1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71
72 #include <linux/uaccess.h>
73 #include <asm/unistd.h>
74 #include <asm/mmu_context.h>
75
76 /*
77 * The default value should be high enough to not crash a system that randomly
78 * crashes its kernel from time to time, but low enough to at least not permit
79 * overflowing 32-bit refcounts or the ldsem writer count.
80 */
81 static unsigned int oops_limit = 10000;
82
83 #ifdef CONFIG_SYSCTL
84 static struct ctl_table kern_exit_table[] = {
85 {
86 .procname = "oops_limit",
87 .data = &oops_limit,
88 .maxlen = sizeof(oops_limit),
89 .mode = 0644,
90 .proc_handler = proc_douintvec,
91 },
92 { }
93 };
94
kernel_exit_sysctls_init(void)95 static __init int kernel_exit_sysctls_init(void)
96 {
97 register_sysctl_init("kernel", kern_exit_table);
98 return 0;
99 }
100 late_initcall(kernel_exit_sysctls_init);
101 #endif
102
103 static atomic_t oops_count = ATOMIC_INIT(0);
104
105 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)106 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
107 char *page)
108 {
109 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
110 }
111
112 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
113
kernel_exit_sysfs_init(void)114 static __init int kernel_exit_sysfs_init(void)
115 {
116 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
117 return 0;
118 }
119 late_initcall(kernel_exit_sysfs_init);
120 #endif
121
__unhash_process(struct task_struct * p,bool group_dead)122 static void __unhash_process(struct task_struct *p, bool group_dead)
123 {
124 nr_threads--;
125 detach_pid(p, PIDTYPE_PID);
126 if (group_dead) {
127 detach_pid(p, PIDTYPE_TGID);
128 detach_pid(p, PIDTYPE_PGID);
129 detach_pid(p, PIDTYPE_SID);
130
131 list_del_rcu(&p->tasks);
132 list_del_init(&p->sibling);
133 __this_cpu_dec(process_counts);
134 }
135 list_del_rcu(&p->thread_group);
136 list_del_rcu(&p->thread_node);
137 }
138
139 /*
140 * This function expects the tasklist_lock write-locked.
141 */
__exit_signal(struct task_struct * tsk)142 static void __exit_signal(struct task_struct *tsk)
143 {
144 struct signal_struct *sig = tsk->signal;
145 bool group_dead = thread_group_leader(tsk);
146 struct sighand_struct *sighand;
147 struct tty_struct *tty;
148 u64 utime, stime;
149
150 sighand = rcu_dereference_check(tsk->sighand,
151 lockdep_tasklist_lock_is_held());
152 spin_lock(&sighand->siglock);
153
154 #ifdef CONFIG_POSIX_TIMERS
155 posix_cpu_timers_exit(tsk);
156 if (group_dead)
157 posix_cpu_timers_exit_group(tsk);
158 #endif
159
160 if (group_dead) {
161 tty = sig->tty;
162 sig->tty = NULL;
163 } else {
164 /*
165 * If there is any task waiting for the group exit
166 * then notify it:
167 */
168 if (sig->notify_count > 0 && !--sig->notify_count)
169 wake_up_process(sig->group_exec_task);
170
171 if (tsk == sig->curr_target)
172 sig->curr_target = next_thread(tsk);
173 }
174
175 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
176 sizeof(unsigned long long));
177
178 /*
179 * Accumulate here the counters for all threads as they die. We could
180 * skip the group leader because it is the last user of signal_struct,
181 * but we want to avoid the race with thread_group_cputime() which can
182 * see the empty ->thread_head list.
183 */
184 task_cputime(tsk, &utime, &stime);
185 write_seqlock(&sig->stats_lock);
186 sig->utime += utime;
187 sig->stime += stime;
188 sig->gtime += task_gtime(tsk);
189 sig->min_flt += tsk->min_flt;
190 sig->maj_flt += tsk->maj_flt;
191 sig->nvcsw += tsk->nvcsw;
192 sig->nivcsw += tsk->nivcsw;
193 sig->inblock += task_io_get_inblock(tsk);
194 sig->oublock += task_io_get_oublock(tsk);
195 task_io_accounting_add(&sig->ioac, &tsk->ioac);
196 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
197 sig->nr_threads--;
198 __unhash_process(tsk, group_dead);
199 write_sequnlock(&sig->stats_lock);
200
201 /*
202 * Do this under ->siglock, we can race with another thread
203 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
204 */
205 flush_sigqueue(&tsk->pending);
206 tsk->sighand = NULL;
207 spin_unlock(&sighand->siglock);
208
209 __cleanup_sighand(sighand);
210 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
211 if (group_dead) {
212 flush_sigqueue(&sig->shared_pending);
213 tty_kref_put(tty);
214 }
215 }
216
delayed_put_task_struct(struct rcu_head * rhp)217 static void delayed_put_task_struct(struct rcu_head *rhp)
218 {
219 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
220
221 kprobe_flush_task(tsk);
222 rethook_flush_task(tsk);
223 perf_event_delayed_put(tsk);
224 trace_sched_process_free(tsk);
225 put_task_struct(tsk);
226 }
227
put_task_struct_rcu_user(struct task_struct * task)228 void put_task_struct_rcu_user(struct task_struct *task)
229 {
230 if (refcount_dec_and_test(&task->rcu_users))
231 call_rcu(&task->rcu, delayed_put_task_struct);
232 }
233
release_thread(struct task_struct * dead_task)234 void __weak release_thread(struct task_struct *dead_task)
235 {
236 }
237
release_task(struct task_struct * p)238 void release_task(struct task_struct *p)
239 {
240 struct task_struct *leader;
241 struct pid *thread_pid;
242 int zap_leader;
243 repeat:
244 /* don't need to get the RCU readlock here - the process is dead and
245 * can't be modifying its own credentials. But shut RCU-lockdep up */
246 rcu_read_lock();
247 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
248 rcu_read_unlock();
249
250 cgroup_release(p);
251
252 write_lock_irq(&tasklist_lock);
253 ptrace_release_task(p);
254 thread_pid = get_pid(p->thread_pid);
255 __exit_signal(p);
256
257 /*
258 * If we are the last non-leader member of the thread
259 * group, and the leader is zombie, then notify the
260 * group leader's parent process. (if it wants notification.)
261 */
262 zap_leader = 0;
263 leader = p->group_leader;
264 if (leader != p && thread_group_empty(leader)
265 && leader->exit_state == EXIT_ZOMBIE) {
266 /*
267 * If we were the last child thread and the leader has
268 * exited already, and the leader's parent ignores SIGCHLD,
269 * then we are the one who should release the leader.
270 */
271 zap_leader = do_notify_parent(leader, leader->exit_signal);
272 if (zap_leader)
273 leader->exit_state = EXIT_DEAD;
274 }
275
276 write_unlock_irq(&tasklist_lock);
277 seccomp_filter_release(p);
278 proc_flush_pid(thread_pid);
279 put_pid(thread_pid);
280 release_thread(p);
281 put_task_struct_rcu_user(p);
282
283 p = leader;
284 if (unlikely(zap_leader))
285 goto repeat;
286 }
287
rcuwait_wake_up(struct rcuwait * w)288 int rcuwait_wake_up(struct rcuwait *w)
289 {
290 int ret = 0;
291 struct task_struct *task;
292
293 rcu_read_lock();
294
295 /*
296 * Order condition vs @task, such that everything prior to the load
297 * of @task is visible. This is the condition as to why the user called
298 * rcuwait_wake() in the first place. Pairs with set_current_state()
299 * barrier (A) in rcuwait_wait_event().
