/l4re-core-master/libstdc++-v3/contrib/libstdc++-v3-5/include/tr1/ |
A D | riemann_zeta.tcc | 83 _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); in __riemann_zeta_sum() 116 _Tp __term = __sgn / std::pow(__i, __s); in __riemann_zeta_alt() 122 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_alt() 172 __zeta *= std::pow(_Tp(2) in __riemann_zeta_glob() 210 __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); in __riemann_zeta_glob() 222 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_glob() 260 const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); in __riemann_zeta_product() 297 __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) in __riemann_zeta() 319 _Tp __zeta = std::pow(_Tp(2) in __riemann_zeta() 393 __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); in __hurwitz_zeta_glob()
|
A D | complex | 348 pow(const std::complex<_Tp>& __x, const _Up& __y) 351 return std::pow(std::complex<__type>(__x), __type(__y)); 356 pow(const _Tp& __x, const std::complex<_Up>& __y) 359 return std::pow(__type(__x), std::complex<__type>(__y)); 364 pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y) 367 return std::pow(std::complex<__type>(__x), 399 pow(const std::complex<_Tp>& __x, const _Tp& __y) 400 { return std::pow(__x, __y); } 404 pow(const _Tp& __x, const std::complex<_Tp>& __y) 405 { return std::pow(__x, __y); } [all …]
|
A D | ell_integral.tcc | 99 const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); in __ellint_rf() 316 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rd() 319 const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); in __ellint_rd() 320 const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3)); in __ellint_rd() 516 const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); in __ellint_rc() 569 const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); in __ellint_rj() 571 * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3)); in __ellint_rj() 596 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rj()
|
/l4re-core-master/libstdc++-v3/contrib/libstdc++-v3-6/include/tr1/ |
A D | riemann_zeta.tcc | 90 _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); in __riemann_zeta_sum() 123 _Tp __term = __sgn / std::pow(__i, __s); in __riemann_zeta_alt() 129 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_alt() 179 __zeta *= std::pow(_Tp(2) in __riemann_zeta_glob() 217 __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); in __riemann_zeta_glob() 229 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_glob() 267 const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); in __riemann_zeta_product() 304 __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) in __riemann_zeta() 326 _Tp __zeta = std::pow(_Tp(2) in __riemann_zeta() 400 __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); in __hurwitz_zeta_glob()
|
A D | complex | 350 pow(const std::complex<_Tp>& __x, const _Up& __y) 353 return std::pow(std::complex<__type>(__x), __type(__y)); 358 pow(const _Tp& __x, const std::complex<_Up>& __y) 361 return std::pow(__type(__x), std::complex<__type>(__y)); 366 pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y) 369 return std::pow(std::complex<__type>(__x), 401 pow(const std::complex<_Tp>& __x, const _Tp& __y) 402 { return std::pow(__x, __y); } 406 pow(const _Tp& __x, const std::complex<_Tp>& __y) 407 { return std::pow(__x, __y); } [all …]
|
A D | ell_integral.tcc | 104 const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); in __ellint_rf() 321 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rd() 324 const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); in __ellint_rd() 325 const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3)); in __ellint_rd() 521 const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); in __ellint_rc() 574 const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); in __ellint_rj() 576 * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3)); in __ellint_rj() 601 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rj()
|
/l4re-core-master/libstdc++-v3/contrib/libstdc++-v3-4.9/include/tr1/ |
A D | riemann_zeta.tcc | 83 _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); in __riemann_zeta_sum() 116 _Tp __term = __sgn / std::pow(__i, __s); in __riemann_zeta_alt() 122 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_alt() 172 __zeta *= std::pow(_Tp(2) in __riemann_zeta_glob() 210 __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); in __riemann_zeta_glob() 222 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_glob() 260 const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); in __riemann_zeta_product() 297 __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) in __riemann_zeta() 319 _Tp __zeta = std::pow(_Tp(2) in __riemann_zeta() 393 __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); in __hurwitz_zeta_glob()
|
A D | complex | 348 pow(const std::complex<_Tp>& __x, const _Up& __y) 351 return std::pow(std::complex<__type>(__x), __type(__y)); 356 pow(const _Tp& __x, const std::complex<_Up>& __y) 359 return std::pow(__type(__x), std::complex<__type>(__y)); 364 pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y) 367 return std::pow(std::complex<__type>(__x), 399 pow(const std::complex<_Tp>& __x, const _Tp& __y) 400 { return std::pow(__x, __y); } 404 pow(const _Tp& __x, const std::complex<_Tp>& __y) 405 { return std::pow(__x, __y); } [all …]
