1 /* obstack.h - object stack macros
2    Copyright (C) 1988-1994,1996-1999,2003,2004,2005
3 	Free Software Foundation, Inc.
4    This file is part of the GNU C Library.
5 
6    The GNU C Library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Lesser General Public
8    License as published by the Free Software Foundation; either
9    version 2.1 of the License, or (at your option) any later version.
10 
11    The GNU C Library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Lesser General Public License for more details.
15 
16    You should have received a copy of the GNU Lesser General Public
17    License along with the GNU C Library; if not, see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* Summary:
21 
22 All the apparent functions defined here are macros. The idea
23 is that you would use these pre-tested macros to solve a
24 very specific set of problems, and they would run fast.
25 Caution: no side-effects in arguments please!! They may be
26 evaluated MANY times!!
27 
28 These macros operate a stack of objects.  Each object starts life
29 small, and may grow to maturity.  (Consider building a word syllable
30 by syllable.)  An object can move while it is growing.  Once it has
31 been "finished" it never changes address again.  So the "top of the
32 stack" is typically an immature growing object, while the rest of the
33 stack is of mature, fixed size and fixed address objects.
34 
35 These routines grab large chunks of memory, using a function you
36 supply, called `obstack_chunk_alloc'.  On occasion, they free chunks,
37 by calling `obstack_chunk_free'.  You must define them and declare
38 them before using any obstack macros.
39 
40 Each independent stack is represented by a `struct obstack'.
41 Each of the obstack macros expects a pointer to such a structure
42 as the first argument.
43 
44 One motivation for this package is the problem of growing char strings
45 in symbol tables.  Unless you are "fascist pig with a read-only mind"
46 --Gosper's immortal quote from HAKMEM item 154, out of context--you
47 would not like to put any arbitrary upper limit on the length of your
48 symbols.
49 
50 In practice this often means you will build many short symbols and a
51 few long symbols.  At the time you are reading a symbol you don't know
52 how long it is.  One traditional method is to read a symbol into a
53 buffer, realloc()ating the buffer every time you try to read a symbol
54 that is longer than the buffer.  This is beaut, but you still will
55 want to copy the symbol from the buffer to a more permanent
56 symbol-table entry say about half the time.
57 
58 With obstacks, you can work differently.  Use one obstack for all symbol
59 names.  As you read a symbol, grow the name in the obstack gradually.
60 When the name is complete, finalize it.  Then, if the symbol exists already,
61 free the newly read name.
62 
63 The way we do this is to take a large chunk, allocating memory from
64 low addresses.  When you want to build a symbol in the chunk you just
65 add chars above the current "high water mark" in the chunk.  When you
66 have finished adding chars, because you got to the end of the symbol,
67 you know how long the chars are, and you can create a new object.
68 Mostly the chars will not burst over the highest address of the chunk,
69 because you would typically expect a chunk to be (say) 100 times as
70 long as an average object.
71 
72 In case that isn't clear, when we have enough chars to make up
73 the object, THEY ARE ALREADY CONTIGUOUS IN THE CHUNK (guaranteed)
74 so we just point to it where it lies.  No moving of chars is
75 needed and this is the second win: potentially long strings need
76 never be explicitly shuffled. Once an object is formed, it does not
77 change its address during its lifetime.
78 
79 When the chars burst over a chunk boundary, we allocate a larger
80 chunk, and then copy the partly formed object from the end of the old
81 chunk to the beginning of the new larger chunk.  We then carry on
82 accreting characters to the end of the object as we normally would.
83 
84 A special macro is provided to add a single char at a time to a
85 growing object.  This allows the use of register variables, which
86 break the ordinary 'growth' macro.
87 
88 Summary:
89 	We allocate large chunks.
90 	We carve out one object at a time from the current chunk.
91 	Once carved, an object never moves.
92 	We are free to append data of any size to the currently
93 	  growing object.