300 *
301 * WAIT WAKE
302 * [S] tsk = current [S] cond = true
303 * MB (A) MB (B)
304 * [L] cond [L] tsk
305 */
306 smp_mb(); /* (B) */
307
308 task = rcu_dereference(w->task);
309 if (task)
310 ret = wake_up_process(task);
311 rcu_read_unlock();
312
313 return ret;
314 }
315 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
316
317 /*
318 * Determine if a process group is "orphaned", according to the POSIX
319 * definition in 2.2.2.52. Orphaned process groups are not to be affected
320 * by terminal-generated stop signals. Newly orphaned process groups are
321 * to receive a SIGHUP and a SIGCONT.
322 *
323 * "I ask you, have you ever known what it is to be an orphan?"
324 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)325 static int will_become_orphaned_pgrp(struct pid *pgrp,
326 struct task_struct *ignored_task)
327 {
328 struct task_struct *p;
329
330 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
331 if ((p == ignored_task) ||
332 (p->exit_state && thread_group_empty(p)) ||
333 is_global_init(p->real_parent))
334 continue;
335
336 if (task_pgrp(p->real_parent) != pgrp &&
337 task_session(p->real_parent) == task_session(p))
338 return 0;
339 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
340
341 return 1;
342 }
343
is_current_pgrp_orphaned(void)344 int is_current_pgrp_orphaned(void)
345 {
346 int retval;
347
348 read_lock(&tasklist_lock);
349 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
350 read_unlock(&tasklist_lock);
351
352 return retval;
353 }
354
has_stopped_jobs(struct pid * pgrp)355 static bool has_stopped_jobs(struct pid *pgrp)
356 {
357 struct task_struct *p;
358
359 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
360 if (p->signal->flags & SIGNAL_STOP_STOPPED)
361 return true;
362 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
363
364 return false;
365 }
366
367 /*
368 * Check to see if any process groups have become orphaned as
369 * a result of our exiting, and if they have any stopped jobs,
370 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
371 */
372 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)373 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
374 {
375 struct pid *pgrp = task_pgrp(tsk);
376 struct task_struct *ignored_task = tsk;
377
378 if (!parent)
379 /* exit: our father is in a different pgrp than
380 * we are and we were the only connection outside.
381 */
382 parent = tsk->real_parent;
383 else
384 /* reparent: our child is in a different pgrp than
385 * we are, and it was the only connection outside.
386 */
387 ignored_task = NULL;
388
389 if (task_pgrp(parent) != pgrp &&
390 task_session(parent) == task_session(tsk) &&
391 will_become_orphaned_pgrp(pgrp, ignored_task) &&
392 has_stopped_jobs(pgrp)) {
393 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
394 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
395 }
396 }
397
coredump_task_exit(struct task_struct * tsk)398 static void coredump_task_exit(struct task_struct *tsk)
399 {
400 struct core_state *core_state;
401
402 /*
403 * Serialize with any possible pending coredump.
404 * We must hold siglock around checking core_state
405 * and setting PF_POSTCOREDUMP. The core-inducing thread
406 * will increment ->nr_threads for each thread in the
407 * group without PF_POSTCOREDUMP set.
408 */
409 spin_lock_irq(&tsk->sighand->siglock);
410 tsk->flags |= PF_POSTCOREDUMP;
411 core_state = tsk->signal->core_state;
412 spin_unlock_irq(&tsk->sighand->siglock);
413 if (core_state) {
414 struct core_thread self;
415
416 self.task = current;
417 if (self.task->flags & PF_SIGNALED)
418 self.next = xchg(&core_state->dumper.next, &self);
419 else
420 self.task = NULL;
421 /*
422 * Implies mb(), the result of xchg() must be visible
423 * to core_state->dumper.
424 */
425 if (atomic_dec_and_test(&core_state->nr_threads))
426 complete(&core_state->startup);
427
428 for (;;) {
429 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
430 if (!self.task) /* see coredump_finish() */
431 break;
432 schedule();
433 }
434 __set_current_state(TASK_RUNNING);
435 }
436 }
437
438 #ifdef CONFIG_MEMCG
439 /*
440 * A task is exiting. If it owned this mm, find a new owner for the mm.
441 */
mm_update_next_owner(struct mm_struct * mm)442 void mm_update_next_owner(struct mm_struct *mm)
443 {
444 struct task_struct *c, *g, *p = current;
445
446 retry:
447 /*
448 * If the exiting or execing task is not the owner, it's
449 * someone else's problem.
450 */
451 if (mm->owner != p)
452 return;
453 /*
454 * The current owner is exiting/execing and there are no other
455 * candidates. Do not leave the mm pointing to a possibly
456 * freed task structure.
457 */
458 if (atomic_read(&mm->mm_users) <= 1) {
459 WRITE_ONCE(mm->owner, NULL);
460 return;
461 }
462
463 read_lock(&tasklist_lock);
464 /*
465 * Search in the children
466 */
467 list_for_each_entry(c, &p->children, sibling) {
468 if (c->mm == mm)
469 goto assign_new_owner;
470 }
471
472 /*
473 * Search in the siblings
474 */
475 list_for_each_entry(c, &p->real_parent->children, sibling) {
476 if (c->mm == mm)
477 goto assign_new_owner;
478 }
479
480 /*
481 * Search through everything else, we should not get here often.
482 */
483 for_each_process(g) {
484 if (g->flags & PF_KTHREAD)
485 continue;
486 for_each_thread(g, c) {
487 if (c->mm == mm)
488 goto assign_new_owner;
489 if (c->mm)
490 break;
491 }
492 }
493 read_unlock(&tasklist_lock);
494 /*
495 * We found no owner yet mm_users > 1: this implies that we are
496 * most likely racing with swapoff (try_to_unuse()) or /proc or
497 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
498 */
499 WRITE_ONCE(mm->owner, NULL);
500 return;
501
502 assign_new_owner:
503 BUG_ON(c == p);
504 get_task_struct(c);
505 /*
506 * The task_lock protects c->mm from changing.
507 * We always want mm->owner->mm == mm
508 */
509 task_lock(c);
510 /*
511 * Delay read_unlock() till we have the task_lock()
512 * to ensure that c does not slip away underneath us
513 */
514 read_unlock(&tasklist_lock);
515 if (c->mm != mm) {
516 task_unlock(c);
517 put_task_struct(c);
518 goto retry;
519 }
520 WRITE_ONCE(mm->owner, c);
521 lru_gen_migrate_mm(mm);
522 task_unlock(c);
523 put_task_struct(c);
524 }
525 #endif /* CONFIG_MEMCG */
526
527 /*
528 * Turn us into a lazy TLB process if we
529 * aren't already..
