1 /**
2   ******************************************************************************
3   * @file    stm32f2xx_hash.c
4   * @author  MCD Application Team
5   * @version V1.1.2
6   * @date    05-March-2012
7   * @brief   This file provides firmware functions to manage the following
8   *          functionalities of the HASH / HMAC Processor (HASH) peripheral:
9   *           - Initialization and Configuration functions
10   *           - Message Digest generation functions
11   *           - context swapping functions
12   *           - DMA interface function
13   *           - Interrupts and flags management
14   *
15   *  @verbatim
16   *
17   *          ===================================================================
18   *                                   How to use this driver
19   *          ===================================================================
20   *          HASH operation :
21   *          ----------------
22   *         1. Enable the HASH controller clock using
23   *            RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_HASH, ENABLE) function.
24   *
25   *         2. Initialise the HASH using HASH_Init() function.
26   *
27   *         3 . Reset the HASH processor core, so that the HASH will be ready
28   *             to compute he message digest of a new message by using
29   *             HASH_Reset() function.
30   *
31   *         4. Enable the HASH controller using the HASH_Cmd() function.
32   *
33   *         5. if using DMA for Data input transfer, Activate the DMA Request
34   *            using HASH_DMACmd() function
35   *
36   *         6. if DMA is not used for data transfer, use HASH_DataIn() function
37   *            to enter data to IN FIFO.
38   *
39   *
40   *         7. Configure the Number of valid bits in last word of the message
41   *            using HASH_SetLastWordValidBitsNbr() function.
42   *
43   *         8. if the message length is not an exact multiple of 512 bits,
44   *            then the function HASH_StartDigest() must be called to
45   *            launch the computation of the final digest.
46   *
47   *         9. Once computed, the digest can be read using HASH_GetDigest()
48   *            function.
49   *
50   *        10. To control HASH events you can use one of the following
51   *              two methods:
52   *               a- Check on HASH flags using the HASH_GetFlagStatus() function.
53   *               b- Use HASH interrupts through the function HASH_ITConfig() at
54   *                  initialization phase and HASH_GetITStatus() function into
55   *                  interrupt routines in hashing phase.
56   *          After checking on a flag you should clear it using HASH_ClearFlag()
57   *          function. And after checking on an interrupt event you should
58   *          clear it using HASH_ClearITPendingBit() function.
59   *
60   *        11. Save and restore hash processor context using
61   *            HASH_SaveContext() and HASH_RestoreContext() functions.
62   *
63   *
64   *
65   *          HMAC operation :
66   *          ----------------
67   *          The HMAC algorithm is used for message authentication, by
68   *          irreversibly binding the message being processed to a key chosen
69   *          by the user.
70   *          For HMAC specifications, refer to "HMAC: keyed-hashing for message
71   *          authentication, H. Krawczyk, M. Bellare, R. Canetti, February 1997"
72   *
73   *          Basically, the HMAC algorithm consists of two nested hash operations:
74   *          HMAC(message) = Hash[((key | pad) XOR 0x5C) | Hash(((key | pad) XOR 0x36) | message)]
75   *          where:
76   *          - "pad" is a sequence of zeroes needed to extend the key to the
77   *                  length of the underlying hash function data block (that is
78   *                  512 bits for both the SHA-1 and MD5 hash algorithms)
79   *          - "|"   represents the concatenation operator
80   *
81   *
82   *         To compute the HMAC, four different phases are required:
83   *
84   *         1.  Initialise the HASH using HASH_Init() function to do HMAC
85   *             operation.
86   *
87   *         2.  The key (to be used for the inner hash function) is then given
88   *             to the core. This operation follows the same mechanism as the
89   *             one used to send the message in the hash operation (that is,
90   *             by HASH_DataIn() function and, finally,
91   *             HASH_StartDigest() function.
92   *
93   *         3.  Once the last word has been entered and computation has started,
94   *             the hash processor elaborates the key. It is then ready to
95   *             accept the message text using the same mechanism as the one
96   *             used to send the message in the hash operation.