94 	Exactly one object is growing in an obstack at any one time.
95 	You can run one obstack per control block.
96 	You may have as many control blocks as you dare.
97 	Because of the way we do it, you can `unwind' an obstack
98 	  back to a previous state. (You may remove objects much
99 	  as you would with a stack.)
100 */
101 
102 
103 /* Don't do the contents of this file more than once.  */
104 
105 #ifndef _OBSTACK_H
106 #define _OBSTACK_H 1
107 
108 #ifdef __cplusplus
109 extern "C" {
110 #endif
111 
112 /* We need the type of a pointer subtraction.  If __PTRDIFF_TYPE__ is
113    defined, as with GNU C, use that; that way we don't pollute the
114    namespace with <stddef.h>'s symbols.  Otherwise, include <stddef.h>
115    and use ptrdiff_t.  */
116 
117 #ifdef __PTRDIFF_TYPE__
118 # define PTR_INT_TYPE __PTRDIFF_TYPE__
119 #else
120 # include <stddef.h>
121 # define PTR_INT_TYPE ptrdiff_t
122 #endif
123 
124 /* If B is the base of an object addressed by P, return the result of
125    aligning P to the next multiple of A + 1.  B and P must be of type
126    char *.  A + 1 must be a power of 2.  */
127 
128 #define __BPTR_ALIGN(B, P, A) ((B) + (((P) - (B) + (A)) & ~(A)))
129 
130 /* Similiar to _BPTR_ALIGN (B, P, A), except optimize the common case
131    where pointers can be converted to integers, aligned as integers,
132    and converted back again.  If PTR_INT_TYPE is narrower than a
133    pointer (e.g., the AS/400), play it safe and compute the alignment
134    relative to B.  Otherwise, use the faster strategy of computing the
135    alignment relative to 0.  */
136 
137 #define __PTR_ALIGN(B, P, A)						    \
138   __BPTR_ALIGN (sizeof (PTR_INT_TYPE) < sizeof (void *) ? (B) : (char *) 0, \
139 		P, A)
140 
141 #include <string.h>
142 
143 struct _obstack_chunk		/* Lives at front of each chunk. */
144 {
145   char  *limit;			/* 1 past end of this chunk */
146   struct _obstack_chunk *prev;	/* address of prior chunk or NULL */
147   char	contents[4];		/* objects begin here */
148 };
149 
150 struct obstack		/* control current object in current chunk */
151 {
152   long	chunk_size;		/* preferred size to allocate chunks in */
153   struct _obstack_chunk *chunk;	/* address of current struct obstack_chunk */
154   char	*object_base;		/* address of object we are building */
155   char	*next_free;		/* where to add next char to current object */
156   char	*chunk_limit;		/* address of char after current chunk */
157   union
158   {
159     PTR_INT_TYPE tempint;
160     void *tempptr;
161   } temp;			/* Temporary for some macros.  */
162   int   alignment_mask;		/* Mask of alignment for each object. */
163   /* These prototypes vary based on `use_extra_arg', and we use
164      casts to the prototypeless function type in all assignments,
165      but having prototypes here quiets -Wstrict-prototypes.  */
166   struct _obstack_chunk *(*chunkfun) (void *, long);
167   void (*freefun) (void *, struct _obstack_chunk *);
168   void *extra_arg;		/* first arg for chunk alloc/dealloc funcs */
169   unsigned use_extra_arg:1;	/* chunk alloc/dealloc funcs take extra arg */
170   unsigned maybe_empty_object:1;/* There is a possibility that the current
171 				   chunk contains a zero-length object.  This
172 				   prevents freeing the chunk if we allocate
173 				   a bigger chunk to replace it. */
174   unsigned alloc_failed:1;	/* No longer used, as we now call the failed
175 				   handler on error, but retained for binary
176 				   compatibility.  */
177 };
178 
179 /* Declare the external functions we use; they are in obstack.c.  */
180 
181 extern void _obstack_newchunk (struct obstack *, int);
182 libc_hidden_proto(_obstack_newchunk)
183 extern int _obstack_begin (struct obstack *, int, int,
184 			    void *(*) (long), void (*) (void *));
185 extern int _obstack_begin_1 (struct obstack *, int, int,
186 			     void *(*) (void *, long),
187 			     void (*) (void *, void *), void *);
188 extern int _obstack_memory_used (struct obstack *);
189 
190 void obstack_free (struct obstack *obstack, void *block);
191 
192 
193 /* Error handler called when `obstack_chunk_alloc' failed to allocate
194    more memory.  This can be set to a user defined function which
195    should either abort gracefully or use longjump - but shouldn't
196    return.  The default action is to print a message and abort.  */
197 extern void (*obstack_alloc_failed_handler) (void);
198 
199 /* Exit value used when `print_and_abort' is used.  */
200 extern int obstack_exit_failure;
201 
202 /* Pointer to beginning of object being allocated or to be allocated next.
