1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) STMicroelectronics SA 2017
4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
5 * Ux500 support taken from snippets in the old Ux500 cryp driver
6 */
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/iopoll.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/platform_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/reset.h>
17
18 #include <crypto/aes.h>
19 #include <crypto/internal/des.h>
20 #include <crypto/engine.h>
21 #include <crypto/scatterwalk.h>
22 #include <crypto/internal/aead.h>
23 #include <crypto/internal/skcipher.h>
24
25 #define DRIVER_NAME "stm32-cryp"
26
27 /* Bit [0] encrypt / decrypt */
28 #define FLG_ENCRYPT BIT(0)
29 /* Bit [8..1] algo & operation mode */
30 #define FLG_AES BIT(1)
31 #define FLG_DES BIT(2)
32 #define FLG_TDES BIT(3)
33 #define FLG_ECB BIT(4)
34 #define FLG_CBC BIT(5)
35 #define FLG_CTR BIT(6)
36 #define FLG_GCM BIT(7)
37 #define FLG_CCM BIT(8)
38 /* Mode mask = bits [15..0] */
39 #define FLG_MODE_MASK GENMASK(15, 0)
40 /* Bit [31..16] status */
41
42 /* Registers */
43 #define CRYP_CR 0x00000000
44 #define CRYP_SR 0x00000004
45 #define CRYP_DIN 0x00000008
46 #define CRYP_DOUT 0x0000000C
47 #define CRYP_DMACR 0x00000010
48 #define CRYP_IMSCR 0x00000014
49 #define CRYP_RISR 0x00000018
50 #define CRYP_MISR 0x0000001C
51 #define CRYP_K0LR 0x00000020
52 #define CRYP_K0RR 0x00000024
53 #define CRYP_K1LR 0x00000028
54 #define CRYP_K1RR 0x0000002C
55 #define CRYP_K2LR 0x00000030
56 #define CRYP_K2RR 0x00000034
57 #define CRYP_K3LR 0x00000038
58 #define CRYP_K3RR 0x0000003C
59 #define CRYP_IV0LR 0x00000040
60 #define CRYP_IV0RR 0x00000044
61 #define CRYP_IV1LR 0x00000048
62 #define CRYP_IV1RR 0x0000004C
63 #define CRYP_CSGCMCCM0R 0x00000050
64 #define CRYP_CSGCM0R 0x00000070
65
66 #define UX500_CRYP_CR 0x00000000
67 #define UX500_CRYP_SR 0x00000004
68 #define UX500_CRYP_DIN 0x00000008
69 #define UX500_CRYP_DINSIZE 0x0000000C
70 #define UX500_CRYP_DOUT 0x00000010
71 #define UX500_CRYP_DOUSIZE 0x00000014
72 #define UX500_CRYP_DMACR 0x00000018
73 #define UX500_CRYP_IMSC 0x0000001C
74 #define UX500_CRYP_RIS 0x00000020
75 #define UX500_CRYP_MIS 0x00000024
76 #define UX500_CRYP_K1L 0x00000028
77 #define UX500_CRYP_K1R 0x0000002C
78 #define UX500_CRYP_K2L 0x00000030
79 #define UX500_CRYP_K2R 0x00000034
80 #define UX500_CRYP_K3L 0x00000038
81 #define UX500_CRYP_K3R 0x0000003C
82 #define UX500_CRYP_K4L 0x00000040
83 #define UX500_CRYP_K4R 0x00000044
84 #define UX500_CRYP_IV0L 0x00000048
85 #define UX500_CRYP_IV0R 0x0000004C
86 #define UX500_CRYP_IV1L 0x00000050
87 #define UX500_CRYP_IV1R 0x00000054
88
89 /* Registers values */
90 #define CR_DEC_NOT_ENC 0x00000004
91 #define CR_TDES_ECB 0x00000000
92 #define CR_TDES_CBC 0x00000008
93 #define CR_DES_ECB 0x00000010
94 #define CR_DES_CBC 0x00000018
95 #define CR_AES_ECB 0x00000020
96 #define CR_AES_CBC 0x00000028
97 #define CR_AES_CTR 0x00000030
98 #define CR_AES_KP 0x00000038 /* Not on Ux500 */
99 #define CR_AES_XTS 0x00000038 /* Only on Ux500 */
100 #define CR_AES_GCM 0x00080000
101 #define CR_AES_CCM 0x00080008
102 #define CR_AES_UNKNOWN 0xFFFFFFFF
103 #define CR_ALGO_MASK 0x00080038
104 #define CR_DATA32 0x00000000
105 #define CR_DATA16 0x00000040
106 #define CR_DATA8 0x00000080
107 #define CR_DATA1 0x000000C0
108 #define CR_KEY128 0x00000000
109 #define CR_KEY192 0x00000100
110 #define CR_KEY256 0x00000200
111 #define CR_KEYRDEN 0x00000400 /* Only on Ux500 */
112 #define CR_KSE 0x00000800 /* Only on Ux500 */
113 #define CR_FFLUSH 0x00004000
114 #define CR_CRYPEN 0x00008000
115 #define CR_PH_INIT 0x00000000
116 #define CR_PH_HEADER 0x00010000
117 #define CR_PH_PAYLOAD 0x00020000
118 #define CR_PH_FINAL 0x00030000
119 #define CR_PH_MASK 0x00030000
120 #define CR_NBPBL_SHIFT 20
121
122 #define SR_BUSY 0x00000010
123 #define SR_OFNE 0x00000004
124
125 #define IMSCR_IN BIT(0)
126 #define IMSCR_OUT BIT(1)
127
128 #define MISR_IN BIT(0)
129 #define MISR_OUT BIT(1)
130
131 /* Misc */
132 #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
133 #define GCM_CTR_INIT 2
134 #define CRYP_AUTOSUSPEND_DELAY 50
135
136 struct stm32_cryp_caps {
137 bool aeads_support;
138 bool linear_aes_key;
139 bool kp_mode;
140 bool iv_protection;
141 bool swap_final;
142 bool padding_wa;
143 u32 cr;
144 u32 sr;
145 u32 din;
146 u32 dout;
147 u32 imsc;
148 u32 mis;
149 u32 k1l;
150 u32 k1r;
151 u32 k3r;
152 u32 iv0l;
153 u32 iv0r;
154 u32 iv1l;
155 u32 iv1r;
156 };
157
158 struct stm32_cryp_ctx {
159 struct crypto_engine_ctx enginectx;
160 struct stm32_cryp *cryp;
161 int keylen;
162 __be32 key[AES_KEYSIZE_256 / sizeof(u32)];
163 unsigned long flags;
164 };
165
166 struct stm32_cryp_reqctx {
167 unsigned long mode;
168 };
169
170 struct stm32_cryp {
171 struct list_head list;
172 struct device *dev;
173 void __iomem *regs;
174 struct clk *clk;
175 unsigned long flags;
176 u32 irq_status;
177 const struct stm32_cryp_caps *caps;
178 struct stm32_cryp_ctx *ctx;
179
180 struct crypto_engine *engine;
181
182 struct skcipher_request *req;
183 struct aead_request *areq;
184
185 size_t authsize;
186 size_t hw_blocksize;
187
188 size_t payload_in;
189 size_t header_in;
190 size_t payload_out;
191
192 struct scatterlist *out_sg;
193
194 struct scatter_walk in_walk;
195 struct scatter_walk out_walk;
196
197 __be32 last_ctr[4];
198 u32 gcm_ctr;
199 };
200
201 struct stm32_cryp_list {
202 struct list_head dev_list;
203 spinlock_t lock; /* protect dev_list */
204 };
205
206 static struct stm32_cryp_list cryp_list = {
207 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
208 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
209 };
210
is_aes(struct stm32_cryp * cryp)211 static inline bool is_aes(struct stm32_cryp *cryp)
212 {
213 return cryp->flags & FLG_AES;
214 }
215
is_des(struct stm32_cryp * cryp)216 static inline bool is_des(struct stm32_cryp *cryp)
217 {
218 return cryp->flags & FLG_DES;
219 }
220
is_tdes(struct stm32_cryp * cryp)221 static inline bool is_tdes(struct stm32_cryp *cryp)
222 {
223 return cryp->flags & FLG_TDES;
224 }
225
is_ecb(struct stm32_cryp * cryp)226 static inline bool is_ecb(struct stm32_cryp *cryp)
227 {
228 return cryp->flags & FLG_ECB;
229 }
230
is_cbc(struct stm32_cryp * cryp)231 static inline bool is_cbc(struct stm32_cryp *cryp)
232 {
233 return cryp->flags & FLG_CBC;
234 }
235
is_ctr(struct stm32_cryp * cryp)236 static inline bool is_ctr(struct stm32_cryp *cryp)
237 {
238 return cryp->flags & FLG_CTR;
239 }
240
is_gcm(struct stm32_cryp * cryp)241 static inline bool is_gcm(struct stm32_cryp *cryp)
242 {
243 return cryp->flags & FLG_GCM;
244 }
245
is_ccm(struct stm32_cryp * cryp)246 static inline bool is_ccm(struct stm32_cryp *cryp)
247 {
248 return cryp->flags & FLG_CCM;
249 }
250
is_encrypt(struct stm32_cryp * cryp)251 static inline bool is_encrypt(struct stm32_cryp *cryp)
252 {
253 return cryp->flags & FLG_ENCRYPT;