97   *
98   *         4.  After the first hash round, the hash processor returns "ready"
99   *             to indicate that it is ready to receive the key to be used for
100   *             the outer hash function (normally, this key is the same as the
101   *             one used for the inner hash function). When the last word of
102   *             the key is entered and computation starts, the HMAC result is
103   *             made available using HASH_GetDigest() function.
104   *
105   *
106   *  @endverbatim
107   *
108   ******************************************************************************
109   * @attention
110   *
111   * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
112   *
113   * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
114   * You may not use this file except in compliance with the License.
115   * You may obtain a copy of the License at:
116   *
117   *        http://www.st.com/software_license_agreement_liberty_v2
118   *
119   * Unless required by applicable law or agreed to in writing, software
120   * distributed under the License is distributed on an "AS IS" BASIS,
121   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
122   * See the License for the specific language governing permissions and
123   * limitations under the License.
124   *
125   ******************************************************************************
126   */
127 
128 /* Includes ------------------------------------------------------------------*/
129 #include "stm32f2xx_hash.h"
130 #include "stm32f2xx_rcc.h"
131 
132 /** @addtogroup STM32F2xx_StdPeriph_Driver
133   * @{
134   */
135 
136 /** @defgroup HASH
137   * @brief HASH driver modules
138   * @{
139   */
140 
141 /* Private typedef -----------------------------------------------------------*/
142 /* Private define ------------------------------------------------------------*/
143 /* Private macro -------------------------------------------------------------*/
144 /* Private variables ---------------------------------------------------------*/
145 /* Private function prototypes -----------------------------------------------*/
146 /* Private functions ---------------------------------------------------------*/
147 
148 /** @defgroup HASH_Private_Functions
149   * @{
150   */
151 
152 /** @defgroup HASH_Group1 Initialization and Configuration functions
153  *  @brief    Initialization and Configuration functions
154  *
155 @verbatim
156  ===============================================================================
157                       Initialization and Configuration functions
158  ===============================================================================
159   This section provides functions allowing to
160    - Initialize the HASH peripheral
161    - Configure the HASH Processor
162       - MD5/SHA1,
163       - HASH/HMAC,
164       - datatype
165       - HMAC Key (if mode = HMAC)
166    - Reset the HASH Processor
167 
168 @endverbatim
169   * @{
170   */
171 
172 /**
173   * @brief  Deinitializes the HASH peripheral registers to their default reset values
174   * @param  None
175   * @retval None
176   */
HASH_DeInit(void)177 void HASH_DeInit(void)
178 {
179   /* Enable HASH reset state */
180   RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_HASH, ENABLE);
181   /* Release HASH from reset state */
182   RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_HASH, DISABLE);
183 }
184 
185 /**
186   * @brief  Initializes the HASH peripheral according to the specified parameters
187   *         in the HASH_InitStruct structure.
188   * @note   the hash processor is reset when calling this function so that the
189   *         HASH will be ready to compute the message digest of a new message.
190   *         There is no need to call HASH_Reset() function.
191   * @param  HASH_InitStruct: pointer to a HASH_InitTypeDef structure that contains
192   *         the configuration information for the HASH peripheral.
193   * @note   The field HASH_HMACKeyType in HASH_InitTypeDef must be filled only
194   *          if the algorithm mode is HMAC.
