1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3 *
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_placement.h>
30
31 static const struct ttm_place vram_placement_flags = {
32 .fpfn = 0,
33 .lpfn = 0,
34 .mem_type = TTM_PL_VRAM,
35 .flags = 0
36 };
37
38 static const struct ttm_place sys_placement_flags = {
39 .fpfn = 0,
40 .lpfn = 0,
41 .mem_type = TTM_PL_SYSTEM,
42 .flags = 0
43 };
44
45 static const struct ttm_place gmr_placement_flags = {
46 .fpfn = 0,
47 .lpfn = 0,
48 .mem_type = VMW_PL_GMR,
49 .flags = 0
50 };
51
52 static const struct ttm_place mob_placement_flags = {
53 .fpfn = 0,
54 .lpfn = 0,
55 .mem_type = VMW_PL_MOB,
56 .flags = 0
57 };
58
59 struct ttm_placement vmw_vram_placement = {
60 .num_placement = 1,
61 .placement = &vram_placement_flags,
62 .num_busy_placement = 1,
63 .busy_placement = &vram_placement_flags
64 };
65
66 static const struct ttm_place vram_gmr_placement_flags[] = {
67 {
68 .fpfn = 0,
69 .lpfn = 0,
70 .mem_type = TTM_PL_VRAM,
71 .flags = 0
72 }, {
73 .fpfn = 0,
74 .lpfn = 0,
75 .mem_type = VMW_PL_GMR,
76 .flags = 0
77 }
78 };
79
80 static const struct ttm_place gmr_vram_placement_flags[] = {
81 {
82 .fpfn = 0,
83 .lpfn = 0,
84 .mem_type = VMW_PL_GMR,
85 .flags = 0
86 }, {
87 .fpfn = 0,
88 .lpfn = 0,
89 .mem_type = TTM_PL_VRAM,
90 .flags = 0
91 }
92 };
93
94 static const struct ttm_place vmw_sys_placement_flags = {
95 .fpfn = 0,
96 .lpfn = 0,
97 .mem_type = VMW_PL_SYSTEM,
98 .flags = 0
99 };
100
101 struct ttm_placement vmw_vram_gmr_placement = {
102 .num_placement = 2,
103 .placement = vram_gmr_placement_flags,
104 .num_busy_placement = 1,
105 .busy_placement = &gmr_placement_flags
106 };
107
108 struct ttm_placement vmw_vram_sys_placement = {
109 .num_placement = 1,
110 .placement = &vram_placement_flags,
111 .num_busy_placement = 1,
112 .busy_placement = &sys_placement_flags
113 };
114
115 struct ttm_placement vmw_sys_placement = {
116 .num_placement = 1,
117 .placement = &sys_placement_flags,
118 .num_busy_placement = 1,
119 .busy_placement = &sys_placement_flags
120 };
121
122 struct ttm_placement vmw_pt_sys_placement = {
123 .num_placement = 1,
124 .placement = &vmw_sys_placement_flags,
125 .num_busy_placement = 1,
126 .busy_placement = &vmw_sys_placement_flags
127 };
128
129 static const struct ttm_place nonfixed_placement_flags[] = {
130 {
131 .fpfn = 0,
132 .lpfn = 0,
133 .mem_type = TTM_PL_SYSTEM,
134 .flags = 0
135 }, {
136 .fpfn = 0,
137 .lpfn = 0,
138 .mem_type = VMW_PL_GMR,
139 .flags = 0
140 }, {
141 .fpfn = 0,
142 .lpfn = 0,
143 .mem_type = VMW_PL_MOB,
144 .flags = 0
145 }
146 };
147
148 struct ttm_placement vmw_srf_placement = {
149 .num_placement = 1,
150 .num_busy_placement = 2,
151 .placement = &gmr_placement_flags,
152 .busy_placement = gmr_vram_placement_flags
153 };
154
155 struct ttm_placement vmw_mob_placement = {
156 .num_placement = 1,
157 .num_busy_placement = 1,
158 .placement = &mob_placement_flags,
159 .busy_placement = &mob_placement_flags
160 };
161
162 struct ttm_placement vmw_nonfixed_placement = {
163 .num_placement = 3,
164 .placement = nonfixed_placement_flags,
165 .num_busy_placement = 1,
166 .busy_placement = &sys_placement_flags
167 };
168
169 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
170
171 /**
172 * __vmw_piter_non_sg_next: Helper functions to advance
173 * a struct vmw_piter iterator.
