1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
8
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27 #include <linux/stackdepot.h>
28
29 #include "internal.h"
30 #include "slab.h"
31
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/kmem.h>
34
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
39
40 static LIST_HEAD(slab_caches_to_rcu_destroy);
41 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
42 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
43 slab_caches_to_rcu_destroy_workfn);
44
45 /*
46 * Set of flags that will prevent slab merging
47 */
48 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
49 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
50 SLAB_FAILSLAB | kasan_never_merge())
51
52 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
53 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
54
55 /*
56 * Merge control. If this is set then no merging of slab caches will occur.
57 */
58 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
59
setup_slab_nomerge(char * str)60 static int __init setup_slab_nomerge(char *str)
61 {
62 slab_nomerge = true;
63 return 1;
64 }
65
setup_slab_merge(char * str)66 static int __init setup_slab_merge(char *str)
67 {
68 slab_nomerge = false;
69 return 1;
70 }
71
72 #ifdef CONFIG_SLUB
73 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
74 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
75 #endif
76
77 __setup("slab_nomerge", setup_slab_nomerge);
78 __setup("slab_merge", setup_slab_merge);
79
80 /*
81 * Determine the size of a slab object
82 */
kmem_cache_size(struct kmem_cache * s)83 unsigned int kmem_cache_size(struct kmem_cache *s)
84 {
85 return s->object_size;
86 }
87 EXPORT_SYMBOL(kmem_cache_size);
88
89 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)90 static int kmem_cache_sanity_check(const char *name, unsigned int size)
91 {
92 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
93 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 return -EINVAL;
95 }
96
97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
98 return 0;
99 }
100 #else
kmem_cache_sanity_check(const char * name,unsigned int size)101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
102 {
103 return 0;
104 }
105 #endif
106
107 /*
108 * Figure out what the alignment of the objects will be given a set of
109 * flags, a user specified alignment and the size of the objects.
110 */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)111 static unsigned int calculate_alignment(slab_flags_t flags,
112 unsigned int align, unsigned int size)
113 {
114 /*
115 * If the user wants hardware cache aligned objects then follow that
116 * suggestion if the object is sufficiently large.
117 *
118 * The hardware cache alignment cannot override the specified
119 * alignment though. If that is greater then use it.
120 */
121 if (flags & SLAB_HWCACHE_ALIGN) {
122 unsigned int ralign;
123
124 ralign = cache_line_size();
125 while (size <= ralign / 2)
126 ralign /= 2;
127 align = max(align, ralign);
128 }
129
130 align = max(align, arch_slab_minalign());
131
132 return ALIGN(align, sizeof(void *));
133 }
134
135 /*
136 * Find a mergeable slab cache
137 */
slab_unmergeable(struct kmem_cache * s)138 int slab_unmergeable(struct kmem_cache *s)
139 {
140 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
141 return 1;
142
143 if (s->ctor)
144 return 1;
145
146 #ifdef CONFIG_HARDENED_USERCOPY
147 if (s->usersize)
148 return 1;
149 #endif
150
151 /*
152 * We may have set a slab to be unmergeable during bootstrap.
153 */
154 if (s->refcount < 0)
155 return 1;
156
157 return 0;
158 }
159
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))160 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
161 slab_flags_t flags, const char *name, void (*ctor)(void *))
162 {
163 struct kmem_cache *s;
164
165 if (slab_nomerge)
166 return NULL;
167
168 if (ctor)
169 return NULL;
170
171 size = ALIGN(size, sizeof(void *));
172 align = calculate_alignment(flags, align, size);
173 size = ALIGN(size, align);
174 flags = kmem_cache_flags(size, flags, name);
175
176 if (flags & SLAB_NEVER_MERGE)
177 return NULL;
178
179 list_for_each_entry_reverse(s, &slab_caches, list) {
180 if (slab_unmergeable(s))
181 continue;
182
183 if (size > s->size)
184 continue;
185
186 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
187 continue;
188 /*
189 * Check if alignment is compatible.
190 * Courtesy of Adrian Drzewiecki
191 */
192 if ((s->size & ~(align - 1)) != s->size)
193 continue;
194
195 if (s->size - size >= sizeof(void *))
196 continue;
197
198 if (IS_ENABLED(CONFIG_SLAB) && align &&
199 (align > s->align || s->align % align))
200 continue;
201
202 return s;
203 }
204 return NULL;
205 }
206
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct kmem_cache * root_cache)207 static struct kmem_cache *create_cache(const char *name,
208 unsigned int object_size, unsigned int align,
209 slab_flags_t flags, unsigned int useroffset,
210 unsigned int usersize, void (*ctor)(void *),
211 struct kmem_cache *root_cache)
212 {
213 struct kmem_cache *s;
214 int err;
215
216 if (WARN_ON(useroffset + usersize > object_size))
217 useroffset = usersize = 0;
218
219 err = -ENOMEM;
220 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
221 if (!s)
222 goto out;
223
224 s->name = name;
225 s->size = s->object_size = object_size;
226 s->align = align;
227 s->ctor = ctor;
228 #ifdef CONFIG_HARDENED_USERCOPY
229 s->useroffset = useroffset;
230 s->usersize = usersize;
231 #endif
232
233 err = __kmem_cache_create(s, flags);
234 if (err)
235 goto out_free_cache;
236
237 s->refcount = 1;
238 list_add(&s->list, &slab_caches);
239 out:
240 if (err)
241 return ERR_PTR(err);
242 return s;
243
244 out_free_cache:
245 kmem_cache_free(kmem_cache, s);
246 goto out;
247 }
248
249 /**
250 * kmem_cache_create_usercopy - Create a cache with a region suitable
251 * for copying to userspace
252 * @name: A string which is used in /proc/slabinfo to identify this cache.
