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)               { goto done; }
147    /* T2 = T2 * x */
148    if ((err = mp_mul(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
149    if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
150    /* T1 = T1 * X  */
151    if ((err = mp_mul(t1, x, t1)) != CRYPT_OK)                                  { goto done; }
152    if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
153 
154    /* X = Y*Y */
155    if ((err = mp_sqr(y, x)) != CRYPT_OK)                                       { goto done; }
156    if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)               { goto done; }
157    /* X = X - T2 */
158    if ((err = mp_sub(x, t2, x)) != CRYPT_OK)                                   { goto done; }
159    if (mp_cmp_d(x, 0) == LTC_MP_LT) {
160       if ((err = mp_add(x, modulus, x)) != CRYPT_OK)                           { goto done; }
161    }
162 
163    /* T2 = T2 - X */
164    if ((err = mp_sub(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
165    if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
166       if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
167    }
168    /* T2 = T2 - X */
169    if ((err = mp_sub(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
170    if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
171       if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
172    }
173    /* T2 = T2 * Y */
174    if ((err = mp_mul(t2, y, t2)) != CRYPT_OK)                                  { goto done; }
175    if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
176    /* Y = T2 - T1 */
177    if ((err = mp_sub(t2, t1, y)) != CRYPT_OK)                                  { goto done; }
178    if (mp_cmp_d(y, 0) == LTC_MP_LT) {
179       if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
180    }
181    /* Y = Y/2 */
182    if (mp_isodd(y)) {
183       if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
184    }
185    if ((err = mp_div_2(y, y)) != CRYPT_OK)                                     { goto done; }
186 
187    if ((err = mp_copy(x, R->x)) != CRYPT_OK)                                   { goto done; }
188    if ((err = mp_copy(y, R->y)) != CRYPT_OK)                                   { goto done; }
189    if ((err = mp_copy(z, R->z)) != CRYPT_OK)                                   { goto done; }
190 
191    err = CRYPT_OK;
192 done:
193    mp_clear_multi(t1, t2, x, y, z, LTC_NULL);
194    return err;
195 }
196 
197 #endif
198 
199