174 *
175 * @viter: Pointer to the iterator.
176 *
177 * These functions return false if past the end of the list,
178 * true otherwise. Functions are selected depending on the current
179 * DMA mapping mode.
180 */
__vmw_piter_non_sg_next(struct vmw_piter * viter)181 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
182 {
183 return ++(viter->i) < viter->num_pages;
184 }
185
__vmw_piter_sg_next(struct vmw_piter * viter)186 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
187 {
188 bool ret = __vmw_piter_non_sg_next(viter);
189
190 return __sg_page_iter_dma_next(&viter->iter) && ret;
191 }
192
193
__vmw_piter_dma_addr(struct vmw_piter * viter)194 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
195 {
196 return viter->addrs[viter->i];
197 }
198
__vmw_piter_sg_addr(struct vmw_piter * viter)199 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
200 {
201 return sg_page_iter_dma_address(&viter->iter);
202 }
203
204
205 /**
206 * vmw_piter_start - Initialize a struct vmw_piter.
207 *
208 * @viter: Pointer to the iterator to initialize
209 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
210 * @p_offset: Pointer offset used to update current array position
211 *
212 * Note that we're following the convention of __sg_page_iter_start, so that
213 * the iterator doesn't point to a valid page after initialization; it has
214 * to be advanced one step first.
215 */
vmw_piter_start(struct vmw_piter * viter,const struct vmw_sg_table * vsgt,unsigned long p_offset)216 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
217 unsigned long p_offset)
218 {
219 viter->i = p_offset - 1;
220 viter->num_pages = vsgt->num_pages;
221 viter->pages = vsgt->pages;
222 switch (vsgt->mode) {
223 case vmw_dma_alloc_coherent:
224 viter->next = &__vmw_piter_non_sg_next;
225 viter->dma_address = &__vmw_piter_dma_addr;
226 viter->addrs = vsgt->addrs;
227 break;
228 case vmw_dma_map_populate:
229 case vmw_dma_map_bind:
230 viter->next = &__vmw_piter_sg_next;
231 viter->dma_address = &__vmw_piter_sg_addr;
232 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
233 vsgt->sgt->orig_nents, p_offset);
234 break;
235 default:
236 BUG();
237 }
238 }
239
240 /**
241 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
242 * TTM pages
243 *
244 * @vmw_tt: Pointer to a struct vmw_ttm_backend
245 *
246 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
247 */
vmw_ttm_unmap_from_dma(struct vmw_ttm_tt * vmw_tt)248 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
249 {
250 struct device *dev = vmw_tt->dev_priv->drm.dev;
251
252 dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
253 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
254 }
255
256 /**
257 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
258 *
259 * @vmw_tt: Pointer to a struct vmw_ttm_backend
260 *
261 * This function is used to get device addresses from the kernel DMA layer.
262 * However, it's violating the DMA API in that when this operation has been
263 * performed, it's illegal for the CPU to write to the pages without first
264 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
265 * therefore only legal to call this function if we know that the function
266 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
267 * a CPU write buffer flush.
268 */
vmw_ttm_map_for_dma(struct vmw_ttm_tt * vmw_tt)269 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
270 {
271 struct device *dev = vmw_tt->dev_priv->drm.dev;
272
273 return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
274 }
275
276 /**
277 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
278 *
279 * @vmw_tt: Pointer to a struct vmw_ttm_tt
280 *
281 * Select the correct function for and make sure the TTM pages are
282 * visible to the device. Allocate storage for the device mappings.
283 * If a mapping has already been performed, indicated by the storage
284 * pointer being non NULL, the function returns success.