253 * @size: The size of objects to be created in this cache.
254 * @align: The required alignment for the objects.
255 * @flags: SLAB flags
256 * @useroffset: Usercopy region offset
257 * @usersize: Usercopy region size
258 * @ctor: A constructor for the objects.
259 *
260 * Cannot be called within a interrupt, but can be interrupted.
261 * The @ctor is run when new pages are allocated by the cache.
262 *
263 * The flags are
264 *
265 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
266 * to catch references to uninitialised memory.
267 *
268 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
269 * for buffer overruns.
270 *
271 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
272 * cacheline. This can be beneficial if you're counting cycles as closely
273 * as davem.
274 *
275 * Return: a pointer to the cache on success, NULL on failure.
276 */
277 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))278 kmem_cache_create_usercopy(const char *name,
279 unsigned int size, unsigned int align,
280 slab_flags_t flags,
281 unsigned int useroffset, unsigned int usersize,
282 void (*ctor)(void *))
283 {
284 struct kmem_cache *s = NULL;
285 const char *cache_name;
286 int err;
287
288 #ifdef CONFIG_SLUB_DEBUG
289 /*
290 * If no slub_debug was enabled globally, the static key is not yet
291 * enabled by setup_slub_debug(). Enable it if the cache is being
292 * created with any of the debugging flags passed explicitly.
293 * It's also possible that this is the first cache created with
294 * SLAB_STORE_USER and we should init stack_depot for it.
295 */
296 if (flags & SLAB_DEBUG_FLAGS)
297 static_branch_enable(&slub_debug_enabled);
298 if (flags & SLAB_STORE_USER)
299 stack_depot_init();
300 #endif
301
302 mutex_lock(&slab_mutex);
303
304 err = kmem_cache_sanity_check(name, size);
305 if (err) {
306 goto out_unlock;
307 }
308
309 /* Refuse requests with allocator specific flags */
310 if (flags & ~SLAB_FLAGS_PERMITTED) {
311 err = -EINVAL;
312 goto out_unlock;
313 }
314
315 /*
316 * Some allocators will constraint the set of valid flags to a subset
317 * of all flags. We expect them to define CACHE_CREATE_MASK in this
318 * case, and we'll just provide them with a sanitized version of the
319 * passed flags.
320 */
321 flags &= CACHE_CREATE_MASK;
322
323 /* Fail closed on bad usersize of useroffset values. */
324 if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
325 WARN_ON(!usersize && useroffset) ||
326 WARN_ON(size < usersize || size - usersize < useroffset))
327 usersize = useroffset = 0;
328
329 if (!usersize)
330 s = __kmem_cache_alias(name, size, align, flags, ctor);
331 if (s)
332 goto out_unlock;
333
334 cache_name = kstrdup_const(name, GFP_KERNEL);
335 if (!cache_name) {
336 err = -ENOMEM;
337 goto out_unlock;
338 }
339
340 s = create_cache(cache_name, size,
341 calculate_alignment(flags, align, size),
342 flags, useroffset, usersize, ctor, NULL);
343 if (IS_ERR(s)) {
344 err = PTR_ERR(s);
345 kfree_const(cache_name);
346 }
347
348 out_unlock:
349 mutex_unlock(&slab_mutex);
350
351 if (err) {
352 if (flags & SLAB_PANIC)
353 panic("%s: Failed to create slab '%s'. Error %d\n",
354 __func__, name, err);
355 else {
356 pr_warn("%s(%s) failed with error %d\n",
357 __func__, name, err);
358 dump_stack();
359 }
360 return NULL;
361 }
362 return s;
363 }
364 EXPORT_SYMBOL(kmem_cache_create_usercopy);
365
366 /**
367 * kmem_cache_create - Create a cache.
368 * @name: A string which is used in /proc/slabinfo to identify this cache.
369 * @size: The size of objects to be created in this cache.
370 * @align: The required alignment for the objects.
371 * @flags: SLAB flags
372 * @ctor: A constructor for the objects.
373 *
374 * Cannot be called within a interrupt, but can be interrupted.
375 * The @ctor is run when new pages are allocated by the cache.
376 *
377 * The flags are
378 *
379 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
380 * to catch references to uninitialised memory.
381 *
382 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
383 * for buffer overruns.
384 *
385 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
386 * cacheline. This can be beneficial if you're counting cycles as closely
387 * as davem.
388 *
389 * Return: a pointer to the cache on success, NULL on failure.
390 */
391 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))392 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
393 slab_flags_t flags, void (*ctor)(void *))
394 {
395 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
396 ctor);
397 }
398 EXPORT_SYMBOL(kmem_cache_create);
399
400 #ifdef SLAB_SUPPORTS_SYSFS
401 /*
402 * For a given kmem_cache, kmem_cache_destroy() should only be called
403 * once or there will be a use-after-free problem. The actual deletion
404 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
405 * protection. So they are now done without holding those locks.
406 *
407 * Note that there will be a slight delay in the deletion of sysfs files
408 * if kmem_cache_release() is called indrectly from a work function.
