1 /*
2  * This file is part of the MicroPython project, http://micropython.org/
3  *
4  * The MIT License (MIT)
5  *
6  * Copyright (c) 2013-2017 Damien P. George
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "py/builtin.h"
28 #include "py/runtime.h"
29 
30 #if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
31 
32 #include <math.h>
33 
34 // M_PI is not part of the math.h standard and may not be defined
35 // And by defining our own we can ensure it uses the correct const format.
36 #define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
37 #define MP_PI_4 MICROPY_FLOAT_CONST(0.78539816339744830962)
38 #define MP_3_PI_4 MICROPY_FLOAT_CONST(2.35619449019234492885)
39 
math_error(void)40 STATIC NORETURN void math_error(void) {
41     mp_raise_ValueError(MP_ERROR_TEXT("math domain error"));
42 }
43 
math_generic_1(mp_obj_t x_obj,mp_float_t (* f)(mp_float_t))44 STATIC mp_obj_t math_generic_1(mp_obj_t x_obj, mp_float_t (*f)(mp_float_t)) {
45     mp_float_t x = mp_obj_get_float(x_obj);
46     mp_float_t ans = f(x);
47     if ((isnan(ans) && !isnan(x)) || (isinf(ans) && !isinf(x))) {
48         math_error();
49     }
50     return mp_obj_new_float(ans);
51 }
52 
math_generic_2(mp_obj_t x_obj,mp_obj_t y_obj,mp_float_t (* f)(mp_float_t,mp_float_t))53 STATIC mp_obj_t math_generic_2(mp_obj_t x_obj, mp_obj_t y_obj, mp_float_t (*f)(mp_float_t, mp_float_t)) {
54     mp_float_t x = mp_obj_get_float(x_obj);
55     mp_float_t y = mp_obj_get_float(y_obj);
56     mp_float_t ans = f(x, y);
57     if ((isnan(ans) && !isnan(x) && !isnan(y)) || (isinf(ans) && !isinf(x))) {
58         math_error();
59     }
60     return mp_obj_new_float(ans);
61 }
62 
63 #define MATH_FUN_1(py_name, c_name) \
64     STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { \
65         return math_generic_1(x_obj, MICROPY_FLOAT_C_FUN(c_name)); \
66     } \
67     STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
68 
69 #define MATH_FUN_1_TO_BOOL(py_name, c_name) \
70     STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
71     STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
72 
73 #define MATH_FUN_1_TO_INT(py_name, c_name) \
74     STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
75     STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
76 
77 #define MATH_FUN_2(py_name, c_name) \
78     STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
79         return math_generic_2(x_obj, y_obj, MICROPY_FLOAT_C_FUN(c_name)); \
80     } \
81     STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name);
82 
83 #define MATH_FUN_2_FLT_INT(py_name, c_name) \
84     STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
85         return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_int(y_obj))); \
86     } \
87     STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name);
88 
89 #if MP_NEED_LOG2
90 #undef log2
91 #undef log2f
92 // 1.442695040888963407354163704 is 1/_M_LN2
MICROPY_FLOAT_C_FUN(log2)93 mp_float_t MICROPY_FLOAT_C_FUN(log2)(mp_float_t x) {
94     return MICROPY_FLOAT_C_FUN(log)(x) * MICROPY_FLOAT_CONST(1.442695040888963407354163704);
95 }
96 #endif
97 
98 // sqrt(x): returns the square root of x
MATH_FUN_1(sqrt,sqrt)99 MATH_FUN_1(sqrt, sqrt)
100 // pow(x, y): returns x to the power of y
101 #if MICROPY_PY_MATH_POW_FIX_NAN
102 mp_float_t pow_func(mp_float_t x, mp_float_t y) {
103     // pow(base, 0) returns 1 for any base, even when base is NaN
104     // pow(+1, exponent) returns 1 for any exponent, even when exponent is NaN
105     if (x == MICROPY_FLOAT_CONST(1.0) || y == MICROPY_FLOAT_CONST(0.0)) {
106         return MICROPY_FLOAT_CONST(1.0);
107     }
108     return MICROPY_FLOAT_C_FUN(pow)(x, y);
109 }
MATH_FUN_2(pow,pow_func)110 MATH_FUN_2(pow, pow_func)
111 #else
112 MATH_FUN_2(pow, pow)
113 #endif
114 // exp(x)
115 MATH_FUN_1(exp, exp)
116 #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
117 // expm1(x)
118 MATH_FUN_1(expm1, expm1)
119 // log2(x)
120 MATH_FUN_1(log2, log2)
121 // log10(x)
122 MATH_FUN_1(log10, log10)
123 // cosh(x)
124 MATH_FUN_1(cosh, cosh)
125 // sinh(x)
126 MATH_FUN_1(sinh, sinh)
127 // tanh(x)
128 MATH_FUN_1(tanh, tanh)
129 // acosh(x)
130 MATH_FUN_1(acosh, acosh)
131 // asinh(x)
132 MATH_FUN_1(asinh, asinh)