530 */
exit_mm(void)531 static void exit_mm(void)
532 {
533 struct mm_struct *mm = current->mm;
534
535 exit_mm_release(current, mm);
536 if (!mm)
537 return;
538 sync_mm_rss(mm);
539 mmap_read_lock(mm);
540 mmgrab(mm);
541 BUG_ON(mm != current->active_mm);
542 /* more a memory barrier than a real lock */
543 task_lock(current);
544 /*
545 * When a thread stops operating on an address space, the loop
546 * in membarrier_private_expedited() may not observe that
547 * tsk->mm, and the loop in membarrier_global_expedited() may
548 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
549 * rq->membarrier_state, so those would not issue an IPI.
550 * Membarrier requires a memory barrier after accessing
551 * user-space memory, before clearing tsk->mm or the
552 * rq->membarrier_state.
553 */
554 smp_mb__after_spinlock();
555 local_irq_disable();
556 current->mm = NULL;
557 membarrier_update_current_mm(NULL);
558 enter_lazy_tlb(mm, current);
559 local_irq_enable();
560 task_unlock(current);
561 mmap_read_unlock(mm);
562 mm_update_next_owner(mm);
563 mmput(mm);
564 if (test_thread_flag(TIF_MEMDIE))
565 exit_oom_victim();
566 }
567
find_alive_thread(struct task_struct * p)568 static struct task_struct *find_alive_thread(struct task_struct *p)
569 {
570 struct task_struct *t;
571
572 for_each_thread(p, t) {
573 if (!(t->flags & PF_EXITING))
574 return t;
575 }
576 return NULL;
577 }
578
find_child_reaper(struct task_struct * father,struct list_head * dead)579 static struct task_struct *find_child_reaper(struct task_struct *father,
580 struct list_head *dead)
581 __releases(&tasklist_lock)
582 __acquires(&tasklist_lock)
583 {
584 struct pid_namespace *pid_ns = task_active_pid_ns(father);
585 struct task_struct *reaper = pid_ns->child_reaper;
586 struct task_struct *p, *n;
587
588 if (likely(reaper != father))
589 return reaper;
590
591 reaper = find_alive_thread(father);
592 if (reaper) {
593 pid_ns->child_reaper = reaper;
594 return reaper;
595 }
596
597 write_unlock_irq(&tasklist_lock);
598
599 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
600 list_del_init(&p->ptrace_entry);
601 release_task(p);
602 }
603
604 zap_pid_ns_processes(pid_ns);
605 write_lock_irq(&tasklist_lock);
606
607 return father;
608 }
609
610 /*
611 * When we die, we re-parent all our children, and try to:
612 * 1. give them to another thread in our thread group, if such a member exists
613 * 2. give it to the first ancestor process which prctl'd itself as a
614 * child_subreaper for its children (like a service manager)
615 * 3. give it to the init process (PID 1) in our pid namespace
616 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)617 static struct task_struct *find_new_reaper(struct task_struct *father,
618 struct task_struct *child_reaper)
619 {
620 struct task_struct *thread, *reaper;
621
622 thread = find_alive_thread(father);
623 if (thread)
624 return thread;
625
626 if (father->signal->has_child_subreaper) {
627 unsigned int ns_level = task_pid(father)->level;
628 /*
629 * Find the first ->is_child_subreaper ancestor in our pid_ns.
630 * We can't check reaper != child_reaper to ensure we do not
631 * cross the namespaces, the exiting parent could be injected
632 * by setns() + fork().
633 * We check pid->level, this is slightly more efficient than
634 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
635 */
636 for (reaper = father->real_parent;
637 task_pid(reaper)->level == ns_level;
638 reaper = reaper->real_parent) {
639 if (reaper == &init_task)
640 break;
641 if (!reaper->signal->is_child_subreaper)
642 continue;
643 thread = find_alive_thread(reaper);
644 if (thread)
645 return thread;
646 }
647 }
648
649 return child_reaper;
650 }
651
652 /*
653 * Any that need to be release_task'd are put on the @dead list.
654 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)655 static void reparent_leader(struct task_struct *father, struct task_struct *p,
656 struct list_head *dead)
657 {
658 if (unlikely(p->exit_state == EXIT_DEAD))
659 return;
660
661 /* We don't want people slaying init. */
662 p->exit_signal = SIGCHLD;
663
664 /* If it has exited notify the new parent about this child's death. */
665 if (!p->ptrace &&
666 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
667 if (do_notify_parent(p, p->exit_signal)) {
668 p->exit_state = EXIT_DEAD;
669 list_add(&p->ptrace_entry, dead);
670 }
671 }
672
673 kill_orphaned_pgrp(p, father);
674 }
675
676 /*
677 * This does two things:
678 *
679 * A. Make init inherit all the child processes
680 * B. Check to see if any process groups have become orphaned
681 * as a result of our exiting, and if they have any stopped
682 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
683 */
forget_original_parent(struct task_struct * father,struct list_head * dead)684 static void forget_original_parent(struct task_struct *father,
685 struct list_head *dead)
686 {
687 struct task_struct *p, *t, *reaper;
688
689 if (unlikely(!list_empty(&father->ptraced)))
690 exit_ptrace(father, dead);
691
692 /* Can drop and reacquire tasklist_lock */
693 reaper = find_child_reaper(father, dead);
694 if (list_empty(&father->children))
695 return;
696
697 reaper = find_new_reaper(father, reaper);
698 list_for_each_entry(p, &father->children, sibling) {
699 for_each_thread(p, t) {
700 RCU_INIT_POINTER(t->real_parent, reaper);
701 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
702 if (likely(!t->ptrace))
703 t->parent = t->real_parent;
704 if (t->pdeath_signal)
705 group_send_sig_info(t->pdeath_signal,
706 SEND_SIG_NOINFO, t,
707 PIDTYPE_TGID);
708 }
709 /*
710 * If this is a threaded reparent there is no need to
711 * notify anyone anything has happened.
712 */
713 if (!same_thread_group(reaper, father))
714 reparent_leader(father, p, dead);
715 }
716 list_splice_tail_init(&father->children, &reaper->children);
717 }
718
719 /*
720 * Send signals to all our closest relatives so that they know
721 * to properly mourn us..
722 */
exit_notify(struct task_struct * tsk,int group_dead)723 static void exit_notify(struct task_struct *tsk, int group_dead)
724 {
725 bool autoreap;
726 struct task_struct *p, *n;
727 LIST_HEAD(dead);
728
729 write_lock_irq(&tasklist_lock);
730 forget_original_parent(tsk, &dead);
731
732 if (group_dead)
733 kill_orphaned_pgrp(tsk->group_leader, NULL);
734
735 tsk->exit_state = EXIT_ZOMBIE;
736 if (unlikely(tsk->ptrace)) {
737 int sig = thread_group_leader(tsk) &&
738 thread_group_empty(tsk) &&
739 !ptrace_reparented(tsk) ?