409 */
kmem_cache_release(struct kmem_cache * s)410 static void kmem_cache_release(struct kmem_cache *s)
411 {
412 sysfs_slab_unlink(s);
413 sysfs_slab_release(s);
414 }
415 #else
kmem_cache_release(struct kmem_cache * s)416 static void kmem_cache_release(struct kmem_cache *s)
417 {
418 slab_kmem_cache_release(s);
419 }
420 #endif
421
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)422 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
423 {
424 LIST_HEAD(to_destroy);
425 struct kmem_cache *s, *s2;
426
427 /*
428 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
429 * @slab_caches_to_rcu_destroy list. The slab pages are freed
430 * through RCU and the associated kmem_cache are dereferenced
431 * while freeing the pages, so the kmem_caches should be freed only
432 * after the pending RCU operations are finished. As rcu_barrier()
433 * is a pretty slow operation, we batch all pending destructions
434 * asynchronously.
435 */
436 mutex_lock(&slab_mutex);
437 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
438 mutex_unlock(&slab_mutex);
439
440 if (list_empty(&to_destroy))
441 return;
442
443 rcu_barrier();
444
445 list_for_each_entry_safe(s, s2, &to_destroy, list) {
446 debugfs_slab_release(s);
447 kfence_shutdown_cache(s);
448 kmem_cache_release(s);
449 }
450 }
451
shutdown_cache(struct kmem_cache * s)452 static int shutdown_cache(struct kmem_cache *s)
453 {
454 /* free asan quarantined objects */
455 kasan_cache_shutdown(s);
456
457 if (__kmem_cache_shutdown(s) != 0)
458 return -EBUSY;
459
460 list_del(&s->list);
461
462 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
463 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
464 schedule_work(&slab_caches_to_rcu_destroy_work);
465 } else {
466 kfence_shutdown_cache(s);
467 debugfs_slab_release(s);
468 }
469
470 return 0;
471 }
472
slab_kmem_cache_release(struct kmem_cache * s)473 void slab_kmem_cache_release(struct kmem_cache *s)
474 {
475 __kmem_cache_release(s);
476 kfree_const(s->name);
477 kmem_cache_free(kmem_cache, s);
478 }
479
kmem_cache_destroy(struct kmem_cache * s)480 void kmem_cache_destroy(struct kmem_cache *s)
481 {
482 int refcnt;
483 bool rcu_set;
484
485 if (unlikely(!s) || !kasan_check_byte(s))
486 return;
487
488 cpus_read_lock();
489 mutex_lock(&slab_mutex);
490
491 rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
492
493 refcnt = --s->refcount;
494 if (refcnt)
495 goto out_unlock;
496
497 WARN(shutdown_cache(s),
498 "%s %s: Slab cache still has objects when called from %pS",
499 __func__, s->name, (void *)_RET_IP_);
500 out_unlock:
501 mutex_unlock(&slab_mutex);
502 cpus_read_unlock();
503 if (!refcnt && !rcu_set)
504 kmem_cache_release(s);
505 }
506 EXPORT_SYMBOL(kmem_cache_destroy);
507
508 /**
509 * kmem_cache_shrink - Shrink a cache.
510 * @cachep: The cache to shrink.
511 *
512 * Releases as many slabs as possible for a cache.
513 * To help debugging, a zero exit status indicates all slabs were released.
514 *
515 * Return: %0 if all slabs were released, non-zero otherwise
516 */
kmem_cache_shrink(struct kmem_cache * cachep)517 int kmem_cache_shrink(struct kmem_cache *cachep)
518 {
519 kasan_cache_shrink(cachep);
520
521 return __kmem_cache_shrink(cachep);
522 }
523 EXPORT_SYMBOL(kmem_cache_shrink);
524
slab_is_available(void)525 bool slab_is_available(void)
526 {
527 return slab_state >= UP;
528 }
529
530 #ifdef CONFIG_PRINTK
531 /**
532 * kmem_valid_obj - does the pointer reference a valid slab object?
533 * @object: pointer to query.
534 *
535 * Return: %true if the pointer is to a not-yet-freed object from
536 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
537 * is to an already-freed object, and %false otherwise.
538 */
kmem_valid_obj(void * object)539 bool kmem_valid_obj(void *object)
540 {
541 struct folio *folio;
542
543 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
544 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
545 return false;
546 folio = virt_to_folio(object);
547 return folio_test_slab(folio);
548 }
549 EXPORT_SYMBOL_GPL(kmem_valid_obj);
550
kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)551 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
552 {
553 if (__kfence_obj_info(kpp, object, slab))
554 return;
555 __kmem_obj_info(kpp, object, slab);
556 }
557
558 /**
559 * kmem_dump_obj - Print available slab provenance information
560 * @object: slab object for which to find provenance information.
561 *
562 * This function uses pr_cont(), so that the caller is expected to have
563 * printed out whatever preamble is appropriate. The provenance information
564 * depends on the type of object and on how much debugging is enabled.
565 * For a slab-cache object, the fact that it is a slab object is printed,
566 * and, if available, the slab name, return address, and stack trace from
567 * the allocation and last free path of that object.
568 *
569 * This function will splat if passed a pointer to a non-slab object.
570 * If you are not sure what type of object you have, you should instead
571 * use mem_dump_obj().