133 // atanh(x)
134 MATH_FUN_1(atanh, atanh)
135 #endif
136 // cos(x)
137 MATH_FUN_1(cos, cos)
138 // sin(x)
139 MATH_FUN_1(sin, sin)
140 // tan(x)
141 MATH_FUN_1(tan, tan)
142 // acos(x)
143 MATH_FUN_1(acos, acos)
144 // asin(x)
145 MATH_FUN_1(asin, asin)
146 // atan(x)
147 MATH_FUN_1(atan, atan)
148 // atan2(y, x)
149 #if MICROPY_PY_MATH_ATAN2_FIX_INFNAN
150 mp_float_t atan2_func(mp_float_t x, mp_float_t y) {
151     if (isinf(x) && isinf(y)) {
152         return copysign(y < 0 ? MP_3_PI_4 : MP_PI_4, x);
153     }
154     return atan2(x, y);
155 }
MATH_FUN_2(atan2,atan2_func)156 MATH_FUN_2(atan2, atan2_func)
157 #else
158 MATH_FUN_2(atan2, atan2)
159 #endif
160 // ceil(x)
161 MATH_FUN_1_TO_INT(ceil, ceil)
162 // copysign(x, y)
163 STATIC mp_float_t MICROPY_FLOAT_C_FUN(copysign_func)(mp_float_t x, mp_float_t y) {
164     return MICROPY_FLOAT_C_FUN(copysign)(x, y);
165 }
MATH_FUN_2(copysign,copysign_func)166 MATH_FUN_2(copysign, copysign_func)
167 // fabs(x)
168 STATIC mp_float_t MICROPY_FLOAT_C_FUN(fabs_func)(mp_float_t x) {
169     return MICROPY_FLOAT_C_FUN(fabs)(x);
170 }
MATH_FUN_1(fabs,fabs_func)171 MATH_FUN_1(fabs, fabs_func)
172 // floor(x)
173 MATH_FUN_1_TO_INT(floor, floor) // TODO: delegate to x.__floor__() if x is not a float
174 // fmod(x, y)
175 #if MICROPY_PY_MATH_FMOD_FIX_INFNAN
176 mp_float_t fmod_func(mp_float_t x, mp_float_t y) {
177     return (!isinf(x) && isinf(y)) ? x : fmod(x, y);
178 }
MATH_FUN_2(fmod,fmod_func)179 MATH_FUN_2(fmod, fmod_func)
180 #else
181 MATH_FUN_2(fmod, fmod)
182 #endif
183 // isfinite(x)
184 MATH_FUN_1_TO_BOOL(isfinite, isfinite)
185 // isinf(x)
186 MATH_FUN_1_TO_BOOL(isinf, isinf)
187 // isnan(x)
188 MATH_FUN_1_TO_BOOL(isnan, isnan)
189 // trunc(x)
190 MATH_FUN_1_TO_INT(trunc, trunc)
191 // ldexp(x, exp)
192 MATH_FUN_2_FLT_INT(ldexp, ldexp)
193 #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
194 // erf(x): return the error function of x
195 MATH_FUN_1(erf, erf)
196 // erfc(x): return the complementary error function of x
197 MATH_FUN_1(erfc, erfc)
198 // gamma(x): return the gamma function of x
199 MATH_FUN_1(gamma, tgamma)
200 // lgamma(x): return the natural logarithm of the gamma function of x
201 MATH_FUN_1(lgamma, lgamma)
202 #endif
203 // TODO: fsum
204 
205 #if MICROPY_PY_MATH_ISCLOSE
206 STATIC mp_obj_t mp_math_isclose(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
207     enum { ARG_rel_tol, ARG_abs_tol };
208     static const mp_arg_t allowed_args[] = {
209         {MP_QSTR_rel_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
210         {MP_QSTR_abs_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(0)}},
211     };
212     mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
213     mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
214     const mp_float_t a = mp_obj_get_float(pos_args[0]);
215     const mp_float_t b = mp_obj_get_float(pos_args[1]);
216     const mp_float_t rel_tol = args[ARG_rel_tol].u_obj == MP_OBJ_NULL
217         ? (mp_float_t)1e-9 : mp_obj_get_float(args[ARG_rel_tol].u_obj);
218     const mp_float_t abs_tol = mp_obj_get_float(args[ARG_abs_tol].u_obj);
219     if (rel_tol < (mp_float_t)0.0 || abs_tol < (mp_float_t)0.0) {
220         math_error();
221     }
222     if (a == b) {
223         return mp_const_true;
224     }
225     const mp_float_t difference = MICROPY_FLOAT_C_FUN(fabs)(a - b);
226     if (isinf(difference)) { // Either a or b is inf
227         return mp_const_false;
228     }
229     if ((difference <= abs_tol) ||
230         (difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * a)) ||
231         (difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * b))) {
232         return mp_const_true;
233     }
234     return mp_const_false;
235 }
236 MP_DEFINE_CONST_FUN_OBJ_KW(mp_math_isclose_obj, 2, mp_math_isclose);
237 #endif
238 
239 // Function that takes a variable number of arguments
240 
241 // log(x[, base])
mp_math_log(size_t n_args,const mp_obj_t * args)242 STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) {
243     mp_float_t x = mp_obj_get_float(args[0]);
244     if (x <= (mp_float_t)0.0) {
245         math_error();
246     }
247     mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x);