285 */
vmw_ttm_map_dma(struct vmw_ttm_tt * vmw_tt)286 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
287 {
288 struct vmw_private *dev_priv = vmw_tt->dev_priv;
289 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
290 int ret = 0;
291
292 if (vmw_tt->mapped)
293 return 0;
294
295 vsgt->mode = dev_priv->map_mode;
296 vsgt->pages = vmw_tt->dma_ttm.pages;
297 vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
298 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
299 vsgt->sgt = NULL;
300
301 switch (dev_priv->map_mode) {
302 case vmw_dma_map_bind:
303 case vmw_dma_map_populate:
304 vsgt->sgt = &vmw_tt->sgt;
305 ret = sg_alloc_table_from_pages_segment(
306 &vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
307 (unsigned long)vsgt->num_pages << PAGE_SHIFT,
308 dma_get_max_seg_size(dev_priv->drm.dev), GFP_KERNEL);
309 if (ret)
310 goto out_sg_alloc_fail;
311
312 ret = vmw_ttm_map_for_dma(vmw_tt);
313 if (unlikely(ret != 0))
314 goto out_map_fail;
315
316 break;
317 default:
318 break;
319 }
320
321 vmw_tt->mapped = true;
322 return 0;
323
324 out_map_fail:
325 sg_free_table(vmw_tt->vsgt.sgt);
326 vmw_tt->vsgt.sgt = NULL;
327 out_sg_alloc_fail:
328 return ret;
329 }
330
331 /**
332 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
333 *
334 * @vmw_tt: Pointer to a struct vmw_ttm_tt
335 *
336 * Tear down any previously set up device DMA mappings and free
337 * any storage space allocated for them. If there are no mappings set up,
338 * this function is a NOP.
339 */
vmw_ttm_unmap_dma(struct vmw_ttm_tt * vmw_tt)340 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
341 {
342 struct vmw_private *dev_priv = vmw_tt->dev_priv;
343
344 if (!vmw_tt->vsgt.sgt)
345 return;
346
347 switch (dev_priv->map_mode) {
348 case vmw_dma_map_bind:
349 case vmw_dma_map_populate:
350 vmw_ttm_unmap_from_dma(vmw_tt);
351 sg_free_table(vmw_tt->vsgt.sgt);
352 vmw_tt->vsgt.sgt = NULL;
353 break;
354 default:
355 break;
356 }
357 vmw_tt->mapped = false;
358 }
359
360 /**
361 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
362 * TTM buffer object
363 *
364 * @bo: Pointer to a struct ttm_buffer_object
365 *
366 * Returns a pointer to a struct vmw_sg_table object. The object should
367 * not be freed after use.
368 * Note that for the device addresses to be valid, the buffer object must
369 * either be reserved or pinned.
370 */
vmw_bo_sg_table(struct ttm_buffer_object * bo)371 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
372 {
373 struct vmw_ttm_tt *vmw_tt =
374 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
375
376 return &vmw_tt->vsgt;
377 }
378
379
vmw_ttm_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)380 static int vmw_ttm_bind(struct ttm_device *bdev,
381 struct ttm_tt *ttm, struct ttm_resource *bo_mem)
382 {
383 struct vmw_ttm_tt *vmw_be =
384 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
385 int ret = 0;
386
387 if (!bo_mem)
388 return -EINVAL;
389
390 if (vmw_be->bound)
391 return 0;
392
393 ret = vmw_ttm_map_dma(vmw_be);
394 if (unlikely(ret != 0))
395 return ret;
396
397 vmw_be->gmr_id = bo_mem->start;
398 vmw_be->mem_type = bo_mem->mem_type;
399
400 switch (bo_mem->mem_type) {
401 case VMW_PL_GMR:
402 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
403 ttm->num_pages, vmw_be->gmr_id);
404 break;
405 case VMW_PL_MOB:
406 if (unlikely(vmw_be->mob == NULL)) {
407 vmw_be->mob =
408 vmw_mob_create(ttm->num_pages);
409 if (unlikely(vmw_be->mob == NULL))
410 return -ENOMEM;
411 }
412
413 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
414 &vmw_be->vsgt, ttm->num_pages,
415 vmw_be->gmr_id);
416 break;
417 case VMW_PL_SYSTEM:
418 /* Nothing to be done for a system bind */
419 break;
420 default:
421 BUG();
422 }
423 vmw_be->bound = true;