740 tsk->exit_signal : SIGCHLD;
741 autoreap = do_notify_parent(tsk, sig);
742 } else if (thread_group_leader(tsk)) {
743 autoreap = thread_group_empty(tsk) &&
744 do_notify_parent(tsk, tsk->exit_signal);
745 } else {
746 autoreap = true;
747 }
748
749 if (autoreap) {
750 tsk->exit_state = EXIT_DEAD;
751 list_add(&tsk->ptrace_entry, &dead);
752 }
753
754 /* mt-exec, de_thread() is waiting for group leader */
755 if (unlikely(tsk->signal->notify_count < 0))
756 wake_up_process(tsk->signal->group_exec_task);
757 write_unlock_irq(&tasklist_lock);
758
759 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
760 list_del_init(&p->ptrace_entry);
761 release_task(p);
762 }
763 }
764
765 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)766 static void check_stack_usage(void)
767 {
768 static DEFINE_SPINLOCK(low_water_lock);
769 static int lowest_to_date = THREAD_SIZE;
770 unsigned long free;
771
772 free = stack_not_used(current);
773
774 if (free >= lowest_to_date)
775 return;
776
777 spin_lock(&low_water_lock);
778 if (free < lowest_to_date) {
779 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
780 current->comm, task_pid_nr(current), free);
781 lowest_to_date = free;
782 }
783 spin_unlock(&low_water_lock);
784 }
785 #else
check_stack_usage(void)786 static inline void check_stack_usage(void) {}
787 #endif
788
synchronize_group_exit(struct task_struct * tsk,long code)789 static void synchronize_group_exit(struct task_struct *tsk, long code)
790 {
791 struct sighand_struct *sighand = tsk->sighand;
792 struct signal_struct *signal = tsk->signal;
793
794 spin_lock_irq(&sighand->siglock);
795 signal->quick_threads--;
796 if ((signal->quick_threads == 0) &&
797 !(signal->flags & SIGNAL_GROUP_EXIT)) {
798 signal->flags = SIGNAL_GROUP_EXIT;
799 signal->group_exit_code = code;
800 signal->group_stop_count = 0;
801 }
802 spin_unlock_irq(&sighand->siglock);
803 }
804
do_exit(long code)805 void __noreturn do_exit(long code)
806 {
807 struct task_struct *tsk = current;
808 int group_dead;
809
810 WARN_ON(irqs_disabled());
811
812 synchronize_group_exit(tsk, code);
813
814 WARN_ON(tsk->plug);
815
816 kcov_task_exit(tsk);
817 kmsan_task_exit(tsk);
818
819 coredump_task_exit(tsk);
820 ptrace_event(PTRACE_EVENT_EXIT, code);
821
822 validate_creds_for_do_exit(tsk);
823
824 io_uring_files_cancel();
825 exit_signals(tsk); /* sets PF_EXITING */
826
827 /* sync mm's RSS info before statistics gathering */
828 if (tsk->mm)
829 sync_mm_rss(tsk->mm);
830 acct_update_integrals(tsk);
831 group_dead = atomic_dec_and_test(&tsk->signal->live);
832 if (group_dead) {
833 /*
834 * If the last thread of global init has exited, panic
835 * immediately to get a useable coredump.
836 */
837 if (unlikely(is_global_init(tsk)))
838 panic("Attempted to kill init! exitcode=0x%08x\n",
839 tsk->signal->group_exit_code ?: (int)code);
840
841 #ifdef CONFIG_POSIX_TIMERS
842 hrtimer_cancel(&tsk->signal->real_timer);
843 exit_itimers(tsk);
844 #endif
845 if (tsk->mm)
846 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
847 }
848 acct_collect(code, group_dead);
849 if (group_dead)
850 tty_audit_exit();
851 audit_free(tsk);
852
853 tsk->exit_code = code;
854 taskstats_exit(tsk, group_dead);
855
856 exit_mm();
857
858 if (group_dead)
859 acct_process();
860 trace_sched_process_exit(tsk);
861
862 exit_sem(tsk);
863 exit_shm(tsk);
864 exit_files(tsk);
865 exit_fs(tsk);
866 if (group_dead)
867 disassociate_ctty(1);
868 exit_task_namespaces(tsk);
869 exit_task_work(tsk);
870 exit_thread(tsk);
871
872 /*
873 * Flush inherited counters to the parent - before the parent
874 * gets woken up by child-exit notifications.
875 *
876 * because of cgroup mode, must be called before cgroup_exit()
877 */
878 perf_event_exit_task(tsk);
879
880 sched_autogroup_exit_task(tsk);
881 cgroup_exit(tsk);
882
883 /*
884 * FIXME: do that only when needed, using sched_exit tracepoint
885 */
886 flush_ptrace_hw_breakpoint(tsk);
887
888 exit_tasks_rcu_start();
889 exit_notify(tsk, group_dead);
890 proc_exit_connector(tsk);
891 mpol_put_task_policy(tsk);
892 #ifdef CONFIG_FUTEX
893 if (unlikely(current->pi_state_cache))
894 kfree(current->pi_state_cache);
895 #endif
896 /*
897 * Make sure we are holding no locks:
898 */
899 debug_check_no_locks_held();
900
901 if (tsk->io_context)
902 exit_io_context(tsk);
903
904 if (tsk->splice_pipe)
905 free_pipe_info(tsk->splice_pipe);
906
907 if (tsk->task_frag.page)
908 put_page(tsk->task_frag.page);
909
910 validate_creds_for_do_exit(tsk);
911 exit_task_stack_account(tsk);
912
913 check_stack_usage();
914 preempt_disable();
915 if (tsk->nr_dirtied)
916 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
917 exit_rcu();
918 exit_tasks_rcu_finish();
919
920 lockdep_free_task(tsk);
921 do_task_dead();
922 }
923
make_task_dead(int signr)924 void __noreturn make_task_dead(int signr)
925 {
926 /*
927 * Take the task off the cpu after something catastrophic has
928 * happened.
929 *
930 * We can get here from a kernel oops, sometimes with preemption off.
931 * Start by checking for critical errors.
932 * Then fix up important state like USER_DS and preemption.
933 * Then do everything else.
934 */
935 struct task_struct *tsk = current;
936 unsigned int limit;
937
938 if (unlikely(in_interrupt()))
939 panic("Aiee, killing interrupt handler!");
940 if (unlikely(!tsk->pid))
941 panic("Attempted to kill the idle task!");
942
943 if (unlikely(irqs_disabled())) {
944 pr_info("note: %s[%d] exited with irqs disabled\n",
945 current->comm, task_pid_nr(current));
946 local_irq_enable();
947 }
948 if (unlikely(in_atomic())) {
949 pr_info("note: %s[%d] exited with preempt_count %d\n",
950 current->comm, task_pid_nr(current),
951 preempt_count());
952 preempt_count_set(PREEMPT_ENABLED);
953 }
954
955 /*
956 * Every time the system oopses, if the oops happens while a reference
957 * to an object was held, the reference leaks.
958 * If the oops doesn't also leak memory, repeated oopsing can cause
959 * reference counters to wrap around (if they're not using refcount_t).
960 * This means that repeated oopsing can make unexploitable-looking bugs
961 * exploitable through repeated oopsing.
962 * To make sure this can't happen, place an upper bound on how often the
963 * kernel may oops without panic().
964 */
965 limit = READ_ONCE(oops_limit);
966 if (atomic_inc_return(&oops_count) >= limit && limit)
967 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
968
969 /*
970 * We're taking recursive faults here in make_task_dead. Safest is to just
971 * leave this task alone and wait for reboot.