|
A D | ell_integral.tcc | 99 const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); in __ellint_rf() 316 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rd() 319 const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); in __ellint_rd() 320 const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3)); in __ellint_rd() 516 const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); in __ellint_rc() 569 const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); in __ellint_rj() 571 * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3)); in __ellint_rj() 596 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rj()
|
/l4re-core-master/libstdc++-v3/contrib/libstdc++-v3-7/include/tr1/ |
A D | riemann_zeta.tcc | 90 _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); in __riemann_zeta_sum() 123 _Tp __term = __sgn / std::pow(__i, __s); in __riemann_zeta_alt() 129 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_alt() 179 __zeta *= std::pow(_Tp(2) in __riemann_zeta_glob() 217 __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); in __riemann_zeta_glob() 229 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_glob() 267 const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); in __riemann_zeta_product() 304 __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) in __riemann_zeta() 326 _Tp __zeta = std::pow(_Tp(2) in __riemann_zeta() 400 __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); in __hurwitz_zeta_glob()
|
A D | complex | 350 pow(const std::complex<_Tp>& __x, const _Up& __y) 353 return std::pow(std::complex<__type>(__x), __type(__y)); 358 pow(const _Tp& __x, const std::complex<_Up>& __y) 361 return std::pow(__type(__x), std::complex<__type>(__y)); 366 pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y) 369 return std::pow(std::complex<__type>(__x), 401 pow(const std::complex<_Tp>& __x, const _Tp& __y) 402 { return std::pow(__x, __y); } 406 pow(const _Tp& __x, const std::complex<_Tp>& __y) 407 { return std::pow(__x, __y); } [all …]
|
A D | ell_integral.tcc | 104 const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); in __ellint_rf() 321 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rd() 324 const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); in __ellint_rd() 325 const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3)); in __ellint_rd() 521 const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); in __ellint_rc() 574 const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); in __ellint_rj() 576 * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3)); in __ellint_rj() 601 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rj()
|
/l4re-core-master/libstdc++-v3/contrib/libstdc++-v3-11/include/tr1/ |
A D | riemann_zeta.tcc | 90 _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); in __riemann_zeta_sum() 123 _Tp __term = __sgn / std::pow(__i, __s); in __riemann_zeta_alt() 129 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_alt() 179 __zeta *= std::pow(_Tp(2) in __riemann_zeta_glob() 217 __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); in __riemann_zeta_glob() 229 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_glob() 267 const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); in __riemann_zeta_product() 304 __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) in __riemann_zeta() 326 _Tp __zeta = std::pow(_Tp(2) in __riemann_zeta() 400 __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); in __hurwitz_zeta_glob()
|
A D | complex | 350 pow(const std::complex<_Tp>& __x, const _Up& __y) 353 return std::pow(std::complex<__type>(__x), __type(__y)); 358 pow(const _Tp& __x, const std::complex<_Up>& __y) 361 return std::pow(__type(__x), std::complex<__type>(__y)); 366 pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y) 369 return std::pow(std::complex<__type>(__x), 401 pow(const std::complex<_Tp>& __x, const _Tp& __y) 402 { return std::pow(__x, __y); } 406 pow(const _Tp& __x, const std::complex<_Tp>& __y) 407 { return std::pow(__x, __y); } [all …]
|
/l4re-core-master/libstdc++-v3/contrib/libstdc++-v3-8/include/tr1/ |
A D | riemann_zeta.tcc | 90 _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); in __riemann_zeta_sum() 123 _Tp __term = __sgn / std::pow(__i, __s); in __riemann_zeta_alt() 129 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_alt() 179 __zeta *= std::pow(_Tp(2) in __riemann_zeta_glob() 217 __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); in __riemann_zeta_glob() 229 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_glob() 267 const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); in __riemann_zeta_product() 304 __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) in __riemann_zeta() 326 _Tp __zeta = std::pow(_Tp(2) in __riemann_zeta() 400 __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); in __hurwitz_zeta_glob()
|
A D | complex | 350 pow(const std::complex<_Tp>& __x, const _Up& __y) 353 return std::pow(std::complex<__type>(__x), __type(__y)); 358 pow(const _Tp& __x, const std::complex<_Up>& __y) 361 return std::pow(__type(__x), std::complex<__type>(__y)); 366 pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y) 369 return std::pow(std::complex<__type>(__x), 401 pow(const std::complex<_Tp>& __x, const _Tp& __y) 402 { return std::pow(__x, __y); } 406 pow(const _Tp& __x, const std::complex<_Tp>& __y) 407 { return std::pow(__x, __y); } [all …]