248     if (n_args == 1) {
249         return mp_obj_new_float(l);
250     } else {
251         mp_float_t base = mp_obj_get_float(args[1]);
252         if (base <= (mp_float_t)0.0) {
253             math_error();
254         } else if (base == (mp_float_t)1.0) {
255             mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("divide by zero"));
256         }
257         return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base));
258     }
259 }
260 STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);
261 
262 // Functions that return a tuple
263 
264 // frexp(x): converts a floating-point number to fractional and integral components
mp_math_frexp(mp_obj_t x_obj)265 STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
266     int int_exponent = 0;
267     mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
268     mp_obj_t tuple[2];
269     tuple[0] = mp_obj_new_float(significand);
270     tuple[1] = mp_obj_new_int(int_exponent);
271     return mp_obj_new_tuple(2, tuple);
272 }
273 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
274 
275 // modf(x)
mp_math_modf(mp_obj_t x_obj)276 STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
277     mp_float_t int_part = 0.0;
278     mp_float_t x = mp_obj_get_float(x_obj);
279     mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(x, &int_part);
280     #if MICROPY_PY_MATH_MODF_FIX_NEGZERO
281     if (fractional_part == MICROPY_FLOAT_CONST(0.0)) {
282         fractional_part = copysign(fractional_part, x);
283     }
284     #endif
285     mp_obj_t tuple[2];
286     tuple[0] = mp_obj_new_float(fractional_part);
287     tuple[1] = mp_obj_new_float(int_part);
288     return mp_obj_new_tuple(2, tuple);
289 }
290 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
291 
292 // Angular conversions
293 
294 // radians(x)
mp_math_radians(mp_obj_t x_obj)295 STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
296     return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0)));
297 }
298 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
299 
300 // degrees(x)
mp_math_degrees(mp_obj_t x_obj)301 STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
302     return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI));
303 }
304 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
305 
306 #if MICROPY_PY_MATH_FACTORIAL
307 
308 #if MICROPY_OPT_MATH_FACTORIAL
309 
310 // factorial(x): slightly efficient recursive implementation
mp_math_factorial_inner(mp_uint_t start,mp_uint_t end)311 STATIC mp_obj_t mp_math_factorial_inner(mp_uint_t start, mp_uint_t end) {
312     if (start == end) {
313         return mp_obj_new_int(start);
314     } else if (end - start == 1) {
315         return mp_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_NEW_SMALL_INT(start), MP_OBJ_NEW_SMALL_INT(end));
316     } else if (end - start == 2) {
317         mp_obj_t left = MP_OBJ_NEW_SMALL_INT(start);
318         mp_obj_t middle = MP_OBJ_NEW_SMALL_INT(start + 1);
319         mp_obj_t right = MP_OBJ_NEW_SMALL_INT(end);
320         mp_obj_t tmp = mp_binary_op(MP_BINARY_OP_MULTIPLY, left, middle);
321         return mp_binary_op(MP_BINARY_OP_MULTIPLY, tmp, right);
322     } else {
323         mp_uint_t middle = start + ((end - start) >> 1);
324         mp_obj_t left = mp_math_factorial_inner(start, middle);
325         mp_obj_t right = mp_math_factorial_inner(middle + 1, end);
326         return mp_binary_op(MP_BINARY_OP_MULTIPLY, left, right);
327     }
328 }
mp_math_factorial(mp_obj_t x_obj)329 STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) {
330     mp_int_t max = mp_obj_get_int(x_obj);
331     if (max < 0) {
332         mp_raise_ValueError(MP_ERROR_TEXT("negative factorial"));
333     } else if (max == 0) {
334         return MP_OBJ_NEW_SMALL_INT(1);
335     }
336     return mp_math_factorial_inner(1, max);
337 }
338 
339 #else
340 
341 // factorial(x): squared difference implementation
342 // based on http://www.luschny.de/math/factorial/index.html
mp_math_factorial(mp_obj_t x_obj)343 STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) {
344     mp_int_t max = mp_obj_get_int(x_obj);
345     if (max < 0) {
346         mp_raise_ValueError(MP_ERROR_TEXT("negative factorial"));