203    Note that this might not be the final address of the object
204    because a new chunk might be needed to hold the final size.  */
205 
206 #define obstack_base(h) ((void *) (h)->object_base)
207 
208 /* Size for allocating ordinary chunks.  */
209 
210 #define obstack_chunk_size(h) ((h)->chunk_size)
211 
212 /* Pointer to next byte not yet allocated in current chunk.  */
213 
214 #define obstack_next_free(h)	((h)->next_free)
215 
216 /* Mask specifying low bits that should be clear in address of an object.  */
217 
218 #define obstack_alignment_mask(h) ((h)->alignment_mask)
219 
220 /* To prevent prototype warnings provide complete argument list.  */
221 #define obstack_init(h)						\
222   _obstack_begin ((h), 0, 0,					\
223 		  (void *(*) (long)) obstack_chunk_alloc,	\
224 		  (void (*) (void *)) obstack_chunk_free)
225 
226 #define obstack_begin(h, size)					\
227   _obstack_begin ((h), (size), 0,				\
228 		  (void *(*) (long)) obstack_chunk_alloc,	\
229 		  (void (*) (void *)) obstack_chunk_free)
230 
231 #define obstack_specify_allocation(h, size, alignment, chunkfun, freefun)  \
232   _obstack_begin ((h), (size), (alignment),				   \
233 		  (void *(*) (long)) (chunkfun),			   \
234 		  (void (*) (void *)) (freefun))
235 
236 #define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \
237   _obstack_begin_1 ((h), (size), (alignment),				\
238 		    (void *(*) (void *, long)) (chunkfun),		\
239 		    (void (*) (void *, void *)) (freefun), (arg))
240 
241 #define obstack_chunkfun(h, newchunkfun) \
242   ((h) -> chunkfun = (struct _obstack_chunk *(*)(void *, long)) (newchunkfun))
243 
244 #define obstack_freefun(h, newfreefun) \
245   ((h) -> freefun = (void (*)(void *, struct _obstack_chunk *)) (newfreefun))
246 
247 #define obstack_1grow_fast(h,achar) (*((h)->next_free)++ = (achar))
248 
249 #define obstack_blank_fast(h,n) ((h)->next_free += (n))
250 
251 #define obstack_memory_used(h) _obstack_memory_used (h)
252 
253 #if defined __GNUC__ && defined __STDC__ && __STDC__
254 /* NextStep 2.0 cc is really gcc 1.93 but it defines __GNUC__ = 2 and
255    does not implement __extension__.  But that compiler doesn't define
256    __GNUC_MINOR__.  */
257 # if __GNUC__ < 2 || (defined __NeXT__ && __NeXT__ && !__GNUC_MINOR__)
258 #  define __extension__
259 # endif
260 
261 /* For GNU C, if not -traditional,
262    we can define these macros to compute all args only once
263    without using a global variable.