195   * @retval None
196   */
HASH_Init(HASH_InitTypeDef * HASH_InitStruct)197 void HASH_Init(HASH_InitTypeDef* HASH_InitStruct)
198 {
199   /* Check the parameters */
200   assert_param(IS_HASH_ALGOSELECTION(HASH_InitStruct->HASH_AlgoSelection));
201   assert_param(IS_HASH_DATATYPE(HASH_InitStruct->HASH_DataType));
202   assert_param(IS_HASH_ALGOMODE(HASH_InitStruct->HASH_AlgoMode));
203 
204   /* Configure the Algorithm used, algorithm mode and the datatype */
205   HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE);
206   HASH->CR |= (HASH_InitStruct->HASH_AlgoSelection | \
207                HASH_InitStruct->HASH_DataType | \
208                HASH_InitStruct->HASH_AlgoMode);
209 
210   /* if algorithm mode is HMAC, set the Key */
211   if(HASH_InitStruct->HASH_AlgoMode == HASH_AlgoMode_HMAC)
212   {
213     assert_param(IS_HASH_HMAC_KEYTYPE(HASH_InitStruct->HASH_HMACKeyType));
214     HASH->CR &= ~HASH_CR_LKEY;
215     HASH->CR |= HASH_InitStruct->HASH_HMACKeyType;
216   }
217 
218   /* Reset the HASH processor core, so that the HASH will be ready to compute
219      the message digest of a new message */
220   HASH->CR |= HASH_CR_INIT;
221 }
222 
223 /**
224   * @brief  Fills each HASH_InitStruct member with its default value.
225   * @param  HASH_InitStruct : pointer to a HASH_InitTypeDef structure which will
226   *          be initialized.
227   *  @note  The default values set are : Processor mode is HASH, Algorithm selected is SHA1,
228   *          Data type selected is 32b and HMAC Key Type is short key.
229   * @retval None
230   */
HASH_StructInit(HASH_InitTypeDef * HASH_InitStruct)231 void HASH_StructInit(HASH_InitTypeDef* HASH_InitStruct)
232 {
233   /* Initialize the HASH_AlgoSelection member */
234   HASH_InitStruct->HASH_AlgoSelection = HASH_AlgoSelection_SHA1;
235 
236   /* Initialize the HASH_AlgoMode member */
237   HASH_InitStruct->HASH_AlgoMode = HASH_AlgoMode_HASH;
238 
239   /* Initialize the HASH_DataType member */
240   HASH_InitStruct->HASH_DataType = HASH_DataType_32b;
241 
242   /* Initialize the HASH_HMACKeyType member */
243   HASH_InitStruct->HASH_HMACKeyType = HASH_HMACKeyType_ShortKey;
244 }
245 
246 /**
247   * @brief  Resets the HASH processor core, so that the HASH will be ready
248   *         to compute the message digest of a new message.
249   * @note   Calling this function will clear the HASH_SR_DCIS (Digest calculation
250   *         completion interrupt status) bit corresponding to HASH_IT_DCI
251   *         interrupt and HASH_FLAG_DCIS flag.
252   * @param  None
253   * @retval None
254   */
HASH_Reset(void)255 void HASH_Reset(void)
256 {
257   /* Reset the HASH processor core */
258   HASH->CR |= HASH_CR_INIT;
259 }
260 /**
261   * @}
262   */
263 
264 /** @defgroup HASH_Group2 Message Digest generation functions
265  *  @brief    Message Digest generation functions
266  *
267 @verbatim
268  ===============================================================================
269                       Message Digest generation functions
270  ===============================================================================
271   This section provides functions allowing the generation of message digest:
272   - Push data in the IN FIFO : using HASH_DataIn()
273   - Get the number of words set in IN FIFO, use HASH_GetInFIFOWordsNbr()
274   - set the last word valid bits number using HASH_SetLastWordValidBitsNbr()
275   - start digest calculation : using HASH_StartDigest()
276   - Get the Digest message : using HASH_GetDigest()
277 
278 @endverbatim
279   * @{
280   */
281 
282 
283 /**
284   * @brief  Configure the Number of valid bits in last word of the message
285   * @param  ValidNumber: Number of valid bits in last word of the message.
286   *           This parameter must be a number between 0 and 0x1F.
287   *             - 0x00: All 32 bits of the last data written are valid
288   *             - 0x01: Only bit [0] of the last data written is valid
289   *             - 0x02: Only bits[1:0] of the last data written are valid
290   *             - 0x03: Only bits[2:0] of the last data written are valid
291   *             - ...