572 */
kmem_dump_obj(void * object)573 void kmem_dump_obj(void *object)
574 {
575 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
576 int i;
577 struct slab *slab;
578 unsigned long ptroffset;
579 struct kmem_obj_info kp = { };
580
581 if (WARN_ON_ONCE(!virt_addr_valid(object)))
582 return;
583 slab = virt_to_slab(object);
584 if (WARN_ON_ONCE(!slab)) {
585 pr_cont(" non-slab memory.\n");
586 return;
587 }
588 kmem_obj_info(&kp, object, slab);
589 if (kp.kp_slab_cache)
590 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
591 else
592 pr_cont(" slab%s", cp);
593 if (is_kfence_address(object))
594 pr_cont(" (kfence)");
595 if (kp.kp_objp)
596 pr_cont(" start %px", kp.kp_objp);
597 if (kp.kp_data_offset)
598 pr_cont(" data offset %lu", kp.kp_data_offset);
599 if (kp.kp_objp) {
600 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
601 pr_cont(" pointer offset %lu", ptroffset);
602 }
603 if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
604 pr_cont(" size %u", kp.kp_slab_cache->object_size);
605 if (kp.kp_ret)
606 pr_cont(" allocated at %pS\n", kp.kp_ret);
607 else
608 pr_cont("\n");
609 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
610 if (!kp.kp_stack[i])
611 break;
612 pr_info(" %pS\n", kp.kp_stack[i]);
613 }
614
615 if (kp.kp_free_stack[0])
616 pr_cont(" Free path:\n");
617
618 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
619 if (!kp.kp_free_stack[i])
620 break;
621 pr_info(" %pS\n", kp.kp_free_stack[i]);
622 }
623
624 }
625 EXPORT_SYMBOL_GPL(kmem_dump_obj);
626 #endif
627
628 #ifndef CONFIG_SLOB
629 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)630 void __init create_boot_cache(struct kmem_cache *s, const char *name,
631 unsigned int size, slab_flags_t flags,
632 unsigned int useroffset, unsigned int usersize)
633 {
634 int err;
635 unsigned int align = ARCH_KMALLOC_MINALIGN;
636
637 s->name = name;
638 s->size = s->object_size = size;
639
640 /*
641 * For power of two sizes, guarantee natural alignment for kmalloc
642 * caches, regardless of SL*B debugging options.
643 */
644 if (is_power_of_2(size))
645 align = max(align, size);
646 s->align = calculate_alignment(flags, align, size);
647
648 #ifdef CONFIG_HARDENED_USERCOPY
649 s->useroffset = useroffset;
650 s->usersize = usersize;
651 #endif
652
653 err = __kmem_cache_create(s, flags);
654
655 if (err)
656 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
657 name, size, err);
658
659 s->refcount = -1; /* Exempt from merging for now */
660 }
661
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)662 struct kmem_cache *__init create_kmalloc_cache(const char *name,
663 unsigned int size, slab_flags_t flags,
664 unsigned int useroffset, unsigned int usersize)
665 {
666 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
667
668 if (!s)
669 panic("Out of memory when creating slab %s\n", name);
670
671 create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
672 usersize);
673 list_add(&s->list, &slab_caches);
674 s->refcount = 1;
675 return s;
676 }
677
678 struct kmem_cache *
679 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
680 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
681 EXPORT_SYMBOL(kmalloc_caches);
682
683 /*
684 * Conversion table for small slabs sizes / 8 to the index in the
685 * kmalloc array. This is necessary for slabs < 192 since we have non power
686 * of two cache sizes there. The size of larger slabs can be determined using
687 * fls.
688 */
689 static u8 size_index[24] __ro_after_init = {
690 3, /* 8 */
691 4, /* 16 */
692 5, /* 24 */
693 5, /* 32 */
694 6, /* 40 */
695 6, /* 48 */
696 6, /* 56 */
697 6, /* 64 */
698 1, /* 72 */
699 1, /* 80 */
700 1, /* 88 */
701 1, /* 96 */
702 7, /* 104 */
703 7, /* 112 */
704 7, /* 120 */
705 7, /* 128 */
706 2, /* 136 */
707 2, /* 144 */
708 2, /* 152 */
709 2, /* 160 */
710 2, /* 168 */
711 2, /* 176 */
712 2, /* 184 */
713 2 /* 192 */
714 };
715
size_index_elem(unsigned int bytes)716 static inline unsigned int size_index_elem(unsigned int bytes)
717 {
718 return (bytes - 1) / 8;
719 }
720
721 /*
722 * Find the kmem_cache structure that serves a given size of
723 * allocation
724 */
kmalloc_slab(size_t size,gfp_t flags)725 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
726 {
727 unsigned int index;
728
729 if (size <= 192) {
730 if (!size)
731 return ZERO_SIZE_PTR;
732
733 index = size_index[size_index_elem(size)];
734 } else {
735 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
736 return NULL;
737 index = fls(size - 1);
738 }
739
740 return kmalloc_caches[kmalloc_type(flags)][index];
741 }
742
kmalloc_size_roundup(size_t size)743 size_t kmalloc_size_roundup(size_t size)
744 {
745 struct kmem_cache *c;
746
747 /* Short-circuit the 0 size case. */
748 if (unlikely(size == 0))
749 return 0;
750 /* Short-circuit saturated "too-large" case. */
751 if (unlikely(size == SIZE_MAX))
752 return SIZE_MAX;
753 /* Above the smaller buckets, size is a multiple of page size. */
754 if (size > KMALLOC_MAX_CACHE_SIZE)
755 return PAGE_SIZE << get_order(size);
756
757 /* The flags don't matter since size_index is common to all. */
758 c = kmalloc_slab(size, GFP_KERNEL);
759 return c ? c->object_size : 0;
760 }
761 EXPORT_SYMBOL(kmalloc_size_roundup);
762
763 #ifdef CONFIG_ZONE_DMA
764 #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
765 #else
766 #define KMALLOC_DMA_NAME(sz)
767 #endif
768
769 #ifdef CONFIG_MEMCG_KMEM
770 #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
771 #else
772 #define KMALLOC_CGROUP_NAME(sz)
773 #endif
774
775 #ifndef CONFIG_SLUB_TINY
776 #define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
777 #else
778 #define KMALLOC_RCL_NAME(sz)
779 #endif
780
781 #define INIT_KMALLOC_INFO(__size, __short_size) \
782 { \
783 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
784 KMALLOC_RCL_NAME(__short_size) \
785 KMALLOC_CGROUP_NAME(__short_size) \
786 KMALLOC_DMA_NAME(__short_size) \
787 .size = __size, \
788 }
789
790 /*
791 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
792 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
793 * kmalloc-2M.