254 }
255
is_decrypt(struct stm32_cryp * cryp)256 static inline bool is_decrypt(struct stm32_cryp *cryp)
257 {
258 return !is_encrypt(cryp);
259 }
260
stm32_cryp_read(struct stm32_cryp * cryp,u32 ofst)261 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
262 {
263 return readl_relaxed(cryp->regs + ofst);
264 }
265
stm32_cryp_write(struct stm32_cryp * cryp,u32 ofst,u32 val)266 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
267 {
268 writel_relaxed(val, cryp->regs + ofst);
269 }
270
stm32_cryp_wait_busy(struct stm32_cryp * cryp)271 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
272 {
273 u32 status;
274
275 return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
276 !(status & SR_BUSY), 10, 100000);
277 }
278
stm32_cryp_enable(struct stm32_cryp * cryp)279 static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
280 {
281 writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
282 cryp->regs + cryp->caps->cr);
283 }
284
stm32_cryp_wait_enable(struct stm32_cryp * cryp)285 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
286 {
287 u32 status;
288
289 return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
290 !(status & CR_CRYPEN), 10, 100000);
291 }
292
stm32_cryp_wait_output(struct stm32_cryp * cryp)293 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
294 {
295 u32 status;
296
297 return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
298 status & SR_OFNE, 10, 100000);
299 }
300
stm32_cryp_key_read_enable(struct stm32_cryp * cryp)301 static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
302 {
303 writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
304 cryp->regs + cryp->caps->cr);
305 }
306
stm32_cryp_key_read_disable(struct stm32_cryp * cryp)307 static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
308 {
309 writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
310 cryp->regs + cryp->caps->cr);
311 }
312
313 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
314 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
315
stm32_cryp_find_dev(struct stm32_cryp_ctx * ctx)316 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
317 {
318 struct stm32_cryp *tmp, *cryp = NULL;
319
320 spin_lock_bh(&cryp_list.lock);
321 if (!ctx->cryp) {
322 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
323 cryp = tmp;
324 break;
325 }
326 ctx->cryp = cryp;
327 } else {
328 cryp = ctx->cryp;
329 }
330
331 spin_unlock_bh(&cryp_list.lock);
332
333 return cryp;
334 }
335
stm32_cryp_hw_write_iv(struct stm32_cryp * cryp,__be32 * iv)336 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
337 {
338 if (!iv)
339 return;
340
341 stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
342 stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
343
344 if (is_aes(cryp)) {
345 stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
346 stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
347 }
348 }
349
stm32_cryp_get_iv(struct stm32_cryp * cryp)350 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
351 {
352 struct skcipher_request *req = cryp->req;
353 __be32 *tmp = (void *)req->iv;
354
355 if (!tmp)
356 return;
357
358 if (cryp->caps->iv_protection)
359 stm32_cryp_key_read_enable(cryp);
360
361 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
362 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
363
364 if (is_aes(cryp)) {
365 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
366 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
367 }
368
369 if (cryp->caps->iv_protection)
370 stm32_cryp_key_read_disable(cryp);
371 }
372
373 /**
374 * ux500_swap_bits_in_byte() - mirror the bits in a byte
375 * @b: the byte to be mirrored
376 *
377 * The bits are swapped the following way:
378 * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
379 * nibble 2 (n2) bits 4-7.
380 *
381 * Nibble 1 (n1):
382 * (The "old" (moved) bit is replaced with a zero)
383 * 1. Move bit 6 and 7, 4 positions to the left.
384 * 2. Move bit 3 and 5, 2 positions to the left.
385 * 3. Move bit 1-4, 1 position to the left.
386 *
387 * Nibble 2 (n2):
388 * 1. Move bit 0 and 1, 4 positions to the right.
389 * 2. Move bit 2 and 4, 2 positions to the right.
390 * 3. Move bit 3-6, 1 position to the right.
391 *
392 * Combine the two nibbles to a complete and swapped byte.
393 */
ux500_swap_bits_in_byte(u8 b)394 static inline u8 ux500_swap_bits_in_byte(u8 b)
395 {
396 #define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
397 #define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
398 right shift 2 */
399 #define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
400 right shift 1 */
401 #define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
402 #define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
403 left shift 2 */
404 #define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
405 left shift 1 */
406
407 u8 n1;
408 u8 n2;
409
410 /* Swap most significant nibble */
411 /* Right shift 4, bits 6 and 7 */
412 n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
413 /* Right shift 2, bits 3 and 5 */
414 n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
415 /* Right shift 1, bits 1-4 */
416 n1 = (n1 & R_SHIFT_1_MASK) >> 1;
417
418 /* Swap least significant nibble */
419 /* Left shift 4, bits 0 and 1 */
420 n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
421 /* Left shift 2, bits 2 and 4 */
422 n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
423 /* Left shift 1, bits 3-6 */
424 n2 = (n2 & L_SHIFT_1_MASK) << 1;
425
426 return n1 | n2;
427 }
428
429 /**
430 * ux500_swizzle_key() - Shuffle around words and bits in the AES key
431 * @in: key to swizzle
432 * @out: swizzled key
433 * @len: length of key, in bytes
434 *
435 * This "key swizzling procedure" is described in the examples in the
436 * DB8500 design specification. There is no real description of why
437 * the bits have been arranged like this in the hardware.
438 */
ux500_swizzle_key(const u8 * in,u8 * out,u32 len)439 static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
440 {
441 int i = 0;
442 int bpw = sizeof(u32);
443 int j;
444 int index = 0;
445
446 j = len - bpw;
447 while (j >= 0) {
448 for (i = 0; i < bpw; i++) {
449 index = len - j - bpw + i;
450 out[j + i] =
451 ux500_swap_bits_in_byte(in[index]);
452 }
453 j -= bpw;
454 }
455 }
456
stm32_cryp_hw_write_key(struct stm32_cryp * c)457 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
458 {
459 unsigned int i;
460 int r_id;
461
462 if (is_des(c)) {
463 stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
464 stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
465 return;
466 }
467
468 /*
469 * On the Ux500 the AES key is considered as a single bit sequence
470 * of 128, 192 or 256 bits length. It is written linearly into the
471 * registers from K1L and down, and need to be processed to become
472 * a proper big-endian bit sequence.