292   *             - 0x1F: Only bits[30:0] of the last data written are valid
293   * @note   The Number of valid bits must be set before to start the message
294   *         digest competition (in Hash and HMAC) and key treatment(in HMAC).
295   * @retval None
296   */
HASH_SetLastWordValidBitsNbr(uint16_t ValidNumber)297 void HASH_SetLastWordValidBitsNbr(uint16_t ValidNumber)
298 {
299   /* Check the parameters */
300   assert_param(IS_HASH_VALIDBITSNUMBER(ValidNumber));
301 
302   /* Configure the Number of valid bits in last word of the message */
303   HASH->STR &= ~(HASH_STR_NBW);
304   HASH->STR |= ValidNumber;
305 }
306 
307 /**
308   * @brief  Writes data in the Data Input FIFO
309   * @param  Data: new data of the message to be processed.
310   * @retval None
311   */
HASH_DataIn(uint32_t Data)312 void HASH_DataIn(uint32_t Data)
313 {
314   /* Write in the DIN register a new data */
315   HASH->DIN = Data;
316 }
317 
318 /**
319   * @brief  Returns the number of words already pushed into the IN FIFO.
320   * @param  None
321   * @retval The value of words already pushed into the IN FIFO.
322   */
HASH_GetInFIFOWordsNbr(void)323 uint8_t HASH_GetInFIFOWordsNbr(void)
324 {
325   /* Return the value of NBW bits */
326   return ((HASH->CR & HASH_CR_NBW) >> 8);
327 }
328 
329 /**
330   * @brief  Provides the message digest result.
331   * @note   In MD5 mode, Data[4] filed of HASH_MsgDigest structure is not used
332   *         and is read as zero.
333   * @param  HASH_MessageDigest: pointer to a HASH_MsgDigest structure which will
334   *         hold the message digest result
335   * @retval None
336   */
HASH_GetDigest(HASH_MsgDigest * HASH_MessageDigest)337 void HASH_GetDigest(HASH_MsgDigest* HASH_MessageDigest)
338 {
339   /* Get the data field */
340   HASH_MessageDigest->Data[0] = HASH->HR[0];
341   HASH_MessageDigest->Data[1] = HASH->HR[1];
342   HASH_MessageDigest->Data[2] = HASH->HR[2];
343   HASH_MessageDigest->Data[3] = HASH->HR[3];
344   HASH_MessageDigest->Data[4] = HASH->HR[4];
345 }
346 
347 /**
348   * @brief  Starts the message padding and calculation of the final message
349   * @param  None
350   * @retval None
351   */
HASH_StartDigest(void)352 void HASH_StartDigest(void)
353 {
354   /* Start the Digest calculation */
355   HASH->STR |= HASH_STR_DCAL;
356 }
357 /**
358   * @}
359   */
360 
361 /** @defgroup HASH_Group3 Context swapping functions
362  *  @brief   Context swapping functions
363  *
364 @verbatim
365  ===============================================================================
366                              Context swapping functions
367  ===============================================================================
368 
369   This section provides functions allowing to save and store HASH Context
370 
371   It is possible to interrupt a HASH/HMAC process to perform another processing
372   with a higher priority, and to complete the interrupted process later on, when
373   the higher priority task is complete. To do so, the context of the interrupted
374   task must be saved from the HASH registers to memory, and then be restored
375   from memory to the HASH registers.
376 
377   1. To save the current context, use HASH_SaveContext() function
378   2. To restore the saved context, use HASH_RestoreContext() function
379 
380 
381 @endverbatim
382   * @{
383   */
384 
385 /**
386   * @brief  Save the Hash peripheral Context.
387   * @note   The context can be saved only when no block is currently being
388   *         processed. So user must wait for DINIS = 1 (the last block has been
389   *         processed and the input FIFO is empty) or NBW != 0 (the FIFO is not
390   *         full and no processing is ongoing).
391   * @param  HASH_ContextSave: pointer to a HASH_Context structure that contains
392   *         the repository for current context.