347     } else if (max <= 1) {
348         return MP_OBJ_NEW_SMALL_INT(1);
349     }
350     mp_int_t h = max >> 1;
351     mp_int_t q = h * h;
352     mp_int_t r = q << 1;
353     if (max & 1) {
354         r *= max;
355     }
356     mp_obj_t prod = MP_OBJ_NEW_SMALL_INT(r);
357     for (mp_int_t num = 1; num < max - 2; num += 2) {
358         q -= num;
359         prod = mp_binary_op(MP_BINARY_OP_MULTIPLY, prod, MP_OBJ_NEW_SMALL_INT(q));
360     }
361     return prod;
362 }
363 
364 #endif
365 
366 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_factorial_obj, mp_math_factorial);
367 
368 #endif
369 
370 STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = {
371     { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) },
372     { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
373     { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
374     { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) },
375     { MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) },
376     { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) },
377     #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
378     { MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) },
379     #endif
380     { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) },
381     #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
382     { MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) },
383     { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) },
384     { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) },
385     { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) },
386     { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) },
387     { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) },
388     { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) },
389     { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) },
390     #endif
391     { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) },
392     { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) },
393     { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) },
394     { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) },
395     { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) },
396     { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) },
397     { MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) },
398     { MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) },
399     { MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) },
400     { MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) },
401     { MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) },
402     { MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) },
403     { MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) },
404     { MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) },
405     { MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) },
406     { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) },
407     { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) },
408     { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) },
409     #if MICROPY_PY_MATH_ISCLOSE
410     { MP_ROM_QSTR(MP_QSTR_isclose), MP_ROM_PTR(&mp_math_isclose_obj) },
411     #endif
412     { MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) },
413     { MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) },
414     { MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) },
415     #if MICROPY_PY_MATH_FACTORIAL
416     { MP_ROM_QSTR(MP_QSTR_factorial), MP_ROM_PTR(&mp_math_factorial_obj) },
417     #endif
418     #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
419     { MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) },
420     { MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) },
421     { MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) },
422     { MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) },
423     #endif
424 };
425 
426 STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
427 
428 const mp_obj_module_t mp_module_math = {
429     .base = { &mp_type_module },
430     .globals = (mp_obj_dict_t *)&mp_module_math_globals,
431 };
432 
433 #endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
434