473 */
474 if (is_aes(c) && c->caps->linear_aes_key) {
475 u32 tmpkey[8];
476
477 ux500_swizzle_key((u8 *)c->ctx->key,
478 (u8 *)tmpkey, c->ctx->keylen);
479
480 r_id = c->caps->k1l;
481 for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
482 stm32_cryp_write(c, r_id, tmpkey[i]);
483
484 return;
485 }
486
487 r_id = c->caps->k3r;
488 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
489 stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
490 }
491
stm32_cryp_get_hw_mode(struct stm32_cryp * cryp)492 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
493 {
494 if (is_aes(cryp) && is_ecb(cryp))
495 return CR_AES_ECB;
496
497 if (is_aes(cryp) && is_cbc(cryp))
498 return CR_AES_CBC;
499
500 if (is_aes(cryp) && is_ctr(cryp))
501 return CR_AES_CTR;
502
503 if (is_aes(cryp) && is_gcm(cryp))
504 return CR_AES_GCM;
505
506 if (is_aes(cryp) && is_ccm(cryp))
507 return CR_AES_CCM;
508
509 if (is_des(cryp) && is_ecb(cryp))
510 return CR_DES_ECB;
511
512 if (is_des(cryp) && is_cbc(cryp))
513 return CR_DES_CBC;
514
515 if (is_tdes(cryp) && is_ecb(cryp))
516 return CR_TDES_ECB;
517
518 if (is_tdes(cryp) && is_cbc(cryp))
519 return CR_TDES_CBC;
520
521 dev_err(cryp->dev, "Unknown mode\n");
522 return CR_AES_UNKNOWN;
523 }
524
stm32_cryp_get_input_text_len(struct stm32_cryp * cryp)525 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
526 {
527 return is_encrypt(cryp) ? cryp->areq->cryptlen :
528 cryp->areq->cryptlen - cryp->authsize;
529 }
530
stm32_cryp_gcm_init(struct stm32_cryp * cryp,u32 cfg)531 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
532 {
533 int ret;
534 __be32 iv[4];
535
536 /* Phase 1 : init */
537 memcpy(iv, cryp->areq->iv, 12);
538 iv[3] = cpu_to_be32(GCM_CTR_INIT);
539 cryp->gcm_ctr = GCM_CTR_INIT;
540 stm32_cryp_hw_write_iv(cryp, iv);
541
542 stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
543
544 /* Wait for end of processing */
545 ret = stm32_cryp_wait_enable(cryp);
546 if (ret) {
547 dev_err(cryp->dev, "Timeout (gcm init)\n");
548 return ret;
549 }
550
551 /* Prepare next phase */
552 if (cryp->areq->assoclen) {
553 cfg |= CR_PH_HEADER;
554 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
555 } else if (stm32_cryp_get_input_text_len(cryp)) {
556 cfg |= CR_PH_PAYLOAD;
557 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
558 }
559
560 return 0;
561 }
562
stm32_crypt_gcmccm_end_header(struct stm32_cryp * cryp)563 static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
564 {
565 u32 cfg;
566 int err;
567
568 /* Check if whole header written */
569 if (!cryp->header_in) {
570 /* Wait for completion */
571 err = stm32_cryp_wait_busy(cryp);
572 if (err) {
573 dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
574 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
575 stm32_cryp_finish_req(cryp, err);
576 return;
577 }
578
579 if (stm32_cryp_get_input_text_len(cryp)) {
580 /* Phase 3 : payload */
581 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
582 cfg &= ~CR_CRYPEN;
583 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
584
585 cfg &= ~CR_PH_MASK;
586 cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
587 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
588 } else {
589 /*
590 * Phase 4 : tag.
591 * Nothing to read, nothing to write, caller have to
592 * end request
593 */
594 }
595 }
596 }
597
stm32_cryp_write_ccm_first_header(struct stm32_cryp * cryp)598 static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
599 {
600 size_t written;
601 size_t len;
602 u32 alen = cryp->areq->assoclen;
603 u32 block[AES_BLOCK_32] = {0};
604 u8 *b8 = (u8 *)block;
605
606 if (alen <= 65280) {
607 /* Write first u32 of B1 */
608 b8[0] = (alen >> 8) & 0xFF;
609 b8[1] = alen & 0xFF;
610 len = 2;
611 } else {
612 /* Build the two first u32 of B1 */
613 b8[0] = 0xFF;
614 b8[1] = 0xFE;
615 b8[2] = (alen & 0xFF000000) >> 24;
616 b8[3] = (alen & 0x00FF0000) >> 16;
617 b8[4] = (alen & 0x0000FF00) >> 8;
618 b8[5] = alen & 0x000000FF;
619 len = 6;
620 }
621
622 written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
623
624 scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
625
626 writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
627
628 cryp->header_in -= written;
629
630 stm32_crypt_gcmccm_end_header(cryp);
631 }
632
stm32_cryp_ccm_init(struct stm32_cryp * cryp,u32 cfg)633 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
634 {
635 int ret;
636 u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
637 u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
638 __be32 *bd;
639 u32 *d;
640 unsigned int i, textlen;
641
642 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
643 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
644 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
645 iv[AES_BLOCK_SIZE - 1] = 1;
646 stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
647
648 /* Build B0 */
649 memcpy(b0, iv, AES_BLOCK_SIZE);
650
651 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
652
653 if (cryp->areq->assoclen)
654 b0[0] |= 0x40;
655
656 textlen = stm32_cryp_get_input_text_len(cryp);
657
658 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
659 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
660
661 /* Enable HW */
662 stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
663
664 /* Write B0 */
665 d = (u32 *)b0;
666 bd = (__be32 *)b0;
667
668 for (i = 0; i < AES_BLOCK_32; i++) {
669 u32 xd = d[i];
670
671 if (!cryp->caps->padding_wa)
672 xd = be32_to_cpu(bd[i]);
673 stm32_cryp_write(cryp, cryp->caps->din, xd);
674 }
675
676 /* Wait for end of processing */
677 ret = stm32_cryp_wait_enable(cryp);
678 if (ret) {
679 dev_err(cryp->dev, "Timeout (ccm init)\n");
680 return ret;
681 }
682
683 /* Prepare next phase */
684 if (cryp->areq->assoclen) {
685 cfg |= CR_PH_HEADER | CR_CRYPEN;
686 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
687
688 /* Write first (special) block (may move to next phase [payload]) */
689 stm32_cryp_write_ccm_first_header(cryp);
690 } else if (stm32_cryp_get_input_text_len(cryp)) {
691 cfg |= CR_PH_PAYLOAD;
692 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
693 }
694
695 return 0;
696 }
697
stm32_cryp_hw_init(struct stm32_cryp * cryp)698 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
699 {
700 int ret;
701 u32 cfg, hw_mode;
702
703 pm_runtime_get_sync(cryp->dev);
704
705 /* Disable interrupt */
706 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
707
708 /* Set configuration */
709 cfg = CR_DATA8 | CR_FFLUSH;
710
711 switch (cryp->ctx->keylen) {
712 case AES_KEYSIZE_128:
713 cfg |= CR_KEY128;
714 break;
715
716 case AES_KEYSIZE_192:
717 cfg |= CR_KEY192;
718 break;
719
720 default:
721 case AES_KEYSIZE_256:
722 cfg |= CR_KEY256;
723 break;
724 }
725
726 hw_mode = stm32_cryp_get_hw_mode(cryp);
727 if (hw_mode == CR_AES_UNKNOWN)
728 return -EINVAL;
729
730 /* AES ECB/CBC decrypt: run key preparation first */
731 if (is_decrypt(cryp) &&
732 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
733 /* Configure in key preparation mode */
734 if (cryp->caps->kp_mode)
735 stm32_cryp_write(cryp, cryp->caps->cr,
736 cfg | CR_AES_KP);
737 else
738 stm32_cryp_write(cryp,
739 cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
740
741 /* Set key only after full configuration done */
742 stm32_cryp_hw_write_key(cryp);
743
744 /* Start prepare key */
745 stm32_cryp_enable(cryp);
746 /* Wait for end of processing */
747 ret = stm32_cryp_wait_busy(cryp);
748 if (ret) {
749 dev_err(cryp->dev, "Timeout (key preparation)\n");
750 return ret;
751 }
752
753 cfg |= hw_mode | CR_DEC_NOT_ENC;
754
755 /* Apply updated config (Decrypt + algo) and flush */
756 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
757 } else {
758 cfg |= hw_mode;
759 if (is_decrypt(cryp))
760 cfg |= CR_DEC_NOT_ENC;
761
762 /* Apply config and flush */
763 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
764
765 /* Set key only after configuration done */
766 stm32_cryp_hw_write_key(cryp);
767 }
768
769 switch (hw_mode) {
770 case CR_AES_GCM:
771 case CR_AES_CCM:
772 /* Phase 1 : init */
773 if (hw_mode == CR_AES_CCM)
774 ret = stm32_cryp_ccm_init(cryp, cfg);
775 else
776 ret = stm32_cryp_gcm_init(cryp, cfg);
777
778 if (ret)
779 return ret;
780
781 break;
782
783 case CR_DES_CBC:
784 case CR_TDES_CBC:
785 case CR_AES_CBC:
786 case CR_AES_CTR:
787 stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
788 break;
789
790 default:
791 break;
792 }
793
794 /* Enable now */
795 stm32_cryp_enable(cryp);
796
797 return 0;
798 }
799
stm32_cryp_finish_req(struct stm32_cryp * cryp,int err)800 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
801 {