393   * @retval None
394   */
HASH_SaveContext(HASH_Context * HASH_ContextSave)395 void HASH_SaveContext(HASH_Context* HASH_ContextSave)
396 {
397   uint8_t i = 0;
398 
399   /* save context registers */
400   HASH_ContextSave->HASH_IMR = HASH->IMR;
401   HASH_ContextSave->HASH_STR = HASH->STR;
402   HASH_ContextSave->HASH_CR  = HASH->CR;
403   for(i=0; i<=50;i++)
404   {
405      HASH_ContextSave->HASH_CSR[i] = HASH->CSR[i];
406   }
407 }
408 
409 /**
410   * @brief  Restore the Hash peripheral Context.
411   * @note   After calling this function, user can restart the processing from the
412   *         point where it has been interrupted.
413   * @param  HASH_ContextRestore: pointer to a HASH_Context structure that contains
414   *         the repository for saved context.
415   * @retval None
416   */
HASH_RestoreContext(HASH_Context * HASH_ContextRestore)417 void HASH_RestoreContext(HASH_Context* HASH_ContextRestore)
418 {
419   uint8_t i = 0;
420 
421   /* restore context registers */
422   HASH->IMR = HASH_ContextRestore->HASH_IMR;
423   HASH->STR = HASH_ContextRestore->HASH_STR;
424   HASH->CR = HASH_ContextRestore->HASH_CR;
425 
426   /* Initialize the hash processor */
427   HASH->CR |= HASH_CR_INIT;
428 
429    /* continue restoring context registers */
430   for(i=0; i<=50;i++)
431   {
432      HASH->CSR[i] = HASH_ContextRestore->HASH_CSR[i];
433   }
434 }
435 /**
436   * @}
437   */
438 
439 /** @defgroup HASH_Group4 HASH's DMA interface Configuration function
440  *  @brief   HASH's DMA interface Configuration function
441  *
442 @verbatim
443  ===============================================================================
444                    HASH's DMA interface Configuration function
445  ===============================================================================
446 
447   This section provides functions allowing to configure the DMA interface for
448   HASH/ HMAC data input transfer.
449 
450   When the DMA mode is enabled (using the HASH_DMACmd() function), data can be
451   sent to the IN FIFO using the DMA peripheral.
452 
453 
454 
455 @endverbatim
456   * @{
457   */
458 
459 /**
460   * @brief  Enables or disables the HASH DMA interface.
461   * @note   The DMA is disabled by hardware after the end of transfer.
462   * @param  NewState: new state of the selected HASH DMA transfer request.
463   *          This parameter can be: ENABLE or DISABLE.
464   * @retval None
465   */
HASH_DMACmd(FunctionalState NewState)466 void HASH_DMACmd(FunctionalState NewState)
467 {
468   /* Check the parameters */
469   assert_param(IS_FUNCTIONAL_STATE(NewState));
470 
471   if (NewState != DISABLE)
472   {
473     /* Enable the HASH DMA request */
474     HASH->CR |= HASH_CR_DMAE;
475   }
476   else
477   {
478     /* Disable the HASH DMA request */
479     HASH->CR &= ~HASH_CR_DMAE;
480   }
481 }
482 /**
483   * @}
484   */
485 
486 /** @defgroup HASH_Group5 Interrupts and flags management functions
487  *  @brief   Interrupts and flags management functions
488  *
489 @verbatim
490  ===============================================================================
491                    Interrupts and flags management functions
492  ===============================================================================
493 
494   This section provides functions allowing to configure the HASH Interrupts and
495   to get the status and clear flags and Interrupts pending bits.
496 
497   The HASH provides 2 Interrupts sources and 5 Flags:
498 
499   Flags :
500   ----------
501      1. HASH_FLAG_DINIS : set when 16 locations are free in the Data IN FIFO
502                           which means that a  new block (512 bit) can be entered
503                           into the input buffer.