264    Also, we can avoid using the `temp' slot, to make faster code.  */
265 
266 # define obstack_object_size(OBSTACK)					\
267   __extension__								\
268   ({ struct obstack const *__o = (OBSTACK);				\
269      (unsigned) (__o->next_free - __o->object_base); })
270 
271 # define obstack_room(OBSTACK)						\
272   __extension__								\
273   ({ struct obstack const *__o = (OBSTACK);				\
274      (unsigned) (__o->chunk_limit - __o->next_free); })
275 
276 # define obstack_make_room(OBSTACK,length)				\
277 __extension__								\
278 ({ struct obstack *__o = (OBSTACK);					\
279    int __len = (length);						\
280    if (__o->chunk_limit - __o->next_free < __len)			\
281      _obstack_newchunk (__o, __len);					\
282    (void) 0; })
283 
284 # define obstack_empty_p(OBSTACK)					\
285   __extension__								\
286   ({ struct obstack const *__o = (OBSTACK);				\
287      (__o->chunk->prev == 0						\
288       && __o->next_free == __PTR_ALIGN ((char *) __o->chunk,		\
289 					__o->chunk->contents,		\
290 					__o->alignment_mask)); })
291 
292 # define obstack_grow(OBSTACK,where,length)				\
293 __extension__								\
294 ({ struct obstack *__o = (OBSTACK);					\
295    int __len = (length);						\
296    if (__o->next_free + __len > __o->chunk_limit)			\
297      _obstack_newchunk (__o, __len);					\
298    memcpy (__o->next_free, where, __len);				\
299    __o->next_free += __len;						\
300    (void) 0; })
301 
302 # define obstack_grow0(OBSTACK,where,length)				\
303 __extension__								\
304 ({ struct obstack *__o = (OBSTACK);					\
305    int __len = (length);						\
306    if (__o->next_free + __len + 1 > __o->chunk_limit)			\
307      _obstack_newchunk (__o, __len + 1);				\
308    memcpy (__o->next_free, where, __len);				\
309    __o->next_free += __len;						\
310    *(__o->next_free)++ = 0;						\
311    (void) 0; })
312 
313 # define obstack_1grow(OBSTACK,datum)					\
314 __extension__								\
315 ({ struct obstack *__o = (OBSTACK);					\
316    if (__o->next_free + 1 > __o->chunk_limit)				\
317      _obstack_newchunk (__o, 1);					\
318    obstack_1grow_fast (__o, datum);					\
319    (void) 0; })
320 
321 /* These assume that the obstack alignment is good enough for pointers
322    or ints, and that the data added so far to the current object
323    shares that much alignment.  */
324 
325 # define obstack_ptr_grow(OBSTACK,datum)				\
326 __extension__								\
327 ({ struct obstack *__o = (OBSTACK);					\
328    if (__o->next_free + sizeof (void *) > __o->chunk_limit)		\
329      _obstack_newchunk (__o, sizeof (void *));				\
330    obstack_ptr_grow_fast (__o, datum); })				\
331 
332 # define obstack_int_grow(OBSTACK,datum)				\
333 __extension__								\
334 ({ struct obstack *__o = (OBSTACK);					\
335    if (__o->next_free + sizeof (int) > __o->chunk_limit)		\
336      _obstack_newchunk (__o, sizeof (int));				\
337    obstack_int_grow_fast (__o, datum); })
338 
339 # define obstack_ptr_grow_fast(OBSTACK,aptr)				\
340 __extension__								\
341 ({ struct obstack *__o1 = (OBSTACK);					\