794 */
795 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
796 INIT_KMALLOC_INFO(0, 0),
797 INIT_KMALLOC_INFO(96, 96),
798 INIT_KMALLOC_INFO(192, 192),
799 INIT_KMALLOC_INFO(8, 8),
800 INIT_KMALLOC_INFO(16, 16),
801 INIT_KMALLOC_INFO(32, 32),
802 INIT_KMALLOC_INFO(64, 64),
803 INIT_KMALLOC_INFO(128, 128),
804 INIT_KMALLOC_INFO(256, 256),
805 INIT_KMALLOC_INFO(512, 512),
806 INIT_KMALLOC_INFO(1024, 1k),
807 INIT_KMALLOC_INFO(2048, 2k),
808 INIT_KMALLOC_INFO(4096, 4k),
809 INIT_KMALLOC_INFO(8192, 8k),
810 INIT_KMALLOC_INFO(16384, 16k),
811 INIT_KMALLOC_INFO(32768, 32k),
812 INIT_KMALLOC_INFO(65536, 64k),
813 INIT_KMALLOC_INFO(131072, 128k),
814 INIT_KMALLOC_INFO(262144, 256k),
815 INIT_KMALLOC_INFO(524288, 512k),
816 INIT_KMALLOC_INFO(1048576, 1M),
817 INIT_KMALLOC_INFO(2097152, 2M)
818 };
819
820 /*
821 * Patch up the size_index table if we have strange large alignment
822 * requirements for the kmalloc array. This is only the case for
823 * MIPS it seems. The standard arches will not generate any code here.
824 *
825 * Largest permitted alignment is 256 bytes due to the way we
826 * handle the index determination for the smaller caches.
827 *
828 * Make sure that nothing crazy happens if someone starts tinkering
829 * around with ARCH_KMALLOC_MINALIGN
830 */
setup_kmalloc_cache_index_table(void)831 void __init setup_kmalloc_cache_index_table(void)
832 {
833 unsigned int i;
834
835 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
836 !is_power_of_2(KMALLOC_MIN_SIZE));
837
838 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
839 unsigned int elem = size_index_elem(i);
840
841 if (elem >= ARRAY_SIZE(size_index))
842 break;
843 size_index[elem] = KMALLOC_SHIFT_LOW;
844 }
845
846 if (KMALLOC_MIN_SIZE >= 64) {
847 /*
848 * The 96 byte sized cache is not used if the alignment
849 * is 64 byte.
850 */
851 for (i = 64 + 8; i <= 96; i += 8)
852 size_index[size_index_elem(i)] = 7;
853
854 }
855
856 if (KMALLOC_MIN_SIZE >= 128) {
857 /*
858 * The 192 byte sized cache is not used if the alignment
859 * is 128 byte. Redirect kmalloc to use the 256 byte cache
860 * instead.
861 */
862 for (i = 128 + 8; i <= 192; i += 8)
863 size_index[size_index_elem(i)] = 8;
864 }
865 }
866
867 static void __init
new_kmalloc_cache(int idx,enum kmalloc_cache_type type,slab_flags_t flags)868 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
869 {
870 if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
871 flags |= SLAB_RECLAIM_ACCOUNT;
872 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
873 if (mem_cgroup_kmem_disabled()) {
874 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
875 return;
876 }
877 flags |= SLAB_ACCOUNT;
878 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
879 flags |= SLAB_CACHE_DMA;
880 }
881
882 kmalloc_caches[type][idx] = create_kmalloc_cache(
883 kmalloc_info[idx].name[type],
884 kmalloc_info[idx].size, flags, 0,
885 kmalloc_info[idx].size);
886
887 /*
888 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
889 * KMALLOC_NORMAL caches.
890 */
891 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
892 kmalloc_caches[type][idx]->refcount = -1;
893 }
894
895 /*
896 * Create the kmalloc array. Some of the regular kmalloc arrays
897 * may already have been created because they were needed to
898 * enable allocations for slab creation.
899 */
create_kmalloc_caches(slab_flags_t flags)900 void __init create_kmalloc_caches(slab_flags_t flags)
901 {
902 int i;
903 enum kmalloc_cache_type type;
904
905 /*
906 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
907 */
908 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
909 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
910 if (!kmalloc_caches[type][i])
911 new_kmalloc_cache(i, type, flags);
912
913 /*
914 * Caches that are not of the two-to-the-power-of size.