504 
505      2. HASH_FLAG_DCIS :  set when Digest calculation is complete
506 
507      3. HASH_FLAG_DMAS :  set when HASH's DMA interface is enabled (DMAE=1) or
508                           a transfer is ongoing.
509                           This Flag is cleared only by hardware.
510 
511      4. HASH_FLAG_BUSY :  set when The hash core is processing a block of data
512                           This Flag is cleared only by hardware.
513 
514      5. HASH_FLAG_DINNE : set when Data IN FIFO is not empty which means that
515                           the Data IN FIFO contains at least one word of data.
516                           This Flag is cleared only by hardware.
517 
518   Interrupts :
519   ------------
520 
521    1. HASH_IT_DINI  : if enabled, this interrupt source is pending when 16
522                       locations are free in the Data IN FIFO  which means that
523                       a new block (512 bit) can be entered into the input buffer.
524                       This interrupt source is cleared using
525                       HASH_ClearITPendingBit(HASH_IT_DINI) function.
526 
527    2. HASH_IT_DCI   : if enabled, this interrupt source is pending when Digest
528                       calculation is complete.
529                       This interrupt source is cleared using
530                       HASH_ClearITPendingBit(HASH_IT_DCI) function.
531 
532   Managing the HASH controller events :
533   ------------------------------------
534   The user should identify which mode will be used in his application to manage
535   the HASH controller events: Polling mode or Interrupt mode.
536 
537   1.  In the Polling Mode it is advised to use the following functions:
538       - HASH_GetFlagStatus() : to check if flags events occur.
539       - HASH_ClearFlag()     : to clear the flags events.
540 
541   2.  In the Interrupt Mode it is advised to use the following functions:
542       - HASH_ITConfig()       : to enable or disable the interrupt source.
543       - HASH_GetITStatus()    : to check if Interrupt occurs.
544       - HASH_ClearITPendingBit() : to clear the Interrupt pending Bit
545                                 (corresponding Flag).
546 
547 @endverbatim
548   * @{
549   */
550 
551 /**
552   * @brief  Enables or disables the specified HASH interrupts.
553   * @param  HASH_IT: specifies the HASH interrupt source to be enabled or disabled.
554   *          This parameter can be any combination of the following values:
555   *            @arg HASH_IT_DINI: Data Input interrupt
556   *            @arg HASH_IT_DCI: Digest Calculation Completion Interrupt
557   * @param  NewState: new state of the specified HASH interrupt.
558   *           This parameter can be: ENABLE or DISABLE.
559   * @retval None
560   */
HASH_ITConfig(uint8_t HASH_IT,FunctionalState NewState)561 void HASH_ITConfig(uint8_t HASH_IT, FunctionalState NewState)
562 {
563   /* Check the parameters */
564   assert_param(IS_HASH_IT(HASH_IT));
565   assert_param(IS_FUNCTIONAL_STATE(NewState));
566 
567   if (NewState != DISABLE)
568   {
569     /* Enable the selected HASH interrupt */
570     HASH->IMR |= HASH_IT;
571   }
572   else
573   {
574     /* Disable the selected HASH interrupt */
575     HASH->IMR &= (uint8_t) ~HASH_IT;
576   }
577 }
578 
579 /**
580   * @brief  Checks whether the specified HASH flag is set or not.
581   * @param  HASH_FLAG: specifies the HASH flag to check.