342    *(const void **) __o1->next_free = (aptr);				\
343    __o1->next_free += sizeof (const void *);				\
344    (void) 0; })
345 
346 # define obstack_int_grow_fast(OBSTACK,aint)				\
347 __extension__								\
348 ({ struct obstack *__o1 = (OBSTACK);					\
349    *(int *) __o1->next_free = (aint);					\
350    __o1->next_free += sizeof (int);					\
351    (void) 0; })
352 
353 # define obstack_blank(OBSTACK,length)					\
354 __extension__								\
355 ({ struct obstack *__o = (OBSTACK);					\
356    int __len = (length);						\
357    if (__o->chunk_limit - __o->next_free < __len)			\
358      _obstack_newchunk (__o, __len);					\
359    obstack_blank_fast (__o, __len);					\
360    (void) 0; })
361 
362 # define obstack_alloc(OBSTACK,length)					\
363 __extension__								\
364 ({ struct obstack *__h = (OBSTACK);					\
365    obstack_blank (__h, (length));					\
366    obstack_finish (__h); })
367 
368 # define obstack_copy(OBSTACK,where,length)				\
369 __extension__								\
370 ({ struct obstack *__h = (OBSTACK);					\
371    obstack_grow (__h, (where), (length));				\
372    obstack_finish (__h); })
373 
374 # define obstack_copy0(OBSTACK,where,length)				\
375 __extension__								\
376 ({ struct obstack *__h = (OBSTACK);					\
377    obstack_grow0 (__h, (where), (length));				\
378    obstack_finish (__h); })
379 
380 /* The local variable is named __o1 to avoid a name conflict
381    when obstack_blank is called.  */
382 # define obstack_finish(OBSTACK)					\
383 __extension__								\
384 ({ struct obstack *__o1 = (OBSTACK);					\
385    void *__value = (void *) __o1->object_base;				\
386    if (__o1->next_free == __value)					\
387      __o1->maybe_empty_object = 1;					\
388    __o1->next_free							\
389      = __PTR_ALIGN (__o1->object_base, __o1->next_free,			\
390 		    __o1->alignment_mask);				\
391    if (__o1->next_free - (char *)__o1->chunk				\
392        > __o1->chunk_limit - (char *)__o1->chunk)			\
393      __o1->next_free = __o1->chunk_limit;				\
394    __o1->object_base = __o1->next_free;					\
395    __value; })
396 
397 # define obstack_free(OBSTACK, OBJ)					\
398 __extension__								\
399 ({ struct obstack *__o = (OBSTACK);					\
400    void *__obj = (OBJ);							\
401    if (__obj > (void *)__o->chunk && __obj < (void *)__o->chunk_limit)  \
402      __o->next_free = __o->object_base = (char *)__obj;			\
403    else (obstack_free) (__o, __obj); })
404 
405 #else /* not __GNUC__ or not __STDC__ */
406 
407 # define obstack_object_size(h) \
408  (unsigned) ((h)->next_free - (h)->object_base)
409 
410 # define obstack_room(h)		\
411  (unsigned) ((h)->chunk_limit - (h)->next_free)
412 
413 # define obstack_empty_p(h) \
414  ((h)->chunk->prev == 0							\
415   && (h)->next_free == __PTR_ALIGN ((char *) (h)->chunk,		\
416 				    (h)->chunk->contents,		\
417 				    (h)->alignment_mask))
418 
419 /* Note that the call to _obstack_newchunk is enclosed in (..., 0)
420    so that we can avoid having void expressions
421    in the arms of the conditional expression.