972 */
973 if (unlikely(tsk->flags & PF_EXITING)) {
974 pr_alert("Fixing recursive fault but reboot is needed!\n");
975 futex_exit_recursive(tsk);
976 tsk->exit_state = EXIT_DEAD;
977 refcount_inc(&tsk->rcu_users);
978 do_task_dead();
979 }
980
981 do_exit(signr);
982 }
983
SYSCALL_DEFINE1(exit,int,error_code)984 SYSCALL_DEFINE1(exit, int, error_code)
985 {
986 do_exit((error_code&0xff)<<8);
987 }
988
989 /*
990 * Take down every thread in the group. This is called by fatal signals
991 * as well as by sys_exit_group (below).
992 */
993 void __noreturn
do_group_exit(int exit_code)994 do_group_exit(int exit_code)
995 {
996 struct signal_struct *sig = current->signal;
997
998 if (sig->flags & SIGNAL_GROUP_EXIT)
999 exit_code = sig->group_exit_code;
1000 else if (sig->group_exec_task)
1001 exit_code = 0;
1002 else {
1003 struct sighand_struct *const sighand = current->sighand;
1004
1005 spin_lock_irq(&sighand->siglock);
1006 if (sig->flags & SIGNAL_GROUP_EXIT)
1007 /* Another thread got here before we took the lock. */
1008 exit_code = sig->group_exit_code;
1009 else if (sig->group_exec_task)
1010 exit_code = 0;
1011 else {
1012 sig->group_exit_code = exit_code;
1013 sig->flags = SIGNAL_GROUP_EXIT;
1014 zap_other_threads(current);
1015 }
1016 spin_unlock_irq(&sighand->siglock);
1017 }
1018
1019 do_exit(exit_code);
1020 /* NOTREACHED */
1021 }
1022
1023 /*
1024 * this kills every thread in the thread group. Note that any externally
1025 * wait4()-ing process will get the correct exit code - even if this
1026 * thread is not the thread group leader.
1027 */
SYSCALL_DEFINE1(exit_group,int,error_code)1028 SYSCALL_DEFINE1(exit_group, int, error_code)
1029 {
1030 do_group_exit((error_code & 0xff) << 8);
1031 /* NOTREACHED */
1032 return 0;
1033 }
1034
1035 struct waitid_info {
1036 pid_t pid;
1037 uid_t uid;
1038 int status;
1039 int cause;
1040 };
1041
1042 struct wait_opts {
1043 enum pid_type wo_type;
1044 int wo_flags;
1045 struct pid *wo_pid;
1046
1047 struct waitid_info *wo_info;
1048 int wo_stat;
1049 struct rusage *wo_rusage;
1050
1051 wait_queue_entry_t child_wait;
1052 int notask_error;
1053 };
1054
eligible_pid(struct wait_opts * wo,struct task_struct * p)1055 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1056 {
1057 return wo->wo_type == PIDTYPE_MAX ||
1058 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1059 }
1060
1061 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1062 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1063 {
1064 if (!eligible_pid(wo, p))
1065 return 0;
1066
1067 /*
1068 * Wait for all children (clone and not) if __WALL is set or
1069 * if it is traced by us.
1070 */
1071 if (ptrace || (wo->wo_flags & __WALL))
1072 return 1;
1073
1074 /*
1075 * Otherwise, wait for clone children *only* if __WCLONE is set;
1076 * otherwise, wait for non-clone children *only*.
1077 *
1078 * Note: a "clone" child here is one that reports to its parent
1079 * using a signal other than SIGCHLD, or a non-leader thread which
1080 * we can only see if it is traced by us.
1081 */
1082 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1083 return 0;
1084
1085 return 1;
1086 }
1087
1088 /*
1089 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1090 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1091 * the lock and this task is uninteresting. If we return nonzero, we have
1092 * released the lock and the system call should return.
1093 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1094 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1095 {
1096 int state, status;
1097 pid_t pid = task_pid_vnr(p);
1098 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1099 struct waitid_info *infop;
1100
1101 if (!likely(wo->wo_flags & WEXITED))
1102 return 0;
1103
1104 if (unlikely(wo->wo_flags & WNOWAIT)) {
1105 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1106 ? p->signal->group_exit_code : p->exit_code;
1107 get_task_struct(p);
1108 read_unlock(&tasklist_lock);
1109 sched_annotate_sleep();
1110 if (wo->wo_rusage)
1111 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1112 put_task_struct(p);
1113 goto out_info;
1114 }
1115 /*
1116 * Move the task's state to DEAD/TRACE, only one thread can do this.
1117 */
1118 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1119 EXIT_TRACE : EXIT_DEAD;
1120 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1121 return 0;
1122 /*
1123 * We own this thread, nobody else can reap it.
1124 */
1125 read_unlock(&tasklist_lock);
1126 sched_annotate_sleep();
1127
1128 /*
1129 * Check thread_group_leader() to exclude the traced sub-threads.
1130 */
1131 if (state == EXIT_DEAD && thread_group_leader(p)) {
1132 struct signal_struct *sig = p->signal;
1133 struct signal_struct *psig = current->signal;
1134 unsigned long maxrss;
1135 u64 tgutime, tgstime;
1136
1137 /*
1138 * The resource counters for the group leader are in its
1139 * own task_struct. Those for dead threads in the group
1140 * are in its signal_struct, as are those for the child
1141 * processes it has previously reaped. All these
1142 * accumulate in the parent's signal_struct c* fields.
1143 *
1144 * We don't bother to take a lock here to protect these
1145 * p->signal fields because the whole thread group is dead
1146 * and nobody can change them.
1147 *
1148 * psig->stats_lock also protects us from our sub-threads
1149 * which can reap other children at the same time. Until
1150 * we change k_getrusage()-like users to rely on this lock
1151 * we have to take ->siglock as well.
1152 *
1153 * We use thread_group_cputime_adjusted() to get times for
1154 * the thread group, which consolidates times for all threads
1155 * in the group including the group leader.
1156 */
1157 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1158 spin_lock_irq(¤t->sighand->siglock);
1159 write_seqlock(&psig->stats_lock);
1160 psig->cutime += tgutime + sig->cutime;
1161 psig->cstime += tgstime + sig->cstime;
1162 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1163 psig->cmin_flt +=
1164 p->min_flt + sig->min_flt + sig->cmin_flt;
1165 psig->cmaj_flt +=
1166 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1167 psig->cnvcsw +=
1168 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1169 psig->cnivcsw +=
1170 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1171 psig->cinblock +=
1172 task_io_get_inblock(p) +
1173 sig->inblock + sig->cinblock;
1174 psig->coublock +=
1175 task_io_get_oublock(p) +
1176 sig->oublock + sig->coublock;
1177 maxrss = max(sig->maxrss, sig->cmaxrss);
1178 if (psig->cmaxrss < maxrss)
1179 psig->cmaxrss = maxrss;
1180 task_io_accounting_add(&psig->ioac, &p->ioac);
1181 task_io_accounting_add(&psig->ioac, &sig->ioac);
1182 write_sequnlock(&psig->stats_lock);
1183 spin_unlock_irq(¤t->sighand->siglock);
1184 }
1185
1186 if (wo->wo_rusage)
1187 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1188 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1189 ? p->signal->group_exit_code : p->exit_code;
1190 wo->wo_stat = status;
1191
1192 if (state == EXIT_TRACE) {
1193 write_lock_irq(&tasklist_lock);
1194 /* We dropped tasklist, ptracer could die and untrace */
1195 ptrace_unlink(p);
1196
1197 /* If parent wants a zombie, don't release it now */
1198 state = EXIT_ZOMBIE;
1199 if (do_notify_parent(p, p->exit_signal))
1200 state = EXIT_DEAD;
1201 p->exit_state = state;
1202 write_unlock_irq(&tasklist_lock);
1203 }
1204 if (state == EXIT_DEAD)
1205 release_task(p);
1206
1207 out_info:
1208 infop = wo->wo_info;
1209 if (infop) {
1210 if ((status & 0x7f) == 0) {
1211 infop->cause = CLD_EXITED;
1212 infop->status = status >> 8;
1213 } else {
1214 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1215 infop->status = status & 0x7f;
1216 }
1217 infop->pid = pid;
1218 infop->uid = uid;
1219 }
1220
1221 return pid;
1222 }
1223
task_stopped_code(struct task_struct * p,bool ptrace)1224 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1225 {
1226 if (ptrace) {
1227 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1228 return &p->exit_code;
1229 } else {
1230 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1231 return &p->signal->group_exit_code;
1232 }
1233 return NULL;
1234 }
1235
1236 /**
1237 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1238 * @wo: wait options
1239 * @ptrace: is the wait for ptrace
1240 * @p: task to wait for
1241 *
1242 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1243 *
1244 * CONTEXT:
1245 * read_lock(&tasklist_lock), which is released if return value is
1246 * non-zero. Also, grabs and releases @p->sighand->siglock.