802 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
803 /* Phase 4 : output tag */
804 err = stm32_cryp_read_auth_tag(cryp);
805
806 if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
807 stm32_cryp_get_iv(cryp);
808
809 pm_runtime_mark_last_busy(cryp->dev);
810 pm_runtime_put_autosuspend(cryp->dev);
811
812 if (is_gcm(cryp) || is_ccm(cryp))
813 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
814 else
815 crypto_finalize_skcipher_request(cryp->engine, cryp->req,
816 err);
817 }
818
stm32_cryp_cpu_start(struct stm32_cryp * cryp)819 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
820 {
821 /* Enable interrupt and let the IRQ handler do everything */
822 stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
823
824 return 0;
825 }
826
827 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
828 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
829 void *areq);
830
stm32_cryp_init_tfm(struct crypto_skcipher * tfm)831 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
832 {
833 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
834
835 crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
836
837 ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
838 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
839 ctx->enginectx.op.unprepare_request = NULL;
840 return 0;
841 }
842
843 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
844 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
845 void *areq);
846
stm32_cryp_aes_aead_init(struct crypto_aead * tfm)847 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
848 {
849 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
850
851 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
852
853 ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
854 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
855 ctx->enginectx.op.unprepare_request = NULL;
856
857 return 0;
858 }
859
stm32_cryp_crypt(struct skcipher_request * req,unsigned long mode)860 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
861 {
862 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
863 crypto_skcipher_reqtfm(req));
864 struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
865 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
866
867 if (!cryp)
868 return -ENODEV;
869
870 rctx->mode = mode;
871
872 return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
873 }
874
stm32_cryp_aead_crypt(struct aead_request * req,unsigned long mode)875 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
876 {
877 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
878 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
879 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
880
881 if (!cryp)
882 return -ENODEV;
883
884 rctx->mode = mode;
885
886 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
887 }
888
stm32_cryp_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)889 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
890 unsigned int keylen)
891 {
892 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
893
894 memcpy(ctx->key, key, keylen);
895 ctx->keylen = keylen;
896
897 return 0;
898 }
899
stm32_cryp_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)900 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
901 unsigned int keylen)
902 {
903 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
904 keylen != AES_KEYSIZE_256)
905 return -EINVAL;
906 else
907 return stm32_cryp_setkey(tfm, key, keylen);
908 }
909
stm32_cryp_des_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)910 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
911 unsigned int keylen)
912 {
913 return verify_skcipher_des_key(tfm, key) ?:
914 stm32_cryp_setkey(tfm, key, keylen);
915 }
916
stm32_cryp_tdes_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)917 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
918 unsigned int keylen)
919 {
920 return verify_skcipher_des3_key(tfm, key) ?:
921 stm32_cryp_setkey(tfm, key, keylen);
922 }
923
stm32_cryp_aes_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)924 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
925 unsigned int keylen)
926 {
927 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
928
929 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
930 keylen != AES_KEYSIZE_256)
931 return -EINVAL;
932
933 memcpy(ctx->key, key, keylen);
934 ctx->keylen = keylen;
935
936 return 0;
937 }
938
stm32_cryp_aes_gcm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)939 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
940 unsigned int authsize)
941 {
942 switch (authsize) {
943 case 4:
944 case 8:
945 case 12:
946 case 13:
947 case 14:
948 case 15:
949 case 16:
950 break;
951 default:
952 return -EINVAL;
953 }
954
955 return 0;
956 }
957
stm32_cryp_aes_ccm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)958 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
959 unsigned int authsize)
960 {
961 switch (authsize) {
962 case 4:
963 case 6:
964 case 8:
965 case 10:
966 case 12:
967 case 14:
968 case 16:
969 break;
970 default:
971 return -EINVAL;
972 }
973
974 return 0;
975 }
976
stm32_cryp_aes_ecb_encrypt(struct skcipher_request * req)977 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
978 {
979 if (req->cryptlen % AES_BLOCK_SIZE)
980 return -EINVAL;
981
982 if (req->cryptlen == 0)
983 return 0;
984
985 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
986 }
987
stm32_cryp_aes_ecb_decrypt(struct skcipher_request * req)988 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
989 {
990 if (req->cryptlen % AES_BLOCK_SIZE)
991 return -EINVAL;
992
993 if (req->cryptlen == 0)
994 return 0;
995
996 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
997 }
998
stm32_cryp_aes_cbc_encrypt(struct skcipher_request * req)999 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
1000 {
1001 if (req->cryptlen % AES_BLOCK_SIZE)
1002 return -EINVAL;
1003
1004 if (req->cryptlen == 0)
1005 return 0;
1006
1007 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
1008 }
1009
stm32_cryp_aes_cbc_decrypt(struct skcipher_request * req)1010 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
1011 {
1012 if (req->cryptlen % AES_BLOCK_SIZE)
1013 return -EINVAL;
1014
1015 if (req->cryptlen == 0)
1016 return 0;
1017
1018 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1019 }
1020
stm32_cryp_aes_ctr_encrypt(struct skcipher_request * req)1021 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1022 {
1023 if (req->cryptlen == 0)
1024 return 0;
1025
1026 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1027 }
1028
stm32_cryp_aes_ctr_decrypt(struct skcipher_request * req)1029 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1030 {
1031 if (req->cryptlen == 0)
1032 return 0;
1033
1034 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1035 }
1036
stm32_cryp_aes_gcm_encrypt(struct aead_request * req)1037 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1038 {
1039 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1040 }
1041
stm32_cryp_aes_gcm_decrypt(struct aead_request * req)1042 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1043 {
1044 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1045 }
1046
crypto_ccm_check_iv(const u8 * iv)1047 static inline int crypto_ccm_check_iv(const u8 *iv)
1048 {
1049 /* 2 <= L <= 8, so 1 <= L' <= 7. */
1050 if (iv[0] < 1 || iv[0] > 7)
1051 return -EINVAL;
1052
1053 return 0;
1054 }
1055
stm32_cryp_aes_ccm_encrypt(struct aead_request * req)1056 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1057 {
1058 int err;
1059
1060 err = crypto_ccm_check_iv(req->iv);
1061 if (err)
1062 return err;
1063
1064 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1065 }
1066
stm32_cryp_aes_ccm_decrypt(struct aead_request * req)1067 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1068 {
1069 int err;
1070
1071 err = crypto_ccm_check_iv(req->iv);
1072 if (err)
1073 return err;
1074
1075 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1076 }
1077
stm32_cryp_des_ecb_encrypt(struct skcipher_request * req)1078 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1079 {
1080 if (req->cryptlen % DES_BLOCK_SIZE)
1081 return -EINVAL;
1082
1083 if (req->cryptlen == 0)
1084 return 0;
1085
1086 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1087 }
1088
stm32_cryp_des_ecb_decrypt(struct skcipher_request * req)1089 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1090 {
1091 if (req->cryptlen % DES_BLOCK_SIZE)
1092 return -EINVAL;
1093
1094 if (req->cryptlen == 0)
1095 return 0;
1096
1097 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1098 }
1099
stm32_cryp_des_cbc_encrypt(struct skcipher_request * req)1100 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1101 {