915 * These have to be created immediately after the
916 * earlier power of two caches
917 */
918 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
919 !kmalloc_caches[type][1])
920 new_kmalloc_cache(1, type, flags);
921 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
922 !kmalloc_caches[type][2])
923 new_kmalloc_cache(2, type, flags);
924 }
925 }
926
927 /* Kmalloc array is now usable */
928 slab_state = UP;
929 }
930
free_large_kmalloc(struct folio * folio,void * object)931 void free_large_kmalloc(struct folio *folio, void *object)
932 {
933 unsigned int order = folio_order(folio);
934
935 if (WARN_ON_ONCE(order == 0))
936 pr_warn_once("object pointer: 0x%p\n", object);
937
938 kmemleak_free(object);
939 kasan_kfree_large(object);
940 kmsan_kfree_large(object);
941
942 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
943 -(PAGE_SIZE << order));
944 __free_pages(folio_page(folio, 0), order);
945 }
946
947 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
948 static __always_inline
__do_kmalloc_node(size_t size,gfp_t flags,int node,unsigned long caller)949 void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
950 {
951 struct kmem_cache *s;
952 void *ret;
953
954 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
955 ret = __kmalloc_large_node(size, flags, node);
956 trace_kmalloc(caller, ret, size,
957 PAGE_SIZE << get_order(size), flags, node);
958 return ret;
959 }
960
961 s = kmalloc_slab(size, flags);
962
963 if (unlikely(ZERO_OR_NULL_PTR(s)))
964 return s;
965
966 ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
967 ret = kasan_kmalloc(s, ret, size, flags);
968 trace_kmalloc(caller, ret, size, s->size, flags, node);
969 return ret;
970 }
971
__kmalloc_node(size_t size,gfp_t flags,int node)972 void *__kmalloc_node(size_t size, gfp_t flags, int node)
973 {
974 return __do_kmalloc_node(size, flags, node, _RET_IP_);
975 }
976 EXPORT_SYMBOL(__kmalloc_node);
977
__kmalloc(size_t size,gfp_t flags)978 void *__kmalloc(size_t size, gfp_t flags)
979 {
980 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
981 }
982 EXPORT_SYMBOL(__kmalloc);
983
__kmalloc_node_track_caller(size_t size,gfp_t flags,int node,unsigned long caller)984 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
985 int node, unsigned long caller)
986 {
987 return __do_kmalloc_node(size, flags, node, caller);
988 }
989 EXPORT_SYMBOL(__kmalloc_node_track_caller);
990
991 /**
992 * kfree - free previously allocated memory
993 * @object: pointer returned by kmalloc.
994 *
995 * If @object is NULL, no operation is performed.
996 *
997 * Don't free memory not originally allocated by kmalloc()
998 * or you will run into trouble.
999 */
kfree(const void * object)1000 void kfree(const void *object)
1001 {
1002 struct folio *folio;
1003 struct slab *slab;
1004 struct kmem_cache *s;
1005
1006 trace_kfree(_RET_IP_, object);
1007
1008 if (unlikely(ZERO_OR_NULL_PTR(object)))
1009 return;
1010
1011 folio = virt_to_folio(object);
1012 if (unlikely(!folio_test_slab(folio))) {
1013 free_large_kmalloc(folio, (void *)object);
1014 return;
1015 }
1016
1017 slab = folio_slab(folio);
1018 s = slab->slab_cache;
1019 __kmem_cache_free(s, (void *)object, _RET_IP_);
1020 }
1021 EXPORT_SYMBOL(kfree);
1022
1023 /**
1024 * __ksize -- Report full size of underlying allocation
1025 * @object: pointer to the object
1026 *
1027 * This should only be used internally to query the true size of allocations.
1028 * It is not meant to be a way to discover the usable size of an allocation
1029 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1030 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1031 * and/or FORTIFY_SOURCE.
1032 *
1033 * Return: size of the actual memory used by @object in bytes
1034 */
__ksize(const void * object)1035 size_t __ksize(const void *object)
1036 {
1037 struct folio *folio;
1038
1039 if (unlikely(object == ZERO_SIZE_PTR))
1040 return 0;
1041
1042 folio = virt_to_folio(object);
1043
1044 if (unlikely(!folio_test_slab(folio))) {
1045 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1046 return 0;
1047 if (WARN_ON(object != folio_address(folio)))
1048 return 0;
1049 return folio_size(folio);
1050 }
1051
1052 #ifdef CONFIG_SLUB_DEBUG
1053 skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1054 #endif
1055
1056 return slab_ksize(folio_slab(folio)->slab_cache);
1057 }
1058
kmalloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)1059 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1060 {
1061 void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
1062 size, _RET_IP_);
1063
1064 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
1065
1066 ret = kasan_kmalloc(s, ret, size, gfpflags);
1067 return ret;
1068 }
1069 EXPORT_SYMBOL(kmalloc_trace);
1070
kmalloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)1071 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
1072 int node, size_t size)
1073 {
1074 void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
1075
1076 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
1077
1078 ret = kasan_kmalloc(s, ret, size, gfpflags);
1079 return ret;
1080 }
1081 EXPORT_SYMBOL(kmalloc_node_trace);
1082 #endif /* !CONFIG_SLOB */
1083
kmalloc_fix_flags(gfp_t flags)1084 gfp_t kmalloc_fix_flags(gfp_t flags)
1085 {
1086 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1087
1088 flags &= ~GFP_SLAB_BUG_MASK;
1089 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1090 invalid_mask, &invalid_mask, flags, &flags);
1091 dump_stack();
1092
1093 return flags;
1094 }
1095
1096 /*
1097 * To avoid unnecessary overhead, we pass through large allocation requests
1098 * directly to the page allocator. We use __GFP_COMP, because we will need to
1099 * know the allocation order to free the pages properly in kfree.