582   *          This parameter can be one of the following values:
583   *            @arg HASH_FLAG_DINIS: Data input interrupt status flag
584   *            @arg HASH_FLAG_DCIS: Digest calculation completion interrupt status flag
585   *            @arg HASH_FLAG_BUSY: Busy flag
586   *            @arg HASH_FLAG_DMAS: DMAS Status flag
587   *            @arg HASH_FLAG_DINNE: Data Input register (DIN) not empty status flag
588   * @retval The new state of HASH_FLAG (SET or RESET)
589   */
HASH_GetFlagStatus(uint16_t HASH_FLAG)590 FlagStatus HASH_GetFlagStatus(uint16_t HASH_FLAG)
591 {
592   FlagStatus bitstatus = RESET;
593   uint32_t tempreg = 0;
594 
595   /* Check the parameters */
596   assert_param(IS_HASH_GET_FLAG(HASH_FLAG));
597 
598   /* check if the FLAG is in CR register */
599   if ((HASH_FLAG & HASH_FLAG_DINNE) != (uint16_t)RESET )
600   {
601     tempreg = HASH->CR;
602   }
603   else /* The FLAG is in SR register */
604   {
605     tempreg = HASH->SR;
606   }
607 
608   /* Check the status of the specified HASH flag */
609   if ((tempreg & HASH_FLAG) != (uint16_t)RESET)
610   {
611     /* HASH is set */
612     bitstatus = SET;
613   }
614   else
615   {
616     /* HASH_FLAG is reset */
617     bitstatus = RESET;
618   }
619 
620   /* Return the HASH_FLAG status */
621   return  bitstatus;
622 }
623 /**
624   * @brief  Clears the HASH flags.
625   * @param  HASH_FLAG: specifies the flag to clear.
626   *          This parameter can be any combination of the following values:
627   *            @arg HASH_FLAG_DINIS: Data Input Flag
628   *            @arg HASH_FLAG_DCIS: Digest Calculation Completion Flag
629   * @retval None
630   */
HASH_ClearFlag(uint16_t HASH_FLAG)631 void HASH_ClearFlag(uint16_t HASH_FLAG)
632 {
633   /* Check the parameters */
634   assert_param(IS_HASH_CLEAR_FLAG(HASH_FLAG));
635 
636   /* Clear the selected HASH flags */
637   HASH->SR = ~(uint32_t)HASH_FLAG;
638 }
639 /**
640   * @brief  Checks whether the specified HASH interrupt has occurred or not.
641   * @param  HASH_IT: specifies the HASH interrupt source to check.
642   *          This parameter can be one of the following values:
643   *            @arg HASH_IT_DINI: Data Input interrupt
644   *            @arg HASH_IT_DCI: Digest Calculation Completion Interrupt
645   * @retval The new state of HASH_IT (SET or RESET).
646   */
HASH_GetITStatus(uint8_t HASH_IT)647 ITStatus HASH_GetITStatus(uint8_t HASH_IT)
648 {
649   ITStatus bitstatus = RESET;
650   uint32_t tmpreg = 0;
651 
652   /* Check the parameters */
653   assert_param(IS_HASH_GET_IT(HASH_IT));
654 
655 
656   /* Check the status of the specified HASH interrupt */
657   tmpreg =  HASH->SR;
658 
659   if (((HASH->IMR & tmpreg) & HASH_IT) != RESET)
660   {
661     /* HASH_IT is set */
662     bitstatus = SET;
663   }
664   else
665   {
666     /* HASH_IT is reset */
667     bitstatus = RESET;
668   }
669   /* Return the HASH_IT status */
670   return bitstatus;
671 }
672 
673 /**
674   * @brief  Clears the HASH interrupt pending bit(s).
675   * @param  HASH_IT: specifies the HASH interrupt pending bit(s) to clear.
676   *          This parameter can be any combination of the following values:
677   *            @arg HASH_IT_DINI: Data Input interrupt
678   *            @arg HASH_IT_DCI: Digest Calculation Completion Interrupt
679   * @retval None
680   */
HASH_ClearITPendingBit(uint8_t HASH_IT)681 void HASH_ClearITPendingBit(uint8_t HASH_IT)
682 {
683   /* Check the parameters */
684   assert_param(IS_HASH_IT(HASH_IT));
685 
686   /* Clear the selected HASH interrupt pending bit */
687   HASH->SR = (uint8_t)~HASH_IT;
688 }
689 
690 /**
691   * @}
692   */
693 
694 /**
695   * @}
696   */
697 
698 /**
699   * @}
700   */
701 
702 /**
703   * @}
704   */
705 
706 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
707