1102 if (req->cryptlen % DES_BLOCK_SIZE)
1103 return -EINVAL;
1104
1105 if (req->cryptlen == 0)
1106 return 0;
1107
1108 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1109 }
1110
stm32_cryp_des_cbc_decrypt(struct skcipher_request * req)1111 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1112 {
1113 if (req->cryptlen % DES_BLOCK_SIZE)
1114 return -EINVAL;
1115
1116 if (req->cryptlen == 0)
1117 return 0;
1118
1119 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1120 }
1121
stm32_cryp_tdes_ecb_encrypt(struct skcipher_request * req)1122 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1123 {
1124 if (req->cryptlen % DES_BLOCK_SIZE)
1125 return -EINVAL;
1126
1127 if (req->cryptlen == 0)
1128 return 0;
1129
1130 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1131 }
1132
stm32_cryp_tdes_ecb_decrypt(struct skcipher_request * req)1133 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1134 {
1135 if (req->cryptlen % DES_BLOCK_SIZE)
1136 return -EINVAL;
1137
1138 if (req->cryptlen == 0)
1139 return 0;
1140
1141 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1142 }
1143
stm32_cryp_tdes_cbc_encrypt(struct skcipher_request * req)1144 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1145 {
1146 if (req->cryptlen % DES_BLOCK_SIZE)
1147 return -EINVAL;
1148
1149 if (req->cryptlen == 0)
1150 return 0;
1151
1152 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1153 }
1154
stm32_cryp_tdes_cbc_decrypt(struct skcipher_request * req)1155 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1156 {
1157 if (req->cryptlen % DES_BLOCK_SIZE)
1158 return -EINVAL;
1159
1160 if (req->cryptlen == 0)
1161 return 0;
1162
1163 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1164 }
1165
stm32_cryp_prepare_req(struct skcipher_request * req,struct aead_request * areq)1166 static int stm32_cryp_prepare_req(struct skcipher_request *req,
1167 struct aead_request *areq)
1168 {
1169 struct stm32_cryp_ctx *ctx;
1170 struct stm32_cryp *cryp;
1171 struct stm32_cryp_reqctx *rctx;
1172 struct scatterlist *in_sg;
1173 int ret;
1174
1175 if (!req && !areq)
1176 return -EINVAL;
1177
1178 ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1179 crypto_aead_ctx(crypto_aead_reqtfm(areq));
1180
1181 cryp = ctx->cryp;
1182
1183 if (!cryp)
1184 return -ENODEV;
1185
1186 rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1187 rctx->mode &= FLG_MODE_MASK;
1188
1189 ctx->cryp = cryp;
1190
1191 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1192 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1193 cryp->ctx = ctx;
1194
1195 if (req) {
1196 cryp->req = req;
1197 cryp->areq = NULL;
1198 cryp->header_in = 0;
1199 cryp->payload_in = req->cryptlen;
1200 cryp->payload_out = req->cryptlen;
1201 cryp->authsize = 0;
1202 } else {
1203 /*
1204 * Length of input and output data:
1205 * Encryption case:
1206 * INPUT = AssocData || PlainText
1207 * <- assoclen -> <- cryptlen ->
1208 *
1209 * OUTPUT = AssocData || CipherText || AuthTag
1210 * <- assoclen -> <-- cryptlen --> <- authsize ->
1211 *
1212 * Decryption case:
1213 * INPUT = AssocData || CipherTex || AuthTag
1214 * <- assoclen ---> <---------- cryptlen ---------->
1215 *
1216 * OUTPUT = AssocData || PlainText
1217 * <- assoclen -> <- cryptlen - authsize ->
1218 */
1219 cryp->areq = areq;
1220 cryp->req = NULL;
1221 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1222 if (is_encrypt(cryp)) {
1223 cryp->payload_in = areq->cryptlen;
1224 cryp->header_in = areq->assoclen;
1225 cryp->payload_out = areq->cryptlen;
1226 } else {
1227 cryp->payload_in = areq->cryptlen - cryp->authsize;
1228 cryp->header_in = areq->assoclen;
1229 cryp->payload_out = cryp->payload_in;
1230 }
1231 }
1232
1233 in_sg = req ? req->src : areq->src;
1234 scatterwalk_start(&cryp->in_walk, in_sg);
1235
1236 cryp->out_sg = req ? req->dst : areq->dst;
1237 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1238
1239 if (is_gcm(cryp) || is_ccm(cryp)) {
1240 /* In output, jump after assoc data */
1241 scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1242 }
1243
1244 if (is_ctr(cryp))
1245 memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1246
1247 ret = stm32_cryp_hw_init(cryp);
1248 return ret;
1249 }
1250
stm32_cryp_prepare_cipher_req(struct crypto_engine * engine,void * areq)1251 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1252 void *areq)
1253 {
1254 struct skcipher_request *req = container_of(areq,
1255 struct skcipher_request,
1256 base);
1257
1258 return stm32_cryp_prepare_req(req, NULL);
1259 }
1260
stm32_cryp_cipher_one_req(struct crypto_engine * engine,void * areq)1261 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1262 {
1263 struct skcipher_request *req = container_of(areq,
1264 struct skcipher_request,
1265 base);
1266 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1267 crypto_skcipher_reqtfm(req));
1268 struct stm32_cryp *cryp = ctx->cryp;
1269
1270 if (!cryp)
1271 return -ENODEV;
1272
1273 return stm32_cryp_cpu_start(cryp);
1274 }
1275
stm32_cryp_prepare_aead_req(struct crypto_engine * engine,void * areq)1276 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1277 {
1278 struct aead_request *req = container_of(areq, struct aead_request,
1279 base);
1280
1281 return stm32_cryp_prepare_req(NULL, req);
1282 }
1283
stm32_cryp_aead_one_req(struct crypto_engine * engine,void * areq)1284 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1285 {
1286 struct aead_request *req = container_of(areq, struct aead_request,
1287 base);
1288 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1289 struct stm32_cryp *cryp = ctx->cryp;
1290
1291 if (!cryp)
1292 return -ENODEV;
1293
1294 if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1295 /* No input data to process: get tag and finish */
1296 stm32_cryp_finish_req(cryp, 0);
1297 return 0;
1298 }
1299
1300 return stm32_cryp_cpu_start(cryp);
1301 }
1302
stm32_cryp_read_auth_tag(struct stm32_cryp * cryp)1303 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1304 {
1305 u32 cfg, size_bit;
1306 unsigned int i;
1307 int ret = 0;
1308
1309 /* Update Config */
1310 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1311
1312 cfg &= ~CR_PH_MASK;
1313 cfg |= CR_PH_FINAL;
1314 cfg &= ~CR_DEC_NOT_ENC;
1315 cfg |= CR_CRYPEN;
1316
1317 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1318
1319 if (is_gcm(cryp)) {
1320 /* GCM: write aad and payload size (in bits) */
1321 size_bit = cryp->areq->assoclen * 8;
1322 if (cryp->caps->swap_final)
1323 size_bit = (__force u32)cpu_to_be32(size_bit);
1324
1325 stm32_cryp_write(cryp, cryp->caps->din, 0);
1326 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1327
1328 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1329 cryp->areq->cryptlen - cryp->authsize;
1330 size_bit *= 8;
1331 if (cryp->caps->swap_final)
1332 size_bit = (__force u32)cpu_to_be32(size_bit);
1333
1334 stm32_cryp_write(cryp, cryp->caps->din, 0);
1335 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1336 } else {
1337 /* CCM: write CTR0 */
1338 u32 iv32[AES_BLOCK_32];
1339 u8 *iv = (u8 *)iv32;
1340 __be32 *biv = (__be32 *)iv32;
1341
1342 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1343 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1344
1345 for (i = 0; i < AES_BLOCK_32; i++) {
1346 u32 xiv = iv32[i];
1347
1348 if (!cryp->caps->padding_wa)
1349 xiv = be32_to_cpu(biv[i]);
1350 stm32_cryp_write(cryp, cryp->caps->din, xiv);
1351 }
1352 }
1353
1354 /* Wait for output data */
1355 ret = stm32_cryp_wait_output(cryp);
1356 if (ret) {
1357 dev_err(cryp->dev, "Timeout (read tag)\n");
1358 return ret;
1359 }
1360
1361 if (is_encrypt(cryp)) {
1362 u32 out_tag[AES_BLOCK_32];
1363
1364 /* Get and write tag */
1365 readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1366 scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1367 } else {
1368 /* Get and check tag */
1369 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1370
1371 scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1372 readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1373
1374 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1375 ret = -EBADMSG;
1376 }
1377
1378 /* Disable cryp */
1379 cfg &= ~CR_CRYPEN;
1380 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1381
1382 return ret;
1383 }
1384
stm32_cryp_check_ctr_counter(struct stm32_cryp * cryp)1385 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1386 {
1387 u32 cr;
1388
1389 if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1390 /*
1391 * In this case, we need to increment manually the ctr counter,
1392 * as HW doesn't handle the U32 carry.