1247 *
1248 * RETURNS:
1249 * 0 if wait condition didn't exist and search for other wait conditions
1250 * should continue. Non-zero return, -errno on failure and @p's pid on
1251 * success, implies that tasklist_lock is released and wait condition
1252 * search should terminate.
1253 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1254 static int wait_task_stopped(struct wait_opts *wo,
1255 int ptrace, struct task_struct *p)
1256 {
1257 struct waitid_info *infop;
1258 int exit_code, *p_code, why;
1259 uid_t uid = 0; /* unneeded, required by compiler */
1260 pid_t pid;
1261
1262 /*
1263 * Traditionally we see ptrace'd stopped tasks regardless of options.
1264 */
1265 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1266 return 0;
1267
1268 if (!task_stopped_code(p, ptrace))
1269 return 0;
1270
1271 exit_code = 0;
1272 spin_lock_irq(&p->sighand->siglock);
1273
1274 p_code = task_stopped_code(p, ptrace);
1275 if (unlikely(!p_code))
1276 goto unlock_sig;
1277
1278 exit_code = *p_code;
1279 if (!exit_code)
1280 goto unlock_sig;
1281
1282 if (!unlikely(wo->wo_flags & WNOWAIT))
1283 *p_code = 0;
1284
1285 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1286 unlock_sig:
1287 spin_unlock_irq(&p->sighand->siglock);
1288 if (!exit_code)
1289 return 0;
1290
1291 /*
1292 * Now we are pretty sure this task is interesting.
1293 * Make sure it doesn't get reaped out from under us while we
1294 * give up the lock and then examine it below. We don't want to
1295 * keep holding onto the tasklist_lock while we call getrusage and
1296 * possibly take page faults for user memory.
1297 */
1298 get_task_struct(p);
1299 pid = task_pid_vnr(p);
1300 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1301 read_unlock(&tasklist_lock);
1302 sched_annotate_sleep();
1303 if (wo->wo_rusage)
1304 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1305 put_task_struct(p);
1306
1307 if (likely(!(wo->wo_flags & WNOWAIT)))
1308 wo->wo_stat = (exit_code << 8) | 0x7f;
1309
1310 infop = wo->wo_info;
1311 if (infop) {
1312 infop->cause = why;
1313 infop->status = exit_code;
1314 infop->pid = pid;
1315 infop->uid = uid;
1316 }
1317 return pid;
1318 }
1319
1320 /*
1321 * Handle do_wait work for one task in a live, non-stopped state.
1322 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1323 * the lock and this task is uninteresting. If we return nonzero, we have
1324 * released the lock and the system call should return.
1325 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1326 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1327 {
1328 struct waitid_info *infop;
1329 pid_t pid;
1330 uid_t uid;
1331
1332 if (!unlikely(wo->wo_flags & WCONTINUED))
1333 return 0;
1334
1335 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1336 return 0;
1337
1338 spin_lock_irq(&p->sighand->siglock);
1339 /* Re-check with the lock held. */
1340 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1341 spin_unlock_irq(&p->sighand->siglock);
1342 return 0;
1343 }
1344 if (!unlikely(wo->wo_flags & WNOWAIT))
1345 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1346 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1347 spin_unlock_irq(&p->sighand->siglock);
1348
1349 pid = task_pid_vnr(p);
1350 get_task_struct(p);
1351 read_unlock(&tasklist_lock);
1352 sched_annotate_sleep();
1353 if (wo->wo_rusage)
1354 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1355 put_task_struct(p);
1356
1357 infop = wo->wo_info;
1358 if (!infop) {
1359 wo->wo_stat = 0xffff;
1360 } else {
1361 infop->cause = CLD_CONTINUED;
1362 infop->pid = pid;
1363 infop->uid = uid;
1364 infop->status = SIGCONT;
1365 }
1366 return pid;
1367 }
1368
1369 /*
1370 * Consider @p for a wait by @parent.
1371 *
1372 * -ECHILD should be in ->notask_error before the first call.
1373 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1374 * Returns zero if the search for a child should continue;
1375 * then ->notask_error is 0 if @p is an eligible child,
1376 * or still -ECHILD.
1377 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1378 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1379 struct task_struct *p)
1380 {
1381 /*
1382 * We can race with wait_task_zombie() from another thread.
1383 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1384 * can't confuse the checks below.
1385 */
1386 int exit_state = READ_ONCE(p->exit_state);
1387 int ret;
1388
1389 if (unlikely(exit_state == EXIT_DEAD))
1390 return 0;
1391
1392 ret = eligible_child(wo, ptrace, p);
1393 if (!ret)
1394 return ret;
1395
1396 if (unlikely(exit_state == EXIT_TRACE)) {
1397 /*
1398 * ptrace == 0 means we are the natural parent. In this case
1399 * we should clear notask_error, debugger will notify us.
1400 */
1401 if (likely(!ptrace))
1402 wo->notask_error = 0;
1403 return 0;
1404 }
1405
1406 if (likely(!ptrace) && unlikely(p->ptrace)) {
1407 /*
1408 * If it is traced by its real parent's group, just pretend
1409 * the caller is ptrace_do_wait() and reap this child if it
1410 * is zombie.
1411 *
1412 * This also hides group stop state from real parent; otherwise
1413 * a single stop can be reported twice as group and ptrace stop.
1414 * If a ptracer wants to distinguish these two events for its
1415 * own children it should create a separate process which takes
1416 * the role of real parent.
1417 */
1418 if (!ptrace_reparented(p))
1419 ptrace = 1;
1420 }
1421
1422 /* slay zombie? */
1423 if (exit_state == EXIT_ZOMBIE) {
1424 /* we don't reap group leaders with subthreads */
1425 if (!delay_group_leader(p)) {
1426 /*
1427 * A zombie ptracee is only visible to its ptracer.