|
A D | ell_integral.tcc | 104 const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); in __ellint_rf() 321 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rd() 324 const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); in __ellint_rd() 325 const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3)); in __ellint_rd() 521 const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); in __ellint_rc() 574 const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); in __ellint_rj() 576 * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3)); in __ellint_rj() 601 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rj()
|
/l4re-core-master/libstdc++-v3/contrib/libstdc++-v3-10/include/tr1/ |
A D | riemann_zeta.tcc | 90 _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); in __riemann_zeta_sum() 123 _Tp __term = __sgn / std::pow(__i, __s); in __riemann_zeta_alt() 129 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_alt() 179 __zeta *= std::pow(_Tp(2) in __riemann_zeta_glob() 217 __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); in __riemann_zeta_glob() 229 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_glob() 267 const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); in __riemann_zeta_product() 304 __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) in __riemann_zeta() 326 _Tp __zeta = std::pow(_Tp(2) in __riemann_zeta() 400 __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); in __hurwitz_zeta_glob()
|
A D | complex | 350 pow(const std::complex<_Tp>& __x, const _Up& __y) 353 return std::pow(std::complex<__type>(__x), __type(__y)); 358 pow(const _Tp& __x, const std::complex<_Up>& __y) 361 return std::pow(__type(__x), std::complex<__type>(__y)); 366 pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y) 369 return std::pow(std::complex<__type>(__x), 401 pow(const std::complex<_Tp>& __x, const _Tp& __y) 402 { return std::pow(__x, __y); } 406 pow(const _Tp& __x, const std::complex<_Tp>& __y) 407 { return std::pow(__x, __y); } [all …]
|
A D | ell_integral.tcc | 104 const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); in __ellint_rf() 321 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rd() 324 const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); in __ellint_rd() 325 const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3)); in __ellint_rd() 520 const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); in __ellint_rc() 573 const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); in __ellint_rj() 575 * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3)); in __ellint_rj() 600 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rj()
|
/l4re-core-master/libstdc++-v3/contrib/libstdc++-v3-9/include/tr1/ |
A D | riemann_zeta.tcc | 90 _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); in __riemann_zeta_sum() 123 _Tp __term = __sgn / std::pow(__i, __s); in __riemann_zeta_alt() 129 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_alt() 179 __zeta *= std::pow(_Tp(2) in __riemann_zeta_glob() 217 __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); in __riemann_zeta_glob() 229 __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); in __riemann_zeta_glob() 267 const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); in __riemann_zeta_product() 304 __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) in __riemann_zeta() 326 _Tp __zeta = std::pow(_Tp(2) in __riemann_zeta() 400 __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); in __hurwitz_zeta_glob()
|
A D | complex | 350 pow(const std::complex<_Tp>& __x, const _Up& __y) 353 return std::pow(std::complex<__type>(__x), __type(__y)); 358 pow(const _Tp& __x, const std::complex<_Up>& __y) 361 return std::pow(__type(__x), std::complex<__type>(__y)); 366 pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y) 369 return std::pow(std::complex<__type>(__x), 401 pow(const std::complex<_Tp>& __x, const _Tp& __y) 402 { return std::pow(__x, __y); } 406 pow(const _Tp& __x, const std::complex<_Tp>& __y) 407 { return std::pow(__x, __y); } [all …]
|
A D | ell_integral.tcc | 104 const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); in __ellint_rf() 321 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rd() 324 const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); in __ellint_rd() 325 const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3)); in __ellint_rd() 521 const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); in __ellint_rc() 574 const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); in __ellint_rj() 576 * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3)); in __ellint_rj() 601 const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); in __ellint_rj()
|
/l4re-core-master/uclibc/lib/contrib/uclibc/test/math/ |
A D | libm-test.inc | 3721 FUNC(pow) (0, 0); 3726 START (pow); 3728 TEST_ff_f (pow, 0, 0, 1); 3733 TEST_ff_f (pow, 10, 0, 1); 3810 TEST_ff_f (pow, 1, 1, 1); 3811 TEST_ff_f (pow, 1, -1, 1); 3819 /* pow (x, +-0) == 1. */ 3853 TEST_ff_f (pow, 0, 1, 0); 3854 TEST_ff_f (pow, 0, 11, 0); 3860 TEST_ff_f (pow, 0, 2, 0); [all …]
|
/l4re-core-master/uclibc/lib/contrib/uclibc/libm/ |
A D | w_exp2.c | 17 return pow(2.0, x); in exp2()
|