1393 */
1394 crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1395
1396 cr = stm32_cryp_read(cryp, cryp->caps->cr);
1397 stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1398
1399 stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1400
1401 stm32_cryp_write(cryp, cryp->caps->cr, cr);
1402 }
1403
1404 /* The IV registers are BE */
1405 cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1406 cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1407 cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1408 cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1409 }
1410
stm32_cryp_irq_read_data(struct stm32_cryp * cryp)1411 static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1412 {
1413 u32 block[AES_BLOCK_32];
1414
1415 readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1416 scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1417 cryp->payload_out), 1);
1418 cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1419 cryp->payload_out);
1420 }
1421
stm32_cryp_irq_write_block(struct stm32_cryp * cryp)1422 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1423 {
1424 u32 block[AES_BLOCK_32] = {0};
1425
1426 scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1427 cryp->payload_in), 0);
1428 writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
1429 cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1430 }
1431
stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp * cryp)1432 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1433 {
1434 int err;
1435 u32 cfg, block[AES_BLOCK_32] = {0};
1436 unsigned int i;
1437
1438 /* 'Special workaround' procedure described in the datasheet */
1439
1440 /* a) disable ip */
1441 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1442 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1443 cfg &= ~CR_CRYPEN;
1444 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1445
1446 /* b) Update IV1R */
1447 stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1448
1449 /* c) change mode to CTR */
1450 cfg &= ~CR_ALGO_MASK;
1451 cfg |= CR_AES_CTR;
1452 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1453
1454 /* a) enable IP */
1455 cfg |= CR_CRYPEN;
1456 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1457
1458 /* b) pad and write the last block */
1459 stm32_cryp_irq_write_block(cryp);
1460 /* wait end of process */
1461 err = stm32_cryp_wait_output(cryp);
1462 if (err) {
1463 dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1464 return stm32_cryp_finish_req(cryp, err);
1465 }
1466
1467 /* c) get and store encrypted data */
1468 /*
1469 * Same code as stm32_cryp_irq_read_data(), but we want to store
1470 * block value
1471 */
1472 readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1473
1474 scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1475 cryp->payload_out), 1);
1476 cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1477 cryp->payload_out);
1478
1479 /* d) change mode back to AES GCM */
1480 cfg &= ~CR_ALGO_MASK;
1481 cfg |= CR_AES_GCM;
1482 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1483
1484 /* e) change phase to Final */
1485 cfg &= ~CR_PH_MASK;
1486 cfg |= CR_PH_FINAL;
1487 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1488
1489 /* f) write padded data */
1490 writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1491
1492 /* g) Empty fifo out */
1493 err = stm32_cryp_wait_output(cryp);
1494 if (err) {
1495 dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1496 return stm32_cryp_finish_req(cryp, err);
1497 }
1498
1499 for (i = 0; i < AES_BLOCK_32; i++)
1500 stm32_cryp_read(cryp, cryp->caps->dout);
1501
1502 /* h) run the he normal Final phase */
1503 stm32_cryp_finish_req(cryp, 0);
1504 }
1505
stm32_cryp_irq_set_npblb(struct stm32_cryp * cryp)1506 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1507 {
1508 u32 cfg;
1509
1510 /* disable ip, set NPBLB and reneable ip */
1511 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1512 cfg &= ~CR_CRYPEN;
1513 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1514
1515 cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1516 cfg |= CR_CRYPEN;
1517 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1518 }
1519
stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp * cryp)1520 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1521 {
1522 int err = 0;
1523 u32 cfg, iv1tmp;
1524 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1525 u32 block[AES_BLOCK_32] = {0};
1526 unsigned int i;
1527
1528 /* 'Special workaround' procedure described in the datasheet */
1529
1530 /* a) disable ip */
1531 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1532
1533 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1534 cfg &= ~CR_CRYPEN;
1535 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1536
1537 /* b) get IV1 from CRYP_CSGCMCCM7 */
1538 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1539
1540 /* c) Load CRYP_CSGCMCCMxR */
1541 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1542 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1543
1544 /* d) Write IV1R */
1545 stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1546
1547 /* e) change mode to CTR */
1548 cfg &= ~CR_ALGO_MASK;
1549 cfg |= CR_AES_CTR;
1550 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1551
1552 /* a) enable IP */
1553 cfg |= CR_CRYPEN;
1554 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1555
1556 /* b) pad and write the last block */
1557 stm32_cryp_irq_write_block(cryp);
1558 /* wait end of process */
1559 err = stm32_cryp_wait_output(cryp);
1560 if (err) {
1561 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1562 return stm32_cryp_finish_req(cryp, err);
1563 }
1564
1565 /* c) get and store decrypted data */
1566 /*
1567 * Same code as stm32_cryp_irq_read_data(), but we want to store
1568 * block value
1569 */
1570 readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1571
1572 scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1573 cryp->payload_out), 1);
1574 cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1575
1576 /* d) Load again CRYP_CSGCMCCMxR */
1577 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1578 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1579
1580 /* e) change mode back to AES CCM */
1581 cfg &= ~CR_ALGO_MASK;
1582 cfg |= CR_AES_CCM;
1583 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1584
1585 /* f) change phase to header */
1586 cfg &= ~CR_PH_MASK;
1587 cfg |= CR_PH_HEADER;
1588 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1589
1590 /* g) XOR and write padded data */
1591 for (i = 0; i < ARRAY_SIZE(block); i++) {
1592 block[i] ^= cstmp1[i];
1593 block[i] ^= cstmp2[i];
1594 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1595 }
1596
1597 /* h) wait for completion */
1598 err = stm32_cryp_wait_busy(cryp);
1599 if (err)
1600 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1601
1602 /* i) run the he normal Final phase */
1603 stm32_cryp_finish_req(cryp, err);
1604 }
1605
stm32_cryp_irq_write_data(struct stm32_cryp * cryp)1606 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1607 {
1608 if (unlikely(!cryp->payload_in)) {
1609 dev_warn(cryp->dev, "No more data to process\n");
1610 return;
1611 }
1612
1613 if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1614 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1615 is_encrypt(cryp))) {
1616 /* Padding for AES GCM encryption */
1617 if (cryp->caps->padding_wa) {
1618 /* Special case 1 */
1619 stm32_cryp_irq_write_gcm_padded_data(cryp);
1620 return;
1621 }
1622
1623 /* Setting padding bytes (NBBLB) */