424 return ret;
425 }
426
vmw_ttm_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)427 static void vmw_ttm_unbind(struct ttm_device *bdev,
428 struct ttm_tt *ttm)
429 {
430 struct vmw_ttm_tt *vmw_be =
431 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
432
433 if (!vmw_be->bound)
434 return;
435
436 switch (vmw_be->mem_type) {
437 case VMW_PL_GMR:
438 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
439 break;
440 case VMW_PL_MOB:
441 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
442 break;
443 case VMW_PL_SYSTEM:
444 break;
445 default:
446 BUG();
447 }
448
449 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
450 vmw_ttm_unmap_dma(vmw_be);
451 vmw_be->bound = false;
452 }
453
454
vmw_ttm_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)455 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
456 {
457 struct vmw_ttm_tt *vmw_be =
458 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
459
460 vmw_ttm_unmap_dma(vmw_be);
461 ttm_tt_fini(ttm);
462 if (vmw_be->mob)
463 vmw_mob_destroy(vmw_be->mob);
464
465 kfree(vmw_be);
466 }
467
468
vmw_ttm_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)469 static int vmw_ttm_populate(struct ttm_device *bdev,
470 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
471 {
472 int ret;
473
474 /* TODO: maybe completely drop this ? */
475 if (ttm_tt_is_populated(ttm))
476 return 0;
477
478 ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
479
480 return ret;
481 }
482
vmw_ttm_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)483 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
484 struct ttm_tt *ttm)
485 {
486 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
487 dma_ttm);
488
489 vmw_ttm_unbind(bdev, ttm);
490
491 if (vmw_tt->mob) {
492 vmw_mob_destroy(vmw_tt->mob);
493 vmw_tt->mob = NULL;
494 }
495
496 vmw_ttm_unmap_dma(vmw_tt);
497
498 ttm_pool_free(&bdev->pool, ttm);
499 }
500
vmw_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)501 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
502 uint32_t page_flags)
503 {
504 struct vmw_ttm_tt *vmw_be;
505 int ret;
506
507 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
508 if (!vmw_be)
509 return NULL;
510
511 vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
512 vmw_be->mob = NULL;
513
514 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
515 ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
516 ttm_cached);
517 else
518 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
519 ttm_cached, 0);
520 if (unlikely(ret != 0))
521 goto out_no_init;
522
523 return &vmw_be->dma_ttm;
524 out_no_init:
525 kfree(vmw_be);
526 return NULL;
527 }
528
vmw_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)529 static void vmw_evict_flags(struct ttm_buffer_object *bo,
530 struct ttm_placement *placement)
531 {
532 *placement = vmw_sys_placement;
533 }
534
vmw_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)535 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
536 {
537 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
538
539 switch (mem->mem_type) {
540 case TTM_PL_SYSTEM:
541 case VMW_PL_SYSTEM:
542 case VMW_PL_GMR:
543 case VMW_PL_MOB:
544 return 0;
545 case TTM_PL_VRAM:
546 mem->bus.offset = (mem->start << PAGE_SHIFT) +
547 dev_priv->vram_start;
548 mem->bus.is_iomem = true;
549 mem->bus.caching = ttm_cached;
550 break;
551 default:
552 return -EINVAL;
553 }
554 return 0;
555 }
556
557 /**
558 * vmw_move_notify - TTM move_notify_callback
559 *
560 * @bo: The TTM buffer object about to move.
561 * @old_mem: The old memory where we move from
562 * @new_mem: The struct ttm_resource indicating to what memory
563 * region the move is taking place.
564 *
565 * Calls move_notify for all subsystems needing it.