1100 */
1101
__kmalloc_large_node(size_t size,gfp_t flags,int node)1102 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
1103 {
1104 struct page *page;
1105 void *ptr = NULL;
1106 unsigned int order = get_order(size);
1107
1108 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1109 flags = kmalloc_fix_flags(flags);
1110
1111 flags |= __GFP_COMP;
1112 page = alloc_pages_node(node, flags, order);
1113 if (page) {
1114 ptr = page_address(page);
1115 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
1116 PAGE_SIZE << order);
1117 }
1118
1119 ptr = kasan_kmalloc_large(ptr, size, flags);
1120 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1121 kmemleak_alloc(ptr, size, 1, flags);
1122 kmsan_kmalloc_large(ptr, size, flags);
1123
1124 return ptr;
1125 }
1126
kmalloc_large(size_t size,gfp_t flags)1127 void *kmalloc_large(size_t size, gfp_t flags)
1128 {
1129 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
1130
1131 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1132 flags, NUMA_NO_NODE);
1133 return ret;
1134 }
1135 EXPORT_SYMBOL(kmalloc_large);
1136
kmalloc_large_node(size_t size,gfp_t flags,int node)1137 void *kmalloc_large_node(size_t size, gfp_t flags, int node)
1138 {
1139 void *ret = __kmalloc_large_node(size, flags, node);
1140
1141 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1142 flags, node);
1143 return ret;
1144 }
1145 EXPORT_SYMBOL(kmalloc_large_node);
1146
1147 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1148 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,unsigned int count)1149 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1150 unsigned int count)
1151 {
1152 unsigned int rand;
1153 unsigned int i;
1154
1155 for (i = 0; i < count; i++)
1156 list[i] = i;
1157
1158 /* Fisher-Yates shuffle */
1159 for (i = count - 1; i > 0; i--) {
1160 rand = prandom_u32_state(state);
1161 rand %= (i + 1);
1162 swap(list[i], list[rand]);
1163 }
1164 }
1165
1166 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)1167 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1168 gfp_t gfp)
1169 {
1170 struct rnd_state state;
1171
1172 if (count < 2 || cachep->random_seq)
1173 return 0;
1174
1175 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1176 if (!cachep->random_seq)
1177 return -ENOMEM;
1178
1179 /* Get best entropy at this stage of boot */
1180 prandom_seed_state(&state, get_random_long());
1181
1182 freelist_randomize(&state, cachep->random_seq, count);
1183 return 0;
1184 }
1185
1186 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)1187 void cache_random_seq_destroy(struct kmem_cache *cachep)
1188 {
1189 kfree(cachep->random_seq);
1190 cachep->random_seq = NULL;
1191 }
1192 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1193
1194 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1195 #ifdef CONFIG_SLAB
1196 #define SLABINFO_RIGHTS (0600)
1197 #else
1198 #define SLABINFO_RIGHTS (0400)
1199 #endif
1200
print_slabinfo_header(struct seq_file * m)1201 static void print_slabinfo_header(struct seq_file *m)
1202 {
1203 /*
1204 * Output format version, so at least we can change it
1205 * without _too_ many complaints.
1206 */
1207 #ifdef CONFIG_DEBUG_SLAB
1208 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1209 #else
1210 seq_puts(m, "slabinfo - version: 2.1\n");
1211 #endif
1212 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1213 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1214 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1215 #ifdef CONFIG_DEBUG_SLAB
1216 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1217 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1218 #endif
1219 seq_putc(m, '\n');
1220 }
1221
slab_start(struct seq_file * m,loff_t * pos)1222 static void *slab_start(struct seq_file *m, loff_t *pos)
1223 {
1224 mutex_lock(&slab_mutex);
1225 return seq_list_start(&slab_caches, *pos);
1226 }
1227
slab_next(struct seq_file * m,void * p,loff_t * pos)1228 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1229 {
1230 return seq_list_next(p, &slab_caches, pos);
1231 }
1232
slab_stop(struct seq_file * m,void * p)1233 static void slab_stop(struct seq_file *m, void *p)
1234 {
1235 mutex_unlock(&slab_mutex);
1236 }
1237
cache_show(struct kmem_cache * s,struct seq_file * m)1238 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1239 {
1240 struct slabinfo sinfo;
1241
1242 memset(&sinfo, 0, sizeof(sinfo));
1243 get_slabinfo(s, &sinfo);
1244
1245 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1246 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1247 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1248
1249 seq_printf(m, " : tunables %4u %4u %4u",
1250 sinfo.limit, sinfo.batchcount, sinfo.shared);
1251 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1252 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1253 slabinfo_show_stats(m, s);
1254 seq_putc(m, '\n');
1255 }
1256
slab_show(struct seq_file * m,void * p)1257 static int slab_show(struct seq_file *m, void *p)
1258 {
1259 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1260
1261 if (p == slab_caches.next)
1262 print_slabinfo_header(m);
1263 cache_show(s, m);
1264 return 0;
1265 }
1266
dump_unreclaimable_slab(void)1267 void dump_unreclaimable_slab(void)
1268 {
1269 struct kmem_cache *s;
1270 struct slabinfo sinfo;
1271
1272 /*
1273 * Here acquiring slab_mutex is risky since we don't prefer to get
1274 * sleep in oom path. But, without mutex hold, it may introduce a
1275 * risk of crash.
1276 * Use mutex_trylock to protect the list traverse, dump nothing
1277 * without acquiring the mutex.