1428 * Notification and reaping will be cascaded to the
1429 * real parent when the ptracer detaches.
1430 */
1431 if (unlikely(ptrace) || likely(!p->ptrace))
1432 return wait_task_zombie(wo, p);
1433 }
1434
1435 /*
1436 * Allow access to stopped/continued state via zombie by
1437 * falling through. Clearing of notask_error is complex.
1438 *
1439 * When !@ptrace:
1440 *
1441 * If WEXITED is set, notask_error should naturally be
1442 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1443 * so, if there are live subthreads, there are events to
1444 * wait for. If all subthreads are dead, it's still safe
1445 * to clear - this function will be called again in finite
1446 * amount time once all the subthreads are released and
1447 * will then return without clearing.
1448 *
1449 * When @ptrace:
1450 *
1451 * Stopped state is per-task and thus can't change once the
1452 * target task dies. Only continued and exited can happen.
1453 * Clear notask_error if WCONTINUED | WEXITED.
1454 */
1455 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1456 wo->notask_error = 0;
1457 } else {
1458 /*
1459 * @p is alive and it's gonna stop, continue or exit, so
1460 * there always is something to wait for.
1461 */
1462 wo->notask_error = 0;
1463 }
1464
1465 /*
1466 * Wait for stopped. Depending on @ptrace, different stopped state
1467 * is used and the two don't interact with each other.
1468 */
1469 ret = wait_task_stopped(wo, ptrace, p);
1470 if (ret)
1471 return ret;
1472
1473 /*
1474 * Wait for continued. There's only one continued state and the
1475 * ptracer can consume it which can confuse the real parent. Don't
1476 * use WCONTINUED from ptracer. You don't need or want it.
1477 */
1478 return wait_task_continued(wo, p);
1479 }
1480
1481 /*
1482 * Do the work of do_wait() for one thread in the group, @tsk.
1483 *
1484 * -ECHILD should be in ->notask_error before the first call.
1485 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1486 * Returns zero if the search for a child should continue; then
1487 * ->notask_error is 0 if there were any eligible children,
1488 * or still -ECHILD.
1489 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1490 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1491 {
1492 struct task_struct *p;
1493
1494 list_for_each_entry(p, &tsk->children, sibling) {
1495 int ret = wait_consider_task(wo, 0, p);
1496
1497 if (ret)
1498 return ret;
1499 }
1500
1501 return 0;
1502 }
1503
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1504 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1505 {
1506 struct task_struct *p;
1507
1508 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1509 int ret = wait_consider_task(wo, 1, p);
1510
1511 if (ret)
1512 return ret;
1513 }
1514
1515 return 0;
1516 }
1517
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1518 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1519 int sync, void *key)
1520 {
1521 struct wait_opts *wo = container_of(wait, struct wait_opts,
1522 child_wait);
1523 struct task_struct *p = key;
1524
1525 if (!eligible_pid(wo, p))
1526 return 0;
1527
1528 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1529 return 0;
1530
1531 return default_wake_function(wait, mode, sync, key);
1532 }
1533
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1534 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1535 {
1536 __wake_up_sync_key(&parent->signal->wait_chldexit,
1537 TASK_INTERRUPTIBLE, p);
1538 }
1539
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1540 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1541 struct task_struct *target)
1542 {
1543 struct task_struct *parent =
1544 !ptrace ? target->real_parent : target->parent;
1545
1546 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1547 same_thread_group(current, parent));
1548 }
1549
1550 /*
1551 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1552 * and tracee lists to find the target task.
1553 */
do_wait_pid(struct wait_opts * wo)1554 static int do_wait_pid(struct wait_opts *wo)
1555 {
1556 bool ptrace;
1557 struct task_struct *target;
1558 int retval;
1559
1560 ptrace = false;
1561 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1562 if (target && is_effectively_child(wo, ptrace, target)) {
1563 retval = wait_consider_task(wo, ptrace, target);
1564 if (retval)
1565 return retval;
1566 }
1567
1568 ptrace = true;
1569 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1570 if (target && target->ptrace &&
1571 is_effectively_child(wo, ptrace, target)) {
1572 retval = wait_consider_task(wo, ptrace, target);
1573 if (retval)
1574 return retval;
1575 }
1576
1577 return 0;
1578 }
1579
do_wait(struct wait_opts * wo)1580 static long do_wait(struct wait_opts *wo)
1581 {
1582 int retval;
1583
1584 trace_sched_process_wait(wo->wo_pid);
1585
1586 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1587 wo->child_wait.private = current;
1588 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1589 repeat:
1590 /*
1591 * If there is nothing that can match our criteria, just get out.
1592 * We will clear ->notask_error to zero if we see any child that
1593 * might later match our criteria, even if we are not able to reap
1594 * it yet.
1595 */
1596 wo->notask_error = -ECHILD;
1597 if ((wo->wo_type < PIDTYPE_MAX) &&
1598 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1599 goto notask;
1600
1601 set_current_state(TASK_INTERRUPTIBLE);
1602 read_lock(&tasklist_lock);
1603
1604 if (wo->wo_type == PIDTYPE_PID) {
1605 retval = do_wait_pid(wo);
1606 if (retval)
1607 goto end;
1608 } else {
1609 struct task_struct *tsk = current;
1610
1611 do {
1612 retval = do_wait_thread(wo, tsk);
1613 if (retval)
1614 goto end;
1615
1616 retval = ptrace_do_wait(wo, tsk);
1617 if (retval)
1618 goto end;
1619
1620 if (wo->wo_flags & __WNOTHREAD)
1621 break;
1622 } while_each_thread(current, tsk);
1623 }
1624 read_unlock(&tasklist_lock);
1625
1626 notask:
1627 retval = wo->notask_error;
1628 if (!retval && !(wo->wo_flags & WNOHANG)) {
1629 retval = -ERESTARTSYS;
1630 if (!signal_pending(current)) {
1631 schedule();
1632 goto repeat;
1633 }
1634 }
1635 end:
1636 __set_current_state(TASK_RUNNING);
1637 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1638 return retval;
1639 }
1640
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1641 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1642 int options, struct rusage *ru)
1643 {
1644 struct wait_opts wo;
1645 struct pid *pid = NULL;
1646 enum pid_type type;
1647 long ret;
1648 unsigned int f_flags = 0;
1649
1650 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1651 __WNOTHREAD|__WCLONE|__WALL))
1652 return -EINVAL;
1653 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1654 return -EINVAL;
1655
1656 switch (which) {
1657 case P_ALL:
1658 type = PIDTYPE_MAX;
1659 break;
1660 case P_PID:
1661 type = PIDTYPE_PID;
1662 if (upid <= 0)
1663 return -EINVAL;
1664
1665 pid = find_get_pid(upid);
1666 break;
1667 case P_PGID:
1668 type = PIDTYPE_PGID;
1669 if (upid < 0)
1670 return -EINVAL;
1671
1672 if (upid)
1673 pid = find_get_pid(upid);
1674 else
1675 pid = get_task_pid(current, PIDTYPE_PGID);
1676 break;
1677 case P_PIDFD:
1678 type = PIDTYPE_PID;
1679 if (upid < 0)
1680 return -EINVAL;
1681
1682 pid = pidfd_get_pid(upid, &f_flags);
1683 if (IS_ERR(pid))
1684 return PTR_ERR(pid);
1685
1686 break;
1687 default:
1688 return -EINVAL;
1689 }
1690
1691 wo.wo_type = type;
1692 wo.wo_pid = pid;
1693 wo.wo_flags = options;
1694 wo.wo_info = infop;
1695 wo.wo_rusage = ru;
1696 if (f_flags & O_NONBLOCK)
1697 wo.wo_flags |= WNOHANG;
1698
1699 ret = do_wait(&wo);
1700 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1701 ret = -EAGAIN;
1702
1703 put_pid(pid);
1704 return ret;
1705 }
1706
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1707 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1708 infop, int, options, struct rusage __user *, ru)
1709 {
1710 struct rusage r;
1711 struct waitid_info info = {.status = 0};
1712 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1713 int signo = 0;
1714
1715 if (err > 0) {
1716 signo = SIGCHLD;
1717 err = 0;
1718 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1719 return -EFAULT;
1720 }
1721 if (!infop)
1722 return err;
1723
1724 if (!user_write_access_begin(infop, sizeof(*infop)))
1725 return -EFAULT;
1726
1727 unsafe_put_user(signo, &infop->si_signo, Efault);
1728 unsafe_put_user(0, &infop->si_errno, Efault);
1729 unsafe_put_user(info.cause, &infop->si_code, Efault);
1730 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1731 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1732 unsafe_put_user(info.status, &infop->si_status, Efault);
1733 user_write_access_end();
1734 return err;
1735 Efault:
1736 user_write_access_end();
1737 return -EFAULT;
1738 }
1739
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1740 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1741 struct rusage *ru)
1742 {
1743 struct wait_opts wo;
1744 struct pid *pid = NULL;
1745 enum pid_type type;
1746 long ret;
1747
1748 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1749 __WNOTHREAD|__WCLONE|__WALL))
1750 return -EINVAL;
1751
1752 /* -INT_MIN is not defined */
1753 if (upid == INT_MIN)
1754 return -ESRCH;
1755
1756 if (upid == -1)
1757 type = PIDTYPE_MAX;
1758 else if (upid < 0) {
1759 type = PIDTYPE_PGID;
1760 pid = find_get_pid(-upid);
1761 } else if (upid == 0) {
1762 type = PIDTYPE_PGID;
1763 pid = get_task_pid(current, PIDTYPE_PGID);
1764 } else /* upid > 0 */ {
1765 type = PIDTYPE_PID;
1766 pid = find_get_pid(upid);
1767 }
1768
1769 wo.wo_type = type;
1770 wo.wo_pid = pid;
1771 wo.wo_flags = options | WEXITED;
1772 wo.wo_info = NULL;
1773 wo.wo_stat = 0;
1774 wo.wo_rusage = ru;
1775 ret = do_wait(&wo);
1776 put_pid(pid);
1777 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1778 ret = -EFAULT;
1779
1780 return ret;
1781 }
1782
kernel_wait(pid_t pid,int * stat)1783 int kernel_wait(pid_t pid, int *stat)
1784 {
1785 struct wait_opts wo = {
1786 .wo_type = PIDTYPE_PID,
1787 .wo_pid = find_get_pid(pid),
1788 .wo_flags = WEXITED,
1789 };
1790 int ret;
1791
1792 ret = do_wait(&wo);
1793 if (ret > 0 && wo.wo_stat)
1794 *stat = wo.wo_stat;
1795 put_pid(wo.wo_pid);
1796 return ret;
1797 }
1798
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1799 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1800 int, options, struct rusage __user *, ru)
1801 {
1802 struct rusage r;
1803 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1804
1805 if (err > 0) {
1806 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1807 return -EFAULT;
1808 }
1809 return err;
1810 }
1811
1812 #ifdef __ARCH_WANT_SYS_WAITPID
1813
1814 /*
1815 * sys_waitpid() remains for compatibility. waitpid() should be
1816 * implemented by calling sys_wait4() from libc.a.
1817 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1818 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1819 {
1820 return kernel_wait4(pid, stat_addr, options, NULL);
1821 }
1822
1823 #endif
1824
1825 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1826 COMPAT_SYSCALL_DEFINE4(wait4,
1827 compat_pid_t, pid,
1828 compat_uint_t __user *, stat_addr,
1829 int, options,
1830 struct compat_rusage __user *, ru)
1831 {
1832 struct rusage r;
1833 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1834 if (err > 0) {
1835 if (ru && put_compat_rusage(&r, ru))
1836 return -EFAULT;
1837 }
1838 return err;
1839 }
1840
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1841 COMPAT_SYSCALL_DEFINE5(waitid,
1842 int, which, compat_pid_t, pid,
1843 struct compat_siginfo __user *, infop, int, options,
1844 struct compat_rusage __user *, uru)
1845 {
1846 struct rusage ru;
1847 struct waitid_info info = {.status = 0};
1848 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1849 int signo = 0;
1850 if (err > 0) {
1851 signo = SIGCHLD;
1852 err = 0;
1853 if (uru) {
1854 /* kernel_waitid() overwrites everything in ru */
1855 if (COMPAT_USE_64BIT_TIME)
1856 err = copy_to_user(uru, &ru, sizeof(ru));
1857 else
1858 err = put_compat_rusage(&ru, uru);
1859 if (err)
1860 return -EFAULT;
1861 }
1862 }
1863
1864 if (!infop)
1865 return err;
1866
1867 if (!user_write_access_begin(infop, sizeof(*infop)))
1868 return -EFAULT;
1869
1870 unsafe_put_user(signo, &infop->si_signo, Efault);
1871 unsafe_put_user(0, &infop->si_errno, Efault);
1872 unsafe_put_user(info.cause, &infop->si_code, Efault);
1873 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1874 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1875 unsafe_put_user(info.status, &infop->si_status, Efault);
1876 user_write_access_end();
1877 return err;
1878 Efault:
1879 user_write_access_end();
1880 return -EFAULT;
1881 }
1882 #endif
1883
1884 /**
1885 * thread_group_exited - check that a thread group has exited
1886 * @pid: tgid of thread group to be checked.
1887 *
1888 * Test if the thread group represented by tgid has exited (all
1889 * threads are zombies, dead or completely gone).
1890 *
1891 * Return: true if the thread group has exited. false otherwise.
1892 */
thread_group_exited(struct pid * pid)1893 bool thread_group_exited(struct pid *pid)
1894 {
1895 struct task_struct *task;
1896 bool exited;
1897
1898 rcu_read_lock();
1899 task = pid_task(pid, PIDTYPE_PID);
1900 exited = !task ||
1901 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1902 rcu_read_unlock();
1903
1904 return exited;
1905 }
1906 EXPORT_SYMBOL(thread_group_exited);
1907
1908 /*
1909 * This needs to be __function_aligned as GCC implicitly makes any
1910 * implementation of abort() cold and drops alignment specified by
1911 * -falign-functions=N.
1912 *
1913 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1914 */
abort(void)1915 __weak __function_aligned void abort(void)
1916 {
1917 BUG();
1918
1919 /* if that doesn't kill us, halt */
1920 panic("Oops failed to kill thread");
1921 }
1922 EXPORT_SYMBOL(abort);
1923