566 * (currently only resources).
567 */
vmw_move_notify(struct ttm_buffer_object * bo,struct ttm_resource * old_mem,struct ttm_resource * new_mem)568 static void vmw_move_notify(struct ttm_buffer_object *bo,
569 struct ttm_resource *old_mem,
570 struct ttm_resource *new_mem)
571 {
572 vmw_bo_move_notify(bo, new_mem);
573 vmw_query_move_notify(bo, old_mem, new_mem);
574 }
575
576
577 /**
578 * vmw_swap_notify - TTM move_notify_callback
579 *
580 * @bo: The TTM buffer object about to be swapped out.
581 */
vmw_swap_notify(struct ttm_buffer_object * bo)582 static void vmw_swap_notify(struct ttm_buffer_object *bo)
583 {
584 vmw_bo_swap_notify(bo);
585 (void) ttm_bo_wait(bo, false, false);
586 }
587
vmw_memtype_is_system(uint32_t mem_type)588 static bool vmw_memtype_is_system(uint32_t mem_type)
589 {
590 return mem_type == TTM_PL_SYSTEM || mem_type == VMW_PL_SYSTEM;
591 }
592
vmw_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)593 static int vmw_move(struct ttm_buffer_object *bo,
594 bool evict,
595 struct ttm_operation_ctx *ctx,
596 struct ttm_resource *new_mem,
597 struct ttm_place *hop)
598 {
599 struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
600 struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
601 int ret;
602
603 if (new_man->use_tt && !vmw_memtype_is_system(new_mem->mem_type)) {
604 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
605 if (ret)
606 return ret;
607 }
608
609 vmw_move_notify(bo, bo->resource, new_mem);
610
611 if (old_man->use_tt && new_man->use_tt) {
612 if (vmw_memtype_is_system(bo->resource->mem_type)) {
613 ttm_bo_move_null(bo, new_mem);
614 return 0;
615 }
616 ret = ttm_bo_wait_ctx(bo, ctx);
617 if (ret)
618 goto fail;
619
620 vmw_ttm_unbind(bo->bdev, bo->ttm);
621 ttm_resource_free(bo, &bo->resource);
622 ttm_bo_assign_mem(bo, new_mem);
623 return 0;
624 } else {
625 ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
626 if (ret)
627 goto fail;
628 }
629 return 0;
630 fail:
631 vmw_move_notify(bo, new_mem, bo->resource);
632 return ret;
633 }
634
635 struct ttm_device_funcs vmw_bo_driver = {
636 .ttm_tt_create = &vmw_ttm_tt_create,
637 .ttm_tt_populate = &vmw_ttm_populate,
638 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
639 .ttm_tt_destroy = &vmw_ttm_destroy,
640 .eviction_valuable = ttm_bo_eviction_valuable,
641 .evict_flags = vmw_evict_flags,
642 .move = vmw_move,
643 .swap_notify = vmw_swap_notify,
644 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
645 };
646
vmw_bo_create_and_populate(struct vmw_private * dev_priv,unsigned long bo_size,struct ttm_buffer_object ** bo_p)647 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
648 unsigned long bo_size,
649 struct ttm_buffer_object **bo_p)
650 {
651 struct ttm_operation_ctx ctx = {
652 .interruptible = false,
653 .no_wait_gpu = false
654 };
655 struct ttm_buffer_object *bo;
656 int ret;
657
658 ret = vmw_bo_create_kernel(dev_priv, bo_size,
659 &vmw_pt_sys_placement,
660 &bo);
661 if (unlikely(ret != 0))
662 return ret;
663
664 ret = ttm_bo_reserve(bo, false, true, NULL);
665 BUG_ON(ret != 0);
666 ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
667 if (likely(ret == 0)) {
668 struct vmw_ttm_tt *vmw_tt =
669 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
670 ret = vmw_ttm_map_dma(vmw_tt);
671 }
672
673 ttm_bo_unreserve(bo);
674
675 if (likely(ret == 0))
676 *bo_p = bo;
677 return ret;
678 }
679