422    Casting the third operand to void was tried before,
423    but some compilers won't accept it.  */
424 
425 # define obstack_make_room(h,length)					\
426 ( (h)->temp.tempint = (length),						\
427   (((h)->next_free + (h)->temp.tempint > (h)->chunk_limit)		\
428    ? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0))
429 
430 # define obstack_grow(h,where,length)					\
431 ( (h)->temp.tempint = (length),						\
432   (((h)->next_free + (h)->temp.tempint > (h)->chunk_limit)		\
433    ? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0),		\
434   memcpy ((h)->next_free, where, (h)->temp.tempint),			\
435   (h)->next_free += (h)->temp.tempint)
436 
437 # define obstack_grow0(h,where,length)					\
438 ( (h)->temp.tempint = (length),						\
439   (((h)->next_free + (h)->temp.tempint + 1 > (h)->chunk_limit)		\
440    ? (_obstack_newchunk ((h), (h)->temp.tempint + 1), 0) : 0),		\
441   memcpy ((h)->next_free, where, (h)->temp.tempint),			\
442   (h)->next_free += (h)->temp.tempint,					\
443   *((h)->next_free)++ = 0)
444 
445 # define obstack_1grow(h,datum)						\
446 ( (((h)->next_free + 1 > (h)->chunk_limit)				\
447    ? (_obstack_newchunk ((h), 1), 0) : 0),				\
448   obstack_1grow_fast (h, datum))
449 
450 # define obstack_ptr_grow(h,datum)					\
451 ( (((h)->next_free + sizeof (char *) > (h)->chunk_limit)		\
452    ? (_obstack_newchunk ((h), sizeof (char *)), 0) : 0),		\
453   obstack_ptr_grow_fast (h, datum))
454 
455 # define obstack_int_grow(h,datum)					\
456 ( (((h)->next_free + sizeof (int) > (h)->chunk_limit)			\
457    ? (_obstack_newchunk ((h), sizeof (int)), 0) : 0),			\
458   obstack_int_grow_fast (h, datum))
459 
460 # define obstack_ptr_grow_fast(h,aptr)					\
461   (((const void **) ((h)->next_free += sizeof (void *)))[-1] = (aptr))
462 
463 # define obstack_int_grow_fast(h,aint)					\
464   (((int *) ((h)->next_free += sizeof (int)))[-1] = (aint))
465 
466 # define obstack_blank(h,length)					\
467 ( (h)->temp.tempint = (length),						\
468   (((h)->chunk_limit - (h)->next_free < (h)->temp.tempint)		\
469    ? (_obstack_newchunk ((h), (h)->temp.tempint), 0) : 0),		\
470   obstack_blank_fast (h, (h)->temp.tempint))
471 
472 # define obstack_alloc(h,length)					\
473  (obstack_blank ((h), (length)), obstack_finish ((h)))
474 
475 # define obstack_copy(h,where,length)					\
476  (obstack_grow ((h), (where), (length)), obstack_finish ((h)))
477 
478 # define obstack_copy0(h,where,length)					\
479  (obstack_grow0 ((h), (where), (length)), obstack_finish ((h)))
480 
481 # define obstack_finish(h)						\
482 ( ((h)->next_free == (h)->object_base					\
483    ? (((h)->maybe_empty_object = 1), 0)					\
484    : 0),								\
485   (h)->temp.tempptr = (h)->object_base,					\
486   (h)->next_free							\
487     = __PTR_ALIGN ((h)->object_base, (h)->next_free,			\
488 		   (h)->alignment_mask),				\
489   (((h)->next_free - (char *) (h)->chunk				\
490     > (h)->chunk_limit - (char *) (h)->chunk)				\
491    ? ((h)->next_free = (h)->chunk_limit) : 0),				\
492   (h)->object_base = (h)->next_free,					\
493   (h)->temp.tempptr)
494 
495 # define obstack_free(h,obj)						\
496 ( (h)->temp.tempint = (char *) (obj) - (char *) (h)->chunk,		\
497   ((((h)->temp.tempint > 0						\
498     && (h)->temp.tempint < (h)->chunk_limit - (char *) (h)->chunk))	\
499    ? (int) ((h)->next_free = (h)->object_base				\
500 	    = (h)->temp.tempint + (char *) (h)->chunk)			\
501    : (((obstack_free) ((h), (h)->temp.tempint + (char *) (h)->chunk), 0), 0)))
502 
503 #endif /* not __GNUC__ or not __STDC__ */
504 
505 #ifdef __cplusplus
506 }	/* C++ */
507 #endif
508 
509 #endif /* obstack.h */
510