1624 stm32_cryp_irq_set_npblb(cryp);
1625 }
1626
1627 if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1628 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1629 is_decrypt(cryp))) {
1630 /* Padding for AES CCM decryption */
1631 if (cryp->caps->padding_wa) {
1632 /* Special case 2 */
1633 stm32_cryp_irq_write_ccm_padded_data(cryp);
1634 return;
1635 }
1636
1637 /* Setting padding bytes (NBBLB) */
1638 stm32_cryp_irq_set_npblb(cryp);
1639 }
1640
1641 if (is_aes(cryp) && is_ctr(cryp))
1642 stm32_cryp_check_ctr_counter(cryp);
1643
1644 stm32_cryp_irq_write_block(cryp);
1645 }
1646
stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp * cryp)1647 static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1648 {
1649 u32 block[AES_BLOCK_32] = {0};
1650 size_t written;
1651
1652 written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1653
1654 scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1655
1656 writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1657
1658 cryp->header_in -= written;
1659
1660 stm32_crypt_gcmccm_end_header(cryp);
1661 }
1662
stm32_cryp_irq_thread(int irq,void * arg)1663 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1664 {
1665 struct stm32_cryp *cryp = arg;
1666 u32 ph;
1667 u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1668
1669 if (cryp->irq_status & MISR_OUT)
1670 /* Output FIFO IRQ: read data */
1671 stm32_cryp_irq_read_data(cryp);
1672
1673 if (cryp->irq_status & MISR_IN) {
1674 if (is_gcm(cryp) || is_ccm(cryp)) {
1675 ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1676 if (unlikely(ph == CR_PH_HEADER))
1677 /* Write Header */
1678 stm32_cryp_irq_write_gcmccm_header(cryp);
1679 else
1680 /* Input FIFO IRQ: write data */
1681 stm32_cryp_irq_write_data(cryp);
1682 if (is_gcm(cryp))
1683 cryp->gcm_ctr++;
1684 } else {
1685 /* Input FIFO IRQ: write data */
1686 stm32_cryp_irq_write_data(cryp);
1687 }
1688 }
1689
1690 /* Mask useless interrupts */
1691 if (!cryp->payload_in && !cryp->header_in)
1692 it_mask &= ~IMSCR_IN;
1693 if (!cryp->payload_out)
1694 it_mask &= ~IMSCR_OUT;
1695 stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1696
1697 if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1698 stm32_cryp_finish_req(cryp, 0);
1699
1700 return IRQ_HANDLED;
1701 }
1702
stm32_cryp_irq(int irq,void * arg)1703 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1704 {
1705 struct stm32_cryp *cryp = arg;
1706
1707 cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1708
1709 return IRQ_WAKE_THREAD;
1710 }
1711
1712 static struct skcipher_alg crypto_algs[] = {
1713 {
1714 .base.cra_name = "ecb(aes)",
1715 .base.cra_driver_name = "stm32-ecb-aes",
1716 .base.cra_priority = 200,
1717 .base.cra_flags = CRYPTO_ALG_ASYNC,
1718 .base.cra_blocksize = AES_BLOCK_SIZE,
1719 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1720 .base.cra_alignmask = 0,
1721 .base.cra_module = THIS_MODULE,
1722
1723 .init = stm32_cryp_init_tfm,
1724 .min_keysize = AES_MIN_KEY_SIZE,
1725 .max_keysize = AES_MAX_KEY_SIZE,
1726 .setkey = stm32_cryp_aes_setkey,
1727 .encrypt = stm32_cryp_aes_ecb_encrypt,
1728 .decrypt = stm32_cryp_aes_ecb_decrypt,
1729 },
1730 {
1731 .base.cra_name = "cbc(aes)",
1732 .base.cra_driver_name = "stm32-cbc-aes",
1733 .base.cra_priority = 200,
1734 .base.cra_flags = CRYPTO_ALG_ASYNC,
1735 .base.cra_blocksize = AES_BLOCK_SIZE,
1736 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1737 .base.cra_alignmask = 0,
1738 .base.cra_module = THIS_MODULE,
1739
1740 .init = stm32_cryp_init_tfm,
1741 .min_keysize = AES_MIN_KEY_SIZE,
1742 .max_keysize = AES_MAX_KEY_SIZE,
1743 .ivsize = AES_BLOCK_SIZE,
1744 .setkey = stm32_cryp_aes_setkey,
1745 .encrypt = stm32_cryp_aes_cbc_encrypt,
1746 .decrypt = stm32_cryp_aes_cbc_decrypt,
1747 },
1748 {
1749 .base.cra_name = "ctr(aes)",
1750 .base.cra_driver_name = "stm32-ctr-aes",
1751 .base.cra_priority = 200,
1752 .base.cra_flags = CRYPTO_ALG_ASYNC,
1753 .base.cra_blocksize = 1,
1754 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1755 .base.cra_alignmask = 0,
1756 .base.cra_module = THIS_MODULE,
1757
1758 .init = stm32_cryp_init_tfm,
1759 .min_keysize = AES_MIN_KEY_SIZE,
1760 .max_keysize = AES_MAX_KEY_SIZE,
1761 .ivsize = AES_BLOCK_SIZE,
1762 .setkey = stm32_cryp_aes_setkey,
1763 .encrypt = stm32_cryp_aes_ctr_encrypt,
1764 .decrypt = stm32_cryp_aes_ctr_decrypt,
1765 },
1766 {
1767 .base.cra_name = "ecb(des)",
1768 .base.cra_driver_name = "stm32-ecb-des",
1769 .base.cra_priority = 200,
1770 .base.cra_flags = CRYPTO_ALG_ASYNC,
1771 .base.cra_blocksize = DES_BLOCK_SIZE,
1772 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1773 .base.cra_alignmask = 0,
1774 .base.cra_module = THIS_MODULE,
1775
1776 .init = stm32_cryp_init_tfm,
1777 .min_keysize = DES_BLOCK_SIZE,
1778 .max_keysize = DES_BLOCK_SIZE,
1779 .setkey = stm32_cryp_des_setkey,
1780 .encrypt = stm32_cryp_des_ecb_encrypt,
1781 .decrypt = stm32_cryp_des_ecb_decrypt,
1782 },
1783 {
1784 .base.cra_name = "cbc(des)",
1785 .base.cra_driver_name = "stm32-cbc-des",
1786 .base.cra_priority = 200,
1787 .base.cra_flags = CRYPTO_ALG_ASYNC,
1788 .base.cra_blocksize = DES_BLOCK_SIZE,
1789 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1790 .base.cra_alignmask = 0,
1791 .base.cra_module = THIS_MODULE,
1792
1793 .init = stm32_cryp_init_tfm,
1794 .min_keysize = DES_BLOCK_SIZE,
1795 .max_keysize = DES_BLOCK_SIZE,
1796 .ivsize = DES_BLOCK_SIZE,
1797 .setkey = stm32_cryp_des_setkey,
1798 .encrypt = stm32_cryp_des_cbc_encrypt,
1799 .decrypt = stm32_cryp_des_cbc_decrypt,
1800 },
1801 {
1802 .base.cra_name = "ecb(des3_ede)",
1803 .base.cra_driver_name = "stm32-ecb-des3",
1804 .base.cra_priority = 200,
1805 .base.cra_flags = CRYPTO_ALG_ASYNC,
1806 .base.cra_blocksize = DES_BLOCK_SIZE,
1807 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1808 .base.cra_alignmask = 0,
1809 .base.cra_module = THIS_MODULE,
1810
1811 .init = stm32_cryp_init_tfm,
1812 .min_keysize = 3 * DES_BLOCK_SIZE,
1813 .max_keysize = 3 * DES_BLOCK_SIZE,
1814 .setkey = stm32_cryp_tdes_setkey,
1815 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1816 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1817 },
1818 {
1819 .base.cra_name = "cbc(des3_ede)",
1820 .base.cra_driver_name = "stm32-cbc-des3",
1821 .base.cra_priority = 200,
1822 .base.cra_flags = CRYPTO_ALG_ASYNC,
1823 .base.cra_blocksize = DES_BLOCK_SIZE,
1824 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1825 .base.cra_alignmask = 0,
1826 .base.cra_module = THIS_MODULE,
1827
1828 .init = stm32_cryp_init_tfm,
1829 .min_keysize = 3 * DES_BLOCK_SIZE,
1830 .max_keysize = 3 * DES_BLOCK_SIZE,
1831 .ivsize = DES_BLOCK_SIZE,
1832 .setkey = stm32_cryp_tdes_setkey,
1833 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1834 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1835 },
1836 };
1837
1838 static struct aead_alg aead_algs[] = {
1839 {
1840 .setkey = stm32_cryp_aes_aead_setkey,
1841 .setauthsize = stm32_cryp_aes_gcm_setauthsize,
1842 .encrypt = stm32_cryp_aes_gcm_encrypt,
1843 .decrypt = stm32_cryp_aes_gcm_decrypt,
1844 .init = stm32_cryp_aes_aead_init,
1845 .ivsize = 12,
1846 .maxauthsize = AES_BLOCK_SIZE,
1847
1848 .base = {
1849 .cra_name = "gcm(aes)",
1850 .cra_driver_name = "stm32-gcm-aes",
1851 .cra_priority = 200,
1852 .cra_flags = CRYPTO_ALG_ASYNC,
1853 .cra_blocksize = 1,
1854 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1855 .cra_alignmask = 0,
1856 .cra_module = THIS_MODULE,
1857 },
1858 },
1859 {
1860 .setkey = stm32_cryp_aes_aead_setkey,
1861 .setauthsize = stm32_cryp_aes_ccm_setauthsize,
1862 .encrypt = stm32_cryp_aes_ccm_encrypt,