1278 */
1279 if (!mutex_trylock(&slab_mutex)) {
1280 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1281 return;
1282 }
1283
1284 pr_info("Unreclaimable slab info:\n");
1285 pr_info("Name Used Total\n");
1286
1287 list_for_each_entry(s, &slab_caches, list) {
1288 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1289 continue;
1290
1291 get_slabinfo(s, &sinfo);
1292
1293 if (sinfo.num_objs > 0)
1294 pr_info("%-17s %10luKB %10luKB\n", s->name,
1295 (sinfo.active_objs * s->size) / 1024,
1296 (sinfo.num_objs * s->size) / 1024);
1297 }
1298 mutex_unlock(&slab_mutex);
1299 }
1300
1301 /*
1302 * slabinfo_op - iterator that generates /proc/slabinfo
1303 *
1304 * Output layout:
1305 * cache-name
1306 * num-active-objs
1307 * total-objs
1308 * object size
1309 * num-active-slabs
1310 * total-slabs
1311 * num-pages-per-slab
1312 * + further values on SMP and with statistics enabled
1313 */
1314 static const struct seq_operations slabinfo_op = {
1315 .start = slab_start,
1316 .next = slab_next,
1317 .stop = slab_stop,
1318 .show = slab_show,
1319 };
1320
slabinfo_open(struct inode * inode,struct file * file)1321 static int slabinfo_open(struct inode *inode, struct file *file)
1322 {
1323 return seq_open(file, &slabinfo_op);
1324 }
1325
1326 static const struct proc_ops slabinfo_proc_ops = {
1327 .proc_flags = PROC_ENTRY_PERMANENT,
1328 .proc_open = slabinfo_open,
1329 .proc_read = seq_read,
1330 .proc_write = slabinfo_write,
1331 .proc_lseek = seq_lseek,
1332 .proc_release = seq_release,
1333 };
1334
slab_proc_init(void)1335 static int __init slab_proc_init(void)
1336 {
1337 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1338 return 0;
1339 }
1340 module_init(slab_proc_init);
1341
1342 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1343
1344 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1345 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
1346 {
1347 void *ret;
1348 size_t ks;
1349
1350 /* Check for double-free before calling ksize. */
1351 if (likely(!ZERO_OR_NULL_PTR(p))) {
1352 if (!kasan_check_byte(p))
1353 return NULL;
1354 ks = ksize(p);
1355 } else
1356 ks = 0;
1357
1358 /* If the object still fits, repoison it precisely. */
1359 if (ks >= new_size) {
1360 p = kasan_krealloc((void *)p, new_size, flags);
1361 return (void *)p;
1362 }
1363
1364 ret = kmalloc_track_caller(new_size, flags);
1365 if (ret && p) {
1366 /* Disable KASAN checks as the object's redzone is accessed. */
1367 kasan_disable_current();
1368 memcpy(ret, kasan_reset_tag(p), ks);
1369 kasan_enable_current();
1370 }
1371
1372 return ret;
1373 }
1374
1375 /**
1376 * krealloc - reallocate memory. The contents will remain unchanged.
1377 * @p: object to reallocate memory for.
1378 * @new_size: how many bytes of memory are required.
1379 * @flags: the type of memory to allocate.
1380 *
1381 * The contents of the object pointed to are preserved up to the
1382 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1383 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1384 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1385 *
1386 * Return: pointer to the allocated memory or %NULL in case of error
1387 */
krealloc(const void * p,size_t new_size,gfp_t flags)1388 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1389 {
1390 void *ret;
1391
1392 if (unlikely(!new_size)) {
1393 kfree(p);
1394 return ZERO_SIZE_PTR;
1395 }
1396
1397 ret = __do_krealloc(p, new_size, flags);
1398 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1399 kfree(p);
1400
1401 return ret;
1402 }
1403 EXPORT_SYMBOL(krealloc);
1404
1405 /**
1406 * kfree_sensitive - Clear sensitive information in memory before freeing
1407 * @p: object to free memory of
1408 *
1409 * The memory of the object @p points to is zeroed before freed.
1410 * If @p is %NULL, kfree_sensitive() does nothing.
1411 *
1412 * Note: this function zeroes the whole allocated buffer which can be a good
1413 * deal bigger than the requested buffer size passed to kmalloc(). So be
1414 * careful when using this function in performance sensitive code.
1415 */
kfree_sensitive(const void * p)1416 void kfree_sensitive(const void *p)
1417 {
1418 size_t ks;
1419 void *mem = (void *)p;
1420
1421 ks = ksize(mem);
1422 if (ks) {
1423 kasan_unpoison_range(mem, ks);
1424 memzero_explicit(mem, ks);
1425 }
1426 kfree(mem);
1427 }
1428 EXPORT_SYMBOL(kfree_sensitive);
1429
ksize(const void * objp)1430 size_t ksize(const void *objp)
1431 {
1432 /*
1433 * We need to first check that the pointer to the object is valid.
1434 * The KASAN report printed from ksize() is more useful, then when
1435 * it's printed later when the behaviour could be undefined due to
1436 * a potential use-after-free or double-free.
1437 *
1438 * We use kasan_check_byte(), which is supported for the hardware
1439 * tag-based KASAN mode, unlike kasan_check_read/write().
1440 *
1441 * If the pointed to memory is invalid, we return 0 to avoid users of
1442 * ksize() writing to and potentially corrupting the memory region.
1443 *
1444 * We want to perform the check before __ksize(), to avoid potentially
1445 * crashing in __ksize() due to accessing invalid metadata.
1446 */
1447 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1448 return 0;
1449
1450 return kfence_ksize(objp) ?: __ksize(objp);
1451 }
1452 EXPORT_SYMBOL(ksize);
1453
1454 /* Tracepoints definitions. */
1455 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1456 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1457 EXPORT_TRACEPOINT_SYMBOL(kfree);
1458 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1459
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1460 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1461 {
1462 if (__should_failslab(s, gfpflags))
1463 return -ENOMEM;
1464 return 0;
1465 }
1466 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1467