1863 .decrypt = stm32_cryp_aes_ccm_decrypt,
1864 .init = stm32_cryp_aes_aead_init,
1865 .ivsize = AES_BLOCK_SIZE,
1866 .maxauthsize = AES_BLOCK_SIZE,
1867
1868 .base = {
1869 .cra_name = "ccm(aes)",
1870 .cra_driver_name = "stm32-ccm-aes",
1871 .cra_priority = 200,
1872 .cra_flags = CRYPTO_ALG_ASYNC,
1873 .cra_blocksize = 1,
1874 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1875 .cra_alignmask = 0,
1876 .cra_module = THIS_MODULE,
1877 },
1878 },
1879 };
1880
1881 static const struct stm32_cryp_caps ux500_data = {
1882 .aeads_support = false,
1883 .linear_aes_key = true,
1884 .kp_mode = false,
1885 .iv_protection = true,
1886 .swap_final = true,
1887 .padding_wa = true,
1888 .cr = UX500_CRYP_CR,
1889 .sr = UX500_CRYP_SR,
1890 .din = UX500_CRYP_DIN,
1891 .dout = UX500_CRYP_DOUT,
1892 .imsc = UX500_CRYP_IMSC,
1893 .mis = UX500_CRYP_MIS,
1894 .k1l = UX500_CRYP_K1L,
1895 .k1r = UX500_CRYP_K1R,
1896 .k3r = UX500_CRYP_K3R,
1897 .iv0l = UX500_CRYP_IV0L,
1898 .iv0r = UX500_CRYP_IV0R,
1899 .iv1l = UX500_CRYP_IV1L,
1900 .iv1r = UX500_CRYP_IV1R,
1901 };
1902
1903 static const struct stm32_cryp_caps f7_data = {
1904 .aeads_support = true,
1905 .linear_aes_key = false,
1906 .kp_mode = true,
1907 .iv_protection = false,
1908 .swap_final = true,
1909 .padding_wa = true,
1910 .cr = CRYP_CR,
1911 .sr = CRYP_SR,
1912 .din = CRYP_DIN,
1913 .dout = CRYP_DOUT,
1914 .imsc = CRYP_IMSCR,
1915 .mis = CRYP_MISR,
1916 .k1l = CRYP_K1LR,
1917 .k1r = CRYP_K1RR,
1918 .k3r = CRYP_K3RR,
1919 .iv0l = CRYP_IV0LR,
1920 .iv0r = CRYP_IV0RR,
1921 .iv1l = CRYP_IV1LR,
1922 .iv1r = CRYP_IV1RR,
1923 };
1924
1925 static const struct stm32_cryp_caps mp1_data = {
1926 .aeads_support = true,
1927 .linear_aes_key = false,
1928 .kp_mode = true,
1929 .iv_protection = false,
1930 .swap_final = false,
1931 .padding_wa = false,
1932 .cr = CRYP_CR,
1933 .sr = CRYP_SR,
1934 .din = CRYP_DIN,
1935 .dout = CRYP_DOUT,
1936 .imsc = CRYP_IMSCR,
1937 .mis = CRYP_MISR,
1938 .k1l = CRYP_K1LR,
1939 .k1r = CRYP_K1RR,
1940 .k3r = CRYP_K3RR,
1941 .iv0l = CRYP_IV0LR,
1942 .iv0r = CRYP_IV0RR,
1943 .iv1l = CRYP_IV1LR,
1944 .iv1r = CRYP_IV1RR,
1945 };
1946
1947 static const struct of_device_id stm32_dt_ids[] = {
1948 { .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1949 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1950 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1951 {},
1952 };
1953 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1954
stm32_cryp_probe(struct platform_device * pdev)1955 static int stm32_cryp_probe(struct platform_device *pdev)
1956 {
1957 struct device *dev = &pdev->dev;
1958 struct stm32_cryp *cryp;
1959 struct reset_control *rst;
1960 int irq, ret;
1961
1962 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1963 if (!cryp)
1964 return -ENOMEM;
1965
1966 cryp->caps = of_device_get_match_data(dev);
1967 if (!cryp->caps)
1968 return -ENODEV;
1969
1970 cryp->dev = dev;
1971
1972 cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1973 if (IS_ERR(cryp->regs))
1974 return PTR_ERR(cryp->regs);
1975
1976 irq = platform_get_irq(pdev, 0);
1977 if (irq < 0)
1978 return irq;
1979
1980 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1981 stm32_cryp_irq_thread, IRQF_ONESHOT,
1982 dev_name(dev), cryp);
1983 if (ret) {
1984 dev_err(dev, "Cannot grab IRQ\n");
1985 return ret;
1986 }
1987
1988 cryp->clk = devm_clk_get(dev, NULL);
1989 if (IS_ERR(cryp->clk)) {
1990 dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
1991
1992 return PTR_ERR(cryp->clk);
1993 }
1994
1995 ret = clk_prepare_enable(cryp->clk);
1996 if (ret) {
1997 dev_err(cryp->dev, "Failed to enable clock\n");
1998 return ret;
1999 }
2000
2001 pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2002 pm_runtime_use_autosuspend(dev);
2003
2004 pm_runtime_get_noresume(dev);
2005 pm_runtime_set_active(dev);
2006 pm_runtime_enable(dev);
2007
2008 rst = devm_reset_control_get(dev, NULL);
2009 if (IS_ERR(rst)) {
2010 ret = PTR_ERR(rst);
2011 if (ret == -EPROBE_DEFER)
2012 goto err_rst;
2013 } else {
2014 reset_control_assert(rst);
2015 udelay(2);
2016 reset_control_deassert(rst);
2017 }
2018
2019 platform_set_drvdata(pdev, cryp);
2020
2021 spin_lock(&cryp_list.lock);
2022 list_add(&cryp->list, &cryp_list.dev_list);
2023 spin_unlock(&cryp_list.lock);
2024
2025 /* Initialize crypto engine */
2026 cryp->engine = crypto_engine_alloc_init(dev, 1);
2027 if (!cryp->engine) {
2028 dev_err(dev, "Could not init crypto engine\n");
2029 ret = -ENOMEM;
2030 goto err_engine1;
2031 }
2032
2033 ret = crypto_engine_start(cryp->engine);
2034 if (ret) {
2035 dev_err(dev, "Could not start crypto engine\n");
2036 goto err_engine2;
2037 }
2038
2039 ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2040 if (ret) {
2041 dev_err(dev, "Could not register algs\n");
2042 goto err_algs;
2043 }
2044
2045 if (cryp->caps->aeads_support) {
2046 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2047 if (ret)
2048 goto err_aead_algs;
2049 }
2050
2051 dev_info(dev, "Initialized\n");
2052
2053 pm_runtime_put_sync(dev);
2054
2055 return 0;
2056
2057 err_aead_algs:
2058 crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2059 err_algs:
2060 err_engine2:
2061 crypto_engine_exit(cryp->engine);
2062 err_engine1:
2063 spin_lock(&cryp_list.lock);
2064 list_del(&cryp->list);
2065 spin_unlock(&cryp_list.lock);
2066 err_rst:
2067 pm_runtime_disable(dev);
2068 pm_runtime_put_noidle(dev);
2069
2070 clk_disable_unprepare(cryp->clk);
2071
2072 return ret;
2073 }
2074
stm32_cryp_remove(struct platform_device * pdev)2075 static int stm32_cryp_remove(struct platform_device *pdev)
2076 {
2077 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2078 int ret;
2079
2080 if (!cryp)
2081 return -ENODEV;
2082
2083 ret = pm_runtime_resume_and_get(cryp->dev);
2084 if (ret < 0)
2085 return ret;
2086
2087 if (cryp->caps->aeads_support)
2088 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2089 crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2090
2091 crypto_engine_exit(cryp->engine);
2092
2093 spin_lock(&cryp_list.lock);
2094 list_del(&cryp->list);
2095 spin_unlock(&cryp_list.lock);
2096
2097 pm_runtime_disable(cryp->dev);
2098 pm_runtime_put_noidle(cryp->dev);
2099
2100 clk_disable_unprepare(cryp->clk);
2101
2102 return 0;
2103 }
2104
2105 #ifdef CONFIG_PM
stm32_cryp_runtime_suspend(struct device * dev)2106 static int stm32_cryp_runtime_suspend(struct device *dev)
2107 {
2108 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2109
2110 clk_disable_unprepare(cryp->clk);
2111
2112 return 0;
2113 }
2114
stm32_cryp_runtime_resume(struct device * dev)2115 static int stm32_cryp_runtime_resume(struct device *dev)
2116 {
2117 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2118 int ret;
2119
2120 ret = clk_prepare_enable(cryp->clk);
2121 if (ret) {
2122 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2123 return ret;
2124 }
2125
2126 return 0;
2127 }
2128 #endif
2129
2130 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2131 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2132 pm_runtime_force_resume)
2133 SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2134 stm32_cryp_runtime_resume, NULL)
2135 };
2136
2137 static struct platform_driver stm32_cryp_driver = {
2138 .probe = stm32_cryp_probe,
2139 .remove = stm32_cryp_remove,
2140 .driver = {
2141 .name = DRIVER_NAME,
2142 .pm = &stm32_cryp_pm_ops,
2143 .of_match_table = stm32_dt_ids,
2144 },
2145 };
2146
2147 module_platform_driver(stm32_cryp_driver);
2148
2149 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2150 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2151 MODULE_LICENSE("GPL");
2152